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Abstract   
Multi-state series-parallel systems (MSSPSs) are widely-used for representing engineering systems. In real-life 
cases, engineers need to design an optimal MSSPS structure by combining different versions and number of 
redundant components. The objective of the design is to ensure reliability requirements using the least costs, 
which could be formulated as a redundancy optimization problem under reliability constraints. The genetic 
algorithm is one of the most frequently used method for solving redundancy optimization problems. In 
traditional genetic algorithms, the population size need to be determined based on the experience of the 
modeller. Often, this ends up creating a large number of unnecessary samplesAs a result, the computational 
burden can be huge, especially for large-scale MSSPS structures. To sovle these problems, this paper proposes 
an optimal structure designing method named as redundancy ordinal optimization. The universal generating 
function technique is applied to evaluate the reliabilities of the MSSPSs. Based on the reliabilities, an ordinal 
optimization algorithm is adapted to update the parent populations and the stopping criterion of genetic 
algorithm, so that the unnecessary structure designs can be eliminated. Numerical examples show that the 
proposed method improves the computational efficiency while remaining satisfactorily accurate.  
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Introduction 

As an extension of binary systems, multi-state systems 

(MSSs) are more flexible for modeling reliabilities of 

real-life engineering systems 1. In an MSS, the 

components and the system can take a range of 

performance levels, from perfect functioning to 

complete failure. System performances are calculated 

by considering all the combination of component states 

with different performance levels 2. Among the MSS 

structures, the series-parallel structure, in which 

subsystems are made of components connected in 

parallel, and systems comprises of subsystems 

connected in series, is the most frequently-used one. 

Typical examples of multi-state series-parallel systems 

(MSSPSs) include electric power systems and energy 

transmission systems 3. 

To provide a required level of system reliability, 

redundant components are necessary. In real-life cases, 

several versions for the same type of redundant 

components might be available on the market, with 

different characteristics like performance levels and 

prices. In order to make the optimal design, the 

appropriate version for each component should be 

chosen from a list of available ones, as well as the 

number of redundant components. For example, 

suppose we have a simple power generation system 

comprising of thermal and hydraulic generators. The 

thermal generator could be chosen from six available 

versions, while the hydraulic generators have five 

available version to choose. The maximal number of 

generators to be installed is 10 for the thermal while 5 

for the hydraulic one. Engineers need to determine the 

appropriate version and number of redundant thermal 

generators and hydraulic generators to be installed, 

respectively, so that the total costs of designing the 

system could be minimized 4. This kind of problem is 

well-known as the redundancy optimization 5,6, which 

will be the focus in this paper. 

Besides minimizing the system cost, maintaining 

high levels of reliability is also of great significance in 

redundancy optimization. Normally, this is done by 

considering system reliability as the optimization 

constraints. To evaluate the reliability of the MSSPS, 

several approaches have been established, such as the 

universal generating function (UGF) technique 7, 

Lz-transform approach 8 , Markov models and bayesian 

method 9. Among the proposed methods, UGF 

technique is one of the most frequently-used one 10. By 

defining different operators, it can be flexibly applied to 

many different system structures, including MSSPSs 11. 

Therefore, UGF technique is adopted in this paper for 

the reliability evaluation.   

As the industry develops, the scale of engineering 

systems increases. The complexity of the redundancy 

optimization problem grows rapidly as the available 



 

 

versions and the maximal numbers of each type of 

components increase dramatically. It is inefficient, if 

not impossible at all, to evaluate the cost and reliability 

for all the possible structure design one by one during 

the redundancy optimization. Thus, various heuristic 

approaches have been proposed. Genetic algorithm 

(GA) 5 and particle swarm optimization algorithm 12 

have been widely applied on  redundancy optimization. 

Reference 13 proposed a stochastic fractal search to 

allocate the redundancy level of each component. 

Reference 14 hybridized the cuckoo search algorithm 

into the redundancy optimization problem. Considering 

the large number of available redundant components, 

GA is applied in this paper, as it allows engineers to 

solve practical optimization problem where a variety of 

available designs exist 15. 

However, the efficiency and accuracy of GA largely 

depend on its parent populations and stopping criterion 
16, especially for redundancy optimization with large 

number of available components. In the traditional GA, 

the number of designs in the parent population for each 

generation is usually randomly decided. Inappropriate 

parent populations would lead to a local optimum and 

require excessive computational time. The stopping 

criterion in the traditional GA is also randomly decided. 

GA has no idea how many feasible structure designs 

will be found before the optimal one. Inappropriate 

stopping criterion may result in a great amount of 

unnecessary designs, which significantly increases the 

computational time. Furthermore, due to the enormous 

number of available components and system states, 

reliability evaluation also becomes a huge 

computational burden, when  a large number of 

unnecessary designs need to be evaluated.  

To solve the difficulties in redundancy optimization 

mentioned above, the traditional GA is integrated with 

ordinal optimization (OO) algorithm in this paper. OO 

can solve the computational problem by considering the 

“ order”  rather than the “ value”  17. The goal softening 

in OO is to relax the optimization goal from searching 

for the best solution to seeking a good enough solution 

with high probability, which can reduce the large search 

space into a smaller and controllable one 18. OO has 

been widely-used in many complex optimization 

problems. Reference 19 incorporated the OO into 

piecewise linear algorithm to improve the performance 

optimization of distributed file systems. Reference 20 

applied it to maximize core utilization in parallel 

computing.  

In this paper, an redundancy optimization method for 

MSSPS, termed as redundancy ordinal optimization 

(ROO), is proposed. ROO can effectively design the 

optimal MSSPS structure considering multiple 

available redundant components under reliability 

constraint. The ROO method combines three 

algorithms, which are GA, OO and UGF. With the 

assistance of UGF, reliabilities of structure designs 

generated by GA can be evaluated. Based on the 

calculated reliabilities, ordinal 

optimization-based-genetic algorithm is applied to 

accelerate the redundancy optimization process. 

Different screening rules in OO are employed to modify 

the parent populations and stopping criterion of 

traditional GA. With the appropriate parent populations 

and stopping criterion, an optimal MSSPS structure can 

be effectively designed by the modified GA. The main 

contributions of this paper can be summarized as 

follows: 

1) A redundancy optimization framework is proposed 

for multi-state series-parallel systems considering 

various versions and number of multi-state components. 

2) An efficient redundancy optimization method for 

MSSPS is proposed. 

3) The parent populations in each generation of GA 

are determined by different screening rules in OO, in 

order to determine the appropriate size of parent 

population and improve the optimization efficiency.  

4) The stopping criterion of GA is modified by OO. 

The total number of structure designs needed to be 

considered before convergence can be evaluated, which 

restrict the large gene pool into a calculable smaller one.  

The paper is structured as follows. Section 2 

introduces the MSSPS model and redundancy 

optimization. Section 3 presents the process of the ROO 

method. Section 4 analyzes the efficiency and accuracy 

of the ROO method. Finally, the conclusion is presented 

in Section 5. 

 

Description for the MSSPS model and redundancy 

optimization 

This section briefly reviews the MSSPS model and the 

redundancy optimization problem. Assume that a 

MSSPS consists of M subsystems connected in series. 

Each subsystem, denoted as ( 1, 2,...., )iSubsys i M= , only 

contains one version of components performing the 

same function. iSubsys  contains in  identical 

components from the same version, which are 

connected in parallel. The MSSPS structure is presented 

in Figure 1.  
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Figure 1. MSSPS structure 

 

Assume that these components are labelled 

sequentially as 1,2,..., n , which means 
1

=
M

ii
n n

= . The 

system component ( 1, 2,...., )i i n=  has finite number of 

performance states, and the number is denoted as ( +1)ik . 

Let ,i jw  represents the performance level of component 

i in state ( 0,1,...., )ij j k= . Then the set of all the 

performance levels of component i can be represented 

by  ,0 ,1 ,, ,...,
ii i i kw w w=iw . Let the random variable iW  

represents the random performance level of component 

i, which takes value in the iw . The probabilities 

associated with component i in state j are 

, ,Ρr( )i j i i jp W w= = .  

It is assumed that the performance levels of the 

MSSPS are determined by the performances of its 

components. Suppose that the entire system has (K+1) 

states represented by the performance level set 

 0 1, ,...,sys Kw w w=w  and the system performance level 

sysW  is a random variable taking value in the sysw . The 

transformation   is the system structure function which 

can map from the state space of components 

performance levels to the state space of system 

performance levels. Thus, sysW  can be represented as 

1 2( , ,..., )sys nW W W W= . Let *w  represents the system 

demand. For any pre-defined system demands, the 

probability of the system satisfying the demand levels, 

which is also the reliability under this demand, can be 

calculated as:  

( ) Pr( )sysR w W w =                            (1) 

where sysW  is the system performance level, *( )R w  is 

the reliability of the system under *w . 

In real-life cases, to provide a required level of 

system reliability, the version and number of redundant 

components in each subsystem are two design variables 

to be chosen. Components in the same version have 

identical performance levels and purchase cost. In 

redundancy optimization, the number of available 

versions for components in iSubsys  is ( 1, 2,..., )iN i M= , 

and is known by engineers. The available version j in 

iSubsys  is denoted as , ( 1, 2,..., )i j iv j N= . The maximal 

number of available components in ,i jv  is ,i jmn . which 

is known as well. Different versions and number of 

components can be chosen for different subsystems, but 

each subsystem only contains identical components 

from one version. The set of the available version that 

can be chosen for components in is represented by 

,1 ,2 ,{ , , , }
ii i i Nv v v= iv . The number of components that 

can be chosen for version ,i jv  is  ,0,1,..., i jmn=i, jmn . 

The final version and number of components chosen for 

iSubsys  are denoted as ( )i iv v  iv  and 

,( , )i i i i jmn mn if v v =i, jmn , respectively. The purchase 

cost for one component in iv  is ic . In this paper, the 

system cost is considered as the sum of the purchase 

costs for all the components. Then the system cost can 

be calculated as 
1

M

total i ii
C mn c

=
=  .  

To design an economical and reliable MSSPS 

structure, engineers need to determine the optimal 

version and number of redundant components for each 

subsystem, which are the values of iv  and imn . 

However, designing the optimal MSSPS structure is a 

complicated combinatorial optimization problem, as all 

the possible combination of iv  and imn  need to be 

enumerated in order to derive the optimal solution. To 

improve the optimization efficiency, GA is applied to 

solve the optimization problem in this paper. The 

selection operator in GA can select designs as the parent 

population for a generation. The crossover operator in 

GA can generate new feasible designs while retaining 

good features from the parent population, and the 

mutation operator can enhance the diversity of new 

feasible designs. The general steps of GA are given in 

reference 15: Firstly, randomly sample ps feasible 

designs as the parent population of the first generation. 

Secondly, within a parent population, apply crossover 

operator to produce new feasible designs. Then mutate 

these new designs with probability pm. Repeat the 

operators until ps new feasible designs are produced. 

Thirdly, evaluate the fitness of the 2ps feasible designs 

and choose ps good designs as the parent population for 

the next generation. Fourthly, apply step 2 and 3 to 

replenish the parent population until it remains constant. 

Fifthly, preserve the best design in one genetic cycle. 

Terminate GA after Nc genetic cycles. Otherwise return 



 

 

to step 1 and run a new genetic cycle. Finally, select the 

optimal design among Nc best designs.   

Based on the general steps of GA mentioned above, 

the process of redundancy optimization of MSSPSs 

under the framework of GA can be seen in Figure 2.  
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Figure 2. Redundancy optimization of MSSPSs under the framework of GA 

 

As shown in Figure 2, the process of redundancy 

optimization with GA can be divided into seven steps, 

generation, crossover and mutation, reliability 

evaluation, cost assessment, selection, structure 

preservation and optimal structure determination. The 

fitness and feasibility of a structure design are defined 

by the system cost and system reliability, respectively. 

The first step of redundancy optimization is to sample m 

feasible structure designs as the parent population for a 

generation. The feasible solution is the one with a 

reliability no less than the reliability requirement R . 

Then, crossover and mutation operators are used to 

generate '( ' )m m m  new structure designs. The third 

step is to evaluate the reliabilities ( 1, 2,... ')iR i m=  for 

these new structure designs, and select the ''m  feasible 

structure designs as the offspring in this generation. The 

fourth step is to estimate the system cost for the ''m m+  

feasible structure designs from the offspring and parent 

population. Employing the selection operator in GA, the 

fifth step is to find the m good structure designs, which 

are the top-m feasible structures in terms of minimizing 

system costs. These m feasible structure designs are 

considered as the parent population for the next 

generation. After the constant parent population is 

achieved, the sixth step is to preserve the best structure 

design which has minimal system cost among all the 

generations. The final step is to determine the optimal 

MSSPS structure among best structure designs after the 

genetic cycles in GA are terminated. The optimal 

structure is the MSSPS structure whose system cost is 



 

 

minimal and its reliability is no less than the required 

one.  

However, as the industry develops, the computation 

burden for redundancy optimization is becoming 

unaffordable. On the one hand, both the number of 

available versions and components could be large for 

subsystems. Suppose that a MSSPS has M subsystems 

and each subsystem has V available versions of 

component. Each version has G available components. 

Considering the combinations of different components, 

there are 1 1 2( ( ... ))G M
V G G GC C C C + + +  structure designs 

which need to be evaluated. With the increasing number 

of available versions or components, the computational 

burden can grow dramatically. On the other hand, GA 

usually applies an arbitrarily pre-defined parent 

populations and stopping criterion. It may spend most of 

the time proving the optimality of an already found 

optimal design, which require massive unnecessary 

computational time. Furthermore, the computation time 

of reliability evaluation may beyond calculation 

considering massive unnecessary large-scale MSSPSs. 

To efficiently deal with the redundancy optimization 

task, a new method ROO for redundancy optimization 

of MSSPSs is proposed in the next section. 

 

Formulation of ROO method 

In this section, ROO method is proposed to efficiently 

design the optimal MSSPS structure under reliability 

constraint.  

 
Figure 3. Process of ROO 

 

The process of ROO method is presented in Figure 3. 

Firstly, apply the modified selection operator to 

generate the parent population for the i-th generation. 

Meanwhile, preserve the best structure design in the i-th 

generation. Secondly, apply crossover and mutation 

operators to generate the offspring based on the 

corresponding parent population. Thirdly, from the 

offspring and parent population, apply the modified 

selection operator to determine the good structure 

designs as the parent population for the (i+1)-th 

generation. Fourthly, repeat the above steps until the 

total number of feasible structure designs among all the 

generations meets the modified stopping criterion. The 

optimal MSSPS structure among the preserved best 

structure designs can be determined after the 

termination of GA. In the following parts, the details of 

ROO are introduced.  

 

Feasibility and fitness evaluation of each structure  

A structure design j combining different versions and 

number of components can be represented by 

1 1( , , , ..., , , ..., )
j j j j jj

j M MtotalStr C R v v mn mn= . ( 1,2,..., )j
iv i M=  

is the final version of components chosen for iSubsys . 

j
imn  is the number of components in j

iv  chosen for 

iSubsys . jR  is the reliability, which is also considered 

as the feasibility under the framework of GA. j
totalC  is 

the system cost, which is also the fitness in GA.  

For a structure design with determined components in 

each subsystem, its reliability can be evaluated by UGF 

technique 10. Based on the definitions of components 

mentioned in Section 2, the UGF representation to 

describe the probability distribution of component i is 
,

,0
( ) i i j

k w

i i jj
u z p z

=
=  . Based on UGFs of components, 

the UGF of a system with n components is calculated as: 

 
( )1, ,1 1

1

1

( , , )

,0 0 1

( ) ( ( ),  ,  ( ))

j n jn n

in

n

w wnk k

i jj j i

U z u z u z

p z





= = =

=  

=    
  (2) 

Where   is the composition operators and   is the 

structure functions. 

In the MSSPS, two basic structure functions are 

concerned: the series structure function S  and the 

parallel structure function P , which are defined as: 

1 1

1 1

( , , ) min( , , )

( , , )

S n n

n

P n ii

W W W W

W W W




=

   =

 =
             (3) 

By applying system structure functions into Eq. (2), 

the reliability *( )R w  can be calculated by Eq. (4) 

considering system demand *w : 
*

0
( ) ( ( ),  ) ( )

K

A i ii
R w U z w p w w  

=
= =  −         (4) 

where (K+1) is the number of system states. ip  is the 

probability associated with the performance level iw  in 

state i.   is defined as an indicator function 

( ) 1( 0)x x =  , which equals to 0 if the variable x is less 

than 0 and equals to 1 otherwise.  



 

 

Example 1: Consider a multi-state electric generation 

system with two parallelly connected generator units G1 

and G2. Every generating unit has three possible states: 

0, 1, 2. When the total weights of electric power are no 

less than 17MW, the Gi is considered to be in state 2; 

when it is less than 17MW but no less than 10MW, it is 

in state 1; Otherwise, it is in state 0. The probabilities 

for the system to be in states 2, 1 and 0 are 0.8, 0.1 and 

0.1, respectively. The UGF of each unit Gi is: 
0 10 17

1 2( ) ( )=0.1 0.1 0.8G Gu z u z z z z=  +  +         (5) 

Applying the system structure functions, the 

reliability of the system attaining the system demand of 

20MW is: 
*

1 2

0 10 34

( ) ( ( ),  20) ( ( ( ),  ( )),  20)

(0.01 0.02 0.64 ,  20)

0.01+0.16 0.64=0.81

A A G G

A

R w U z u z u z

z z z

 



= = 

=  +  + + 

= +

 (6) 

For a structure design, its system cost can be 

evaluated as follows. By employing UGF, reliability of 

a structure can be obtained. Considering the reliability 

requirement *R , a feasible structure design represented 

by *
1 1( , , , ..., , , ..., )

j j j j jj
j M MtotalStrf C R R v v mn mn=  can be 

selected. Assume the cost for one component in j
iv  is 

j
ic . Then the system cost j

totalC  for jStrf  is calculated 

as: 

1
 cos   
j

j

Mj j j
i itotal i

Strf R R

System t C n c


=


=               (7) 

According to the calculated system costs among all 

the feasible structure designs, the good structure design 

with smaller system cost can be determined, which is 
*

1 1( , , , ..., , , ..., )
j j j j jj

j M MtotalStrg smallerC R R v v mn mn=  .  

 

Parent population selection of the first generation 

In the traditional GA, the size of the initial parent 

population needs to be assigned artificially, based on the 

experience of the modeller. However, in redundancy 

optimization, the number of available versions and 

redundant components can be large. Inappropriate size 

of parent population may result in unnecessary structure 

designs, which leads to severe computational burden. 

Therefore, this paper integrates OO into GA to 

determine a suitable size for initial parent population. 

OO solves the computational problem by considering 

the “ order”  rather than the “ value” . The basic idea of 

OO is simple: Instead of finding the best solution, OO 

attempts to find a “ good enough solution”  within a 

significantly reduced computational time 17. 

We apply Blind Picking rule (BP) in OO as the 

screening rule in this section 18. Let F be the population 

of all the feasible designs. The set G consists of top-   

truly best designs among F. p  is the population 

proportion of top-   truly best designs among F, which 

is /G F . If we randomly sample a design solution, the 

probability that this design is in G is p . If we randomly 

sample g feasible designs in F, the probability onep  that 

as least one of the sampled designs is in G is 

1 (1 )g
onep p= − − . Thus, the value of g can be calculated 

as: 

(1 ) / (1 )oneg In p In p= − −                      (8) 

Table 1.  Required number of feasible designs for different 

onep  and p 

Case p =1% p = 0.1% p = 0.01% 

onep =50% 69 692 6932 

onep =90% 229 2301 23025 

onep =99% 459 4603 46049 

onep =99.9% 688 6905 69075 

onep =99.99% 917 9206 92099 

onep =99.999% 1146 11508 115124 

The determination of g for any different onep  and p  

is named as BP. Table 1 shows how to interpret g for 

different onep  and p . For example, if engineers want 

the best design generated to lie within the top-0.1% of 

all the feasible designs with a probability of at least 99%, 

which means 0.99onep =  and 0.001p = . Only 

(1 0.99) / (1 0.001) 4603g In In= − −   feasible designs 

should be sampled. This number indicates that if 4603 

feasible designs are sampled during optimization, the 

probability that the best design among these 4603 

designs is within the top-0.1% of all the feasible designs 

is at least 99%. 

In redundancy optimization, BP is applied to obtain a 

more rational population size of GA. Once the values of 

onep  and p  are determined by engineers, the total 

number of sampled feasible structure designs for the 

first generation can be calculated by Eq. (8). The sample 

1g =  feasible structure designs during the 

optimization can ensure that the identified best structure 

design among the sampled designs is within the top- p  

of all the feasible structure designs with probability at 

least onep . The structure designs among the other 

generations are inherited and mutated from the parent 

population of the first generation. The appropriate 

feasible structure designs from the first generation 

provide an upper bound for the final optimal structure. 



 

 

Thus, the modified initial population by OO offers a 

more suitable parent population than the randomly 

sizing in traditional GA.  

Example 2: Our goal is to ensure that the best 

structure design of the first generation found is in the 

top-1% of all the feasible structure design with 

probability at least 99%. Therefore, after initialization, 

we sample 459 feasible structure designs. If a sampled 

structure design is not feasible, we resample until 459 

feasible structure designs satisfying the reliability 

requirement are found. These 459 feasible structure 

designs are considered as the parent population for the 

first generation in GA.  

Based on OO, 1  feasible structure designs can be 

determined as the initial population. With these 1  

designs, we can obtain 12  feasible structure designs 

by the crossover and mutation operators mentioned 

below. 

 

Offspring selection of the corresponding generation 

After the determination of the parent population for the 

i-th generation, we use a crossover operator to generate 

new structure designs that retain the good features of the 

parent population. Assume that there are i  feasible 

structure designs in the parent population for the i-th 

generation. The crossover and mutation operators will 

use these i  designs to produce i  new feasible 

structure designs as the offspring. The detail 

explanations for crossover and mutation operators can 

be seen in reference 12. To ensure that all the new 

structure designs produced by crossover and mutation 

operators are feasible, the reliability of every structure 

design is evaluated every time a crossover or a mutation 

occurs.  

After the crossover and mutation operators, the i-th 

generation consisting of 2 i  feasible structure designs 

are produced, whose feasible structure designs come 

from the parent population and offspring. For the i-th 

generation, preserve the best structure design 
*

1 1( , , ,..., , ,..., )i i i i i i
i total M MStrb minC R R v v mn mn=   which 

has the minimal system cost among the feasible ones. 

Moreover, with these 2 i  designs, we can determine 

the parent population for the (i+1)-th generation by the 

selection operator mentioned below. 

 

Parent population Selection of the next generation 

After determining the parent population and offspring 

for the i-th generation, the selection operator should be 

used. It chooses i  good structure designs from 

feasible structure designs in the i-th generation. The 

good structure designs represent the feasible structure 

designs which have top- i  smaller system cost. In 

traditional GA, the value of i  is usually randomly 

defined as 1000 or 5000. However, the traditional GA 

may choose a large amount of unnecessary good 

structure designs, which lead to severe computational 

burden for the next generation. Thus, to provide a more 

rational value of i  for each generation, the selection 

operator is modified by the OO in this paper. 

As mentioned above, the number of feasible structure 

designs in the i-th generation is 2 i  after the crossover 

and mutation operations. Evaluate the system costs of 
2 i  feasible structure designs and sort the feasible 

structure designs from smallest to largest based on the 

system cost. The new order of 2 i  feasible structure 

designs ORD
Strfi  and its corresponding system costs 

totalORDCi  are represented as: 

 1 2 2, ,...,
i

Strf Strf Strf =ORD
Strfi            (9) 

 21 2, ,..., i

total total totalC C C


=totalORDCi            (10) 

And the system costs satisfy the condition   
2 2 1i

total totaltotalC C C


    

where jStrf  is the feasible structure design j whose 

system cost is j
totalC .  

In this paper, BP is applied to obtain a rational 

number of good structure designs for each generation. 

Similar to the first generation, the number of good 

structure designs should ensure that the best structure 

design among the sampled good structure designs is 

within the top- p  of all the feasible structure designs 

with probability at least onep . Once the values of onep  

and p  are determined, the number of good structure 

designs that should be chosen from the i-th generation 

can be calculated by Eq. (8). These ig =  good 

structure designs  1 2, ,...,
i

Strg Strg StrgStrgi =  are the 

top- i  structure designs with smaller costs from 

ORD
Strfi , which are regarded as the parent population 

for the (i+1)-th generation. The first generation provides 

the upper bound for the optimal structure design, while 

next generations only need to increase the diversity of 

structure designs so that the optimality of final 

determined structure design can be further improved. 



 

 

Thus, the confidence level onep  of the other generations 

can be lower than the first generation. 

Example 3: Our goal is to ensure that a top-1% 

feasible structure design can be found with at least a 

90% confidence level for the other generations. Thus, 

we need to select the top-229 feasible structure designs 

with small system costs from ORD
Strfi . These 229 

feasible structure designs are considered as the good 

structure designs  1 2 229, ,...,Strg Strg StrgStrgi =  in the 

i-th generation. These Strgi  are also regarded as the 

parent population for the (i+1)-th generation, which 

means 1 229i + = .  

In the modified selection operator, i  good feasible 

structure designs can be selected from 2 i  feasible 

structure designs in the i-th generation, which is also the 

parent population for the (i+1)-th generation. Increasing 

the generation number by 1 and continue with the 

crossover, mutation and selection operators, preserve 

the best structure design iStrb  for each generation until 

the stopping criterion mentioned below is satisfied. 

 

Modified stopping criterion of GA 

In traditional GA, the stopping criterion depends on the 

number of genetic cycles. Once the pre-defined Nc 

genetic cycles are reached, GA is terminated. The value 

of Nc is randomly decided as well, such as 20 or 50. 

However, a small value of Nc would lead to a local 

optimum and a large value of Nc may result in massive 

computational time. An appropriate stopping criterion 

with calculable number of feasible structure designs is 

essential in redundancy optimization. Thus, this paper 

integrates OO with GA to provide a suitable stopping 

criterion. The screening rule in OO can tell the exact 

number of feasible structure designs that need to be 

found before the final optimal one, which forms a new 

stopping criterion.  

The goal of redundancy optimization is to ensure that 

one of the top- p  feasible structure designs can be found 

with at least a probability onep . The probability of 

reaching this goal should be larger than the first 

generation, so that the optimal solutions could be 

improved through iterations. Once the number of all the 

newly generated feasible structure designs is no less 

than g calculated by Eq. (8), GA should be terminated. 

However, as mentioned above, once onep  is fixed, the 

value of g is dependent on p . p  is the population 

proportion of top-   truly best structure designs among 

all the feasible structure designs. An unsuitable p  may 

lead to a large value of   if the total number of feasible 

structure designs is huge. Then one of the top- p  

feasible structure designs found by the modified GA 

cannot be regarded as the “ good enough solution” . 

Therefore, a variable 0n  is introduced to determine a 

propriate value of p  for stopping criterion. The total 

number of structure designs in redundancy optimization 

is defined as Q . 0n  is the number of elements in set G, 

which can be calculated as 0 =n pQ . p  can be 

determined once 0n  satisfies:    

  01,2,...,10 . .100 ( 1) = 100k s t k n pQ k   −    (11) 

It can be noticed from the three operators in GA that 

the first generation produces 12  new feasible structure 

designs, while the other generations generate i  new 

feasible structure designs. Thus, GA should be 

terminated after the s-th generation, once 

1 22 s g  + + +   and 1 2 12 s g   −+ + +   are 

satisfied. After termination, s best structure designs 

 1 2, ,..., sStrb Strb StrbStrb =  can be preserved. 

Through the modified stopping criterion, GA should 

be terminated after s generations. The optimal MSSPS 

structure can be determined through Strb  as mentioned 

below.  

 

Optimal structure determination  

After the termination of GA, best structure designs from 

s generations are determined. Each best structure design 

contains the appropriate versions and number of 

components for each subsystem. Pick up the optimal 

MSSPS structure among these best structure designs. 

This optimal structure is the MSSPS structure which has 

minimal system cost and satisfies the reliability 

requirement.  

 

Summary of the proposed ROO method 

The process of the ROO method is illustrated in Figure 

4. 
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Figure 4. Flow chart for the construction of ROO 

 

Step 1) Selection of the first generation: Sample 1  

feasible structure designs as the parent population for 

the first generation. 1  is determined by OO. The 

feasibility of structure designs is measured by UGF. 

Step 2) Crossover and mutation of the offspring: 

Apply crossover and mutation operators to generate i  

new feasible structure designs, which is named as 

offspring for the i-th generation.  

Step 3) Determine the best structure design: Sort 

the system cost totalORDCi  from largest to smallest of 

2 i  feasible structure designs ORD
Strfi . Select the best 

structure design iStrb  for the i-th generation. 

Step 4) Select the other generations: Based on the 

modified selection operator, select the top- i  good 

structure designs Strgi  from ORD
Strfi . These good 

structure designs are regarded as the parent population 

for the (i+1)-th generation, where 1i i + = . i  is 

determined by OO 

Step 5) Terminate the GA: According to the 

modified stopping criterion, GA is terminated after s 

generations. Determine the best structure designs Strb  

from all the generations and go to step 6. Otherwise, set 

i=i+1 and continue with step 2. 

Step 6) Determine the optimal structure Strb . 

 

Numerical studies  

In this section, ROO method is applied in the 

redundancy optimization of real-life electric power 

systems, which is a typical example of MSSPS. 

Through theoretical analysis and numerical experiments, 

the accuracy and efficiency performance of ROO and 

GA are compared.  

An electric power system can be divided into three 

subsystems: generation, transmission and 

transformation subsystems. The block diagram of 

power system structure can be seen in Figure 5. The 

electric power is transmitted from generation subsystem 

to its load system through two transformation 

subsystems and two transmission subsystems. 1Subsys  

represents the generation subsystem consisting of 1n  

generators. 2Subsys  and 4Subsys  represent the 

transformation subsystems made up of 2n  and 4n  

transformers, respectively. 3Subsys  and 5Subsys  

represent the transmission subsystems with 3n  and 5n  

transmission lines, respectively. 

 
 Figure 5. Block diagram of MSSPS structure 

 

Each transformer in 2Subsys  and 4Subsys  is modeled 

as a two-state component. Each transmission line in 

3Subsys  and 5Subsys  is also considered as binary-state 

component. While each generator in 1Subsys  has five 



 

 

states. The predefined demand is 5 MW. The number of 

available versions and components in each subsystem, 

along with the parameters of each components can be 

seen in Appendix. The required reliability *R  is 0.88. 

To construct an optimal MSSPS structure, we need to 

select the appropriate version and number of 

components for each subsystem. Since the total number 

of structure designs is larger than 1 million, an 

exhaustive examination of such an enormous structure 

designs is not feasible. Therefore, we apply ROO 

method to efficiently determine the optimal one. 

 

Application of ROO method 

To ensure that a top-0.1% feasible structure designs can 

be found with at least a 99% probability in the first 

generation, we sample 4603 feasible structure designs 

as the parent population for the first generation. 

Similarly, to ensure that a top-0.1% feasible structure 

designs can be found with at least a 90% probability in 

the other generations, 2301 good structure designs are 

selected as the parent population for the other 

generations. Moreover, when p  equals to 0.01%, the 

stopping criterion mentioned in Section 4 is satisfied. 

Thus, to ensure that a top-0.1% feasible structure 

designs can be found with at least a 99.999% 

probability, the total number of all the feasible designs 

is equal to 11508. The mutation probability mp  is 0.2.  

After three generations, ROO is terminated. The 

characteristics of versions and components in the 

optimal MSSPS structure is presented in Table 2. As 

can be seen from Table 2, 1Subsys  has one generator 

from version 2. 2Subsys  has one transformer from 

version 4. 3Subsys  has three transmission lines from 

version 2 4Subsys  has one transformer from version 4. 

5Subsys  has one transmission line from version 2. The 

total system cost is equal to $ 597 million. 
Table 2. Characteristics of versions and components in the 

optimal structure 

Subsystem 1 2 3 4 5 

iv  2v  4v  2v  2v  4v  

in  1 1 3 1 1 

 

Comparisons of accuracy and efficiency between ROO 

and GA 

To demonstrate the accuracy and efficiency of ROO 

method, two comparisons are made between ROO and 

GA in terms of precision and computational time.  

We apply GA to determine the optimal MSSPS 

structure under reliability requirement 0.88. The 

population size of each generation, mutation probability 

and genetic cycles are 5000, 0.2 and 10, respectively. 

The optimal MSSPS structure calculated by GA is the 

same optimal structure as ROO, where 1Subsys  has one 

component from version 2, 2Subsys has one component 

from version 4, 3Subsys  has three components from 

version 2, 4Subsys  has one component from version 4 

and 5Subsys  has one component from version 2. Thus, 

ROO method exhibits highly precision in redundancy 

optimization. 

Experiment below shows the high efficiency of the 

ROO in computational time. The experiments were 

developed by MATLAB2017b, in a computer with 

2.60GHz CPU and 4 GB of RAM. In the previous case 

study, most of the components are considered as 

binary-state components. To observe the performance 

of ROO method in large-scale systems, multi-state 

components instead of the simple binary components 

are used. Despite the component states, we also enlarge 

the number of available versions and components in 

each subsystem.  1 2 5, ,...,N N NN =  represents the set 

of the number of available versions for five subsystems, 

where ( 1,2,...,5)iN i =  is the number of available 

versions in iSubsys . Suppose that the number of 

available components for each version in the same 

subsystem are equal.  1 2 5, ,...,maxn maxn maxnmaxn =  

is defined as the set of the maximum number of 

available components for each version in five 

subsystems, where imaxn  is the maximum number of 

available components for each version in iSubsys . The 

CPU time for ROO and GA is compared in Table 3 and 

Figure 6. In Figure 6, the x-axis represents the number 

of states a component has. The y-axis shows the CPU 

time by GA and ROO, respectively. 
Table 3. CPU time for two methods 

CPU 

time 

(seconds) 

Number of states a 

component has 

when  3,3,= 3,3,3N  

 4,4,4= ,4,4maxn  

Number of states a 

component has 

when  4, 4,= 4, 4, 4N  

 5,5,5= ,5,5maxn  

2 3 4 2 3 4 

GA 1580 5489 ---- 1891 7274 ---- 

ROO 284 557 4790 485 741 8754 

 



 

 

 

Figure 6. Calculation time when  3,3,= 3,3,3v  and 

 4,4,4= ,4,4maxn  

 

From Table 3 and Figure 7, the calculation time of 
ROO method is nearly one-tenth the time of GA. As 
there are too many unnecessary structure designs, 
traditional GA requires huge computational time to 
generate and eliminate these structures. Particularly, the 
efficiency is more obvious when the number of available 
redundant components are larger. Therefore, it can be 
concluded that ROO can effectively shorten the 
computational time in redundancy optimization. 

    

Conclusion 

Reducing computational burdens becomes a crucial 

problem for redundancy optimization considering 

multiple available redundant components. In order to 

efficiently design the optimal MSSPS structure, this 

paper proposes a ROO method to reduce the 

computational time and guarantee the optimization 

accuracy. OO is applied as a desirable tool to limit the 

gene pool in GA and improve the computational 

efficiency. The selection operator in GA is modified by 

the screening rule in OO, which can determine the 

appropriate parent population of each generation. 

Moreover, the stopping criterion of GA is also improved 

by OO to rationally terminate the optimization process. 

The efficiency and accuracy performance of ROO 

method are compared with the traditional optimization 

method. Results show that ROO produces the same 

optimal structure design with a 10-fold reduction in 

computing time compared with traditional GA. This 

advantage would be more obvious when the scale of 

redundancy optimization is larger. 
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Appendices 

Abbreviations  

MSSPS Multi-state series-parallel system  

UGF Universal generating function  

OO Ordinal optimization  

GA Genetic algorithm 

ROO Redundancy ordinal optimization  

Nomenclature 

M  
total number of subsystems connected in 

series in a MSSPS 

iSubsys  subsystem ( 1, 2,...., )i i M=  in a MSSPS 

jStrf  feasible structure design j 

jStrg  good structure design j  

Strbi  best structure design in the i-th generation 

,i jw  performance level of component i in state 

j 

,i jp  probability of component i in state j 

iN  
total number of available versions of 

components in iSubsys  

,i jv  
available version ( 1, 2,...., )ij j M=  in 

iSubsys  

,i jmn  
total number of available components in 

,i jv  

totalC  system cost 

iv  
final version of components chosen for 

iSubsys   

imn  
final number of components chosen for 

iSubsys   

 
Table 4. Characteristics of available versions and components in five subsystems 

1Subsys  
Parameters of a component 

Cost of a component 
Number of available 

components State 0 1 2 3 4 

Version 1 
,i jw  0MW 5MW 8MW 10MW 20MW 

$ 200million 3 
,i jp  0.02 0.2 0.1 0.3 0.48 

Version 2 
,i jw  0MW 5MW 8MW 10MW 20MW 

$ 185million 3 
,i jp  0.01 0.1 0.15 0.1 0.64 

Version 3 
,i jw  0MW 4MW 9MW 15MW 20MW 

$ 175million 3 
,i jp  0.02 0.2 0.1 0.2 0.48 

2Subsys  
Parameters of a component 

Cost of a component 
Number of available 

components State 0 1 

Version 1 
,i jw  0MW 5MW 

$ 160million 3 
,i jp  0.02 0.98 

Version 2 
,i jw  0MW 5MW 

$ 150million 2 
,i jp  0.2 0.8 

Version 3 ,i jw  0MW 5MW $ 140million 2 



 

 

,i jp  0.01 0.99 

Version 4 
,i jw  0MW 5MW 

$ 130million 2 
,i jp  0.1 0.9 

3Subsys  
Parameters of a component 

Cost of a component 
Number of available 

components State 0 1 

Version 1 
,i jw  0MW 5MW 

$ 40million 3 
,i jp  0.02 0.98 

Version 2 
,i jw  0MW 5MW 

$ 35million 3 
,i jp  0.1 0.9 

4Subsys  
Parameters of a component 

Cost of a component 
Number of available 

components State 0 1 

Version 1 
,i jw  0MW 5MW 

$ 180million 3 
,i jp  0.02 0.98 

Version 2 
,i jw  0MW 5MW 

$ 160million 2 
,i jp  0.01 0.99 

Version 3 
,i jw  0MW 5MW 

$ 147million 2 
,i jp  0.2 0.8 

Version 4 
,i jw  0MW 5MW 

$ 135million 2 
,i jp  0.1 0.9 

5Subsys  
Parameters of a component 

Cost of a component 
Number of available 

components State 0 1 

Version 1 
,i jw  0MW 5MW 

$ 45million 3 
,i jp  0.01 0.99 

Version 2 
,i jw  0MW 5MW 

$ 42million 3 
,i jp  0.2 0.8 

 


