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Abstract

The objective of this paper is to present a new technique for jointly decomposing two sets of signals. The proposed
method is a modified version of Canonical Correlation Analysis (CCA), which automatically identifies from the
two (a priori noisy) data-sets, having the same number of samples but potentially different number of variables
(measurements), an approximate bisector common subspace and its complementary specific subspaces. Within these
subspaces, common and specific parts of the signals can be reconstructed and analysed separately. The method we
propose here can also be seen as an extension of other joint decomposition methods based on “stacking” the analysed
data sets, but, unlike these methods, we propose a “stacked basis” approach and we show its relationship with the
CCA. The proposed method is validated with convincing results on simulated data and applied successfully on (stereo-
)electroencephalographic signals, either for artefact cancelling or for identifying common and specific activities for
two different physiological conditions (sleep - wake).

Keywords: subspace correlation, joint decomposition, EEG

1. Introduction

In multiple applications (including biomedical signal processing, which is our main motivation) it is of high
interest to separate the recorded signals in sources or sets of sources (components) with different properties. Among
the most common situations, one might need to separate between artefacts and signals of interest, between regular
(background) signals vs. condition specific ones (task/disease related), etc. While classical (more or less blind)
source separation procedures tackle this problem by decomposing a given data-set (one multi-channel recording) in
so-called sources, it has been shown that using two or more data-sets simultaneously improves source separation. The
data sets can be “trials” potentially recording different conditions but also recordings using different modalities, see
e.g., [1, 2]. The confrontation of these several data-sets is expected to provide more information, or diversity, about the
underlying variables (activities) to be identified. Each trial/modality is expected to bring added value (complementary
information) on these hidden variables and to reduce the degrees of freedom of the decomposition by providing their
own additional constraints (insight on the data).

While for multiple data-sets the analysis can be done by methods extending the Canonical Correlation Analysis
(CCA) [3] such as MCCA (multiple CCA) [4] or its recent extensions such as Independent Vector Analysis (IVA) [5, 6]
or Joint Blind Source Separation (JBSS) [1], the most common situations consisting in two data sets can be tackled
by CCA. These cases include comparisons of data sets recorded in two different conditions (“control” and “task”) or
one recorded data-set and a given “dictionary”, either simulated or extracted itself from the data [7, 8, 9, 10]1.

∗Corresponding author
Email address: radu.ranta@univ-lorraine.fr (Radu Ranta)

1It is noteworthy that MUSIC based algorithms for EEG source localization can also be seen as special cases of CCA, where one of the data-sets
is the precomputed lead-field matrix (head model) [11, 12]. Besides, they can be further adapted for model-based separation and localization of
"task" and "control" sources [13].
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In this paper we propose a new methodology, inspired from the algebraical approaches to CCA [4], for identifying
sources or more precisely basis (canonical) vectors separating two linearly related data-sets in common and specific
subspaces. Related ideas were independently proposed by different authors [14, 15, 16]. We will discuss the differ-
ences between the method proposed in this paper and the cited references further in the paper. Non-linear relations
between data-sets, such as explored by Kernel CCA [17] or neural networks implementations such as Deep CCA [18]
are outside the scope of the paper, although we suggest some future research directions at the end of this paper.

We start by examining a strict constraint: we look for a common subspace, defined by a basis shared by the
considered data sets. Such as in the MUSIC or CCA framework, the method is based on evaluating the correlations
between the subspaces spanned by two matrices. The strictly common subspace can then be defined as the perfectly
aligned vectors of the two basis (one for each subspace), i.e., those sharing a correlation of 1. The specific parts of
each data set are then identified as the orthogonal complement of each set with respect to the common subset. In
real applications though, the constraint of unitary correlation is too strong, as the data are likely to be distorted due to
frequency filtering or noise/artifact impacting the signals. In this case, the correlations between the basis vectors of the
two data subspaces will not perfectly be 1 and no common basis can be found (angles between the components will
not be perfectly 0). We propose then a method for identifying an approximate common subspace, built as the truncated
bisector subspace of the two data sets. The size of the common subspace is determined through an eigenvalues ratio
based test [19].

The usefulness and the performance of the approach is evaluated in details on simulated signals and two examples
of application are shown on real electrophysiological signals.

2. Common/Specific subspace decomposition (CSSD)

We start our development by recalling classical multi-channel models, using the conventions employed in source
separation / ICA literature. A data-set consists in an M×N matrix, where each row represents a signal recorded by
one channel/electrode (M being thus the number of signals) and each column a time instant (N being the number of
time samples). All along the paper, we assume that the number of samples N is a priori much higher than the number
of channels M (N�M), such as sample covariance matrices are reliable estimates of the true covariances (and so are
the estimated canonical correlation coefficients, see further in the paper). We consider in the following two sets of
signals S1 and S2, possibly with different number of channels M (M1 6= M2) but with the same number of time samples
N, issued from two different measurements (two recording sessions of the same phenomenon, two sets of sensors with
different partial views on the process, etc.). Zero mean signals are assumed all over the paper.

The signals from the set S1 can then be modeled as a full row-rank2 M1×N matrix X1, with M1� N. As the M1
vectors representing the individual signals are linearly independent, they span an M1-dimensional subspace of RN . A
basis for this subspace can be obtained for example by whitening: after computing the product ΦΦΦ1 = X1XT

1 , the basis
vectors (i.e., the whitened signals) Z1 are obtained as follows:

Z1 = D−1/2
1 UT

1 X1, (1)

with D1 and U1 respectively the diagonal matrix of eigenvalues and the eigenvector matrix of the matrix ΦΦΦ1 =
U1D1UT

1 .
Strictly the same modelling is valid for the M2 signals X2 and the corresponding basis Z2.
Three distinct situations are possible. In the first case, the two subspaces are disjoint, i.e., they are orthogonal:

Z1ZT
2 = 0M1×M2 (2)

From a signal point of view, S1 signals are orthogonal to the S2 signals, which might be interpreted as there is no
common information between the two of them.

2We assume all along this paper that both sets of measurements are linearly independent, thus full row-rank. If this hypothesis is not fulfilled,
the dimension of the measurement space can be reduced, for one or for both sets, by some PCA technique (see e.g., [20]).
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Second situation, the two subspaces are overlapped. Assuming that M1 ≥ M2, this means that the entire set S2
signals can be obtained as a linear combination of S1 signals, i.e., there exists a linear transform T such as X2 = TX1.
Equivalently, the basis Z2 can be rotated onto a subset of M2 vectors of the Z1 basis.

Z2 =
[
IM2 0M2×(M1−M2)

]
RZ1 (3)

with R an orthogonal (rotation) matrix and [IM2 0M2×(M1−M2)] a selection matrix. Physiologically, this case might
be interpreted as the situation when all the sources responsible for the signals in S1 are also present or seen by the S2
channels.

The most common situation appears when the two subspaces X1 (basis Z1) and X2 (basis Z2) are neither orthogo-
nal nor overlapped. In this case, their relationships are measured by some angles quantifying the degree of correlation
between them. The cosines of these angles are strictly similar to the canonical correlations given by the Canonical
Correlation Analysis (CCA) [3]. Some of the angles might be null or close to zero, in which case the two subspaces
might be decomposed in a common part (subspace) and specific subspaces having different possible relationships
among them. Our aim explore these cases and propose a particular decomposition of X1 and X2 such as:

X1 = X1c +X1s and X2 = X2c +X2s (4)

where the subscripts 1c and 2c indicate respectively parts of the S1 and S2 signals laying in the common subspace
(which might be interpreted as due to common sources), while 1s and 2s indicate respectively the part of the S1 and
S2 signals linearly independent among them and orthogonal to the common sub-subspace. Using source separation
notations, one can write the full model by stacking the two data sets:[

X1
X2

]
=

[
A1c
A2c

]
Yc +

[
X1s
X2s

]
(5)

In source separation language, Yc are called “sources” and they are usually at least orthogonal, if not independent as in
ICA. These sources do not necessarily have a physical of physiological interpretation, especially for biomedical data
such as EEG, where brain sources have a clear neuroscientific interpretation and they are usually not independent.
We are not interested here in source estimation, but in revealing common parts of two different data sets, i.e., the
intersection of their respective subspaces. Therefore, Yc will designate further in the paper common basis vectors or
basis of the common subspace. The dimension of this common subspace, i.e., the number of rows in Yc, will be noted
on Mc. Consequently, the dimensions of the mixing matrices Aic (i = 1, 2) will be Mi×Mc, while Xic and Xic will
have the dimensions of the original data sets.

Note that this model is different from the ones presented in [16], where the number of rows in the two data sets
is the same and where the joint ICA step assumes a common mixing matrix Ac. On the other hand, the model (5) is
similar to the ones proposed in [14] and [15], our decomposition method being different, as it will be described in the
next subsections.

2.1. Ideal decompositions algorithm
The developments presented in this section are a brief recall of one of the classical algebraic approaches for finding

the canonical variates (scores) and the projection matrices in CCA (see e.g., [21]). A first step consists in finding the
parts of the S1 and S2 signals laying in the common subspace, the complements being simply obtained by subtraction
from (4). Intuitively, the common subspace can be found rotating the two measurement basis Z1 and Z2 (1) onto one
another: the common vectors will constitute a basis Yc of the common subspace.

An elegant solution is provided by Golub and Loan [22, p. 603-605]. The aim is to find two rotation matrices VZ
(M1×M1) and WZ (M2×M2) that will align the subspaces spanned by Z1 and Z2 (i.e., will maximize the number of
common basis vectors). This can be done by singular value decomposition of the M1×M2 matrix Z1ZT

2 (assume that
M1 ≥M2, otherwise permute):

Z1ZT
2 = VZΣΣΣWT

Z (6)

Let

Y1 = VT
Z Z1

Y2 = WT
Z Z2 (7)
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be the rotated versions of the Z1 and Z2 basis. It is easy to see that

Y1YT
2 = ΣΣΣ, (8)

thus that a vector k in Y1 is orthogonal to all vectors j 6= k from Y2 and that the angle between vectors having the
same index k in both Y1 and Y2 basis is given by the k-th singular value σk. In particular, if σk = 1, the two basis
vectors are aligned (their cosine/cross-correlation is 1). In other words (see Theorem 12.4.2 from [22]), the common
subspace is defined by the vectors (the rows) Yc from Y1 (or, equivalently, from Y2) corresponding to unitary singular
values in ΣΣΣ. Let Mc be the number of unitary singular values (which are also the greatest, as Z vectors have all unit
norm). Then

Y1 =

[
Yc
Y1s

]
(9)

where Yc corresponds to the first Mc rows of Y1 and Y1s constitute a basis for X1s, the specific part of X1 signals.
The part of the S1 signals common with the S2 is obtained combining (1) and (9) (or projecting X1 on Yc)

X1c = U1D1/2
1 VZ,1..McYc = A1cYc (10)

while the complementary part can be obtained by simple subtraction:

X1s = X1−X1c (11)

or, as long as (9) holds, by projection:

X1s = U1D1/2
1 VZ,Mc+1..M1Y1s = A1sY1s (12)

In equation (10), VZ,1..Mc corresponds to the first Mc rows of the orthogonal matrix VZ from (6).
Strictly similar equations can be written for S2 set of signals, i.e., for obtaining X2c and X2s.
It is useful to recall that, in the general case, X1s 6⊥ X2s, as X1s 6⊥ X2 and X2s 6⊥ X1. Indeed, we do not have

simultaneously Yc ⊥ Y1s, Yc ⊥ Y2s and Y1s ⊥ Y2s. The non-orthogonality between the subspaces spanned by Y1s
and Y2s is revealed by the non-unitary non-null singular values in (8). These values represent cosines of the principal
angles between the two subspaces [22] and reveal the existing correlations between the “uncommon” signals belonging
to the two sets.

To conclude on the proposed common-specific subspace decomposition method proposed here, it is noteworthy
that, even if the mixing model is similar to those proposed in [14, 15], the solution is different, as we perform a SVD
after stacking the basis of the data subspaces and not the data themselves. This leads to a common subspace that is
not biased by the correlation structure of the original datasets, which remain present even after centering and scaling.

2.2. Common subspace for the overdetermined case
The previous approach is based on identifying the unitary singular values in ΣΣΣ (8), revealing activities due to

common sources projected on both sets of signals S1 and S2. This is an ideal particular case, only possible when the
dimension of the common subspace plus the dimension of the specific subspaces equals the dimension of the signal
spaces (N1 and N2). Indeed, assume that

X = Xc +Xs = AcYc +AsYs

with Yc and Ys the disjoint basis of common and specific subspaces, of dimensions Mc and Ms respectively (we drop
in this paragraph the indices of the two subspaces 1 and 2). It is easy to see that if Mc +Ms > M, than the basis Z of
the measured signals X looses some information because of the loss in dimension.

In the general case, it is perfectly possible that Mc +Ms > M (a trivial case is obtained when Ys are independent
random noises, with As equal or not to the identity matrix). In this case, none of diagonal elements of ΣΣΣ (i.e., the
cosines of the principal angles) is equal to 1. On the other hand, if some of the correlations are close enough to 1,
one might suspect that common sources exist, but they are somehow distorted when recorded by the electrodes, either
because of filtering effects or by perturbing specific sources (possibly more than electrodes, i.e., projected from a
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higher dimension subspace) with different amplitudes and thus varying signal to noise ratio. A more general solution
can then be proposed if one accepts the existence of a common subspace of dimension Mc if Mc values of the singular
values in ΣΣΣ (eq. 8) are great enough.

A first problem that appears at this point is how to find a basis for this common subspace. This basis is given by
Proposition 1 below, which gives a new interpretation of the canonical variates given by Kettenring [4]. The proof is
based on an intermediate result, detailed in the Appendix.
Proposition 1. Let Y be the the (M1 +M2)×N matrix obtained by “stacking” Y1 and Y2 from (7):

Y =

[
Y1
Y2

]
= VSWT (13)

with V, S, W obtained by its SVD decomposition. By construction, W is a basis for the space spanned together by Y1
and Y2. The basis Yc of the common subspace between Y1 and Y2 (9) is identical to the first Mc vectors (columns) in
W, corresponding to singular values of

√
2. An approximation of the common subspace is given by the the columns

in W corresponding to singular values in S smaller than but close to
√

2. These columns define a bisector subspace
between Y1 and Y2.
Proof First, it’s easy to see that

YYT = M = VΛΛΛVT , (14)

where M is given by (24), V by (32) and ΛΛΛ is the diagonal matrix having λλλ (27) on the diagonal.
As V is orthogonal and observing that the singular values in S are

√
λi (27), one can write:

VT Y = SWT

Take the i-th row (i≤ r):

vT
i

[
Y1
Y2

]
=
√

λiwT
i , (15)

where wi is the i-th right singular vector (column of W). Consequently, as Y1 has exactly M1 rows,

wT
i =

1√
2λi

(y1,i +y2,i), (16)

with y1,i and y2,i the i-th rows of Y1 and Y2 respectively.
It is now easy to notice that wT

i is the bisector between y1,i and y2,i: right multiplication by either yT
1,i or yT

2,i gives
1√
2λi

(1+σi) =
√

λi
2 , which is the cosine of the angle αi between y1,i (or y2,i) and wi. Recalling that σi = λi−1 is the

cosine of the angle βi between y1,i and y2,i, simple trigonometric identity shows that αi = βi/2.
Finally, a singular value of

√
2 implies λi = 2 (σi = 1), thus identical y1,i and y2,i, which will also be identical to

wi (16).

The previous reasoning yields an approximate common subspace defined by the basis Ŷc =WT
1:Mc

, which is simply
a basis of the bisector space between Y1 and Y2, in other words a normalized version3 of (Y1 +Y2) (a possible way
for determining Mc is proposed in the next subsection). Another way of interpreting Yc is as a set of features of
an “average representative individual” or a centroid of a class, if one uses CCA for discriminative purposes such as
proposed by [23, 24].It is important to note that it does not allow us to determine specific subspaces Ŷ1s and Ŷ2s
orthogonal to Ŷc. Consequently, if common parts X̂1c and X̂2c can be obtained by projecting X1, respectively X2,
onto Ŷc by

X̂1c = ŶcŶT
c X1 and X̂2c = ŶcŶT

c X2, (17)

3The proof is immediate, in two steps: (1) as all vectors in Y1 and Y2 have unit length, any resultant vector w̃i = y1,i +y2,i will be the bisector
between y1,i and y2,i, with a length equal to

√
2(1+ρi), where ρi is the cosine of the ith principal angle; (2) as Y1YT

2 is diagonal by construction
(8), (Y1 +Y2)(Y1 +Y2)

T will also be diagonal, meaning that the individual vectors y1,i +y2,i are orthogonal between them for different i.
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the specific parts X̂1s and X̂2s can only be obtained by subtraction (11) and they are no longer orthogonal to the com-
mon parts (one cannot simultaneously obtain specific parts orthogonal to the common part and perfectly reconstruct
the original data, as Ŷc is no longer an exact sub-basis of the original data sets).

Finally, it is important to note that the inherent sign ambiguity in the SVD can be tackled as proposed in [25], in
order to avoid hazardous reconstruction of the common/specific subspaces by (10) and (11).

2.3. Common subspace dimension
An auxiliary question is the value of the threshold ρ used for determining the common subspace dimension,

i.e., the number of σi singular values in ΣΣΣ “close” to 1 (6). This is significantly different from looking for non-null
correlations: in our case, all components (sources) of the two datasets can be in principle correlated among them,
for example Y1 or Y2 in equation 7. In other words, we are looking for a set of basis vectors corresponding to the
common subspace and not to the whole signal subspace, so we cannot directly use model order selection criteria such
as Akaike’s AIC or Minimum Description Length (MDL) [20, 26, 27]. More recent and elaborated model selection
methods, robust to small sample sizes also (e.g., [28] or [29]) are not adequate neither, for the same reasons. This is a
meaningful situation in many applications, as for example in EEG analysis: different brain areas produce correlated
activities, but some sources propagate to all electrodes. Studying correlations between the former after separating
them from the latter might reveal important functional information on the brain.

A first solution for detecting common sources is a simple thresholding of the singular values in ΣΣΣ (6). As these
values stand for correlations between the two subspaces S1 and S2, one might simply impose some meaningful user-
chosen threshold smaller than 1, in order to be robust to noise. Indeed, the threshold, whose aim is to select big-
enough correlations, should take into account the maximum possible correlation between two noisy data sets. Even
if one assumes two identical sets of vectors Y1 and Y2, each one perturbed by white independent noise with a given
signal-to-noise ratio (SNR), the maximal correlations are limited by this SNR. One can show that the correlation
coefficient of two identical signals perturbed by noise equals:

CCmax =
SNR2

1+SNR2 (18)

(here, the SNR is not considered in dB, but as the ratio between signal and noise standard deviations). For example,
for SNR =

√
2 (i.e., 3dB), the maximum correlation will be 2/3. In other words, if one suspects strong noise, the

threshold should be lowered.
This thresholding can be written directly for the eigenvalues λi from (27). As these values stand for variances

of the principal vectors, we can fix a threshold ρ standing for a minimum correlation acceptable between two basis
vectors in order to be accepted as similar (for example, a value of λ1 > ρ = 1.9 is equivalent to a correlation between
the first basis vectors σ1 > 0.9). This value can be modulated by the signal to noise ratio if some prior knowledge is
available.

On the other hand, although we do not explore here explicitly the small sample size (M comparable to N)4 it was
shown for example in [28] that the sample correlation values could be over-estimated from the data, meaning that
we could have an overestimated dimension of the common space if they pass above the chosen threshold. But, if the
methods proposed in [28] or [29] are effective for estimating the correct number of non-null correlation coefficients,
they do not explicitly provide unbiased estimates of these coefficients.

We thus proceed by a more or less heuristic argument, at the basis of a second method for determining the common
space dimension. Recall that we are only interested in correlations theoretically equal to 1. In practice, we consider
that all singular values that are not significantly different from the first one indicate common basis vectors (sources), if
of course the first value is itself significantly above noise. The second method aims thus to partially avoid the arbitrary
thresholding proposed by the first one by detecting a first gap or jump among the eigenvalues λi. We propose then to
use a factor analysis based criterion introduced by [19], which yields the dimension of the factors subspace by simply
taking the maximum of the ratio of two successive eigenvalues:

N̂c = argmaxk
λk

λk+1
(19)

4In most of the pratical applications we are interested in, the sampling frequency and the length of the recordings is high enough with respect
to the number of channels (it is in fact more current to have redundant channels and thus low column rank than low row rank).
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equivalent to the maximum of the Fisher statistic testing for equality between two successive eigenvalues (variances
of the principal components W).

It is noteworthy that we have also evaluated two other common subspace dimension detection techniques (equality
of two successive eigenvalues, or equality of the different eigenvalues with the first one, both by classical Fisher
hypothesis tests with different non-detection levels α). We do not report here the results, as they are (in average)
slightly below the eigevalues ratio method on our simulated signals (see next section).

3. Results

3.1. Simulation
In order to illustrate our approach, we have simulated two sets of signals of different sizes M1 = 7 and M2 = 5.

The signals were constructed as follows: a set of Mc = 3 signals of length N were considered as common sources
and they were projected using random matrices M1×Mc (respectively M2×Mc) to form the common parts X1c and
X2c of the two sets X1 and X2. Specific signals were also generated separately between the two subspaces, ensuring
that the maximum subspace correlation between them was 0.2. In the simplest configuration, both signal sets were
well determined, with dimensions of the specific subspaces of M1s = M1−Mc respectively M2s = M2−Mc, thus
an Xb1 subspace of dimension M1, an Xb2 subspace of dimension M2 and an overall dimension of both subspaces
of M1 +M2−Mc. The dimensions of each specific subspace was next increased by adding specific signals, from
1 specific signal per subspace to M1 +M2 specific signals per subspace, yielding thus maximal dimensions for the
specific subspaces of M1s = 2M1+M2−Mc and M2s = 2M2+M1−Mc, i.e., an overall dimension of 3(M1+M2)−Mc.
In the well determined case, signals X1 are obtained by mixing M1 sources, signals X2 by mixing M2 sources, Mc = 3
of them being common5. In this case, one should obtain Mc canonical correlation coefficients equal to 1 and thus
potentially perfectly recoverable common subspace. In the worst case, we deal with highly overdetermined signals X1
and X2, obtained by projecting 2M1 +M2 independent signals onto the M1 dimensional subspace of X1 (respectively
2M2 +M1 signals onto the M2 dimensional subspace of X2), Mc of them being common.

Moreover, we have varied the common to specific power ratio (which could be interpreted as a signal to noise or
interference ratio) from 20 to 0 dB (SNR ∈ {∞, 20, 10, 3, 0}dB) by varying the gains K1 and K2 in equations (20)
and (21).

X1 = X1c +K1X1s = A1cYc +K1A1sY1s (20)
X2 = X2c +K2X2s = A2cYc +K2A2sY2s (21)

where the dimensions of Y1s and Y2s varied as explained above.
One hundred simulations were done randomly varying the mixing matrices A (uniform between -1 and 1), but also

the common and specific sources, which were randomly chosen from a simulated sources database created as follows:
we have taken a set of intracerebral signals (SEEG) recorded at the Nancy University Hospital (CHU Nancy) (195
signals at 2048 Hz sampling rate), that we have whitened (eq. 1) in order to obtain unitary norm orthogonal sources
constituting the mentioned database. The length N of all signals was 8196 (4 seconds), much higher that M1 or M2.
Finally, in order to test the influence of unbalanced datasets, X2 amplitudes were multiplied by a factor of 2.

The CSSD procedure was then applied with the aim of estimating common (X̂1c and X̂2c) and specific (X̂1s and
X̂2s) parts of the two signal sets X1 and X2, using (17). Three types of estimates were computed: the first one by
informing the algorithm with the correct subspace dimension (Mc = 3), the second one using the proposed ER test
(19) and the third one using a fixed threshold ρ = 1+ 0.9 for determining the common subspace dimension6. The
three types of estimates were indexed respectively with o, e, and ρ. We present below averaged results over the two
signal sets X1 and X2, indexed as explained before e.g., X̂1c,o, X̂1c,e or X̂1c,ρ for the common parts of the signals from
the first set.

5Note that this is the situation modeled by JIVE [14], where the ranks of the specific subspaces are smaller than the number of measurements.
6A fourth intermediate estimation was done using a threshold depending on the SNR (18)

ρ = 1+0.9CCmax (22)

but the results are not presented here for conciseness.
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We have also compared the 3 CSSD estimates (o, e, and ρ) with the results obtained by JIVE [14] and DISCO-
SCA [15]. It is important to note though that, among the two cited algorithms, DISCO-SCA does not specifically aim
to reconstruct the parts of the original data sets lying in the common and specific subspaces, but the “basis/sources”
Y of these subspaces. The algorithm proceeds in two steps: a first one consisting in an SVD of the stacked data,
followed by a selection of the common basis vectors (dimension of the common space Mc) and a supplementary
rotation. On the other hand, our main motivation is of denoising type, i.e., we aim to estimate common an specific
parts of the original signals by reconstructing them once the respective subspace basis are found. In other words, the
supplementary rotation in DISCO-SCA is irrelevant for our application.

Unlike DISCO-SCA, JIVE [14] has the same objectives as our CSSD method. Still, the model is different: first,
the rank of the specific subspace of every dataset in JIVE is assumed to be M−MC, implying that the original
data mixture is full-rank and it does not stem from a projection on a lower dimensional subspace (which is allowed
in our method). On the other hand, it includes independent white noise, while in our model the “noise” results
from the projection on the measurement space of the specific sources (and it can thus be correlated). Finally, from
an algorithmic point of view, the first step of JIVE is similar to DISCO-SCA, that is an SVD of the stacked data
(optionally normalized) and common space rank selection. This initial step is followed by an iterative procedure that
stems from the successive rank estimation steps, allowing to take into account the noise. In the absence of the rank
re-estimation (if the algorithm converges after the first iteration), the reconstructed common/specific parts are thus the
same as those obtained by DISCO-SCA (on raw or normalized data).

Consequently, we only compare here the results of the different versions of CSSD with the common first step
of [14, 15] consisting in an SVD of the stacked data, normalized or not, followed by a selection of the Mc common
sources by rank thresholding. For a fair comparison, we have used the same three estimates for Mc as for CSSD. The
estimated reconstructed signals are indexed in the following with j and jn for the reconstructions obtained respectively
by simply stacking the (possibly normalized) X sets before SVD. For example, the reconstruction of the common
signals of the first data set using the informed subspace dimension and normalized JIVE will be noted X̂1c,o, jn.

The quality of the different estimations was evaluated by the mean correlation coefficient (i.e., averaged over
the M1, respectively M2 signals), indexed by the signal set (1 or 2), subspace type (common c or specific s) and
thresholding method (ρ, e, and o), as for example in:

CC1c,ρ =
1

M1

M1

∑
i=1

xT
1c,ix̂1c,ρ,i

‖x1c,i‖‖x̂1c,ρ,i‖
(23)

where the index i in e.g., x1c,i denotes the i-th signal (row) in X1c. Note that (23) can also be computed using the raw
measured signals instead of the denoised estimates, (e.g., by replacing X̂1c,ρ with X1), and one might consider that all
flavours of CSSD that improve these raw signals values are useful.

One hundred simulations were performed using the previously described setup. In order to synthesise the results,
we averaged the correlation coefficients (23) over the two data sets: for example, CCc,o represents the average corre-
lation over the two data sets for the common signals reconstructed using CSSD and the informed common subspace
dimension, while CCc,o, j is the JIVE/DISCO-SCA version, on non-normalized data (results on the separate datasets
are similar). The CSSD results are synthetically presented in figure 1 for the three different common space dimen-
sion choice methods, for different signal to noise ratios and total dimension of the original “source” space (see also
discussion below).

We first focus on CSSD results only, for different conditions and space dimension detection procedures. As it can
be seen, for high SNRs (first column in all subfigures), that is for low power specific parts, the estimated common part
is very precisely recovered, regardless of the dimension of the specific subspace by all methods (including not doing
anything and estimating the common part by the measurements themselves, CCc,m). The specific part on the other
hand, is almost invisible in the measurements (first column of CCs,m), but quite properly estimated by the different
versions of CSSD, including for high dimensional problems (last row, 0.82 minimal correlation for CCs,o and CCs,e,
0.79 for CCs,ρ). Likewise, if the mixtures are well conditioned (i.e., the specific subspace dimension Ms = M−Mc),
all common and specific parts are very well estimated (first rows of all subfigures).

If the dimension of the common subspace is correctly informed (CCc,o and CCs,o), all signals (common and spe-
cific) are well recovered, with better performances for low dimensional specific subspaces and high SNR. But even
the worst performances are 0.86 for CCc,o (high dimension and low SNR - lower right corner of the second subfigure
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Figure 1: Correlation coefficients between simulated and estimated common parts Xc and X̂c (first row) and specific parts Xs and X̂s (second row),
averaged over X1 and X2. From left to right, the estimates were the measurements themselves, the informed dimension estimator (index o), the
ER based dimension detection (index e) and the fixed threshold dimension detection (index ρ). For each subfigure, the original common + specific
subspaces dimension increases from up to down (well determined in the upper part, i.e., X1 of dimension M1 and X2 of dimension M2, thus a total
dimension of, severely underdetermined in the lower part (2M1 +M2)), while the signal to noise ratio (common to specific) decreases from left to
right.

on row 1) and 0.82 CCs,o (high dimension and high SNR - lower left corner of the second subfigure on row 2).
Among the two uninformed procedures, the eigenvalue ratio automatic detection procedure performs better than

a fixed threshold, but both fail for high-dimensional mixtures and low SNR. It is useful to mention though that the
maximum ER procedure was not applied alone: more specifically, we only considered that a common subspace
exists (Mc 6= 0) if the highest eigenvalue was above the fixed threshold ρ = 1.9. In most of the cases, when λ1 > ρ, the
dimension of the common subspace was correctly estimated. Of course, in the opposite situation, the estimated Mc = 0
(lower right corner of subfigures CCc,e, CCs,e, CCc,ρ and CCs,ρ. Still, for 10 dB SNR, the common and specific spaces
were rather correctly estimated by the ER based procedure even for high dimensional mixtures (minimum correlation
coefficients CC1c,e = 0.96 and CC1s,e = 0.80), with lower performances for the fixed threshold method (CC1c,ρ = 0.91
and CC1s,ρ = 0.61). For 3 dB, correlations above 0.8 between the estimates and original subspaces were obtained
for moderately overdetermined mixtures (constructed for example, for X1, by mixing M1 +Mc sources), while for
0 dB, equivalent performances can only be obtained if the the total original dimensions remains low (for one 0 dB
supplementary source for each data set, the correlation coefficient CCce = 0.82, rightmost element of the second row
of the third subfigure on row 1). These results are valid for the ER automatic subspace dimension detection and they
are lower for the fixed threshold7.

An example of the different estimated signals is given Figure 2. For this example, the eigenvalues λλλ (27) are
plotted Figure 3.

If the figure 1 presents detailed CSSD results over different combinations of SNR and original space dimension,
we also summarize averaged results in tables 1 and 2, in order to compare the CSSD based reconstructions to those
obtained using concurrent algorithms such as JIVE or DISCO-SCA (as explained above, only the first SVD based step
of these methods is relevant for this comparison). The two tables present two complementary points of view.

The first one neglects the effect of the SNR by averaging over all specific subspaces powers, but illustrates the
effect of the dimension of these original specific subspaces (how many specific sources are indeed interfering with the
common ones). As it can be seen, if the number of interfering specific sources is high, all algorithms are equivalent,
regardless of the method of estimation of the common subspace dimension (bottom rows of the table). Actually, only
if the dimension of the common subspace is correctly informed (columns indexed wih o), CSSD and JIVE/DISCO-
SCA improve the estimation of the common signals with respect to the raw data, with a consistently better CSSD

7If the threshold is adapted to the a priori known SNR (eq. 22), the results come very close to the informed dimension version of the method,
CCc,o and CCs,o. Including an estimate of the noise power in the method is thus a promising possibility, but it is outside the scope of this paper.
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(a) X1c, X̂1c,ρ, X̂1c,e (b) X1s, X̂1s,ρ, X̂1s,e (c) X1

(d) X2c, X̂2c,ρ, X̂2c,e (e) X2s, X̂2s,ρ, X̂2s,e (f) X2

Figure 2: Example of simulated signals X1 and X2 (dimensions M1 = 7 and M2 = 5). The total dimension of the original source space was set to
17 (common source space of dimension Mc = 3, specific source spaces for X1 and X2 of dimensions M1s = M2s = 7). The SNR (common/specific)
was set to 3dB (for more details, see simulation description in text). Estimated common and specific parts are plotted in subfigures (a), (b) for X1
and (d), (e) for X2. For this example, the automatic eigenvalues ratio procedure (19) yielded the correct common subspace dimension M̂c = 3, while
the fixed threshold procedure selected only the first eigenvalue (see fig 3). The mean correlation coefficients were CC1c,e = 0.96, CC1c,ρ = 0.80,
CC1s,e = 0.92, CC1s,ρ = 0.78, CC2c,e = 0.95, CC2c,ρ = 0.70, CC2s,e = 0.92, CC2s,ρ = 0.80. Subfigures (c) and (f) illustrate the two signal sets, sums
of (a)+(b) and (d)+(e) respectively.

(and better JIVE estimates on normalized data than on raw data). On the other hand, if the Mc estimate fails (which
is the case when averaging over all SNRs and for highly dimensional specific subspaces, i.e., in a big right lower
corner of the table), all algorithms fail, with correlation coefficients below those in the first column. CSSD keeps
though a small advantage when the number of specific sources remain relatively low, regardless of the SNR (upper
right corner). Interestingly, applying the SVD-only initial step of JIVE/DISCO-SCA yields better performances when
the number of specific perturbing sources increases (column CCc,o,jn): the higher the number of specific signals in the
mixture, the closer the specific part comes to white noise and the easier the common sources are isolated on the first
singular vectors.

The second table neglects the effect of the total subspace dimensionality by averaging, but illustrates the effect of
the SNR. As it can be seen, if the SNR is high, all algorithms perform correctly, except for the fixed threshold version
(last three columns), when for noises starting from a 10 dB SNR the CC falls below the CC between the simulated
common signals Xc and the raw mixed ones X (i.e., below the value in the first column). But again, if Mc is correctly
informed„ CSSD is consistently equivalent or it outperforms JIVE/DISCO-SCA for all SNRs, including 3 and 0 dB.

Finally, a third table 3 compares the CSSD and JIVE/DISCO-SCA using the well-conditioned noisy model pro-
posed in [14]. More precisely, the rank of the common plus the rank of the specific subspaces equals the rank of
the simulated datasets (this situation corresponds to the first row of table 1). The norms of the common and specific
components for each signal (each row of X1 and X2 were equal (0 dB in the previous simulation) and white noise
was added directly to the measurements Xi, with different signal to noise ratios (Inf, 20, 10, 3 and 0 dB). Only the
informed rank decomposition was performed (without using any model dimension estimation). As it can be seen,
CSSD largely dominates stacked data SVD methods [14, 15]. A possible explanation stems from another feature
of the considered model: in our simulation, specific subspaces are (weakely) correlated among them, while in [14]
(Supplementary Material), the row-space intersection of specific subspaces is assumed null, which in the two datasets
situation is implies orthogonal specific subspaces.
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Figure 3: Example of eigenvalues λλλ (27) corresponding to the principal components W from Proposition 1. For the simulation details, see text and
legend of Figure 2. The dashed line represents the fixed threshold ρ = 1.9C, which selects a monodimensional subspace Yc (M̂c = 1), while the
ER test based procedure (section 2.3) detects the correct common space dimension M̂c = 3. The resulted reconstructed signals are given Figure 2

Dim CCc,m CCc,o CCc,o,j CCc,o,jn CCc,e CCc,e,j CCc,e,jn CCc,ρ CCc,ρ,j CCc,ρ,jn
9 0.86 1.00 0.88 0.89 1.00 0.88 0.89 1.00 0.88 0.89

11 0.85 0.98 0.89 0.90 0.93 0.85 0.88 0.88 0.82 0.86
13 0.85 0.97 0.89 0.91 0.88 0.83 0.85 0.80 0.79 0.79
15 0.85 0.96 0.90 0.92 0.83 0.79 0.82 0.75 0.73 0.75
17 0.85 0.95 0.90 0.92 0.76 0.74 0.75 0.69 0.68 0.69
19 0.85 0.95 0.90 0.93 0.74 0.72 0.74 0.68 0.67 0.68
21 0.85 0.94 0.90 0.93 0.66 0.65 0.66 0.62 0.61 0.62
23 0.85 0.94 0.90 0.93 0.66 0.65 0.66 0.61 0.61 0.61
25 0.85 0.94 0.91 0.93 0.62 0.61 0.62 0.58 0.58 0.58
27 0.85 0.94 0.91 0.93 0.63 0.62 0.63 0.59 0.58 0.59
29 0.85 0.94 0.91 0.93 0.61 0.60 0.61 0.57 0.56 0.57
31 0.85 0.94 0.91 0.93 0.60 0.59 0.60 0.56 0.56 0.57
33 0.85 0.94 0.91 0.94 0.57 0.57 0.57 0.54 0.54 0.54

Table 1: Correlation coefficients CC between the simulated signals Xc (obtained from simulated common sources) and their esti-
mates X̂c, averaged over all SNRs and the two data sets X1 and X2. The first column indicates the total dimension of the source
space (see also main text and the results from figure 1). The second column displays the CC between the simulated signals and
the raw data. Next, by groupes of three columns, we show the results obtained for different estimation methods of the common
subspace dimension (informed: index o; eigenvalues ratio: index e; fixed threshold: index ρ). The three columns inside each
group correspond to the evaluated algorithm (first column: CSSD, no index; second column: JIVE/DISCO-SCA on raw data; third
column: JIVE/DISCO-SCA on normalized data

SNR CCc,m CCc,o CCc,o,j CCc,o,jn CCc,e CCc,e,j CCc,e,jn CCc,ρ CCc,ρ,j CCc,ρ,jn
20 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 0.94 0.99 0.98 0.99 0.97 0.97 0.97 0.92 0.92 0.93
3 0.79 0.94 0.87 0.91 0.63 0.59 0.61 0.52 0.50 0.52
0 0.68 0.89 0.75 0.80 0.32 0.25 0.27 0.29 0.23 0.25

Table 2: Correlation coefficients CC between the simulated signals Xc (obtained from simulated common sources) and their esti-
mates X̂c, averaged over all source space dimensions and the two data sets X1 and X2.

SNR CCc,m CCc,o CCc,o,j CCc,o,jn
Inf 0.69 1.00 0.70 0.70
20 0.69 0.98 0.70 0.70
10 0.66 0.92 0.69 0.69
3 0.56 0.81 0.63 0.65
0 0.48 0.73 0.56 0.60

Table 3: Correlation coefficients CC between the simulated signals Xc and their estimates X̂c for well conditioned noisy setups (see
text), averaged over the two data sets X1 and X2.
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3.2. Application on real signals
Different applications can be imagined for the presented method in analyzing electro-physiological signals. We

focus here on brain electrophysiological data (EEG and SEEG, see below). Electroencephalography (EEG) is one
of the most widely used modalities to explore the electrical brain activity, using sensors placed over the scalp. Its
invasive counterpart, stereo-electroencephalography (SEEG), is used in clinical routine for exploring the deep brain
structures of drug-resistant epileptic patients with the help of intra-cerebral electrodes, consisting in 10 to 15 sensors
equally spaced (2.5 mm) on a 0.8 mm diameter shaft, surgically implanted through the skull in the brain. These
investigations help in localizing and delimiting the epileptic zone to be removed by subsequent surgery. In parallel to
this primary clinical objective, EEG/SEEG recordings can also be used to explore the brain responses in controlled
conditions, related to a specific tasks (cognitive or motor) or to a provoked stimulus. The stimuli can be visual, tactile,
etc . . . , but also electrical. For example, during clinical investigations, epileptic events as well as cortico-cortical
evoked potentials (CCEP) can be also induced by Trans- or Intra-Cranial/ Cerebral Stimulation (ICS) [30].

All the data used here to illustrate our method was recorded at the University Hospital (CHU) Nancy, France,
during routine epilepsy evaluation using a Micromed R© (Italy) system. The patients gave their informed consent.

Two application examples of CSSD decomposition are presented, on two types of data:

• surface EEG data, with eye blink and muscle artefacts. The goal of this application is to cancel the extracerebral
artefacts contaminating the signals (for other techniques, see e.g., [31, 32, 33, 34]). The two datasets are sets of
distant electrodes, placed over the two hemispheres. The hypothesis is that extracerebral artefacts contaminate
both sets, while intracerebral sources, although possibly correlated, are not common, because they originate
from different hemispheres;

• SEEG data recorded during electrical intra-cerebral stimulation (ICS) in two different conditions of the patient
(awake and sleeping). In some cases (at specific locations and for specific amplitudes), the ICS generates a
deterministic activation of the neurons in its cortical target and in connected areas [30]. It has been shown
that these responses differ between non-rapid eye movement (NREM) sleep and wakefulness [35]. According
to [36], a possible explanation is the connectivity breakdown during sleep, compared to wakefulness, when a
complex chain of causal interactions is triggered and propagates through a distributed network of cortical areas.
The goal of this application is thus to determine if the responsive brain areas differ between the two conditions.

3.2.1. Artefacted EEG data
We present here an example of a 20 seconds surface EEG consisting of 24 electrodes recorded at a sampling

frequency of 256 Hz. The raw data is presented figure 4, left panel. We have considered the first 10 electrodes (even
numbers, right hemisphere) as X1 and the last 10 as X2 (odd numbers, left hemisphere). We applied CSSD with an
automatic detection of the common space dimension (19) in order to obtain the common space of the two data sets,
deemed as artefacts and displayed in figure 4, central panel (the detected dimension was M̂c = 2). Next, a second
CSSD was applied considering the raw EEG as X1 and the artefacts as X2 (in this case, obviously X2 is included
in X1). We obtained thus a specific subspace X1s containing cleaned signals, shown in figure 4, right panel. The
procedure, fully automatic and fast, allows to uncover the epileptic seizure, involving mainly the left hemisphere and
starting around second 10. Extensive tests of the quality of the cleaned data are outside the scope of this paper, but
it is clear that the CSSD based procedure can at least be used as a first attempt of data cleaning in order to ease the
medical interpretation.

3.2.2. SEEG during ICS
The signals were collected from a patient implanted with 13 SEEG electrodes, 11 in the right hemisphere and 2

in the left hemisphere. In all, 115 sensors were placed inside different brain structures. All signals were recorded at
a sampling frequency of 1024 Hz. The employed ICS consisted in a biphasic current pattern of very short duration
(1.05 ms), having an amplitude of 1 mA and injected periodically with a 1 Hz frequency during 30 s8.

8For detailed models of this type of current stimulation, both from a time and frequency point of view, see [37, 38, 39].
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(a) X1: raw EEG (b) X2: artefact signals (reconstructed) (c) X1s: artefact free EEG

Figure 4: Artefact cancelling using CSSD (for the details of the procedure see main text)

We focused on two data sets, consisting in similar location and amplitude ICS for NREM sleep and wakefulness
states. The ICS was applied in the posterior hippocampus, between B1-2 sensors. In order to avoid the ICS artifact
effects on the analysis of the CCEP, previous studies [30] focused on a time interval starting 15 ms after the current
injection. In our case, we canceled the artifact separately for each data-set by as described in [10]. Next, we applied
the proposed approximated CSSD approach between the two data-sets (sleep and wake signals) in order to identify
common and specific activities.

As the cortical responses (CCEP) were in principle deterministic, we extracted windows of one second length,
centered on the stimulation instant (30 windows, as each session consists in 30 ICS pulses delivered with a period of
one second). As in BCI applications, these "single trials" were next averaged to obtain averaged versions of the CCEP.
These averaged versions (on sensors of interest) are plotted in Figure 5. As it can be seen, the stimulation triggered
rapid activities both in sleep and awake states, from 10 to 50ms after the stimulation, spreading over a large number of
electrodes (especially powerful on the sensor C5 - anterior hippocampus). During awake state, a later evoked activity
was observed over the profound sensors of the sensor W1 (posterior cingulate, 240 ms latency), as well as oscillating
activities (high alpha / low beta rythms) on the sensor C5 (300 ms latency). Inversely during the NREM sleep state,
these activities were not observed.
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(a) X1c (Sleep, common) (b) X1s (Sleep, specific) (c) X1 (Sleep)

(d) X2c (Awake, common) (e) X2s (Awake, specific) (f) X2 (Awake)

Figure 5: Common (dimension Mc = 9) and specific subspaces of NREM sleep (up) and wake (down) signals. Estimated common and specific
parts are plotted in subfigures (a), (b) for sleep and (d), (e) for awake states. Subfigures (c) and (f) plot the raw signals (averaged). See discussion
in the main text

4. Conclusion

This paper proposes a modified CCA approach called CSSD, whose aim is to automatically identify common and
specific parts of two sets of signals. More precisely, the common part is defined by a basis of a common subspace,
bisector between the subspaces of the two original data-sets, whose dimension can be automatically estimated using
an eigenvalues ratio (ER) test. The main novelty of the proposed method is a “stacked basis” approach, different from
the “stacked data” approach proposed by other methods aiming to estimate common components of several sets of
signals such as JIVE [14] and DISCO-SCA [15].

We illustrate, on simulated signals, the performances of the method and compare them with these methods. The
results show that, for two data sets, CSSD is at least equal or better than the concurrent methods for estimating the
common and specific parts of the two sets of signals and it is able to deal with difficult situations, when specific
subspaces are correlated. We present next two examples of application, the first one being a fully automatic fast ex-
tracerebral artefact rejection for EEG signals, while the second one analyses SEEG signals recorded in two conditions
(sleep vs. wake) during an intra-cerebral electrical stimulation protocol, the aim being to discover sleep vs. wake
common and specific activated brain regions.

Possible other applications will be explored elsewhere, namely for example common and specific parts between
simultaneously recorded signals using two modalities (e.g., SEEG / EEG / MEG) or two signals subsets. Besides
answering quantitatively to difficult questions such as which are the activities visible to two different modalities,
assessing common activities could be a necessary pre-processing step for multi-modality localization problems by
inverse problem solving.

Finally, we most note that the application that initially motivated our work (electrophysiological brain signal
analysis) uses linear models. This is motivated by physical considerations (quasi-static Maxwell equations as they are
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applied to model electrical fields of the brain). Nevertheless, one can imagine non-linear relations between different
modalities (for example fMRI and (S)EEG). Another interesting application could be comparing two datasets when
the positions of the measuring electrodes are not exactly controlled or some uncontrolled physiological modifications
have appeared (for example between recordings taken during time-distant sessions). A promising research direction
could be to adapt nonlinear techniques such as Kernel-CCA or Deep CCA [17, 18] for estimating an approximate
“nonlinear bisector space”.
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Appendix

We give here a concise version of a result from [4] and a modified proof.
Lemma (Kettenring). Consider the symmetric matrix

M =

[
IM1 ΣΣΣ

ΣΣΣ
T IM2

]
(24)

with ΣΣΣ a M1×M2, (M1 ≥M2) matrix having r non-null sorted diagonal elements 1≥ σi > 0 for all i, 1≤ i≤ r ≤M2
(σi ≥ σi+1). Its first r eigenvalues λi (i = 1..r) are given by 1+σi. The corresponding eigenvectors vi have only two
non-null elements, vi(i) = vi(M1 + i) =

√
2

2 .
Proof First, use the fact that adding an identity matrix to a square matrix adds 1 to its eigenvalues. We need then to
compute the eigenvalues µ of the simpler matrix

Q =

[
0N1 ΣΣΣ

ΣΣΣ
T 0N2

]
(25)

which are given by roots of the characteristic polynomial

P(µ) = det
[

µIM1 −ΣΣΣ

−ΣΣΣ
T µIM2

]
= µM1 det

(
µIM2 −

1
µ

ΣΣΣ
T

ΣΣΣ

)
= µ(M1+M2−2r)

r

∏
i=1

(µ2−σ
2
i ) (26)

In the last derivation, we used the block determinant property:

det
[

A B
C D

]
= det(A)det(D−CA−1B)

Adding 1 to the µi roots will give the desired eigenvalues λi, grouped below in a vector λλλ:

λλλ = [1+σ1 . . .1+σr︸ ︷︷ ︸
r

1 . . .1︸ ︷︷ ︸
M1+M2−2r

1−σr . . .1−σ1︸ ︷︷ ︸
r

] (27)
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Computing a solution for the eigenvectors is straightforward. Consider a vi among the first r eigenvectors (1 ≤
i≤ r, corresponding to λi = 1+σi). Then,

(λiIM1+M2 −M)vi = 0 ⇔
(σiIM1+M2 −Q)vi = 0 (28)

Taking row i will lead to σivi(i)−σivi(M1 + i) = 0, thus

vi(i) = vi(M1 + i) (29)

Applying the same approach for the last r eigenvectors (M1 +M2− r+1≤ i≤M1 +M2) will lead to

vi(i) =−vi(M1 + i) (30)

Finally, for λi = 1, we’ll have
Qvi = 0, (31)

which implies that the first and the last r elements of vi are 0 and the middle elements, between r+1 and M1 +M2− r
are undetermined.

A direct solution to the eigenvectors problem respecting all the previously listed constraints (29), (30) and (31) is
given by the following: for the first and the last r vectors, fix all the elements except vi(i) and vi(M1 + i) to 0. As their
norm is by definition 1, the solution is given by vi(i) =

√
2

2 . For the remaining eigenvectors vi (i between r+ 1 and
M1 +M2− r), it is sufficient to choose one non null element equal to 1, ensuring that these non null elements are not
on the same row. The complete eigenvector matrix V is given by:

V =


√

2
2 Ir 0r,M1−r 0r,M2−r

√
2

2 Ir
0M1−r,r IM1−r 0M1−r,M2−r 0M1−r,r√

2
2 Ir 0r,M1−r 0r,M2−r −

√
2

2 Ir
0M2−r,r 0M2−r,M1−r IM2−r 0M2−r,r

 (32)

which concludes the proof.
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