
HAL Id: hal-03464012
https://hal.science/hal-03464012

Submitted on 2 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pipeline Combinators for Gradual AutoML
Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, Avraham

Shinnar, Jason Tsay

To cite this version:
Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, Avraham Shinnar, et al.. Pipeline
Combinators for Gradual AutoML. NeurIPS 2021 - Thirty-fifth Conference on Neural Information
Processing Systems, Dec 2021, Virtual, France. �hal-03464012�

https://hal.science/hal-03464012
https://hal.archives-ouvertes.fr


Pipeline Combinators for Gradual AutoML

Guillaume Baudart
Inria, ENS – PSL University, France

guillaume.baudart@inria.fr

Martin Hirzel
IBM Research, USA
hirzel@us.ibm.com

Kiran Kate
IBM Research, USA

kakate@us.ibm.com

Parikshit Ram
IBM Research, USA

parikshit.ram@ibm.com

Avraham Shinnar
IBM Research, USA

shinnar@us.ibm.com

Jason Tsay
IBM Research, USA

jason.tsay@ibm.com

Abstract

Automated machine learning (AutoML) can make data scientists more productive.
But if machine learning is totally automated, that leaves no room for data scientists
to apply their intuition. Hence, data scientists often prefer not total but gradual
automation, where they control certain choices and AutoML explores the rest. Un-
fortunately, gradual AutoML is cumbersome with state-of-the-art tools, requiring
large non-compositional code changes. More concise compositional code can be
achieved with combinators, a powerful concept from functional programming. This
paper introduces a small set of orthogonal combinators for composing machine-
learning operators into pipelines. It describes a translation scheme from pipelines
and associated hyperparameter schemas to search spaces for AutoML optimizers.
On that foundation, this paper presents Lale, an open-source sklearn-compatible
AutoML library, and evaluates it with a user study.

1 Introduction

Automated machine learning can make data scientists more productive by lowering the barrier to
entry for novices as well as reducing the tedium for experts. With total automation, the data scientist
just provides data and the AutoML tool does the rest. While this yields a convenient starting point, it
gives users little control. Instead, gradual automation, where the user tweaks some choices by hand,
leverages user expertise for better outcomes and wastes less compute time. Unfortunately, gradual
automation is not easy with existing AutoML tools and their programming interfaces. Existing
AutoML tools tend to have different interfaces from those for manual machine learning, preventing
a gradual transition between the two. Furthermore, with existing tools, code changes for gradual
automation tend to be large and non-compositional. The programming interface of existing tools
is often coupled to a given optimizer. And finally, tools often support controlling some aspects of
automated pipeline search only with a much lower-level programming interface, if at all.

We hypothesize that gradual AutoML can be made easier via combinators. Combinators were
first discovered by Schönfinkel in the 1920s in an attempt to find elementary building blocks of
logic [41]. Combinators are functions that compose functions and play an important role in functional
programming. For instance, Lisp provides the combinators map and reduce [43], which inspired the
MapReduce programming model [11, 22]. Combinators enable a tacit programming style, where data
remains unnamed, keeping function compositions concise and minimizing edits when re-arranging
them. We argue that sklearn’s make_pipeline and make_union [7] are combinators: they compose
machine-learning operators into pipelines without naming datasets such as X or y during composition.
These two combinators enable the two primary execution modes, training and prediction, of sklearn
pipelines. This paper streamlines them with infix notation, adds a choice combinator, and adds
AutoML search as a third execution mode.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Enabling search as a third execution mode requires a translation from combinators to AutoML search
spaces. To solve this challenge, this paper describes a novel translation scheme, which takes a
combinator-based pipeline and generates a search space suitable for a given AutoML optimizer. The
translation first normalizes and combines the hyperparameter schemas of the operators in the pipeline,
which specify the space of hyperparameter values. Next, depending on the optimizer at hand, it
flattens and discretizes the search space. This translation is essential to bridge from the modular and
tacit combinators syntax to an optimizer’s syntax, and may re-arrange components and introduce
(possibly mangled) names as needed. The translation scheme also supports round-tripping back to
combinators, needed for evaluating and understanding results as well as for iterative refinement.

This paper introduces Lale, a Python AutoML library implementing the combinators and the transla-
tion scheme. Lale enjoys active use both in the open-source community (https://github.com/ibm/lale/)
and in IBM’s AutoAI product. It is sklearn-compatible, giving users access to many operators and
familiar functionality. Lale is gradual, letting users specify only what they want while reusing and
automating the rest. For instance, Lale comes with an extensive library of reusable hyperparameter
schemas for many popular operators, so users rarely need to write their own schemas; but it also makes
it easy to customize schemas when desired. There are Lale optimizer backends for Hyperopt [6]
(with 4 solvers tpe, atpe, rand, and anneal); sklearn’s GridSearchCV and HalvingGridSearchCV [7];
ADMM [26] (with 5 continuous and 5 combinatorial solvers); SMAC [15]; and Hyberband [25].

The contributions of this paper are:

• Combinators for gradual automated machine learning.
• A translation scheme for mapping combinators to a broad variety of optimizers.
• The Lale library and a user study for validating combinators and gradual automation.

This paper addresses the problem of simplifying gradual AutoML. Our solution, Lale, is easy to use
for data scientists with moderate sklearn experience, as demonstrated by the user study. Lale uses
combinators for modularity, and uses schemas both for search spaces and for type-checking. It is
more expressive than the high-level interfaces of prior AutoML tools. Lale gives users fine-grained
control over AutoML without requiring them to be AutoML experts.

2 Pipeline Combinators

This paper proposes three combinators to compose machine-learning operators into pipelines. To
support hyperparameter tuning, each operator has an associated hyperparameter schema. Thus, when
combinators compose operators, then under the hood, that implies weaving together the associated
hyperparameter schemas. This section describes the syntax both for combinators and for schemas,
leaving it to Section 4 to describe the translation that weaves them together for AutoML.

Combinators. The three combinators are >>, &, and |. The pipe combinator, p >> q, connects the
output of p to the input of q, similar to sklearn’s make_pipeline. The and combinator, p & q, composes
p and q side-by-side without creating dataflow between them. It is similar to sklearn’s make_union,
except that make_union(p, q) implicitly concatenates the output features of p and q whereas p & q does
not. Instead, if users want to combine features after &, they have to explicitly add an operator for that.
Making this explicit makes code more understandable and also provides flexibility to pick different
data-combining operators when desired, for instance, vertical stacking vs. relational joining [40].
The or combinator, p | q, introduces a choice between p and q. While it has no direct equivalent in
sklearn, it can be encoded in sklearn’s GridSearchCV, as well as in other optimizers such as Hyperopt.

Figure 1 shows the syntax for combinator-based pipelines. The start symbol, pipeline, can be an
individual operator or it can nest other pipelines by using one of the three combinators. An individualOp
has a name and an optional configuration for zero or more hyperparameters. For example, in Figure 2,
the operators Project and AdaBoostClassifier are explicitly configured with hyperparameters, whereas
the operators PCA, NoOp, etc. are not. When the user does not manually configure hyperparameters,
then AutoML automatically tunes them. A hyperParam configuration uses an expression, which can
be a simple Python value or a nested pipeline. For example, in Figure 2, Project is configured with
a simple Python dictionary, whereas AdaBoostClassifier is configured with a nested pipeline. An
operator that takes another operator as an argument is higher-order, and besides AdaBoostClassifier,

2

https://github.com/ibm/lale/


pipeline ::= individualOp | pipe | and | or
individualOp ::= NAME | NAME (hyperParam* )
hyperParam ::= NAME = expression
expression ::= VALUE | pipeline
pipe ::= pipeline >> pipeline
and ::= pipeline & pipeline
or ::= pipeline | pipeline

Figure 1: Pipeline syntax. Non-terminals are in
lower-case italics , literal tokens ((, ), =, >>, &, |)
are in type-writer font, other terminals are in
all-caps ITALICS, and the meta-syntax ( ::= , |, *)
indicates rules, choice, and Kleene star.

1 pre_n = (Project(columns={"type":"number"})
2 >> (PCA | NoOp))
3 pre_s = (Project(columns={"type":"string"})
4 >> (OrdinalEncoder|OneHotEncoder))
5 pplan = ((pre_n & pre_s)
6 >> ConcatFeatures
7 >> AdaBoostClassifier(
8 base_estimator=(J48 | LR)))

Figure 2: Pipeline example with two prepro-
cessing sub-pipelines. Features from both are
concatenated and piped to a boosted ensemble,
whose base estimator is a choice of classifiers.

there are plenty of other examples, such as sklearn’s RFE, OneVsRestClassifier, or ColumnTransformer,
or fairness mitigation operators with preprocessing operators as an argument [19].

What makes the combinator-based pipeline syntax powerful is that everything nests. A pipeline is
itself an operator in the sense that it implements the methods fit and transform or predict. Unlike
other AutoML tools, Lale can thus easily express search spaces around higher-order operators. The
syntax is concise, as it focuses just on operators and is tacit about data. The Lale library implements
this syntax as pure Python code. That has the advantage that users need not learn a new programming
language, and can instead make full use of Python’s existing features. For example, Figure 2 uses
a Python assignment (pre_n = ...) to improve readability. Furthermore, existing Python tooling just
works, such as auto-completing editors, syntax and type checkers, and interactive notebooks.

Execution modes. Pipelines have three execution modes: predict or transform; fit; and AutoML
search. The first two modes come from sklearn. Their semantics are based on the dataflow graph
of a pipeline, which is a directed acyclic graph whose vertices are operators and whose edges are
given by the >> combinator (note that & and | do not induce dataflow edges, and pipelines with |
only support the third execution mode). The first execution mode of a pipeline, predict or transform,
simply invokes predict or transform on the vertices in topological order, guaranteeing that the results
from all predecessors of an operator are available before that operator fires. The second execution
mode, fit, also processes vertices in topological order, calling first fit and then transform or predict.
The result of fit on a pipeline is a new pipeline that is the same as the original except that all operators
are replaced by trained versions, i.e., their learned coefficients are bound. Higher-order operators
have the flexibility to invoke the methods of nested operators as needed for the outer operator.

The third execution mode of a pipeline, AutoML search, is implemented by translating the planned
pipeline to a search space for an AutoML optimizer. The search space encodes joint operator selection
and hyperparameter tuning. Given a planned pipeline such as pplan from Figure 2, users access this
execution mode by invoking the auto_configure method:

1 best_found = pplan.auto_configure(
2 train_X, train_y, optimizer=Hyperopt, cv=3, max_opt_time=300, max_eval_time=30)

The result (in this case best_found) is the trained pipeline that yielded the best score (here, cross-
validated with cv=3) during the search. Section 4 discusses the details of the translation.

Schemas. Besides combinators, which specify a space of pipelines to search, AutoML also needs
hyperparameter schemas, which specify a space of hyperparameter values to search. Here, we adopt
the value-set definition of a schema (or type) as a space (or set) of values [33]. While data scientists
frequently write code with combinators to exercise control, they write schemas less often. As of
today, Lale includes schemas for 216 operators, sufficient for many common machine learning tasks.

Figure 3 shows the most important parts of the schema syntax (eliding some details, such as defaults,
integers, and array schemas, that are not needed for examples in this paper). The start symbol,
schema, can be an enumeration, a range, an object, or it can nest other schemas by using one of three
logic connectives. An enum schema specifies a categorical hyperparameter with a choice between
one or more values. Figure 4 includes multiple examples of enums: [mle], [true, false], [0.25],
[linear, sag, lbfgs], etc. A range schema specifies a continuous hyperparameter with a minimum and

3



schema ::=enum | range | object | disj | conj | neg
enum ::= [ VALUE+ ]
range ::= ( NUM .. NUM ) distr?

distr ::= "uniform" | "loguniform"
object ::= dict { (NAME : schema)* }
disj ::= schema ∨ schema
conj ::= schema ∧ schema
neg ::= ¬ schema

Figure 3: Schema syntax.

PCA : dict{N : (0..1) ∨ [mle]}
J48 : dict{R: [true, false], C: (0..0.5)}∧

(dict{R: [true]}⇒ dict{C: [0.25]})
LR : dict{S: [linear, sag, lbfgs], P : [l1, l2]}∧

(dict{S: [sag, lbfgs]}⇒ dict{P : [l2]})

Figure 4: Schema examples for 3 operators (sim-
plified): sklearn’s PCA and LogisticRegression
and Weka’s J48. We write s⇒ t for (¬s) ∨ t.

maximum (most AutoML optimizers do best with bounded ranges) and an optional distribution distr .
Figure 4 includes two examples of ranges: (0..1) and (0..0.5). An object schema specifies a dictionary
of zero or more hyperparameter schemas. For example, Figure 4 specifies one hyperparameter for the
PCA operator from sklearn [7] and two each for J48 from Weka [18] and for LR from sklearn.

The schema syntax supports three logic connectives disjunction (∨), conjunction (∧), and negation (¬).
Disjunction describes a union type; for example, in Figure 4, the N hyperparameter of PCA can
specify the number of components with either a range (0..1) or an enum [mle]. Conjunction describes
an intersection type and negation can be used to describe an implication. These connectives help
express constraints for ruling out combinations of hyperparameters that are individually valid but
collectively invalid. For example, with Weka’s J48 operator, if R is true (use reduced error pruning),
then C must be 0.25 (cannot set the pruning confidence to other values). Figure 4 specifies this via⇒,
which is syntactic sugar for the basic logic connectives. Hyperparameter constraints are useful for
pruning invalid areas from the search space, so AutoML search can focus on valid areas instead.

To make schemas easier to use, we decided not to invent our own new schema language, but instead
to adopt a mature existing language with a broad user base and tooling ecosystem. One choice we
considered was Python 3 types [45, 37]. Unfortunately, Python 3 types are not expressive enough for
specifying constraints. But fortunately, there is another language that also works well with Python
and is used extensively by a large community well beyond that of AutoML: JSON Schema [35]. Most
constructs from Figure 3 have exact equivalents in JSON Schema. For instance, a range (a..b) can
be written as {"type": "number", "minimum":a, "maximum":b}. Lale adds a few extensions to JSON
Schema. For instance, it supports an optional "distribution" keyword in a "number" schema; and it
supports an "operator" type for hyperparameters that accept a nested machine-learning operator.

3 Gradual Automation

The previous section described pipeline combinators and hyperparameter schemas. This section
builds on that foundation to describe a programming model for gradual AutoML. Here, gradual
means that users get to use total automation if they so desire, but can also exercise fine-grained
manual control over any aspects of the pipeline. The programming model design was guided by three
principles. First, progressive disclosure lets users start by learning just a subset of the constructs, only
requiring them to learn more constructs as needed to accomplish more tasks. Second, orthogonality
minimizes the number of independent constructs to make the programming model easy to learn,
while maximizing the ways these constructs can be plugged together to make the programming model
expressive [27]. Third, the principle of least surprise makes each construct look and behave the
way most users would expect. That is why we started from well-established programming models
sklearn [7] and JSON Schema [35] and try to be faithful to their expectations.

Figure 5 show the learning curve of gradual AutoML from zero to mastery. The rest of this section
describes each set of constructs, starting at the bottom and working upwards one layer at a time.

Use total automation. Lale provides an AutoPipeline operator. From the outside, it looks and feels
just like any sklearn operator with fit and predict methods. Internally, fit runs AutoML on a
predefined planned pipeline, which users need not dwell on. Hence, total automation with Lale is
trivial to learn for users who already know sklearn (least surprise).

Inspect returned pipeline. One level up from total automation is to look at its result: even users
who have little interest in controlling the pipeline may want to see it for transparency. Lale provides a
visualize method and a round-trippable pretty_print method that returns a pipeline’s Python code.

4



add new optimizers new search space encoder / search point decoder

write pipeline grammars recursive operator definition, sample, unfold

add new operators make_operator(impl, schemas)

control search space details freeze, customize_schema

refine returned pipeline functions that decompose pipelines

plan pipeline from scratch >>, |, &, operator library, auto_configure

inspect returned pipeline visualize, pretty_print

use total automation AutoPipeline, fit, predict

mastery

0
Figure 5: Gradual automation with progressive disclosure.

Plan pipeline from scratch. Learning about the combinators and the auto_configure method from
Section 2 brings users to the next level. To further assist in using Lale’s collection of 216 operators,
Lale generates documentation from schemas and uses schemas for error checking [17, 38].

Refine returned pipeline. Data science, even with automation, is often iterative. After an AutoML
search (whether with full automation or with a hand-planned pipeline), users may want to tweak the
pipeline for another search. Lale supports this with functions for breaking down a pipeline into smaller
pieces, which can then be composed back into a new pipeline using combinators (orthogonality).

Control search space details. To exercise even more control in a localized and composable way,
users can disable AutoML search for a sub-pipeline with freeze_trainable, or they can disable refitting
with freeze_trained. Furthermore, users may want to locally tweak the schema for some hyperparam-
eters of an operator, such as adjusting a range. Given an operator A, calling A.customize_schema(..)
returns a new operator that is the same as A except for the given schema tweaks. Again, these
constructs are orthogonal to combinators: frozen or customized operators can be used like any others.

Add new operators. Given an operator without a schema, Lale infers a simple schema that just sets
all hyperparameters to their defaults. Users can then call customize_schema to make them selectively
tunable. Or they can write a comprehensive schema and attach it to the operator using make_operator.

Write pipeline grammars. Some AutoML tools [31, 10, 12] explore not a rigid template for pipeline
topologies but a possibly unbounded space of topologies, including some that define a context-free
grammar using Lale’s combinators [20, 28]. Lale lets users define such search spaces by declaring
recursive operators, which are self-referential definitions (e.g., g.p = g.p >> q). Recursive operators
are orthogonal to the other constructs such as combinators, with which they can nest. The methods
sample and unfold turn these into normal Lale pipelines suitable for auto_configure.

Add new optimizers. Only few users get so close to mastery that they desire to add their own
optimizers. While the details will vary on a case-by-case basis, the next section describes a principled
translation scheme that helped Lale target several existing optimizers.

4 Translation Scheme

This paper adds a third execution mode to sklearn-style pipelines: the first two modes are prediction
and training, and the third mode is AutoML search. Lale’s API for this mode is auto_configure,
which first translates the pipeline to a search space for a given optimizer and then runs that optimizer.

Figure 6 details that interaction to illustrate how the translation scheme (encode and decode) interacts
with an optimizer and how it uses the first two execution modes (predict and fit). The starting point
is a planned pipeline, which has operators whose hyperparameters need to be tuned or operator
choices (| combinator) whose operators need to be selected. Step “encode search space” translates
the planned pipeline to an optimizer-specific search space. Once called, the optimizer loops over
trials, which are search points it selects based on its solver, e.g., TPE [5]. Step “decode search point”
turns an optimizer-specific search point (i.e., a specific value combination in the search space) into the
configuration needed for instantiating a trainable pipeline. In a trainable pipeline, all hyperparameters

5



auto_configure optimizer

:TrainablePipeline

encode search space
optimize

run trial

init

fit create

:TrainedPipeline

predict

return loss

decode search point

loop

return best trial

:PlannedPipeline

:TrainedPipeline

Figure 6: Interaction with an optimizer.

and operator choices are bound to
specific values. Fitting the trainable
pipeline to training data (folds) yields
a trained pipeline, where the learn-
able coefficients of all operators are
also bound. The next step is to call
predict on the trained pipeline and to
score the result to compute a loss for
the optimizer. After wrapping up its
loop, the optimizer returns the best
trial, and auto_configure returns the
corresponding trained pipeline.

The translation scheme is one of the
contributions of this paper. Its job is to
enable the modular combinator-based
syntax for users, by weaving together
the operators and their hyperparame-
ter schemas and rewriting them to a
form suitable for a given optimizer. Users can thus make local changes using orthogonal constructs
without worrying about their impact on the rest of the pipeline. To target a variety of optimizers, we
structured the translation scheme as a series of rewriting passes between different forms. Each form
has its own syntax restricting how a search space can be expressed. Figure 3 shows the starting form.
Each pass is designed to be semantics-preserving, in the sense that the search space encodes the same
set of pipeline instances before and after the pass. The running example for this section is the pipeline
PCA >> (J48 | LR); Figure 4 shows its schemas in starting form.

Normalize. Figure 7 shows the normal form, which is a disjunction of objects. This form is crafted
to simplify later rewriting passes by letting them start from a less feature-laden form. While nesting
is still possible in normal form, it is restricted to objects. Also, once in normal form, schemas
contain no conjunctions or negations, which would inhibit local reasoning. Normalization works in a
bottom-up pass. At each level, it performs disjunction hoisting using rewrites such as De-Morgan’s
law. Negation and conjunction are pushed into primitive schemas. This can temporarily give rise to
uninhabited or trivial nested schemas, which the pass simplifies away with another set of rewrites.
Our translation scheme normalizes the schema of each operator in a pipeline separately.

schema ::=object (∨ object)*
object ::= dict { (NAME : prop)* }
prop ::= enum | range | object
enum ::= [ VALUE+ ]
range ::= ( NUM .. NUM ) distr?

distr ::= "uniform" | "loguniform"

PCA : dict{N : (0..1)} ∨ dict{N : [mle]}
J48 : dict{R: [false], C: (0..0.5)}∨

dict{R: [true, false], C: [0.25]}
LR : dict{S: [linear], P : [l1, l2]}∨

dict{S: [linear, sag, lbfgs], P : [l2]}

Figure 7: Normalized schemas: syntax (left) and example (right).

Combine. Figure 8 shows the combined form, which represents the entire pipeline together instead
of each operator separately. Combining encodes combinators as follows. The >> and & combinators
turn into an object schema (dict), where each operator becomes a step si. The | combinator turns into
a disjunction schema (∨), with an additional discriminant D to track what was chosen. Higher-order
operators yield nested object schemas (dict). The encoding preserves sufficient information to enable
later decoding. After this pass, the encoding is conceptually similar to that of Hyperopt [6], so our
implementation provides a simple backend translating it into a Hyperopt search space.

Flatten. Most other optimizers require a less hierarchical search space than the combined form.
Figure 9 shows the flattened form, which is a disjunction of objects without further nesting. The
flatten pass hoists properties from nested objects, renaming them as needed for uniqueness (in a way
that enables later decoding). The flattened form is close to what SMAC [15] needs, except that objects
of different disjuncts have different properties. In SMAC, all disjuncts have the same properties, with

6



space ::= object
object ::= dict { (NAME : prop)* }
prop ::= enum | range | disj
disj ::= object (∨ object)*

dict


s0: dict{N : (0..1)} ∨ dict{N : [mle]}

s1:


(

dict{D: [J48], R: [false], C: (0..0.5)} ∨
dict{D: [J48], R: [true, false], C: [0.25]}

)
∨(

dict{D: [LR], S: [linear], P : [l1, l2]} ∨
dict{D: [LR], S: [linear, sag, lbfgs], P : [l2]}

)



Figure 8: Combined search space: syntax (left) and example (right).

space ::= object (∨ object)*
object ::= dict { (NAME : prop)* }
prop ::= enum | range

dict{N : (0..1), D: [J48], R: [false], C: (0..0.5)}
∨ dict{N : (0..1), D: [J48], R: [true, false], C: [0.25] }
∨ dict{N : [mle], D: [J48], R: [false], C: (0..0.5)}
∨ dict{N : [mle], D: [J48], R: [true, false], C: [0.25] }
∨ dict{N : (0..1), D: [LR], S: [linear], P : [l1, l2] }
∨ dict{N : (0..1), D: [LR], S: [linear, sag, lbfgs], P : [l2] }
∨ dict{N : [mle], D: [LR], S: [linear], P : [l1, l2] }
∨ dict{N : [mle], D: [LR], S: [linear, sag, lbfgs], P : [l2] }

Figure 9: Flattened search space: syntax (left) and example (right).

conditionals on the side indicating which variables are relevant. The SMAC backend thus generates
these conditionals, and renders the space in SMAC’s parameter configuration space format [42].

The ADMM backend uses a partially flattened form. ADMM [26] supports a pipeline of operator
choices. The backend thus leaves the top-level spine of a pipeline intact as a pipeline of choices. If
one of the choices contains a complex operator (e.g. a nested pipeline), it is flattened as for SMAC.

Discretize. The optimizers GridSearchCV and HalvingGridSearchCV from sklearn [7] require
continuous ranges to be made categorical. Discretization for a hyperparameter first includes the
default and then samples a user-configurable number of additional values from the range based on the
prior distribution. Figure 10 shows the discretized form when generating two values per range.

space ::= object (∨ object)*
object ::= dict{ (NAME : enum)* }

dict{N : [0.50, 0.01], D: [J48], R: [false], C: [0.25, 0.01]}
∨ dict{N : [0.50, 0.01], D: [J48], R: [true, false], C: [0.25]}
∨ dict{N : [mle], D: [J48], R: [false], C: [0.25, 0.01]}
∨ ...
∨ dict{N : [mle], D: [LR], S: [linear, sag, lbfgs], P : [l2]}

Figure 10: Discretized search space: syntax (left) and example (right).

5 Results

This section presents experiments evaluating Lale’s usability and expressiveness. While the experi-
ments focus on tabular data and do not use deep learning, Lale also works with other data modalities
such as text [8], code [29], and time-series [39], including with pipelines that contain deep-learning
operators.

RQ1: How usable is gradual AutoML with combinators?

Figure 11: Sample pipeline used in user studies.

To explore this research question, we
compare Lale to the popular sklearn
machine learning framework in a user
study with 18 participants. The study
design is between-subjects [9], where
participants are randomly assigned to
a Lale or sklearn version of the study.
We asked participants to perform four
tasks involving sample machine learn-
ing pipelines: (T1) inspecting and understanding an existing pipeline, (T2) refining the given pipeline
by replacing operators and hyperparameters, (T3) debugging a failing pipeline, and (T4) searching
across a space of potential pipelines. The tasks are based on the principle of progressive disclosure in
that we provide a sample pipeline (Figure 11) using common manual constructs in either sklearn or

7



Lale format and ask participants to perform tasks that use a progressively expanding set of constructs.
All participants self-reported having at least some sklearn experience, worked at IBM, and were
not further compensated for their voluntary participation. The supplemental material describes the
detailed study design and methodology, including the sklearn and Lale notebooks used.

One surprising result of the user study is that four (44%) of the sklearn participants were not able to
correctly identify the branching structure of the preprocessing subpipelines of the sample pipeline
during T1 (seen in Figure 11), compared to a single Lale participant (11%). Two of the Lale
participants also used inspection features in Lale such as the visualize and pretty_print methods.
In T4, two (22%) of the sklearn participants were either unable to correctly (or at all) implement
some method of searching across a space of potential pipelines whereas all of the Lale participants
were able to complete the task. When implementing T4, most of the Lale participants (6 or 67%)
used the or combinator (|) and the AutoML execution mode to perform automated search as opposed
to more manual methods. This is compared to two (22%) sklearn participants using automated
search via GridSearchCV. The relatively high success rate of Lale participants both in understanding
existing pipelines that use the and combinator (&) and in composing new planned pipelines that use
the or combinator (|) suggests that new Lale users are able to pick up and use these independent
constructs. This supports the principle of orthogonality in the Lale programming model. Automated
search also tends to be more concise than manual implementations for the search task, perhaps
contributing to Lale participants on average implementing the task in 25 fewer lines of code (LoC)
(59% less) compared to sklearn participants. Lale participants also on average performed all of
the tasks faster than sklearn participants, over 2.5 minutes faster total (13% faster). (In reality,
the time difference would likely be even higher, since we stopped participants who take a manual
approach early, see supplement for details.) For T2 and T3, participants performed equally well in
both versions of the study. We note that some Lale participants were able to refine pipelines without
referring to documentation, relying on their sklearn knowledge to replace operators and define their
hyperparameters. This supports the principle of least surprise in that Lale operators work in ways
that experienced sklearn users expect. Table 1 summarizes the results from the user study.

Table 1: Summary of user study results.
VERSION COUNT T1 CORRECT T4 CORRECT T4 LOC MEDIAN (ALL) TOTAL TIME MEAN (STDDEV)

Lale 9 89% 100% 10 (7, 8, 9, 9, 10, 10, 10, 14, 75) 17:36 (5:03)
sklearn 9 56% 78% 23 (12, 15, 16, 22, 24, 43, 100, 100) 19:26 (6:34)
Total 18 72% 89% 14 18:54 (5:45)

Answer to RQ1: In our user study, gradual AutoML with combinators was usable enough to increase
task correctness by more than 20% while reducing lines of code by more than half.

RQ2: Does the translation scheme work for diverse planned pipelines? To explore this research
question, we used Lale’s auto_configure on several planned pipelines with Hyperopt and its TPE
solver. We used auto-sklearn [15] as a state-of-the-art baseline; it uses SMAC for joint algorithm
selection and hyperparameter tuning similar to our work, but also uses meta-learning, which we
do not yet do. We used a 2.0GHz virtual machine with 32 cores and 128GB memory and gave
each search a 1 hour time budget with a timeout of 6 minutes per trial, which corresponds to the
default setting of auto-sklearn. We chose 14 datasets from OpenML [46] (CC-BY license) that
allow for meaningful optimization (as opposed to just the initial few trials) within that 1-hour budget.
Our datasets are drawn from the AutoML Benchmark [16] and four of them were also used in the
auto-sklearn paper [15]. (The goal of our evaluation is orthogonal to the sizes of the datasets.) We
used a 66:33% train:test split with 5-fold cross validation on the train set during optimization.

Table 2 summarizes the results. Column AUTOSKL shows the auto-sklearn baseline; LALE-AUTO uses
Lale’s AutoPipeline operator from Section 3; LALE-AD3M and LALE-TPOT use Lale grammars inspired
by AlphaD3M [12] and TPOT [31] unfolded with a maximal depth of 3; LALE-ADB uses a pipeline
with a choice of preprocessors and the AdaBoostClassifier higher-order operator; and ASKL-ADB

is auto-sklearn [15] with the set of classifiers limited to AdaBoost with only preprocessing. (See
supplement for details.) All searches succeed and most yield performance in the same ballpark
as auto-sklearn (aside from shuttle, which triggers an auto-sklearn issue that other users have also
encountered). Considering all 14 datasets, LALE-AUTO performs on average 0.7% better than AUTOSKL.
Excluding shuttle, Lale performs on average 0.3% worse than AUTOSKL. These 0.3% are smaller than
the standard deviation on most datasets, and based on a t-test, they are not statistically significant.

8



Table 2: Test accuracy for 14 OpenML classification tasks, using 4 Lale search spaces with Hyperopt.
Absolute accuracy mean (and stddev) over 5 runs 100 ∗ (LALE/AUTOSKL − 1)

DATASET AUTOSKL LALE-AUTO LALE-TPOT LALE-AD3M LALE-ADB ASKL-ADB AUTO TPOT AD3M ADB

australian 85.1(0.4) 86.2 (0.0) 85.9 (0.6) 86.8 (0.0) 86.0 (1.6) 84.7 (3.1) 1.3 0.9 2.0 1.1
blood 77.9(1.4) 75.3 (0.0) 77.5 (2.5) 74.7 (0.7) 77.1 (0.7) 74.7 (0.8) -3.3 -0.5 -4.0 -1.0
breast-cancer 73.0(0.6) 73.0 (0.0) 71.4 (1.1) 69.5 (3.3) 70.9 (2.0) 72.4 (0.5) 0.0 -2.3 -4.9 -2.9
car 99.4(0.1) 97.7 (0.0) 99.1 (0.1) 92.7 (0.6) 98.3 (0.3) 98.2 (0.2) -1.6 -0.2 -6.7 -1.1
credit-g 76.6(1.2) 75.7 (0.0) 74.1 (0.5) 74.8 (0.4) 76.1 (1.3) 76.2 (1.0) -1.1 -3.2 -2.4 -0.7
diabetes 77.0(1.3) 76.3 (0.0) 76.4 (1.1) 77.9 (0.2) 76.0 (0.5) 75.0 (1.0) -0.9 -0.8 1.1 -1.3
jungle-chess 88.1(0.2) 92.4 (0.0) 88.9 (2.0) 74.1 (2.0) 89.4 (2.3) 86.9 (0.2) 4.9 0.9 -15.8 1.5
kc1 83.8(0.3) 83.4 (0.0) 83.5 (0.5) 83.6 (0.2) 83.3 (0.4) 84.0 (0.3) -0.5 -0.4 -0.2 -0.6
kr-vs-kp 99.7(0.0) 99.5 (0.0) 99.4 (0.0) 96.8 (0.1) 99.5 (0.1) 99.5 (0.2) -0.2 -0.3 -2.9 -0.2
mfeat-factors 98.7(0.1) 97.1 (0.0) 97.9 (0.5) 97.5 (0.1) 97.5 (0.4) 97.9 (0.1) -1.6 -1.5 -1.2 -1.2
phoneme 90.3(0.4) 89.5 (0.0) 89.6 (0.4) 76.6 (0.0) 90.1 (0.4) 91.4 (0.2) -0.8 -0.8 -15.2 -0.2
shuttle 87.3(11.6) 100.0 (0.0) 99.9 (0.0) 99.9 (0.0) 100.0 (0.0) 100.0 (0.0) 14.5 14.5 14.4 14.6
spectf 87.9(0.9) 87.7 (0.0) 88.4 (2.2) 83.6 (6.9) 88.4 (2.6) 89.7 (2.9) -0.2 0.6 -4.9 0.6
sylvine 95.4(0.2) 95.0 (0.0) 94.4 (0.7) 91.3 (0.1) 95.1 (0.2) 95.1 (0.1) -0.4 -1.1 -4.3 -0.3

Answer to RQ2: The translation scheme works for pipelines with complex topologies, including those
generated by grammars inspired by AlphaD3M and TPOT, as well as pipelines including ensembles,
producing competitive results.

RQ3: Does the translation scheme work for diverse optimizer backends? To explore this
research question, Table 3 lists test accuracies using 9 different optimizers for the OpenML phoneme
dataset. The planned pipeline uses a scaler, a polynomial feature generator, and a choice between
XGBoostClassifier and LGBMClassifier. The other experimental settings are the same as above. All
translations succeed, and most yield reasonable accuracy, except for the ones that timed out. The
translated search spaces for GridSearchCV and HalvingGridSearchCV were correct but too large to
explore within the time budget. Most people would only use grid-based search for very small search
spaces, but then, suffer from exploring the space less thoroughly than “proper” AutoML tools.

Table 3: Test accuracy (mean and stddev) for the phoneme dataset using multiple optimizer backends.
Hyperopt Hyperband ADMM GridSearchCV Halving-

TPE Anneal Rand RND BOBa GPRND GridSearchCV

88.75 (0.2) 88.94 (0.3) 88.75 (0.5) 87.94 (0.2) 89.00 (0.2) 89.14 (0.2) 88.61 (0.3) Timed out Timed out

Answer to RQ3: The translation succeeds for Hyperopt (3 optimizers), Hyperband, ADMM (3 opti-
mizers), GridSearchCV, and HalvingGridSearchCV.

6 Related Work

Combinators, which were discovered in the 1920s [41], have long been prominent in functional
programming languages such as Lisp [43]. The advantage of their tacit style has been recognized
more broadly; for instance, the Unix pipe [30] can be viewed as a combinator. Combinators have also
enabled some sophisticated innovations such as parser combinators [23].

Combinators and data science. MapReduce [11] is a successful programming model for large-
scale data processing named after two combinators [22]. Allison [2] describes Haskell combinators
for converting between different machine-learning model types, but does not discuss AutoML.
Sklearn [7] provides combinators (make_pipeline and make_union) as well as some basic AutoML
(GridSearchCV, HalvingGridSearchCV, and RandomizedSearchCV) but only integrates combinators with
AutoML loosely, instead requiring users to perform manual name-mangling and non-compositional
repetition. Lale builds on sklearn, extending and streamlining its combinators and tightly integrating
them with AutoML. Pilat et al. [36] describe a combinator language suitable as a target for automatic
code generation with genetic programming, but not intended to be written by hand. Unlike our work,
they focus on total (not gradual) automation and do not provide an or combinator (|).

AutoML programming models. Auto-WEKA demonstrated how to support conditional hyper-
parameters on multiple solvers, but the paper focused on a single planned pipeline, not gradual
automation [44]. While both hyperopt-sklearn [21] and auto-sklearn [15] support some gradual
automation, instead of tightly integrating gradual automation with combinators, they require users to

9



drop to a bespoke lower-level API: Hyperopt for hyperopt-sklearn and SMAC’s parameter configura-
tion space format [42] for auto-sklearn. We argue that JSON Schema [35], being a language with
a track record of wide-spread use by programmers who are not AutoML experts, is less low-level;
e.g., it is the backbone of OpenAPI [32]. We also built a tool to extract schemas from sklearn
docstrings [4]. In Optuna, users write imperative code that first samples values, then uses either
if-statements for operator choice or passes values to constructors for hyperparameter tuning [1].
In contrast, combinators are more concise, more localized, and less surprising to sklearn users.
OBOE [48] proposes an alternative meta-learning approach from that of auto-sklearn; it requires an
initial discrete set of models with hyperparameters to choose from, and Lale could potentially be
used to specify this set of models. In PyGlove, users start from a manually written neural network
which they then “hyperify” by replacing a component or hyperparameter with a “hyper value” [34].
Their notion of “hyper” is similar to our notion of “planned”, but they do not use combinators, and
they focus only on neural architecture search. AutoGluon-Tabular focuses on total automation and
the paper does not discuss gradual automation [13]. In AutoGOAL, users specify a hierarchy of
pre-defined “indicator” types, then the system tries out any pipeline of operators that gets from the
input to the output [14]. AutoGOAL’s API deviates from sklearn conventions, and while it uses the
syntax of Python 3 types, it does not capture constraints, nor is it compatible with Python 3 type
checkers.

7 Limitations and Societal Impacts

A limitation of the user study is that it used only 18 participants (9 for the sklearn treatment plus
9 different participants for Lale), and that all participants worked at IBM. Another potential limitation
is that researcher bias may be present in the design of the user study tasks. We designed the tasks
to showcase and validate aspects of the Lale programming model which may potentially bias tasks
in favor of Lale. We attempt to mitigate this by only selecting participants who are experienced in
sklearn and by only allowing Lale newcomers to participate in the Lale version of the study.

One limitation of the translation scheme is that it is not guaranteed to handle all JSON Schema
features; in fact, we encountered and fixed some limitations early during development. Fortunately,
there were no new limitations recently, and there is theoretical work that could be used to tackle
them if they arise [3]. A limitation of schema-based constraints is that they currently do not capture
interdependence between operators. We mitigate that by providing not just hyperparameter schemas
but also dataset schemas, which enable us to check whether data flowing from one operator to another
in a pipeline is compatible [17]. A limitation of the programming model is that, while it achieves a
high level of sklearn compatibility, Python code that explicitly reflects over dynamic types can still
expose differences. We mitigate this by testing that Lale interoperates well with a broad set of sklearn
features including metrics, cross-validation, operators, etc.

One potential societal impact is that enabling automation of searching machine learning pipelines
may encourage computationally-heavy approaches to data science tasks and raise CO2 emissions.
On the other hand, we hope gradual automation will encourage data scientists to use their domain
knowledge to more selectively and efficiently automate their machine learning work. In future work,
we are planning to adopt caching techniques [24, 47] to further reduce CO2 emissions.

8 Conclusion

This paper presents combinators for gradual AutoML, along with a novel translation scheme from
combinators to existing optimizers. We have implemented our combinators in an open-source library
called Lale, while ensuring they interoperate smoothly with the sklearn ecosystem. Besides being
open-source, Lale is also actively used in a commercial AutoML product, highlighting the real-world
value of the underlying concepts. Our ultimate goal is to make AutoML as accessible as manual ML
by offering a gradual combination of both.

10



References
[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:

A next-generation hyperparameter optimization framework. In Conference on Knowledge
Discovery and Data Mining (KDD) – Applied Data Science Track, pages 2623–2631, 2019.

[2] Lloyd Allison. Models for machine learning and data mining in functional programming.
Journal on Functional Programming (JFP), 15(1):15–32, January 2005.

[3] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie
Scherzinger. Not elimination and witness generation for JSON Schema. In Conférence sur la
Gestion de Données (BDA), October 2020.

[4] Guillaume Baudart, Peter Kirchner, Martin Hirzel, and Kiran Kate. Mining documentation
to extract hyperparameter schemas. In ICML Workshop on Automated Machine Learning
(AutoML@ICML), 2020.

[5] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In Conference on Neural Information Processing Systems (NIPS),
pages 2546–2554, 2011.

[6] James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D. Cox. Hyperopt: a
Python library for model selection and hyperparameter optimization. Computational Science &
Discovery, 8(1), 2015.

[7] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier
Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton,
Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning
software: Experiences from the scikit-learn project, 2013. https://arxiv.org/abs/1309.0238.

[8] Arunima Chaudhary, Alayt Issak, Kiran Kate, Yannis Katsis, Abel N. Valente, Dakuo Wang,
Alexandre V. Evfimievski, Sairam Gurajada, Ban Kawas, A. Cristiano I. Malossi, Lucian Popa,
Tejaswini Pedapati, Horst Samulowitz, Martin Wistuba, and Yunyao Li. AutoText: An end-
to-end AutoAI framework for text. In Demonstration at Conference on Artificial Intelligence
(AAAI-Demos), pages 16001–16003, 2021.

[9] John W. Creswell. Research design: Qualitative, quantitative, and mixed methods approaches.
SAGE publications, 4th edition, 2013.

[10] Alex G. C. de Sá, Walter José G. S. Pinto, Luiz Otavio V. B. Oliveira, and Gisele L. Pappa.
RECIPE: A grammar-based framework for automatically evolving classification pipelines. In
European Conference on Genetic Programming (EuroGP), pages 246–261, 2017.

[11] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters.
In Symposium on Operating Systems Design and Implementation (OSDI), pages 137–150, 2004.

[12] Iddo Drori, Yamuna Krishnamurthy, Raoni Lourenco, Remi Rampin, Kyunghyun Cho, Claudio
Silva, and Juliana Freire. Automatic machine learning by pipeline synthesis using model-based
reinforcement learning and a grammar. In ICML Workshop on Automatic Machine Learning
(AutoML@ICML), 2019.

[13] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhangh, Pedro Larroy, Mu Li, and
Alexander Smola. AutoGluon-Tabular: Robust and accurate AutoML for structured data. In
ICML Workshop on Automated Machine Learning (AutoML@ICML), 2020.

[14] Suilan Estevez-Velarde, Alejandro Piad-Morffis, Yoan Gutiérrez, Andrés Montoyo, Rafael
Munoz, and Yudivian Almeida-Cruz. Solving heterogeneous automl problems with AutoGOAL.
In ICML Workshop on Automated Machine Learning (AutoML@ICML), 2020.

[15] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and
Frank Hutter. Efficient and robust automated machine learning. In Conference on Neural
Information Processing Systems (NIPS), pages 2962–2970, 2015.

11

https://arxiv.org/abs/1309.0238


[16] Pieter Gijsbers, Erin LeDell, Janek Thomas, Sebastien Poirier, Bernd Bischl, and Joaquin
Vanschoren. An open source AutoML benchmark. In ICML Workshop on Automatic Machine
Learning (AutoML@ICML), 2019.

[17] Andrew Habib, Avraham Shinnar, Martin Hirzel, and Michael Pradel. Finding data compatibility
bugs with JSON subschema checking. In International Symposium on Software Testing and
Analysis (ISSTA), pages 620–632, 2021.

[18] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H.
Witten. The WEKA data mining software: An update. SIGKDD Explorations Newsletter,
11(1):10–18, November 2009.

[19] Martin Hirzel, Kiran Kate, and Parikshit Ram. Engineering fair machine learning pipelines. In
ICLR Workshop on Responsible AI (RAI@ICLR), 2021.

[20] Michael Katz, Parikshit Ram, Shirin Sohrabi, and Octavian Udrea. Exploring context-free
languages via planning: The case for automating machine learning. In International Conference
on Automated Planning and Scheduling (ICAPS), pages 403–411, 2020.

[21] Brent Komer, James Bergstra, and Chris Eliasmith. Hyperopt-sklearn: Automatic hyperpa-
rameter configuration for scikit-learn. In Python in Science Conference (SciPy), pages 32–37,
2014.

[22] Ralf Lämmel. Google’s MapReduce programming model — revisited. Science of Computer
Programming, 70(1):1–30, 2007.

[23] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators for the real
world. Technical Report UU-CS-2001-27, Universiteit Utrecht, 2002.

[24] Liam Li, Evan Sparks, Kevin Jamieson, and Ameet Talwalkar. Exploiting reuse in pipeline-
aware hyperparameter tuning, 2019. https://arxiv.org/abs/1903.05176.

[25] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization. Journal of Machine
Learning Research (JMLR), 18(185):1–52, 2018.

[26] Sijia Liu, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory Bramble, Horst
Samulowitz, Dakuo Wang, Andrew Conn, and Alexander G. Gray. An ADMM based framework
for AutoML pipeline configuration. In Conference on Artificial Intelligence (AAAI), pages
4892–4899, 2020.

[27] B.J. Mailloux, J.E.L. Peck, and C.H.A. Koster. Report on the Algorithmic Language ALGOL
68. Springer, 1969.

[28] Radu Marinescu, Akihiro Kishimoto, Parikshit Ram, Ambrish Rawat, Martin Wistuba, Paulito P.
Palmes, and Adi Botea. Searching for machine learning pipelines using a context-free grammar.
In Conference on Artificial Intelligence (AAAI), pages 8902–8911, 2021.

[29] Georgios Mavroudeas, Guillaume Baudart, Alan Cha, Martin Hirzel, Jim A. Laredo, Malik
Magdon-Ismail, Louis Mandel, and Erik Wittern. Learning GraphQL query cost. In Conference
on Automated Software Engineering (ASE) Industry Track, 2021.

[30] M. Douglas McIlroy. A research UNIX reader: Annotated excerpts from the programmer’s
manual, 1971–1986. Technical report, Bell Labs, 1987. https://www.cs.dartmouth.edu/~doug/
reader.pdf.

[31] Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender, La Creis
Kidd, and Jason H. Moore. Automating biomedical data science through tree-based pipeline
optimization. In European Conference on the Applications of Evolutionary Computation
(EvoApplications), pages 123–137, 2016.

[32] OpenAPI Initiative. OpenAPI specification (fka swagger restful api documentation specifica-
tion), 2014. https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md.

12

https://arxiv.org/abs/1903.05176
https://www.cs.dartmouth.edu/~doug/reader.pdf
https://www.cs.dartmouth.edu/~doug/reader.pdf
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md


[33] David L. Parnas, John E. Shore, and David Weiss. Abstract types defined as classes of variables.
In Conference on Data: Abstraction, Definition and Structure, pages 149–154, 1976.

[34] Daiyi Peng, Xuanyi Dong, Esteban Real, Mingxing Tan, Yifeng Lu, Gabriel Bender, Hanxiao
Liu, Adam Kraft, Chen Liang, and Quoc Le. PyGlove: Symbolic programming for automated
machine learning. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

[35] Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martín Ugarte, and Domagoj Vrgoč. Foun-
dations of JSON schema. In International Conference on World Wide Web (WWW), pages
263–273, 2016.

[36] Martin Pilat, Tomas Kren, and Roman Neruda. Asynchronous evolution of data mining workflow
schemes by strongly typed genetic programming. In International Conference on Tools with
Artificial Intelligence (ICTAI), pages 577–584, 2016.

[37] Ingkarat Rak-amnouykit, Daniel McCrevan, Ana Milanova, Martin Hirzel, and Julian Dolby.
Python 3 types in the wild: A tale of two type systems. In Dynamic Languages Symposium
(DLS), pages 57–70, 2020.

[38] Ingkarat Rak-amnouykit, Ana Milanova, Guillaume Baudart, Martin Hirzel, and Julian Dolby.
Extracting hyperparameter constraints from code. In ICLR Workshop on Security and Safety in
Machine Learning Systems (SecML@ICLR), 2021.

[39] Subhrajit Roy, Kiran Kate, and Martin Hirzel. A semi-supervised deep learning algorithm for
abnormal EEG identification. In Machine Learning for Health Workshop (ML4H@NeurIPS),
2019.

[40] Chirag Sahni, Kiran Kate, Avraham Shinnar, Hoang Thanh Lam, and Martin Hirzel. RASL:
Relational algebra in scikit-learn pipelines. In Workshop on Databases and AI (DBAI@NeurIPS),
2021.

[41] Moses Schönfinkel. Über die Bausteine der mathematischen Logik. Mathematische Annalen,
92(3):305–316, 1924.

[42] SMAC Parameter Configuration Space (PCS). https://automl.github.io/SMAC3/master/options.
html#parameter-configuration-space-pcs.

[43] Guy L. Steele, Jr. Common Lisp: The Language. Digital Press, 2nd edition, 1990.

[44] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-WEKA:
Combined selection and hyperparameter optimization of classification algorithms. In Conference
on Knowledge Discovery and Data Mining (KDD), pages 847–855, 2013.

[45] Guido van Rossum, Jukka Lehtosalo, and Lukasz Langa. PEP 484 – Type Hints, 2014. https:
//www.python.org/dev/peps/pep-0484/.

[46] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked
science in machine learning. SIGKDD Explorations Newsletter, 15(2):49–60, June 2014.

[47] Doris Xin, Litian Ma, Jialin Liu, Stephen Macke, Shuchen Song, and Aditya Parameswaran.
Helix: Accelerating human-in-the-loop machine learning. In Conference on Very Large Data
Bases (VLDB), pages 1958–1961, 2018.

[48] Chengrun Yang, Yuji Akimoto, Dae Won Kim, and Madeleine Udell. OBOE: Collaborative
filtering for AutoML initialization. In Conference on Knowledge Discovery and Data Mining
(KDD), pages 1173–1183, 2019.

13

https://automl.github.io/SMAC3/master/options.html#parameter-configuration-space-pcs
https://automl.github.io/SMAC3/master/options.html#parameter-configuration-space-pcs
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/


Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 7.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tal material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 5, which reports standard deviations after
running experiments 5 times.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See supplemental material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.
(b) Did you mention the license of the assets? [Yes] See Section 5.
(c) Did you include any new assets either in the supplemental material or as a URL?

[Yes] The Lale library is open-source at https://github.com/ibm/lale/. In addition, the
supplemental material includes a copy of the code, based on a snapshot from the time
when we ran the experiments for this paper.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We used open datasets and open-source software.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We used standard datasets from OpenML [46]
that contained neither personally identifiable information nor offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] See supplemental material.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] There were no risks to participants.
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A] Participants were volunteers and did not get
compensated for joining our study.

14

https://github.com/ibm/lale/

	Introduction
	Pipeline Combinators
	Gradual Automation
	Translation Scheme
	Results
	Related Work
	Limitations and Societal Impacts
	Conclusion

