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ABSTRACT. In this work, we study some reaction-diffusion equations set in
two habitats which model the spatial dispersal of the triatomines, vectors of
Chagas disease. We prove in particular that the dispersal operator generates
an analytic semigroup in an adequate space and we prove the local existence
of the solution for the corresponding Cauchy problem.

1. Introduction. Chagas disease or American trypanosomiasis is a life-threatening
disease caused by the flagellated protozoan parasite Trypanosoma cruzi (T.cruzi).
It is mainly transmitted by blood-sucking bugs belonging to the subfamily of tri-
atominae. Via these vectors, the parasite can infect humans as well as a large
number of domestic or wild mammalians. If bugs live in the nests of non domes-
ticated mammals or birds, they are said to be sylvatic. If they lives in shelters
neighboring human habitations, they are said to be domestic.

The different process involved in T.cruzi transmission by non-domiciliated bugs
are very complex and their understanding goes through knowledge of vector ecology.
In particular, demography and spatial dispersal are important processes during the
re-infestation of a domestic area. In most cases, they are not captured by means of
laboratory studies. Mathematical modeling stand a good tool to gain insights into
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these processes [21]. These approach used, for example, ordinary differential equa-
tions [15], partial differential equations [24] and integro-difference equations [20],
[18]. Other studies based on scientific calculus were also used as cellular automaton
[23], [5] and agent-based model [6], [9].

In this study we consider the infestation of a village by the domestic household
species T. Dimidiata. The village adjoins a forest representing the habitat of the
vectors. The latter move to the village for food [22]. Food consists of a blood
meal on humans or the mammals they raise. The transmission of T. Cruzi from
the vector to the host takes place mainly during this phase. After the kissing bug,
individuals move again to seek habitat either at the village or return to the forest
to trigger their fecundity.

In this work, we consider a triatomine population structured in time and space.
Demography and spatial dispersal processes are captured by the reaction-diffusion
equations in a two-dimensional space. In adequate functional spaces, the partial
differential equations system is transformed into an abstract differential equation.
Our first aim is to show that the operator generates an analytic semigroup. We
prove then the existence of a local solution to the corresponding Cauchy problem.

2. The model.

2.1. Definition of the habitats. We represent the infected village by the rectan-
gular domain (—d, 0) x (0,1) denoted 2_. Between the village and the forest exists,
as recommended by Shender and all [3], a buffer zone (0, D) x (0,1) denoted Q.
The forest covers the half plane > D (Figure 1).

To simplify the study, we assume that the parts of the border of 2_ U defined
by I't = [—d, D] x {1} ,I'y = [-d, D] x {0} ,T's = {—d} x [0, 1] are natural barriers
delimiting lethal areas for the population (mountains for example).

The common border I' = 9Q2_NIN, called interface (Figure 1), plays an impor-
tant role in the spatio-temporal dynamics of the population. Indeed, the triatomines
in the buffer zone 24 neighboring 0Q_ N 04 are attracted towards the village to
feed or find refuge. Their movement defines then a skew Brownian motion [2].

LS

Village Buffer Zone
Lethal area, Q Q, Forest
~<&—Natural Barrier <—Interface
-d 0 D

FIGURE 1. Population density in two habitats.
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2.2. Biological considerations. Although the life cycle of triatomines consists of
seven stages of development: an egg stage, five larval stages and an adult stage, the
development of the egg in the fifth larval stage is considered to be a single stage
which will be called the juvenile stage (Figure2). This assumption is realistic since
the adults longevity is greater than the developmental time from the egg stage to
the fifth larval stage [19].

Sa(Ofa(t)

wi(9si(®) @Ve“iles Ad@ Sa(®)

1-wi(®)si(®)

FIGURE 2. A schematic representation of the life cycle used in the
triatomine’s model.

Let us denote by J(¢,x,y) and A(t,x,y) the respective densities of juveniles and
adults classes at time ¢ > 0 and at a point (z,y). Assuming a balanced sex-ratio
7 =1:1 (one female for one male). We focus our modeling on female bugs density
in the domain Q_ U Q. We assume that, inside this domain, the demographic
parameters do not depend on the spatial position. During a time step dt between
t and t + dt, juveniles having survived until ¢ with a probability s;(¢) will remain
juveniles with a probability w;(¢) or will transit to adult stage with a probability
(1 —w,;(t)). Adults who survived with a probability s, (¢) will lay eggs with a rate
fa(t). The entire life cycle is shown in(Figure 2).

Except in the neighborhood of the interface, the biological population spatial
dispersal in the domain Q_ UQ is modeled by a diffusion process for juveniles and
adults with respective constants d; > 0 and d, > 0. These coefficients are non-
negative as, whatever their developmental stage, bugs must move for their blood
meal [16].

If during the demographic process we assumed identical demographic parameters
in Q_ Uy, it is clear that the diffusion constants depend on the nature of each
part of the domain. We will therefore denote, d;; and d, the diffusion coefficients
constants in Q4 and d;_ and d,— the diffusion coefficients constants in 2_. The
demographic and diffusion parameters of T. Dimidiata population are summarized
in Table 1.

2.3. Reaction-diffusion system. By denoting J_ and A_( respectively J; and
AL) the densities of the triatomines in Q_, (respectively in ), the biological
system is modeled by the following system of reaction-diffusion equations:

oJ_
on Q_
0A_
o = do AA_ + (1 —w;(t))s;(t)J- + sq(t)A-
0J+
o~ djp ATy + w;(t)s;(t)J4 + falt)sa(t) Ax
on QJ’_
0A 4
_— = da+AA+ + (1 — Wj(t))Sj(t>J+ + Sa(t)AJr )

ot
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TABLE 1. The demographic and diffusion parameters of
T.Dimidiata population.

Parameter Definition Properties
s;(t) Probability of survival 0<s;(t) <1
of juveniles per unit of time
Sa(t) Probability of survival 0<sq(t) <1
of adult per unit of time
w; (1) Probability of transition |0 < w;(t) <1
from juvenile to adult
fa(t) Female fertility fa(t) >0
per unit time
di—,djy diffusion coefficient dj_,dj >0
of juveniles
dog—ydat diffusion coefficient dg—,dg+ >0
of adults

with initial conditions:

on Q_

on
A+(O,.’B,y> :Ag(%y) 9 +

. (-z,0) (n2,1)
J 71’,0 =J -,Z’,l =0
Ai(@,O):XJF(,x,l):O’ z €10, D
( i: ) N ( 8 ) on {—d} x]0, 1
(EC2)

i(i)m on {D} x]0,1] .

In the last equation, 9/0v denotes the normal external derivative on {D} x 0, 1].
In our geometry, it coincides with 9/0z. In (EC3), the first condition means that
the population dies on {—d} x]0,1[ (as in (EC1)) and that its flux vanishes on
{D} x]0,1[. Other boundary conditions may be considered instead of those in
(ECy).

At the interface T, following Cantrell and Cosner [3], we will also consider the
skew brownian motion conditions and the continuity of the densities.
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a1 g,
Pl == PM
9A_ 9A,
(IntC) pda7 W = (1 —p)daJrW on I'= {O} X]O, 1[

()=(2)

where p > 1/2 is the probability to cross the interface from Q4 to Q_.
We put:

pdj. = p—y  (L=p)dj, = py,
pdaf = 0, (1 _p)da+ = O,
V(t,z,y) = ( iliizz)) ) on Q=0 _UQ,, t>0

J_ J
o= (4) v ()

_(diAa 0 wi®)s; (O fa®)sa(BI
P_+B(t) = ( 0 d, A ) + ( (1 —w;(t)s; ()T Sa(t) )
d,A 0 wi(t)s; (T fa(t)sa(t)]
Py +B(t) = ( 0 do, A ) + ( (L —w;(@)s; (I sa(t)] ) '

These two matrices are operator matrices.
The following operator £ (which acts with respect to the spatial variables (z,y))

is then defined by:

LV(t,..) = 5( ;fl(é;)

D(L) = {W = (v,w) € [LI QP W_ =Wq =@_,w_)e [W> Q)]

Wi =W, = (v,wy) € [W2(2,)]* and
W_, W, verifying (Int.C), (EC1),(EC2)},

where ¢ €]1, +00[. The following classic operational vector notation will be adopted

V(t,z,y) =V (t)(x,y).



6 N. DIB-BAGHDADLI, R. LABBAS, T. MAHDJOUB AND A. MEDEGHRI

So the previous problem is written in the form of an abstract reaction-diffusion
system:

VI(t) = LV(t) + BOV(E) t>0

1)
V(o) =V = ( ;gigg;;; ) :

set in the Banach space & = [L (2)]* normed by:

v
] I (E P @

which is equivalent to

max (HU—HLq(Q,) + Hw—”Lq(Q,) ) HU+||Lq(Q+) + ||w+||Lq(Q+)) .

3. The spectral equation. The study of problem (1) is based on the spectral
equation

LW — AW =Fe[LY(Q)], (3)

for complex A in a sector to specify and on the good behavior of:

H(ﬂ B )\I)_lHL([LCI(Q)]z) ’

in order to show that £ generates an analytic semigroup. So, after the resolution
of the spectral equation, we have to estimate:

IWlza@p = max (Iollzoy » lollzo )

max (|10~ ll gagay + 104 o  10- ooy + Iwslzaa) )

w 9 g 9
then (3) gives:

djiA 0 v_
0 d, A w_

d]+A 0 V4
0 da+A w4

with the transmission conditions

where:

(IntC) Ov_

onT,




ON SOME REACTION-DIFFUSION EQUATIONS 7

boundary conditions

w*(:l%o) = U)f(l'7 1) = . z 6] - d70[
(ECY)
vy (2,0) = vy (2,1) =0
w—:-(xao)*u—):(:c,l)f(), mE]OaD[
and
(o )=(5) e =0,
(ECs)

;C(Z:):(g) on {D} x]0,1] .

We explain the previous spectral system:
d; Av_ —Av_ = f_

do_ Aw_ —dw_=g_ , on
dj+AU+ — )\’U+ = f+
do, Dwy —dwy =gy, O e
with
U—(Ovy) —”U+(0,y) yG]O,l[ 9
w-— (Ovy) = w+(ovy) Y 6]0, 1[ )
Ov_ ov
(Int.C) M—%(Ovy) = M+37;(07y) y €]0,1[,
ow_ ow
a5 =0y =ar—=0,9) yeo1,
and

(ECh)
vy (z,0) =vy(x,1) =0
w(2,0) = w, (,1) =0, TEODI
v_(—d,y) =w-(-d,y) =0 y€]o,1],
(ECy) ’ W
%(D,y)=%(D,y):0 y €10, 1] .

This system can be divided into two subsystems; one of which is governed by
(v—,vy) (of the juveniles):
di_Av_ —Adv_ = f_onQ_,
dj+AU+ — )\’U+ = f+ on Q+ 9
with
U—(an) = U+(Ovy) Y E]O, 1[ )
(Int.Cy)
Ov_ Ov
pem—(0,y) = - (0,y) €0, 1],
v_(z,0)=v_(x,1)=0 =xz€]—4d,0] ,
(ECw) { ve(2,0) =vy(x,1) =0 =z €]0,D] ,
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U_(—d,y)zo y€]071[ s

(EC3y)
8U+ - .
e (D,y) =0 y€]o,1] ;

and the other by the couple (w_,w;) (of adults) checking a similar system. The
difference between them lies in the diffusion coefficients, which are all different (here,
we have assumed them to be constant). Therefore, it will be sufficient to analyze
one system.

4. The operational formulation. Let’s introduce, in Banach space E = L%(0, 1),
operator A defined by:

{ D(A) = {p € W>9(0,1) : p(0) = (1) = 0}
(Ap) (y) = ¢"(y)

For w € [0, 7] we define the sector:
g {z € C\ {0} : |argz| < w} if w €]O, 7]
C L]0, 400 fw=0.
It is known that this operator is a closed linear operator with a dense domain and
verifies:
D(A) =E, for all n € |0, 7[, p(A) D Sr—, U{0} and

3C > 0:Vz e S, U{0}, [|(2 — A (4)

)" o < 77

and there exists a ball B(0,0), 6 > 0, such that p(A) D B(0,d) and the above
estimate is true in Sr_, U B(0,0). Here p(A) denotes the resolvent set of A. The
following usual operational notation of vector-valued functions:

’Ui(x)(y) = ’Ui(x’y) )

leads the previous system (3) for the couple (v_, v ), in space E, to be formulated
by:

" (z) + Av_(z) — Kv_(x) = a on |—d,0[ ,
V(@) + Ay (@) — v @) = 5 oo,y
(51) v,(—d) _0, J+ J+ (5)
v (D)=0,
v— (0) = U4 (O) )
pov(0) = iy oy (0)

Boundary conditions (ECy,) are implicit and expressed by the action of A.
To estimate the resolvent operator, we must estimate:

||11_||Lq(97) ) HU+||LQ(Q+) ) Hw—”Lq(Qf) and ||w+||Lq(Q+) .

Note that:

||U—||Lq(97) = HU—HLq((_dQ);E) and ||U+||LQ(Q+) = ||v+||Lq((0,D);E‘)-
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5. Some technical results. We will use the following results.

Lemma 5.1. Let 1) €]0,7/2[. For any z € S, we have

1. Jarg(l - %) — arg(l+ e 5) <
2. 14e*>Cy=1- e—™/(2tan(n) 5

' |z| cosn <ll—e| < 2|z| '
1+ |z|cosn 1+ |z]cosn
|
See [7], Proposition 4.10, p.1880.
Lemma 5.2. Let w,z € C\ {0}. We have
[+ 2] > (jw] + [2]) [cos =252
O

See Proposition 4.9, p.1879 in [7].

Now let us recall some results in [13].

Set w € [0, 7|, a linear operator K on a complex Banach space E is called sectorial
of angle w if

1. o(K) C S, and
2. M(K,w'):= sup [[A(K —A)7!|| <oo forall w €lw,nl.
AeC\S,,/

We then write: K € Sect(w). The following angle
wri :=min{w € [0,7]: K € Sect(w)},
is called the spectral angle of K. Statement2. implies necessarily that K is closed.
Proposition 1. If | — 00,0[C p(K) and
M(K):=M(K,r):= il;%Hﬂ(K‘F/JI)iln < 00,
then M(K) > 1 and
K € Sect(m — arcsin(1/M (K)).
See[13], proposition 2.1.1 a

Proposition 2. Let K a sectorial operator and v €]0,1/2]. Then K" € Sect(vwg ),

and therefore —K" generates an analytic semigroup.
See [13] p. 80-81 O

Put
H>(S,,) ={f: f is analytic and bounded on S},
with w €]0, 7r[; we recall that if f € H>(S,,) is such that 1/f € H>*(S,,) and
(1/F)(K) € LX),
then f(K) is boundedly invertible and
)] = 1/ FE), (6)

see, for example [4].
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6. Resolution of the first system (5). For the resolution of the previous system
we apply an analogous method to the one used in paper [11].
Here we will assume that A is such that
larg(A)| < — &o, (7)

where g is a small fixed number.
Consider the two following operators:
A

A
I, A;\F:A—il,

Ay =A— —
A djf d]+

which have the same domain
D(A3) = D(A}) = D(A).
As for operator —A, we verify that

A
—Ay =—-A+—1T
A + d]; ’
is sectorial in F' = L9(0,1). Indeed, we have: | — 00,0] C p(—A} ) and if we put

M(=AY) == M(—A,,m) :=sup H,u(—A; + )™t | ,
n>0

then for A\ such that
larg(A)| < 7 — eo,
and by an explicit calculus we obtain:

1
M(=A3) < sup a
cos |sarg | — +
d;_

4 “‘
We have two possible cases:
1. if |arg(A)| < 7/2 then for all > 0:

J—

NN
dj7 /‘L—#’)

2. if /2 < |arg(A\)| < 7 — &g, then

d

J—

A ‘ ,
— + | =2 psina,

where a €]eg, 7/2]; therefore:

A
— + u‘ > prsineo,
d;

we deduce that there exists a constant C' independent of A such that

M(-A3) < sup L !
>0 g | L arg i +u i +u
2 d;_ d;_
< ¢ = ¢ < 00.

cos 50 sin(eo/2)

Hence
—A} € Sect [ — arcsin (1/M(—A}))],
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where M(—A} ) is independent of A, see Proposition 2.1.1 in [13].
In a similar way, we obtain
—AY € Sect (m — arcsin [1/M(—AY)]),

with M(—AY) is independent of A.
We also deduce that the two following operators:

oo e[ (o)

of the same domain
D(Q3) = DY) = D ([-A]"?) == D(Q),

(here Q := — [—A]l/ 2), are well defined and generate analytic semigroups on E, see
[13] p.81 and also [1].

Using Lemma 4.2, and estimates (28)-(29) in [10], there exist e > 0, e; > 0,
C_ >0 and C; > 0 independent of A such that:

for all z € {z € C\ {0} : Jarg(2)| < F +e_},

(@ —=D)" <

C_
’(Qj\r 72[)_1H ) V1 +C|‘i| + 2|

VIF 42
(8)

for all z € {z € C\ {0} : |arg(2)| < F + €4},

We will focus oureselves to solve the system

d; d;_
L (a)  Av ()~ v w) = HD N @) on 0, D
(S1) o (d) = 0 I+ J+
o, (D) = 0
0 (0) = 0. (0)

VL (@)~ (QF)?vs (8) = Nalw)  on 10,D
v_(=d)=0

v (D) =0

0 (0) = v+ 0)

Then N .
v (@) = TRy eI GL 4w (N)(z),
where v4, 6+ € E; ¢ = —d,b_ =0:¢cy =0,bp = D and
1 [® R -~ 1 b+ _o0% B
we(Va)a) = 3 [0 Q) Near+ 5 [ P Q) Vs

Ct

Therefore
vo(z) = eI 4 e TG +w (N)(x), x€]—d,0]
vy (2) = Ry +eP U5, 4w, (Ny)(z), =€]0,D],
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and
0
W V@) = g [ IR Q)TN e+ [t QRN
x D
WiV = g [ e @N TN e+ 5 [ Q) N
hence
(2) = Qi D% _ Qret i 4wl (N_)(x), x € ]-d,0]
Vi (@) = QFeWyy — QFeP N5, +w! (Ny)(x), = €]0,D],
v (0) = Q;edQ;’y_ —Qy0- +w (N_)(0),
Vi (0) = Qv — QFePHay +wl (N1)(0).

Boundary conditions

v (—d) =y- 4+ e 6 +w_(N_)(—d) =0
vy (D) = QFePARyy — Qfdy +w!, (N)(D) =0,

imply
7 = =6~ (N)(~d)
oy = eDQ;rwr +(Q1) !, (N4)(D).
The transmission conditions give
1y 46+ w (N)(0) =74 + PN b, + 1w, (N1)(0)
_ , + ’
pe [Roe g = QRom + Wl (N2)(©O)] = s [QF 7 — QFeP a4+ (N1)(0)]
We then obtain:
Yo = =195 — w_(N_)(=d),
5+ = PRy + (@) M (N4)(D), .
e (@™ = Quan ) — s (@ — Q{0 ) =

B . —p—w” (N-)(0) + prw’ (N4)(0),
e y- 6o +wo(N-)(0) = 74 + €705 +wi (N4)(0),

or
vo = —ed@N g —w_(N_ >< d),
3y = Py + () w < >< ),
i (19 =6 ) —p Qi — (@)1 QLePR ) = (1)
ey 40| - [7+ + eDQ» 54 = (II),
where
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Using the first two equations, we obtain
H— (edQXV— - 5—) — M4 ((QK)_1Q§7+ - (Q,\)_ile\reDQ;r&r)
= p_ (edQ; {fedQ; o_ — w_(N_)(fd)} - 5_)
— it (R:1R+V+ ~ RT'Qf PN [eDQ;r,er + (Qj\r)_lwﬁr(NH(D)D
= [ 0| = e P (NL)(—d) — (@) Qe
Q)T QX P+ (Q3) TN Q PR Q) M (VL) (D)
= —pu- [I + ede;] o- —pr(@Qy) QY [I - 62DQi] T+
+u4(Q) PR (NL)(D) — p—e® @ w_ (N_)(—d),
and
{edQ;fy_ + 5_} — [7+ + eDQich}
= el [—et5 —w (N)(=d)] +5-
= [+ P [P 1 (@) (VD)
(I - eQdQ;) v_ — (I + eQDQ;r) Y+
—e U w_(N_)(—d) — P (QF) " w!, (N1)(D).
The system becomes
—p [T+ 195 6 — (@)@ [T 2Pt oy
= (I) = 14 (Q3) 1P U w, (N4 ) (D) + p_e®@ w_(N_)(—d) == (I')
(I — e2dQ;) o — (I + eQDQ;r) o
= (1) + 95 w_(N_)(=d) + P9 (@)~ !, (N} )(D) = (1),

T
’ —p— |1+ €2dQ;] 6 —p(Qy)7'QY [I - ew@j} Y4+ = (1)
(1 - e2dQ§) 5 — (I + eQDQi) v = (I1).
The abstract determinant of this system is:
AA,AL—JH—
= o (14 e290) (14 2P (@)1 (1= 2P (1 - e29n).

For its invertibility, we use the H°°- calculus for sectorial operators.

It is known that operators (I + eQdQ§> , (I + ezDQ§> , (I - eQDQ;r> and

(I — e2dQ;) are boundedly invertible, see Proposition 2.3.6, page 60 in [17].

6.1. Invertibility of Ay, ,, . Put

where, as mentioned above, A is fixed such that

larg(A\)| <7 — &g ;
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recall that, for w €]0, 7[:
S, ={z€ C\{0}: |argz| < w}.
Consider the function

Doy 18w D 20— by (2),

defined by
Doy (2) = pe (1 + 6_2‘1(2“‘*)1/2) (1 + e_QD(Z+>\+)1/2)
1/2
M ( _ e*QD(”’V)l/Q) (1 _ ef2d(z+)\,)1/2> )
. (z+ )\_)1/2 k

this function is analytic and bounded on S, since
Re(z+ )\_)1/2 >0 and Re(z+ /\4_)1/2 >0,

and thus Iy ,_ ., € H>(S,). On the other hand, we know that —A has a bounded
H*®°- calculus on S, ; therefore by the functional calculus, we have

Ah,uﬂw = l/\wf T (_A)~

Now, in virtue of our Lemmas; we have, for all z € S,,:

z+ A 1/2
’lAtufa/'Li» (Z)| Z (MJF %

_ 2D
(z+ A )2 1-e

1— e—zd(z+,\,)1/2

i [14 e 1y 2P0 ) eos (1172
where
II = arg (EZ ;12) + arg (1 - e—QD(Z+>\+)1/2>
+ arg (1 e~ 2d(z+2 )Y ) ~arg (1 n e—2d(z+>\,)1/2)
—arg (1 +e 2P Z+>\+)1/2> ’
then

| <

arg (z + )\+)1/2 —arg(z + )\_)1/2‘
+ ‘arg (1 — e‘2d(z+>\7)1/2) — arg (1 + e‘2d(Z+/\—)l/2)
+ |arg (1 — e*QD(Z+/\+)1/2) — arg (1 + e*w(z*’\*)m) ’ .

And it is easy to see that there are wy, €]0,w/2[ and wy_ € |0,w/2[ (with wy, <
wy_ for example) such that:

2d (2 + A1) € 8.,

2D (2 + M) % € S,

and therefore, since

arg (1 — 72D arg (1 + e_QD(ZH‘*)I/z)‘ < wx,

arg (1 - e*2d(z+’\_)1/2> —arg (1 + e*Qd(ZJr/\_)l/QN < Was,
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we deduce that

1| Swa, —wi_ Fwia_ +wy, = 2wy, <w,

thus
(z+x)"?
Do (2] 2 |t |— 75
| H—sfig | + (z+/\_)1/2

s ’1 1 e 2d(z+A

1— ef2d(z+)\_)1/2

) ()
o (2)

e [1 _ e—w/(Ztan(wx,):| |:1 _ e—ﬂ'/(Ztan(er):| oS (%)
> u_ (1 _ e—ﬂ'/(?t&n(w/?))QCOS (%) > 0.

So, the function Iy ,_ . (.) does not vanish on S,, and the function 1/ly ,_, (.) is
bounded, hence it belongs to H>(S,,).
Finally, Ay ,_ . is invertible with a bounded inverse and

A_,l ,;L+ (1/l/\7u77u+) (_A)

H Ay

‘1 _ 2D+

)1/2 1+6_2D(z+>‘+)1/2

or

1+ e—2D(z+>\+)1/2

Y

_ ‘1 4 e 2R

!lk,uﬂw (2) |

Y

<=,

LX)~ p_

The constant C' is independent of the parameter .
Now, from equality

A)VM*))U'%»A_l = A_lA/\)U'*Ml“F’
it follows that
1 1
AAM #+A AA)\# e

on D(A), hence A}! .

by interpolation Ay~ is bounded from any interpolation space (D(A), E)a,s
(see the definition i in [12]) into itself and clearly we have also the same estimate

C
<=,
L(D(A),E)ays) ~ fi—

is a bounded operator from D(A) into itself. Therefore,

~1
HA)\#—»#+
6.2. The resolution of (S1). Recall that:

{ (1) = (Qx) " [-p—w (N-)(0) + i, (N4)(0)]
(L) := w4 (N4)(0) — w—(N-)(0),

and

{ (I') = (1) = pe (@) 7P, (N)(D) + pe™ @ w_(N_) (~d)
(I1') 1= (1) + " w_ (N2)(=d) + P28 Q) Mty (N1 (D).
Then

(1) = 14(Q5)1 %l (N )(D) + e Ph e (N-)(~d)
(@)™ [~p-wl (N)(0) + pywy (N1 )(0)]

Q) P!, (N )(D) + p_ e w_ (N_)(~d),

(1)
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(11')
= (1) + " @ w (N_)(—d) + P2 (QF) ™ w!y (1) (D)
= wi(NL)(0) = w_ (N_)(0) + e? w_(N_)(~d) + PR Qf ™ w', (N, )(D).
From the system
e (T €93 ) 6 = (@) Q% (1= e2P90 ) 5 = (1)
(1 2405 ) 5 — (I + e2DQi) e = (II'),

we get

Vo= =6 —w (N-)(—d)
AL e ([re@)71QE (1= e2P9) (1) — (1462798 (1)])

|
1

from which we obtain for x € |—d, 0[

v_ (x)
= @Oy e fw (N_)(z)

_ A1 dQy (ZE+d)Q;
- A>\7M—7u+e €

s @710t (1-eP) (1) = (1+¢2P94) (1)
—@HRN [w_(N_)(=d)]
FATL e (@) 7QF (1= e2P9) (1) = (1 +¢2P90) (1)
+w_ (N-)(@);
where:
(@) 7'QE (1= eP9) (1) = (149 ) (1)
= (@) 7@K (1= €PN [wa (N4 (0) = wo (N-)(0)]
+4 (@)@ (1= P [/ w_(N2) (=d) + "2+ (@) Ml (N2)(D)]
—(@0) 7 (14PN [—p-w! (N-)(0) + prwly (N4)(0)]
— (14 PR [ume N wo (No)(=d) = p Q1) " P!y (N2 )(D)] 5
we can write for all z € |—d, 0] :
v (@) = AL, (e =) (@) T Qf (1 - 2P ) ()]
(e—zcz; _ e<x+2d>Q;) [( ja em@i) ( [’)}
—el A [ (N_)(~d)]
+w_(N_)(z).

_AT!

A p— st
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In the same way, we obtain

6, = DQW++(QA) L (N4)(D)
_ P9k ({ (I_FedeA) (1) - (I_ezdcz;) ([’)D
+( X)WL (NG (D),
and for all z €]0, D[,
vy (@)
_ A)\L " (esz _’_6(2D—z)Q§> [—IL (I+e2dQ§> (I1') — (I—eQdQ;> (I’)}

HQF) 1P W, (N, ) (D) + wy (N4 ) ().

6.3. Optimal regularity of v_ and v, and estimates. In this section, we will
use the following lemma (see the proof in [10]), where the authors used the lemma
2.6 of [8)].
Lemma 6.1. Let —00 < a < b < +oo. Then:
1. For A € S, @, = — [— (A;)]UQ which generates a semigroup (etQ§>
bounded, analytic fort > 0 and strongly continuous fort > 0 satisfies moreotvi(;"
JKy > 0,3co > 0,¥t > 1/2,VA € S,
{ maX{H ' | Lmy, | Gaet@s ”L(E)} < Koe il
2. Forx € [a,b], \€ S, and f € L(a,b; E),1 < ¢ < +00, we set,

Unys () = [T e@ D% f(t)dt, a<a

(9)
Vas (z) = [P el=Q% f(t)dt, o <b.
There exists M > 0 such that for any f € L(a,b; E) and any A € S,
M
1UN £ o (apey < == I1f | Lo (arp;
FULP(a,b;E) |?/|[+1 L?(a,b;E)
V P . S a.b: .
W5l < T M o
O

We must show that:
v_ € W24(—d,0; E) N LY(—d, 0; D(A}))
vy € W4(0, D; E) N L9(0, D; D(AY))

and all boundary and transmission conditions are verified.
For = €] — d, 0], we have:

ASv_(x)

= (@)*-()

= A Q) (79 — ) [ @)y (1 - 2P ) ()]
SATL (@) (75 - e 2000) (14 2P0 (1)

—(Q3)?e D% Tw_ (N-)(=d)] + (@) ) *w—(N-)(x)
= (D) + ID)(z) + (L) (2) + (IV)(x).
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Let us show that
— (Q;)Qv_(x) € LY(—d,0; E).
The term

v (x)
= A Q) (79 — ) [ (@) (1 2P ()]
AT (@) ( 2Q; _e(x+2d>Q;) (1+62DQ1>(1/)
—(@Qx)?e VN [w_ (N_)(=d)] + w” (N-)(2),

can be treated similarly.
We have, for z € |—d, 0] :

(I)(x)
= AL (@) (e = ) (7)1 QE (1 - 2PN (i)

= AL L. Q% (e—in - e(z+2d)Q;) [M+QI (I _ 62DQX> (H,)} ’

(1r')
= (ID) + e w_(N_)(~d) + X (QF) 1w, (N})(D)
wy (N)(0) = w_ (N)(0) + @ w_(N_)(—d) + P2 (QF) " w!y (N4 )(D),
from which we get
(@ (1= e2P2) (1)
= @ (1= eP0) [wy (N})(0) = w (N-)(0)]

4 Q5 (1= e2P) [ w (N )(=d) + P2 (@)l (N)(D)]

so, the first term belongs to an interpolation space and the second is very regular,
therefore

= (I)(2) € L1(=d,0; E);
the same is true for the two terms (/1)(z) and (I17)(x).
For the fourth term we have:

— (IV)(x) € LY(—d,0; E),

due to the Dore-Venni theorem.
Now we will estimate

v ||Lq(—d,0;E) :
Recall that

v (@) = Axh, (679 = @) i (@) 71Q) (1- 2P ) ()]
AL (efzcz; _ 6<m+2d>cz;) [ I+62DQA) )]

—elTF DA fw_ (N_)(=d)] + w-(N-)(2),

X

0
WV = g [ IR @) TN+ g [ (@) N 0
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and A is such
larg(N\)| < 7 — eg.
Now, we use the lemma 6.1:
We have

x 0
v (N = g / P9 (Q7) TN ()t + / e (Q) TN (t)dt

—d

T 0
= @) [ BN @+ 5@ [ NN

thanks to lemma 6.1 and (8); there exists two constants M; > 0 and My > 0
(independent of A) such that:

M M.
: [ 2 IN-|lLa(-a,0.E),

W_(NNMta(—gom < —7 | —
H ||L (—d,0;E) ‘)\|% ‘)\| ¥ 1
hence the existence of a constant C' > 0 (independent of \) such that:

C

||w—HL(Lq(—d,0;E)) = m

A similar estimate is obtained for the other terms.
Summing up, we obtain

_ c
lo-llL(Le(—a0:E)) z lo-llLLaa_y < 151
||U+HL(LQ(Q+)) < ™ -
By the same methods, we obtain:
C
”w*”L(L‘I(—d,O;E)) = ”w*HL(LQ(Q_)) < m

c
< .
||w+||L(L<1(Q+)) = |>\|

Then in the space & = [L9 (Q)]*, we get
v
w

we conclude by the theorem:

= Wl = max (ol ooy 0l oo )
7 |G- %
Al 1I\g

=17 IFles

e PLTTE
Theorem 6.2. Operator L generates an analytic semigroup in the space € =[L4
Q)% O

£

7. Return to the evolution equation. We go back to our abstract evolution
equation:
V'(t)y=LV(t)+BHV(E), t>0
{ V(0) = VO.

Since £ generates an analytic semigroup in & = [L? (Q)]® (which is exponentially
decreasing), then necessarily the solution (if it exists) is written as:

V(t)=e*V0 + /t =)L [B(s)V (s)] ds , (10)
0
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with

_ ( wj(t)s?(t)J‘

= G V() ,
where we have used the operational notation:
( I(t,..) ) B ( T(t) >
Alt,.,.) ) \UA®R) ’
with, for example, for t > 0 :
Koen =Ia) ={ T T o) Sa

7.1. Study in L?(0,7;&). We note that the Banach space L%(0,7;&) where
q €1, +o00[ is UMD.
Here, the representation (10) is well defined, if for all

£ ( ix% ) € L9(0,T: ),

we have
(1 —w;(t)s;(£)J () + sa(t) A(t)
This is checked if, for example, the rates wj, s;, f, and s, are bounded. Therefore

tes Gt V(E) € LU0, T;E),

- ( w3 ()5 (0 (1) + fult)sa (D) A(D) ) € L90.7:2).

and thus the integral

/t e=9LG (s, V (s))ds

0
is well defined and due to the well known Dore-Venni Theorem we have:

t
t— E/ e=ILG (s, V (s))ds € LI(0,T; E).
0

7.2. Application of the fixed point theorem. We will apply the fixed point
theorem to the equation:

V'(t) = LV (t) + B(t)V(t), t € (0,T)
V(0) = V0.
Note that we can also consider this equation as a non autonomous linear equation
since we know that £ + B(t) for every t > 0 generates an analytic semigroup (B(t)
is bounded).
It can be written as
V'(t)=LV(t)+ G(t,V(t), t € (0,T)
V(0) = V0.

It is well known that the equation:

(1) = LB() + g(1), t € (0,T
{ cI)(E))):()’ g (0,7) (11)
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whith g € L9(0,T;€) has the Lg-maximal regularity. So for all g € L(0,T;€),
there exists a unique solution

® € W, U(0,T;€) N LI(0, T; D(L)),
and there exists a constant Cy > 0 such that
1], == H‘I)”Lq(o,T;D(L)) + ”(I)/”Lq(O,T;S) < Co ”gHLq(O,T;z‘Z)‘
On the other hand we know that
W0, T;€) N L0, T; D(L)) C C ([0, T];(D (L) ; 5)1/%(1)

for the interpolation space, see [12] with continuous injection and therefore there
exists a constant C; > 0 such that

sup || (# - <ol
te[o,T]H ()H(D(ﬁ)xf)l/q,q 1@l

These constants do not depend on T here as L is invertible, the semigroup is expo-
nentially decreasing, from which we obtain the maximal Lg-regularity on (0, +o0).
Now let us consider the problem:

O'(t) = LO(t) + G(t,0) = LO(t), t € (0,T)
{ P(0) = V°,

which has a unique solution given by:
*(t) = VO,
belonging to W14(0,T;E) N L4(0,T; D(L)) for all
VO e (D(L)5E)) /g,
Let us introduce the following closed ball of L9(0,T;E) of center ®* and radius
r €10, 1]:
B, = {W € LU0, T;€) : W — &* € Wh9(0,T;€) N LI(0,T; D(L)) and
W — @[, <r};
We are going to apply the fixed point theorem for contraction mappings.
1. For every W € B,., the problem
V'(t)=LV(t)+ G(t, W (L)), t € (0,T)
V(0)=V?,
has a unique solution V€ W4(0,T;&) N L4(0,T; D(L)).
Let us define the following application:
U: B, — W0, T;E)N L0, T; D(L))

W +— U(W)=1V.
2. Let us prove thatV is a strict contraction on B,..
We have
W) —@*, = [V-2o

CollGW)llpago, 1.6

CollG( W) = G, 2" ) paco,re)

+Co |G (., @%) — G('vo)”LQ(O,T;S) + Co |G, 0 ago,re) 3
where obviously G(.,0) = 0.

IN A
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3. Recall that

We know that
W — & e W) U0,T;£) N LI(0,T; D(L))
and by definition of B,., we have
W — ®* € Wh(0,T;€) N LI(0,T; D(L)) € C ([o,T]; (D (L) ;5)1/%(1)

so for all ¢ € [0,T7:

1/4,q
‘We have
G(t,W(t)) — G(t,®*(t))
_ ( wj(t)s;(t) [Wi(t) — 1(8)] + falt)sa(t) [Wa(t) — @5(2)] )
(1 —w]( ) () [Wi(t) — @1()] + sa(t) [Wa(t) — ©5(¢)]

and
IG(E W (1) - Gt (1)

= max (|l (8)3(6) W (8) = D ()] + fa(t)sa(t) [Wa(t) — @5(1)]l 0 o
(1 = w0 (6))55(6) W (6) = @5 (0)] + 50 (5) [Wa() = @3 ()]l o))

< o) (W2 (1) = P3Ol gy + 1 IW2(0) = P50 oo

where

¢(t) = sup (w; ()85 (1), fa(t)sa (1), [(1 = w;(t))] 55(t), sa(t))

4. Note that all these functions in the sup are positive and are not vector-valued
only coefficients. Then in the space € = [L?(Q)], we have

G, W () = G2 ()l < o) [W(E) =2 (@),

< SOIWE =" Ol oy,

< 9(t) sup. HW()

Jup ( )H(D(E)%S)l/qu ’

hence

G W) = G @) e, ey < 10l Lagomy s W (t) — (1)
€10,

(D(£)8)1/q,q
We have similary:
||G(.,<I>*)—G(.,O)HM(O,T;S) = ||G('7(I)*)||L<1(O,T;£)
< ellzaory sup ()]
t€[0,T]

(D(£)i8)1/q,q
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5. Finally:

lw(w) - o,
= V-2,
<

Co ||G(7 W)HL‘I(O,T;S)

< GG W) = G @) ao.re) + Co G @) Lago 1.6

< Coll9llpago1) _tes[%%] W@ =2 Oll e, +£E§PT] |<1>*(t)(D(L>;gh/q,q]
< Colldllzaory C W=, + sup ‘1’*<t>'<mm;s>w,q]

< Colléllpeor :Clr+t€s[lé%] ||<I>*(t)||<D<L);£)1/q'q1 .

6. In the same way we have, for any W, W in B,
[wW) v, < CollGCW) =G| oo e
Coll9ll Lago,ry sup (W = W) (@)
te[0,T)

CoC 1|0l pago.zy |W = W] -

T 1/q
#(r) = 18l ogomy = ( / |¢<s>|qu) ,

is continuous (with respect to 7) positive, strictly increasing on [0, +oo] taking
its values in the intervall [0, 1(T)]; so there exists T* < T such that

CoC |9l oo,y <1/2, (12)

from wich we obtain that the function:
v: B — W17q(0,T;8) N L0, T;D(L))

IN

(D(£)8)1 /4.9

IN

The function

is a strict contraction, where
B ={W e L0, T*&): (W —-®") €= and |[W — ", <r}. (13)

with 2 = W,9(0,7*; €) N L0, T*; D(L))
7. It remains to prove that ¥ applies B} into B). We have seen that

[OV) =@y < Collolnoy Ot s 19Oy, (14)
< CoClI9llLagory ™+ Colldll Lago,r) tes[%%] |© (t)||(D(£);£)1/q7(q15)

Recall that
@*(t) _ et[,‘/'o7
where

VO € (D(L)16), )0y
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®* belongs to W14(0, +00; &) N LI(0, +00; D(L)) for all data
Vo € (D (c) ;5)1/11,(1 :
Since L is exponentially decreasing, there exists 6 > 0 and M > 1 such that
HetLH < Me~t,

S0

2% (@)l
then there exists T™** < T™ such that
2% (1)

< M|[v?|

(D(£):€)1 /4,4 (D(L):)1 /4.9 ’

MCo |9l oo IV (16)

(D(£)i8)1 /9.9

Co ”¢||Lq(01T**) tes[léPT] H(D(L);s)l/q,q -

IN

r/2, (17)
from (12) and (17), we get:
[¢W) —@*[l, < r CoCill9llpaor)+ Colldllraomr ts[‘épT] @)l
€10,

(D(£)i€)1 /4,4

< r/247r/2

< r

hence U(WW) belongs to B, see (13).
Then ¥ applies B} into B which is a complete metric space.
Finally we have:

i) ¥ is defined from B into B,

ii) ¥ is a strict contraction from B} to B,

iii) B is a closed set in a Banach space, then it is a complete metric space,
therefore the fixed point theorem applies to ¥ in B}.

We then obtain our main result:

Theorem 7.1. Assume that V° € (D (L);€)
such that the problem

1/quq» then there eists 0 < T** < T
V(0) = V0.
has a unique local solution in [0,T""] verifying the mazimal L?-regularity
Ve WhI(0, 7€) N L(0, T*; D(L)).
O
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