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Abstract 

In this paper, we present an integrated framework for quantifying epistemic uncertainty in probabilistic risk 

assessment. Three types of epistemic uncertainty, i.e., completeness, structural and parametric uncertainties, are 

considered. A maturity model is developed to evaluate the management of these epistemic uncertainties in the model 

building process. The impact of epistemic uncertainty on the result of the risk assessment is, then, estimated based 

on the developed maturity model. Then, an integrated risk index is defined to reflect the epistemic uncertainty in the 

risk assessment results. An indifference method is developed to evaluate the index based on the maturity of epistemic 

uncertainty management. A case study concerning a nuclear power plant is shown to demonstrate the applicability of 

the overall modelling framework. 

Highlights 

• A maturity model is developed to evaluate the management of epistemic uncertainty in the probabilistic risk 

assessment model building process. 

• An integrated risk index is defined to reflect epistemic uncertainty in probabilistic risk assessments. 

• An indifference method is developed to evaluate the integrated risk index. 

• An application to a real nuclear power plant PRA is performed. 
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MM-EU Maturity Model for EU management 

CDF Cumulative Distribution Function 

EDF Electricité De France 

EU Epistemic Uncertainty 

EUF Epistemic Uncertainty Factor 

EUM Epistemic Uncertainty Management 

NPP Nuclear Power Plant 

NRC U.S. Nuclear Regulation Commission 

MCS Minimal Cut Set 

PRA Probabilistic Risk Assessment 

 

Notation 

e   Adjustment factor for epistemic uncertainty 

EUMM  Maturity of epistemic uncertainty management 

*

PRisk   Conventional risk index in PRA 

Pd   Distance to the failure region for 
PRisk   

Bd   Distance to the failure region for BRisk   

ES  Equivalent safety margin 

e   Epistemic uncertainty factor 

ES   Mean value of the distribution of ES   

ES   Standard deviation of the distribution of ES  
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1. Introduction 

In probabilistic risk assessment (PRA), risk indexes (e.g., the frequency of a given consequence, like core 

damage in a nuclear power plant (NPP)) are calculated using models that describe the occurrence and evolution of 

an accident 1. It is well known that epistemic uncertainty (EU) exists in these models, referring to the uncertainty that 

results from incomplete/insufficient knowledge and/or approximations of the processes involved in the accidents 2. 

As the risk indexes are results obtained from the knowledge in the PRA models, EU can significantly affect them. 

This is the reason why treatment of EU in PRA has been considered since the early days of PRA practice. For example, 

the U.S. nuclear regulation commission (NRC) formed a committee to review the PRA of WASH-1400 reactor and 

concluded that although the PRA is in general well-done, it does not adequately consider the uncertainty, especially 

epistemic uncertainty in the analysis 3. Consequently, the NRC included a mandate to direct the NUREG-1150 PRAs, 

which emphasizes the need to include an assessment of epistemic uncertainty in the results of the PRA. Procedures 

were, then, developed and employed to characterize epistemic uncertainty in the NUREG-1150 PRAs, and, more 

generally, in PRAs for complex systems 4. From a methodological framework point of view, Kaplan and Garrick 5 

has suggested a “probability of frequency” framework where the frequency of a scenario considered in the risk 

assessment is assumed to be an uncertain quantity and the EU related to it is described by a (subjective) probability 

distribution. This formulation that separates aleatory and epistemic uncertainty has been widely applied, e.g., in the 

NRC regulations for the geologic disposal of radioactive waste 6. Pate-Cornell 7 characterized different levels of 

uncertainty treatment and considered the “probability of frequency” framework suitable for a full description of the 

uncertainty involved in PRA. Directly applying these frameworks in practice, however, is sometimes difficult, as it 

is not easy to determine the required probability distributions representative of the actual state of EU. 

For the practical assessment of EU in PRA, in the present paper, we adopt the common classification, which 

distinguishes the following three categories of EU, based on their sources: completeness uncertainty, model structural 

uncertainty and parametric uncertainty 8. Completeness uncertainty refers to the uncertainty caused by the factors 

that are not included in the PRA; model structural uncertainty results from the way the PRA model describes the 

physical features of the processes involved; parametric uncertainty results from the model parameter value estimation 

8. Different methods have been developed in recent years for the assessment and characterization of the EU from the 

different sources (a more detailed review is presented in Sect. 2). Typically, in the existing works, the three sources 

of EU are considered separately, using different ad hoc methods. A unified method for quantifying the EU collectively, 

would be useful for a complete characterization of the uncertainty in the PRA models. 
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In this paper, we present a unified framework for quantifying EU in PRA, based on a maturity model designed 

to evaluate the management of epistemic uncertainty in a PRA model building process. An integrated risk index is 

defined to reflect EU in risk assessment. Considering the existing frameworks for quantifying EU, the contributions 

of the present work are: 

• A collective assessment of completeness, model structural and parametric uncertainty is given by the 

developed maturity model. 

• An integrated risk index is defined to consider the collective effect of EU on the PRA results. 

• A practical procedure is presented to consider EU in PRA, based on the maturity model of EU management. 

The rest of the paper is organized as follows. Sect. 2 reviews works related to quantifying EU in PRA. A maturity 

model is developed in Sect. 3 to evaluate the capability of managing EU in a PRA. In Sect. 4, a new risk index is 

introduced for reflecting EU in a PRA. To evaluate the risk index using the maturity model, an indifference method 

is developed in Sect. 4. A case study of a Nuclear Power Plant (NPP) is conducted in Sect. 5. Finally, the paper is 

concluded in Sect. 6, with some discussions on potential future works. 

2. Literature review 

In this section, we review existing approaches for quantifying EU in PRA. There are different ways of classifying 

EU in literature. For example, Knight 9 distinguished two types of uncertainties: unquantifiable (where precise 

probabilistic quantification cannot be obtained) and quantifiable (where probabilities are available). The latter is also 

referred to as “(decision making under) risk” and the former as “(decision making under) uncertainty”. Wynne 10 

argued that risk assessments are conditioned on assumptions and categorized the EU by examining the degree of 

appropriateness of these assumptions. Apart from the “risk” and “uncertainty”, it was proposed to consider the two 

other types of uncertainties: ignorance, which corresponds to a state that “we don’t know what we don’t know about 

the completeness and validity of our knowledge” and indeterminacy, which arises when the causal chains or networks 

in the problems are still open 10. Another widely accepted categorization is to distinguish between conscious 

ignorance (knowing that you don’t know) and blind ignorance (not knowing that you don’t know, also called meta-

ignorance) 11. Based on the object of the uncertainties, Spiegelhalter and Riesch 12 defined a five-level structure for 

assessing and communicating uncertainties: (uncertainties in) events, model parameters, alternative model structures, 

model inadequacy from recognized sources and model inadequacy from unspecified sources. The first type is mainly 

aleatory uncertainty while the rest four belong to EU. 

We can go on with the discussions on EU classifications: there are many ways of categorization and no real 
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agreements exist on how to do so. In this paper, we follow the operational perspective of the US Nuclear Regulatory 

Commission and classify EU into completeness uncertainty, model structural uncertainty and parametric uncertainty, 

as shown in Figure 1 8. This classification is associated with different phases of PRA modelling and analysis: 

completeness uncertainty concerns if some dangerous hazards or initiating events are missed in the analysis; model 

structural uncertainty is about the adequacy of the used model to describe the phenomena involved; parametric 

uncertainty is about the accuracy of model parameters. The classification results from the work of researchers and 

practitioners in the field of risk assessment. For example, Kaplan and Garrick 5 pointed out that risk analysis is 

essentially a listing of scenarios that could lead to accidents, but the scenarios covered by the analysis are inevitably 

incomplete, leading to completeness uncertainty. Apostolakis 13 discussed the uncertainties in modelling and 

distinguished between two types of state-of-knowledge uncertainties: uncertainties about model assumptions and 

uncertainties about model parameters, which correspond to the model structural and parametric uncertainty, 

respectively. The reason for us to adopt this classification framework is that it provides an operational way to separate 

the different contributors to EU in the PRA models, which is usable in practice for supporting EU management. It 

should be noted that this classification is based on the object of EU and not on its sources. It does not contradict with 

the classification of 11: both completeness, model structural and parametric uncertainty might be caused by either 

conscious or blind ignorance, as shown in Figure 2. To better explain this, we give examples for the different 

combinations of uncertainty types in Table 1. 

The following sections (Sects 2.1-2.3), then, review the methods used for characterizing each of these three 

types of EU, respectively. Please note that there exist other taxonomy schemes for epistemic uncertainty. We choose 

the one based on 8 as it fits more the operative treatment of the epistemic uncertainty in PRA. 

 

Figure 1 A classification of EU in PRA. 
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Figure 2 Relationship between different uncertainty types. 

Table 1 Examples of different combination of uncertainty types. 

       Smith- 

        son’s 

NRC’s 

Conscious ignorance Blind ignorance 

Completeness 

uncertainty 

After an initial analysis, we 

consider a scenario as irrelevant and 

exclude it from the PRA on purpose. 

But the scenario turns out to be 

important and leading to accidents. 

In the 1950s, two consecutive mid-air explosions of the 

airplane De Havilland Comet occurred, which were 

found out to be caused by metal fatigue. Before these 

accidents, people did not understand that metal fatigue 

could occur in such a manner as what happened in De 

Havilland Comet. If we were to perform a PRA for 

airplanes before the De Havilland Comet accidents, metal 

fatigue would have been ignored, as an example of this 

category. 

Model 

structural 

uncertainty 

In developing a model, we 

purposely select a linear model to 

approximate a non-linear process, 

because we think that the 

inaccuracy is tolerable, considering 

the gains in saving modelling 

complexity. 

We failed to notice that the actual process is non-linear, 

and we select a linear model for modelling the process 

with unknown non-linear effects. 

Parametric 

uncertainty 

We select a limited sample size for 

parameter estimation and 

understand the uncertainty might be 

caused by such a small sample size. 

We think that the sample size for parameter estimation is 

large enough so that the estimation is accurate, whereas, 

in reality, the estimation is still subject to uncertainty due 

to the unnoticed fact the sample size for estimation is not 

sufficient. 

 

2.1 Completeness uncertainty 

Completeness uncertainty results from the fact that the PRA might be incomplete and fail to consider some 

important risk contributors 8. This might result in underestimation of risk 14. Terms and concepts used in the literature 

in relation to completeness uncertainty include ignorance, surprising events, black swan 15, etc. 

Unforeseen accident scenarios caused by completeness uncertainty have been discussed extensively in the risk 

analysis literature. For example, Kaplan and Garrick 5 proposed a Bayesian framework to consider unforeseen 

scenarios, in which an artificially constructed scenario called “others” is added in the analysis to reflect the lack of 
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completeness. The total risk is calculated based on the law of total probability and can be updated using Bayesian 

methods when new observation data become available 5. Kazemi and Mosleh 16 applied a similar method to 

investigate the impact of surprising events on credit risks. Jin et al. 17 identified major contributors to completeness 

uncertainty and discussed the impact of completeness uncertainty on the reliability assessment of safety instrumented 

systems. Kukholskyi et al. 18 proposed to add a “black box” in the risk assessment model that represent model 

uncertainty. Bjerga et al. 19 discussed the exact meaning of completeness uncertainty and proposed a practical 

approach for handling it in risk assessment. They concluded that completeness uncertainty can be treated as model 

uncertainty. Most of these works, however, are conceptual: operational guidelines to support their practical 

implementation are not provided. 

2.2 Model structural uncertainty 

Model structural uncertainty (also referred to as model uncertainty in some papers) arises from the way the PRA 

model accounts for the features of the processes involved 8. Because of model structural uncertainty, systematic errors 

might be introduced into the predicted risk indexes 14. For example, static PRA models like event tree fail to capture 

risk indexes that are time-dependent due to various degradation mechanisms 20. 

Mosleh and Droguett reviewed the common approaches used for characterizing model structural uncertainty 21, 

22. Among them, the alternate hypotheses approach and the adjustment factor approach are listed as two most widely 

applied ones 23. The alternate hypotheses approach develops an overall PRA model by probabilistically combining 

several alternate models, each of which is developed under alternate assumptions of the model structures 24. The 

probabilistic combination is done by Bayesian model averaging, where the weights of the alternate models are 

determined from experimental data or expert judgements that measure closeness of the models to reality 25. An early 

application of the alternate hypotheses approach can be found in Apostokakis 13. Figini and Giudici 26 applied the 

alternate hypotheses approach to characterize credit risks when several competing models exist. In Huo et al. 27, an 

approach similar to the alternative assumption is used for comparative risk assessment for fossil energy chains 

considering model uncertainty from the difference in the data sources. Wang et al. 28 used Bayesian model averaging 

to tackle the model uncertainty issues arisen in wind power forecasting. A potential limitation of the alternate 

hypotheses approach is that it requires enumerating a set of mutually exclusive and collectively exhaustive PRA 

models, which is not always possible in practice 21. 

In the adjustment factor approach, an adjustment factor is added to or multiplied by the prediction result of a 

reference PRA model to describe the influence of model structural uncertainty 29. Mosleh and Apostolakis 30 applied 
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the adjustment factor approach to evaluate the influence of model uncertainty on a seismic risk assessment based on 

experts’ judgements. Zio and Apostolakis 23 used a similar approach for risk assessment of radioactive waste 

repositories. Park and Grandhi 31 combined the adjustment factor approach with the alternate hypotheses approach: 

the adjustment factor approach was used to evaluate the influence of model uncertainty on each alternative model; 

the adjustment factors were, then, averaged using the alternate hypotheses approach. Ahmadisharaf and Benha 32 

applied the adjustment factor approach to handle the model uncertainty in a risk-based decision making framework 

for pollutant reductions. 

2.3 Parametric uncertainty 

Parametric uncertainty relates to the estimated values of parameters of the PRA model 8. Usually, it results in a 

“level-two” uncertainty analysis setting where outer loop simulations sample realizations of variables subject to 

epistemic uncertainty (denoted by E ), while for each outer loop simulation, inner loop simulations are conducted to 

sample from the variables subject to aleatory uncertainty, conditioned on the realizations of E  (see 33 for details). 

Various mathematical frameworks have been developed for quantifying and propagating parametric uncertainty, e.g., 

probability theory, evidence theory, possibility theory, probability box, and interval analysis 34. 

In probability-based methods, parametric uncertainty is quantified by probability distributions and the risk index 

is typically calculated through a double-loop Monte Carlo simulation 34. Helton et al. 34 summarized the theoretical 

basis and implementation procedures of using probability theory to quantify parametric uncertainty. Hao et al. 35 

applied the probability-based framework to consider the parametric uncertainty in a risk assessment of a water inrush 

accident in a karst tunnel. Flage et al. 36 compared probability-based methods with probability box-based methods 

through a production assurance example. 

In evidence theory-based methods, parametric uncertainty is described by assigning belief masses to a list of 

focal sets (e.g., a set of intervals of possible parameter values). The parametric uncertainty is propagated by 

calculating the plausibility and belief measures for the risk index, which comprise an interval that bounds the 

probabilistic risk index 37. For example, Xie et al. 38 used evidence theory to describe the parametric uncertainty in a 

PRA model of a pressure vessel subject to corrosion and developed a kriging model-based adaptive sampling method 

for effective risk assessment.  

In possibility theory-based methods, parametric uncertainty is represented by assigning a possibility distribution 

that quantifies the degree of possibility that each value is actually taken by the uncertain parameter 33. The parametric 

uncertainty is, then, propagated based on Zadeh’s extension principle to calculate the possibility and necessity 



 

9 

measures, which are supposed to bound the probabilistic risk index 37. Toscani et al. 39 applied a possibility theory-

based method to consider the parametric uncertainty in a PRA model for the risk of interference between power and 

signal lines onboard a satellite. In Dutta 40, possibility theory was combined with probability distributions for human 

health risk assessments. 

In probability box-based methods, parametric uncertainty is represented by probability boxes, which comprise 

of an upper and a lower bound for probability distributions. The probability box bounds what would have been the 

probability distributions for the unknown parameters had the assessor been able to assess these 37. For example, 

Zhang et al. 41 applied the probability box-based method to consider the parametric uncertainty in PRA models of 

dependent failure processes. Liu et al. 42 developed an efficient uncertainty propagation method for parameterized 

probability box based on sparse-decomposition-based polynomial chaos expansion. 

In interval analysis-based methods, parametric uncertainty is represented by defining an interval that covers all 

possible values of the unknown parameter. The uncertainty is, then, propagated by solving an optimization problem 

to determine the upper and lower bounds for the risk index 37. Wang et al. 43 applied interval analysis-based methods 

to quantify parametric uncertainty in a linkage mechanism model. Chen et al. 44 used interval analysis-based methods 

to describe the uncertainty in a composite laminated structure model and developed a reliability-based optimal design 

method considering the parametric uncertainty.  

As shown in the reviews above, most existing methods for EU quantification in PRA only apply to a specific 

type of EU (either completeness uncertainty, model structural uncertainty or parametric uncertainty). In this paper, 

we develop a unified framework that is capable to consider the three sources of EU collectively, based on a maturity 

model for EU management in a PRA. 

3. Maturity model for epistemic uncertainty management 

Various types of EU might affect the PRA model building process (Figure 3). If not properly managed, the EU 

could impact the results of the PRA and the decisions made based on these results. For example, the first steps of a 

PRA lead to identifying scenarios that need to be analyzed. Insufficient/incomplete knowledge in these steps would 

lead to completeness uncertainty. Therefore, the resulting PRA model would not cover all possible scenarios and 

possibly underestimate the risk. Once the scenarios are identified, models of the evolution of the scenarios are built 

to compute the risk index for different possible consequences. Model structural uncertainty might be introduced in 

this part: the model might not fully describe the real physical process, and, as a result, systematic errors in the risk 

indexes might occur. Finally, in the calculation, parametric uncertainty related to the estimation of the model 
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parameters, might lead to inaccurate risk index values and, as a result, affect the decisions made based on these. 

 

Figure 3 The EU that affects a PRA. 

For properly informed decision making, the EU in the PRA needs to be managed. In this paper, we define 

Epistemic Uncertainty Management (EUM) capability as the ability to identify, characterize and control the epistemic 

uncertainty in a PRA model. Here, we use the term “epistemic uncertainty” in a broad sense, i.e., it covers 

completeness uncertainty, model structural uncertainty and parametric uncertainty. EUM must allow evaluating the 

EU in the PRA model and for this a maturity model for EUM (MM-EUM) is developed in this paper. 

Similar to the work on the capability maturity model for software development processes 45, MM-EUM is a 

framework to capture the key elements which enable EUM in PRA. The MM-EUM represents an evolutionary 

improvement from ad hoc EU management to strengthened EU management capability in PRA. This is expected to 

yield more transparent and trustworthy PRA results, and better support for risk-informed decision making.  

The structure of the MM-EUM comprises three elements (Figure 4): maturity levels, activities and goals. Five 

maturity levels are defined to describe different degrees of EUM in PRA. The five levels are distinguished based on 

the severity of the potential impact of the EU on the PRA results. A detailed definition of the maturity levels can be 

found in Sect. 3.1. For each maturity level, several activities that help to generate the corresponding level of maturity 

are identified (Sect. 3.2). Each activity is associated with one or several goals. If all of the goals at a given maturity 

level are fulfilled, the PRA reaches such maturity level. 

 

Figure 4 The structure of MM-EUM. 

3.1 Maturity levels 

Let EUMM  denote the maturity of EUM for a PRA. Based on the severity of the influence of EU on the PRA 
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results, we define five levels of 
EUMM : 

• Initial ( )1 :EUMM =  The PRA is conducted without considering the influence of EU. The sources of EU 

and their influence on the result of the PRA are unknown and unmanaged.  

• Uncontrolled ( )2 :EUMM =   The PRA is conducted with an epistemic uncertainty analysis (covering 

completeness, model structural and parametric uncertainty). The potential impact of EU is known to the 

decision maker, but no measures have been taken to reduce it. 

• Complete ( )3 :EUMM =   Effective measures have been taken to control the completeness uncertainty 

(reduce its impact to a desired level). As a result, the PRA is complete: the critical risk contributors that 

might severely affect the results of the PRA have all been considered in the analysis, given the current 

knowledge and the degree of accuracy required. 

• Adequate ( )4 :EUMM =  Effective measures have been taken to control the model structural uncertainty. 

As a result, the developed PRA model is capable to adequately capture the characteristics of the process 

involved in the risk assessment, given the current knowledge and the degree of accuracy required. 

• Accurate ( )5 :EUMM =  Effective measures have been taken to control the parametric uncertainty. As a 

result, the parameters in the risk assessment model are estimated to the required level of accuracy. 

 

Figure 5 Continuous improvement process of the maturity levels. 

As shown in Figure 5, the five maturity levels defined above characterize a cumulative improvement process of 

the EUM in PRA. The improvement process starts from the Initial level ( )1 .EUMM =  At this level, no analysis has 

been conducted to identify the possible sources of EU in the PRA. The PRA is conducted without considering the 

possible influence of EU. 
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At the Uncontrolled level ( )2 ,EUMM =  the sources of EU in the PRA process have been identified. Through 

the analysis, the impact of completeness uncertainty, model structural uncertainty and parametric uncertainty are 

known and quantified. EU has been characterized and propagated into the PRA result using proper mathematical 

theories. However, the EU is not controlled: no measures are implemented to contain and reduce the existing EU. 

At the Complete level ( )3 ,EUMM =   not only the achievements of the Uncontrolled level are obtained, the 

completeness uncertainty is actively controlled as well, through the activities defined in Sect. 3.2. Reaching this level 

indicates that the EU management is capable to control the completeness uncertainty, so that all the important risk 

contributors have been considered in the PRA model (to the current knowledge level). 

At the Adequate level ( )4 ,EUMM =   besides the achievements of the previous levels, the model structural 

uncertainty is actively controlled through the activities defined in Sect. 3.2. Arriving at this level means that the PRA 

model is adequate in terms of its capability to account for the actual physical processes involved. Therefore, no 

significant systematic errors are expected to exist in the results of the PRA. 

At the Accurate level ( )5 ,EUMM =   in addition to the achievements of the previous levels, the parametric 

uncertainty is controlled through the activities defined in Sect. 3.2. If a PRA reaches the Accurate level, the EU is 

properly controlled and one can be confident that the calculated risk index reflects all the available knowledge on the 

risk as well as the uncertainties. 

In our framework, the Uncontrolled level already requires that a “complete” epistemic uncertainty analysis is 

done, considering completeness, model structural and parametric uncertainties. The difference between the 

Uncontrolled level and subsequent three levels is that, in the Uncontrolled level, the decision maker only knows how 

uncertain he/she is due to the impact of EU, but does not take any proactive measures; while starting from the 

Complete level, proactive measures are taken to reduce the impacts of EU. It should be noted that the orderings of 

the maturity levels are defined based on the severity of the potential impact of EU for a particular maturity level. For 

example, the Complete level ( )3EUMM =  is considered as less mature than the Adequate and Accurate levels, as the 

potential impact of completeness uncertainty is more severe than that of model and parametric uncertainty: we should 

make sure first that we are modelling the correct risk contributors, before considering if we had chosen an appropriate 

model (model uncertainty) for analysis and if the parameter values are accurately estimated (parametric uncertainty). 

The maturity model defined in Figure 5 also provides also a sequential process to guide the activities of improvement 

for reducing epistemic uncertainty: the requirements of a lower maturity level should be satisfied first, before 
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considering the requirements of a higher maturity level. 

3.2 Activities and their goals 

With the exception of the Initial level, each maturity level can be achieved by effectively implementing several 

key activities that support it. To verify if the key activities are implemented successfully, several goals are defined 

for each key activity: if all the goals for the key activities at a given maturity level i  are successfully fulfilled, the 

corresponding maturity level i   is reached, i.e., .EUMM i=   In Table 2-5, we present the activities and their 

associated goals that support the maturity levels 2 - 5 , respectively. 

Table 2 Key activities and associated goals for the Uncontrolled level ( )2EUMM = . 

Key activities Goals 

Document the PRA 

• The PRA needs to be documented in a well-organized report. 
• The report should contain the necessary information for identifying sources of 

EU, including completeness uncertainty, model structural uncertainty and 
parametric uncertainty. 

Identify the sources of EU 

• Potential sources of EU need to be identified through an analysis conducted by 
qualified experts. 

• The analysis needs to cover completeness uncertainty, model structural 
uncertainty and parametric uncertainty. 

• The results of the analysis need to be confirmed by peer reviews from 
independent experts. 

Analyze the impacts of EU 

• The impact of the EU on the calculated risk indexes needs to be analyzed by 
qualified experts. 

• The analysis should cover completeness uncertainty, model structural 
uncertainty and parametric uncertainty. 

• Decision making considers both the calculated risk indexes and the EU in the 
PRA. 

Table 3 Key activities and goals for the Complete level ( )3EUMM =  

Key activities Goals 

Establish knowledge base 
to support the risk 
assessment model 

• The knowledge base needs to be established to support the PRA. 
• The knowledge base needs to contain sufficient information from failures in 

similar systems/processes. 
• The knowledge base needs to be managed by experienced analysts. 
• The major steps in the PRA (Figure 3) are all supported by sufficient 

knowledge. 

Review the scope of and 
key assumptions made in 
the risk assessment model 

• The scope of the assessment and the key assumptions need to be clearly stated 
in the PRA report. 

• The scope and the assumptions need to be reviewed by qualified external 
experts. 

• A comprehensive methodology is used to identify reference accident scenarios. 
• Sources of completeness uncertainty need to be identified based on the review 

of the scope and assumptions of the PRA. 
• Impacts of completeness uncertainty need to be analyzed by experts. 

Review the completeness 
of the analysis 

• An expert review should be conducted on the completeness of the analysis. 
• The experts should be experienced and are familiar with the problem of 

interests. 
• Through the review, the experts identify no risk contributors that are missing in 

the analysis or some missing risk contributors are identified, but their impacts 
are negligible. 
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Table 4 Key activities and goals for the Adequate level ( )4EUMM =  

Key activities Goals 

Examine the assumptions 
and limitations of the 
selected PRA model 

• Key assumptions in the selected PRA model need to be clearly described and 
documented. 

• Applicability and limitations of the selected PRA model need to be clearly 
described and documented. 

Review the adequacy of 
the used PSA model 

• Key characteristics of the process involved in the risk assessment need to be 
identified. 

• The PRA model’s capability to adequately capture the key characteristics need 
to be reviewed by qualified external experts. 

Validate the model 
adequacy 

• Tests need to be conducted to validate the adequacy of the model. 
• The results of the tests need to confirm the key assumptions regarding the 

structure of the PRA model. 

Verify the quality of the 
modelling process 
(Verification) 

• The quality of the modelling process needs to be verified through a review for 
verification and validation (V&V) review 46. 

• Through the review, it is concluded that the selected model is implemented 
correctly, so that the developed PRA model accurately represents the 
conceptual model for the physical process of interests understood by the 
modeler. 

Control the impact of 
model structural 
uncertainty 

• A clear target is set up for the acceptable level of model structural uncertainty, 
based on the requirements of decision making. 

• The choice of the PRA model is modified, if suggested by the review and/or 
the validation tests, to make sure that the selected PRA model is capable of 
modeling the associated characteristics of the risk processes. 

• The model structural uncertainty in the PRA is properly controlled to be 
within the acceptable limit and verified by experts through peer reviews and 
validation tests. 

 

 

Table 5 Key activities and goals for the Accurate level ( )5EUMM =  

Key activities Goals 

Collect relevant data for 
parameter estimation 

• Sufficient amount of data is collected to support model parameter estimation. 
• The data are collected from systems/processes similar to the target 

systems/processes. 

Review the accuracy of 
the estimated model 
parameters 

• The quality of the data collection process is reviewed and verified by experts. 
• The accuracy of the estimated parameters is reviewed and verified by external 

experts. 

Validate the accuracy of 
the PRA model 
(Validation) 

• The accuracy of the PRA model needs to be validated through a verification 
and validation (V&V) review 46. 

• Through the review and validation experiments, the degree of accuracy of the 
PRA model is considered to be sufficient to support the required decision 
making.  

Sensitivity analysis 
• The impact of parametric uncertainty is determined by conducting sensitivity 

analysis, considering the accuracy of the estimated parameters. 

Control the impact of 
parametric uncertainty 

• A clear target is set up for the acceptable level of parametric uncertainty, 
based on the requirements of decision making. 

• The data collection and parameter estimation processes are enhanced until the 
accuracy can be confirmed by the review. 

• The parametric uncertainty in the PRA is properly controlled to be within the 
acceptable limit and verified by experts through peer reviews. 
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The activities and goals defined in Table 2-5 can be used to evaluate the maturity level in EUM:  

• if all the goals of the activities for a given maturity level i  are fulfilled, the corresponding maturity level 

is considered as being reached, i.e., ;EUMM i=  

• otherwise, we have 1 .EUMi M i−    The precise value is determined by experts based on the degree to 

which the goals are satisfied. 

Besides, the activities and goals can also be used to plan the efforts needed to control the EU in the PRA. 

Suppose that the current maturity level is :i  To improve the EUM capability of the PRA, one needs to focus on the 

activities and unsatisfied goals at maturity level 1.i +  

A similar maturity model has been developed by Oberkampf et al. 47 to evaluate the predictive capability 

maturity of computational modelling and simulations. The difference between the developed model and the one in 

Oberkampf et al. 47 is that the developed model focuses on the entire risk analysis process, including identifying 

hazard sources, risk modelling, risk calculation, etc. The model in Oberkampf et al. 47, on the other hand, is specially 

designed for modelling and simulation. The concept of predictive capability maturity, however, can be used as a way 

to evaluate the EUM, especially with respect to the management of model structural and parametric uncertainty. 

4. An integrated risk index for considering epistemic uncertainty 

Through the model defined in Sect. 3, the severity of the influence of epistemic uncertainty on the result of PRA 

can be quantified in terms of .EUMM  In this section, we develop a new risk index that allows integrating the result 

of the PRA with the epistemic uncertainty for a more complete risk characterization. More specifically, consider the 

following illustrative example: suppose that a PRA based on event tree analysis predicts that the risk of a given 

consequence is 
* 310 .PRisk −=  Further, let us assume that based on the MM-EUM defined in Sect. 3, the EUM of the 

PRA is assessed to be 3.EUMM =   Then, in this section, we focus on the following question: how does the 

information on epistemic uncertainty impacts our beliefs on the predicted risk values? 

To address this issue, an uncertainty equivalence model is developed first in Sect. 4.1 for integrating the 

prediction result of the PRA model with the epistemic uncertainty. Then, the new risk index, called belief risk index, 

is defined in Sect. 4.2. Finally, an indifference method is presented in Sect. 4.3 to determine the contribution of 

epistemic uncertainty based on the evaluated EUM for practical belief risk index evaluation. 

4.1 Uncertainty equivalence model 

Let us consider a generic PRA model: 
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 ( )* * .
P

Risk f= θ   (1) 

In Eq. (1), *

PRisk  is the estimated probabilistic risk index ( *  indicates estimates); ( )f   denotes the PRA model 

used for calculating *

PRisk  (e.g., fault trees, event trees); *
θ  is a vector containing the estimated values of the 

model parameters. *

PRisk  is an estimate of the true (but unknown) frequency of the given consequence, based on 

the model ( )f   and the estimates *
θ  of the true (but unknown) values of the model parameters. For example, in 

the aforementioned illustrative example, *

PRisk  is estimated based on the event tree model to be 310 .−  This value 

of * ,PRisk  however, does not consider the potential influence of epistemic uncertainty on the PRA. 

An uncertainty equivalence model is developed to integrate the epistemic uncertainty in the PRA with the 

(aleatory) uncertainty in the model prediction ( *

PRisk ). For this, let us first artificially construct a PRA model for the 

same consequence of Eq. (1), where the safety margin of the corresponding consequence is ,ES   i.e., the 

consequence occurs whenever 0.ES   Let us further assume that: 

Assumption 1. The safety margin 
ES  follows a normal distribution ( )2~ ,

E EE S SS Normal    and  

 ( )*1E

E

P

S

S

Risk




−= −  (2) 

where *

PRisk  is calculated by the PRA model in Eq. (1) and ( )1−   is the inverse cumulative distribution function 

of a standard normal distribution. 

From Eq. (2), it is easy to verify that  

 ( ) *Pr 0 ,E

E

E P

S

S

S Risk




 
 − =
 
 

 =  (3) 

where ( )   is the cumulative distribution function (CDF) of a standard normal distribution. Hence, the uncertainty 

in the predicted risk index *

PRisk  is equivalent to the artificially constructed PRA model with a safety margin ES  

48. Therefore, the auxiliary random variable ES  is called equivalent safety margin. 

Please note that the purpose of making Assumption 1 is to artificially construct a PRA with equivalent 

uncertainty as the original PRA model in Eq. (1). For this, the equivalent safety margin ES  only needs to satisfy 

( ) *Pr 0 :ES Risk =  that is, any random variable that satisfies ( ) *Pr 0ES Risk =  can be selected as the equivalent 

safety margin. However, to integrate epistemic uncertainty in the developed model, one also needs to identify the 
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distribution of the equivalent safety margin. The selected distribution should reflect the decision makers’ prior belief 

on how the safety margin is distributed and will be updated by integrating epistemic uncertainty. In practice, the 

distribution of the equivalent safety margin can be determined through expert elicitation 49. In Assumption 1, for 

simplicity and illustrative purposes, we directly assume that the equivalent safety margin follows a normal 

distribution. The developed methods, however, can be naturally extended to other distributions.  

It should also be noted that even though we adopt Assumption 1, there are still infinite choices of , ,
E ES S   as 

long as Eq. (2) holds. In practice, we can fix one of the two parameters and calculate the other one from Eq. (2). It 

can be seen in Sect. 4.2 that the values of ,
E ES S   do not affect the value of the belief risk index, provided that their 

values satisfy Eq. (2). For example, in the illustrative example of event tree models, as * 310 ,PRisk −=  if we set 

1,
ES =  then, from Eq. (2), ( )

E

*11 3.0902.
E PS SRisk −= − =   Hence, the uncertainty in the result of the event 

tree analysis can be viewed as equivalent to an artificially constructed PRA, where the equivalent safety margin is 

( )~ 3.0 .1902,ES Normal  

To integrate EU in the uncertainty equivalence model, we make the following assumption: 

Assumption 2 14. EU increases the dispersion of the distribution of the equivalent safety margin but does not 

affect its center. 

Assumption 2 is about how a decision maker evaluates the effect of epistemic uncertainty. Hence, it is a 

subjective distribution that reflects personal belief, rather than an objective probability distribution that is supposed 

to replicate reality. Therefore, we might not have a definite “correct” choice: the decision maker can choose different 

assumptions, which will result in different belief risk indexes. In this paper, we made this assumption primarily due 

to the convenience it will bring to the model development. However, the assumption itself is not baseless. In fact, it 

is in line with the addictive error model commonly used in the adjustment factor approach (see Sect. 2.3 of 30). 

A graphical illustration of Assumption 2 is given in Figure 6. Therefore, the effect of EU (including completeness 

uncertainty, model structural uncertainty and parametric uncertainty) can be modeled by replacing the equivalent 

safety margin with the EU-affected equivalent safety margin ' :ES   

 ' ,EE eS S= +   (4) 

where e  is the adjustment factor for EU and is assumed to be 

 ( )2~ 0, .e eNormal   (5) 

Eq. (4) shows that by making Assumptions 1 and 2, the overall uncertainty (including the uncertainty in *

PRisk  and 

the EU) in the PRA is equivalent to that of presumed PRA with a safety margin ' .ES  Hence, the model in Eq. (4) 
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is called uncertainty equivalence model. The parameter 
e  controls how much EU affects the results of the PRA 

and is assumed to be proportional to the mean :
ES  

 .
Ee e S  =  (6) 

As in Assumption 2, the assumption we made in Eq. (6) is also a subjective reflection of decision makers’ attitude 

towards epistemic uncertainty. Other assumptions might also be adopted, which will lead to different definitions of 

the belief risk indexes. The assumption we made in Eq. (6) is similar to that in the multiplicative error model (see 

Sect. 2.4 of 30). The parameter 
e  characterizes the magnitude of the effect of EU on the PRA model results and is 

called Epistemic Uncertainty Factor (EUF). The EUF takes values in [0, ),  where a large value indicates a large 

effect of EU. The meaning of the EUF parameter is the additional dispersion brought by EU on the equivalent safety 

margin. The value of e  is determined based on the maturity for EUM, as explained in the next Sect. 4.3. We stress 

that both 
ES  and '

ES  reflect the analysts’ belief on how likely the given consequence will occur, based on the 

results of the PRA. Using ES  indicates that the EU is not considered; using '

ES  amounts to considering also the 

EU that affects the PRA model results (by the EUF). For example, in the aforementioned illustrative example, we 

have ( )~ 3.0 .1902,ES Normal  To consider the effect of EU, let us assume, based on the fact that 3,EUMM =  that 

the EUF of the PRA is 0.5e =  (in Sect. 4.3, we elaborate on how to obtain this value based on 
EUMM ). Then, 

from Eqs. (4)-(6), ( )' ~ 3.0902,3.3873 .ES Normal  It can be seen that the dispersion of the believed safety margin 

distribution increases significantly, due to the effect of EU. 

 

Figure 6 Effect of EU on the PRA results seen in terms of .ES  

4.2 Definition of belief risk index 

A new risk index, called belief risk index ( BRisk ), is, then, defined based on Eq. (4), to consider the effect of 
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EU on PRA: 

 𝑅𝑖𝑠𝑘𝐵 ≜ 𝑃𝑟(𝑆𝐸
′ < 0) = 𝛷 (−

𝜇𝑆𝐸

√𝜎𝑆𝐸
2 +𝜎𝑒

2
). (7) 

It can be seen from Eq. (7) that the belief risk index is the probability that the (EU) affected safety margin is less 

than zero. The concept of safety margin has been widely used in structural reliability analysis 50. It can be seen that 

when there is no epistemic uncertainty and the safety margin follows a normal distribution, the belief risk index as 

defined in Eq. (7) is equivalent to the structural unreliability. The major difference between our developed metric in 

Eq. (7) and the traditional structural reliability theory is that, Eq. (7) allows explicitly considering epistemic 

uncertainty, which is not considered in the structural reliability theory. The belief risk index is defined with respect 

to a specific consequence and measures the uncertainty on the occurrence of this consequence. It should be noted that 

the probability here takes the subjective interpretation: it measures the belief degree on the occurrence of a given 

consequence, based on both the prediction of the PRA model and the EU that affects the PRA model. From Eq. (7), 

we can see that the uncertainty in BRisk  is equivalent to that of a PRA model result where the safety margin is 

( )2 2' ~ , .
E ES SE eS Normal   +   For example, in the aforementioned illustrative example, as we have 

( )' ~ 3.0902,3.3873 ,ES Normal   it is easy to calculate from Eq. (7) that 0.0466.BRisk =   This value can be 

interpreted as follows: given the PRA model prediction and the EU in the model, it is believed that the uncertainty 

on the occurrence of a given consequence is equivalent to the results of an artificially constructed PRA, where the 

probabilistic risk index is 0.0466.  This, however, does not mean that the belief risk index can be interpreted based 

on the frequentist interpretation of probability. Rather, the belief risk index is a subjective metric that allows 

comparing the decision makers’ personal belief degree on the uncertainty in the PRA results. It should be noted that 

sometimes the order relationships indicated by the belief risk indexes is more interesting to the decision makers than 

the absolute values. For example, suppose that we have two cases where ,1 0.0466BRisk =  and ,2 0.0105:BRisk =  a 

proper interpretation is that we are more confident (less uncertain) in the second case that the predicted consequence 

by the PRA model will not occur. 

Eq. (7) is not very easy to use in practice, as one usually only knows the value of *

PRisk  (calculated from the 

PRA model), not 
ES  and .

ES  Substituting Eqs. (2) and (6) into Eq. (7), we have 
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Eq. (8) can be used for practical evaluation of the belief reliability index, as shown in the next Sect. 5. 

The effect of EU on the belief risk index can be investigated graphically. First note that both 
ES  and '

ES  have 

been assumed to follow normal distributions. Therefore, they can be transformed into the standard normal space by 

taking the transformation: 

 ,X

X

X
Z





−
=  (9) 

where ', ,EEX S S=  respectively. 

It is easy to verify that in the standard normal space, the distance from the origin to the failure region associated 

with ES  is 50 

 ( )1 * ,E

E

P

S

P

S

iskd R




− ==  (10) 

while after considering the EU, the distance becomes  

 ( )
( )

( )( )

1

1

2 2 2
2 1

*
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,
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e P
e

P

P

Risk d
Risk
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−

−
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+ 
=

+  

=  (11) 

as shown in Figure 7. As 0,e   we have ,PBd d  which shows that considering EU decreases the safety margin. 

Therefore, BRisk  always provides a more conservative value of the risk index than the probabilistic risk index. 
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Figure 7 Graphical interpretation of .BRisk  

Another observation is that when the EU has the most severe influence, we have 
e →  and 0.5.BRisk →  

This indicates that 0.5BRisk =  is a state of maximal EU: at this state, one is totally ignorant about the system state 

due to the influence of the EU (we cannot judge whether the consequence is more likely to occur or not to occur). 

Therefore, 
BRisk  can be regarded as a measure of confidence on the result of the PRA: the closer 

BRisk  to 0.5,  

the less sure one is about the result of the PRA, and, then, one should not to use the PRA model results for decision 

making. 

4.3 Indifference method for belief risk index evaluation 

Figure 8 shows the implementational procedures for evaluating the belief risk index in practice. The first step is 

to calculate the probabilistic risk index *

PRisk  through a conventional PRA. Then, the EU is evaluated in terms of 

the EUF ,e  based on the maturity of EUM in the PRA. Finally, the value of BRisk  can be calculated using Eq. 

(8). 

 

Figure 8 Structure of the procedures for evaluating .BRisk  

A critical step in Figure 8 is to determine the value of .e  For this, the EUMM  of the PRA is evaluated first, 

following the guidelines in Sect. 3.2. The value of EUMM  relates to the level of EU, where 1EUMM =  means that 

the impact of EU is the greatest whereas 5EUMM =  indicates the lowest impact. Obviously, e  is a decreasing 

function of :EUMM  

 ( ).Ue E Mh M =  (12) 

The function ( )h   reflects the tolerance on the EU. This can be shown by investigating the dependence of BRisk  

on ,EUMM  when the PRA model predicts that * 0,PRisk =  as shown in Figure 9. Once ( )h   is known, Figure 9 

can be drawn by substituting Eq. (12) into Eq. (8) and letting * 0:PRisk →  



 

22 

 

( )

( )( )
( )

( )

*1

2 2
2 1

2

1

*

*

*

1
0

1 1

1

|

1
.

B

e

e

P

P

P

P

e EUM

Risk
Risk Risk

Risk

Risk

h M






−

−

−

 
 

   
   →   −   

  +        +   
  

  
 − =  − 

= =


   

=

 (13) 

Typically, the attitude towards EU exhibits three types of behaviors, i.e., EU-averse, EU-neutral and EU-prone, as 

shown in Figure 9: 

• for EU-prone, *| 0B PRisk Risk →  is a convex function of 
EUMM , meaning that even though the EU is quite 

large (
EUMM  is relatively immature), there is willingness to trust the prediction of the PRA model; 

• for EU-averse, *| 0B PRisk Risk →  is a concave function of EUMM , meaning that only when the EU is very 

small ( EUMM  is highly mature), there is willingness to trust the prediction of the PRA model; 

• EU-neutral lies between the two extremes: *| 0B PRisk Risk →  is approximately a linear function of .EUMM  

 

Figure 9 Typical behaviors of *| 0B PRisk Risk →  under different values of .EUMM  

In this paper, we suggest the following form of ( ) ,h   for its flexibility to model EU-averse, EU-prone, and 

EU-neutral attitudes: 

 ( )
1 1

,
1 4

EUM

EUM

e h M K
M


 

= = − 
− 

 (14) 

where K  is a parameter that determines the attitude towards EU, as shown in Figure 10. 
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Figure 10 Attitude towards EU at different values of .K  

The values of K  can be estimated using an indifference method. A survey is first conducted to collect empirical 

data from the decision makers. The decision makers are asked to participate the following thought experiment: 

Suppose you are concerned with a given consequence of an accident, which, if it occurs, brings you a financial loss 

of one Yuan (Chinese currency). An insurance company offers you an insurance plan: if the accident actually occurs, 

you will get a reimbursement of one Yuan. Suppose that you conduct a PRA, which shows that * 0,PRisk =  i.e., there 

is no risk on this specific consequence at all. Suppose we have five cases, where the EUMM  for the PRA process is 

Unmanaged ( 1EUMM = ), Uncontrolled ( 2EUMM = ), Complete ( 3EUMM = ), Adequate ( 4EUMM = ) and Accurate 

( 5EUMM = ), respectively. Then, for the five cases, what are the highest prices that make you willing to buy the 

insurance, respectively?  

Denote the answers from the decision makers by 1 2, 5, , ,    respectively. These values, then, reflect the 

decision makers’ beliefs on the values of *| 0B PRisk Risk →  under different levels of .EUMM  Therefore, they can 

be used as empirical data for estimating the parameter .K  Note that we have 
1 0.5, =  as 1EUMM =  is the state 

with maximal EU and, therefore, corresponds to 0.5,BR =  as shown in Sect. 4.1. Similarly, we have 5 0, =  as 

5EUMM =  is the state with no EU, when we trust the prediction of the PRA model. Therefore, the decision makers 

only need to assign values to 2 3,   and 4.  

In this paper, we use the least square method for parameter estimation, in which the value of K  is found by 

solving the following minimization problem: 
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  (15) 

where SSE  represents the sum of square error of the data and , 1,2 ,, 5i i =  are empirical data collected from 

experts based on the thought experiment presented before. The optimization problem can be solved easily using 

standard nonlinear programming methods, e.g., sequential quadratic programming 41. 

5. An application 

In this section, we apply the developed methods on a case study of the PRA of an NPP. The application follows 

the procedures described in Figure 8. The system description is given in Sect. 5.1. The PRA model for the NPP is 

presented in Sect. 5.2. In Sects. 5.3 and 5.4, the maturity of the EUM in the specific PRA is evaluated and the 

indifference method is applied for evaluating .BRisk  The results of this case study are presented in Sect. 5.5, with 

some discussions. 

5.1 System description 

We consider a PRA of an NPP operated by Electricité De France (EDF) 51. The objective of the PRA is to 

evaluate the risk of core meltdown caused by external flooding. External flooding refers to the overflow of water into 

the NPP due to naturally induced external causes, e.g., tides, tsunamis, snow melts, storm surges, etc 51. The NPP is 

designed with various safety barriers to contain the possible event sequences following the occurrence of external 

flooding, e.g., dams built to block the water from entering the NPP, emergency sewerage system, etc 51. Depending 

on the states of these safety barriers, different consequences might be caused by the external flooding. Among them, 

core meltdown is the most severe one. A PRA is conducted to calculate the probability of having core meltdown 

caused by external flooding, denoted by * .PRisk  

5.2 PRA model 

The developed PRA model is a combination of event trees and fault trees. Event trees are used to model possible 

event sequences following the external initiating events, considering different water level conditions (called scenarios) 

and operation states of the NPP. The risk index *

PRisk  is calculated by summing the scenario probabilities for those 

scenarios which end in a core meltdown event. Fault tree models are constructed to compute the probabilities of 

failure of the safety barriers from the selected Basic Events (BEs). Eventually, the PRA model can be expressed as a 

combination of BEs in Minimal Cut Sets (MCSs) such that when all the BEs in the MCSs occur, the consequence of 



 

25 

core meltdown occurs (Table 6).  

It should be noted that in Table 6, we present only one MCS: the real PRA model, however, has a much larger 

scale, which comprises of several operating states, scenarios, thousands of BEs and MCSs (the exact number cannot 

be given due to confidentiality reasons). The risk index is calculated considering all the BEs and MCSs (the result 

has been scaled, again due to confidentiality reasons):  

 * 65.78 .10PRisk −=  (16) 

Table 6 An example of the PRA model 

Operating state Scenario MCS BE 

Not Success 
due to Steam 

Generator 
(NS/SG) 

Water 
level A 

𝑀𝐶𝑆1
= {𝐵𝐸1, 𝐵𝐸2, 𝐵𝐸3} 

𝐵𝐸1: External flooding with water level A inducing a 
loss of offsite power 

𝐵𝐸2: Loss of auxiliary feedwater system due to the 
failure to close the isolating valve 

𝐵𝐸3: Loss of component cooling system because of 
clogging 

 

5.3 
EUMM  evaluation 

The procedures for the evaluation are summarized in Figure 11. For each maturity level ,,2 5i i   the goals 

defined in Table 2-5 are used to examine if such level of maturity has been reached. The evaluation needs to be done 

by experts based on a careful review of the PRA. In this case, to facilitate the assessment of the experts, a 

questionnaire like Table 7 is used. The questionnaire lists the goals corresponding to a given maturity level and asks 

the expert to evaluate the degree to which each goal is satisfied. Three degrees are considered, i.e., not at all, partly 

and very well. The experts are asked to mark in the Table the degree which they think best describes the PRA. 

In this case study, the PRA is well documented in a detailed risk assessment report 51. The goals associated with 

maturity level 2  are examined using the questionnaire in Table 7 based on an expert review of the risk assessment 

report. Through the review, it is found out that although an analysis of EU has been performed when the PRA was 

conducted, the analysis only considers the completeness uncertainty: an expert review confirms that the PRA already 

covers the major risk contributors. Therefore, the potential influence of completeness uncertainty is negligible. The 

other two sources of EU, i.e., model structural uncertainty and parametric uncertainty, however, were not considered 

in the EU analysis of the original PRA. Besides, in the original PRA report, decisions are simply made by comparing 

the calculated *

PRisk  to an acceptance criterion. The effect of EU was not considered in the decision making process. 

Based on the above observations, the experts determine the degrees to which the goals of maturity level 2  are 

satisfied, as shown in Table 7. Then, as shown in Figure 11, since the PRA process of the NPP satisfies four out of 
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the eight goals of maturity level 2,  the 
EUMM  for this process should be between levels 1  and 2.  To determine 

the value, we assume for simplicity that if a goal is satisfied, a contribution of 1/ 8 0.125=  is added to the ;EUMM  

if a goal is satisfied partly, a contribution of 0.05   is added to the ;EUMM   if a goal is not satisfied at all, no 

contribution is made to the .EUMM  Then, the maturity level is determined to be: 

 41 0.12 2 1.5 0.05 .6EUMM  +  == +   (17) 

 

Figure 11 Procedures for evaluating .EUMM  

Table 7 Evaluation questionnaire for maturity level 2  

Goals 
To which degree the goal is satisfied? 

Not at all Partly Very well 

The PRA needs to be documented in a well-organized report.   × 

The report should contain the necessary information for identifying 
sources of EU, including completeness uncertainty, model structural 
uncertainty and parametric uncertainty. 

×   

Potential sources of EU need to be identified through an analysis 
conducted by qualified experts. 

  × 

The analysis needs to cover completeness uncertainty, model structural 
uncertainty and parametric uncertainty. 

 ×  

The results of the analysis need to be confirmed by peer reviews from 
independent experts. 

  × 

The impact of the EU on the calculated risk indexes needs to be 
analyzed by qualified experts. 

  × 

The analysis should cover completeness uncertainty, model structural 
uncertainty and parametric uncertainty. 

 ×  

Decision making considers both the calculated risk index and the EU in 
the PRA. 

×   
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5.4 Determine 
e  

The value of 
e  can be determined from 

EUMM  using Eq. (14). The parameter K  is determined using the 

indifference method in Sect. 4.3. For this, empirical data of , 1,2, ,5,i i =  are elicited from three decision makers 

(DMs) using the indifference method illustrated in Sect. 4.3, as shown (Table 8). Based on the empirical data in Table 

8, the value of K  is estimated by solving the least squares minimization problem in Eq. (15): 

 ˆ 1.4975.K =  (18) 

The fitted model is shown in Figure 12. It can be seen from Figure 12 that the parameters in (18) correspond to EU-

proneness. According to Eq. (14), we have 
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Table 8 Empirical data from three decision makers 

 DM 1  DM 2  DM 3  

1  0.5  0.5  0.5  

2  0.1   0.2   0.25   

3  0.01   0.05   0.03   

4  0.001   0.002   0.025   

5  0  0  0  

 

Figure 12 Fitted model V.S. empirical data. 

5.5 Results and discussions 

Substituting Eqs. (17) and (18) into Eqs. (8) and (14), the value of the belief risk index can be calculated: 

 

( )

( )( )

( )

*

*

1

2
1

2

1

1 2.1215 (

-4.3857

4.3857)

0.3197.

B

P

e P

Risk

Ri

Ris

sk

k



−

−

 
 

=  
 + 
 

 
 = 

=

 +  − 

  (19) 
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This Figure shows the belief degree on the occurrence of the consequence of core meltdown, considering both the 

prediction of the PRA model and the EU in the PRA. As discussed in Sect. 4.2, 0.5BRisk =  indicates maximum EU 

on the results of the PRA. Since 
BRisk  is close to the value of 0.5,  little confidence can be put on the results of 

the PRA. This is because, as shown in Sect. 5.3, the EUM of the PRA is of very low level ( 1.6,EUMM =  i.e., the 

maturity level is between Uncontrolled and Unmanaged). From Table 2 and Table 3, it can be seen that there is large 

EU in the PRA, which severely impacts the trust on the result of the PRA and makes the decision maker less confident 

on the result of the PRA. Therefore, the PRA model predicts * 65.78 10PRisk −=  but 0.3197,BRisk =  due to the 

EU on the PRA model.  

Figure 13 investigates the influence of EU on the .BRisk   The PRA model result *

PRisk   is fixed to be 

* 65.78 10PRisk −=  and EUMM  level is increased from Initial level to Accurate level. It can be seen that in general, 

*

B PRisk Risk  (strictly speaking, this conclusion holds when * 0.5,PRisk   which covers most cases in practical 

PRA), indicating that considering EU makes 
BRisk  more conservative than .PRisk  Furthermore, as the capability 

for EU management improves, BRisk  approaches the PSA result *

PRisk . This indicates an ideal case: when no EU 

exists in the PRA, we can trust the prediction of the PRA model.  

 

Figure 13 The values of BRisk  at different levels of maturity. 

Figure 13 shows that the belief risk index is able to integrate the prediction of the PRA model with the EU in 

the PRA. In this sense, it provides a more complete description of the risk being analyzed. The evaluation of BRisk  

can also be used to support planning improvement activities for reducing EU. For example, the EUMM  maturity 

level for the NPP PRA process is 1.6.   As shown in Table 7, three goals associated with maturity level 2  

(Uncontrolled) were not fully satisfied. These unsatisfied goals should be the primary improvement directions for 

improving the EU management capability. Then, further efforts should be made to satisfy the goals defined in higher 
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maturity levels (Complete, Adequate and Accurate), until the degree of EU and corresponding 
BRisk  meets the 

requirements of the decision problem. 

6. Conclusions 

Epistemic uncertainty in PRA is still a hot topic for methodology development and practical solutions, because 

of its relevance to the decision making that follows. For practical purposes, closed and definite solutions to the 

problem do not exist and probably will never exist. Sound and feasible solutions should be the target of any 

development. In this work, we have developed a maturity model to quantify the capability of a PRA process to 

manage EU from different sources. Based on the MM-EUM, an integrated risk index, called belief risk index, has 

been introduced to account for the collective effect of EU in the risk assessment. An indifference method has been 

proposed for the evaluation of the belief risk index. Practical application was performed on a flooding PRA of an 

NPP. The results show that the belief risk index is able to consider EU in the PRA model and provides a more complete 

description of the risks.  

A limitation of the current work is that it considers only static PRA models (c.f., fault trees, event trees). In 

practice, however, both the structure of the PRA model and its parameters can be time-dependent. Extending the 

MM-EU and the belief risk index to time-dependent models is an interesting future research direction. It should also 

be noted that this paper is based on the ideas of modeling epistemic uncertainty by probability distributions. There 

are, however, a lot of discussions and even objections in the epistemic uncertainty quantification community 

regarding using probability distributions for modelling epistemic uncertainty. One of the main criticism is that, a 

quantify subject to epistemic uncertainty is not inherently a random variable. Using probability distributions to 

describe it is only a result of biased perspective of decision makers, and might amply the associated uncertainty. 33 

Besides, it has been long argued that epistemic uncertainty has some unique features that cannot be handled properly 

by probability distributions. For example, in uncertainty assessment of nuclear weapons, both presence of positive 

evident that the weapons will work, and absence of evident they will not work are relevant in the analysis 34. This 

particular feature could be better captured by evidence theory than probability distributions. 34 Despite these criticisms, 

probability theory has still been widely used to quantify epistemic uncertainty in literature, mainly due to its 

convenience of application and theoretical soundness. 13, 21 In future researches, alternative theories to handle 

uncertainty, e.g., evidence theory, possibility theory, interval analysis, can also be considered to develop other types 

of belief risk indexes. 
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