N
N

N

HAL

open science

Scaling laws for the sensitivity enhancement of
non-(Gaussian spin states

Y Baamara, A Sinatra, M Gessner

» To cite this version:

Y Baamara, A Sinatra, M Gessner. Scaling laws for the sensitivity enhancement of non-Gaussian
spin states. Physical Review Letters, 2021, 127 (16), pp.160501. 10.1103/PhysRevLett.127.160501 .

hal-03463943

HAL Id: hal-03463943
https://hal.science/hal-03463943

Submitted on 2 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03463943
https://hal.archives-ouvertes.fr

Scaling laws for the sensitivity enhancement of non-Gaussian spin states
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Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université,
College de France, 24 Rue Lhomond, 75005, Paris, France
(Dated: December 2, 2021)

We identity the large-N scaling of the metrological quantum gain offered by over-squeezed spin states that are
accessible by one-axis-twisting, as a function of the preparation time. We further determine how the scaling is
modified by relevant decoherence processes and predict a discontinuous change of the quantum gain at a critical
preparation time that depends on the noise. Our analytical results provide recipes for optimal and feasible
implementations of quantum enhancements with non-Gaussian spin states in existing experiments, well beyond

the reach of spin squeezing.

Introduction.—Quantum projection noise limits the preci-
sion of quantum measurements, even after all external noise
sources have been eliminated. The so-called standard quan-
tum limit (SQL) defines the maximal precision of classical
measurement strategies based on coherent states, and can be
overcome by using nonclassical quantum states and suitable
measurement observables [1-5]. In Ramsey spectroscopy
measurements, the central element of atomic clocks and inter-
ferometers, the uncertainty for the estimation of an unknown
phase parameter 6 at the SQL is given by (AH)%QL = 1/N,
where N is the total number of atoms. Quantum strategies,
in principle, allow for quantum enhancements as large as
(AH)%QL /(A)? = N, but reaching this so-called Heisenberg
limit (HL) involves the generation of highly entangled many-
body states that require long preparation times and are prone
to decay quickly under decoherence [6-9]. Instead, an ex-
perimentally more robust approach consists in the squeezing
of collective spin observables on shorter time scales, in close
analogy to the quantum optical squeezing [1, 10, 11] that
improves the sensitivity of gravitational wave detectors [12].
Atomic spin squeezing, nowadays routinely produced in the
laboratory, has been shown to enhance proof-of-principle in-
terferometric measurements [5, 13—16], and to reveal many-
particle entanglement [17-23].

Starting from an uncorrelated ensemble, quantum entangle-
ment can be generated by means of a nonlinear evolution, such
as one-axis-twisting [5, 24]. The sensitivity enhancement that
is offered by spin squeezing in this case is fundamentally lim-
ited to a gain of (AO)%QL/(AH)2 ~ N?/3 [24]. This limitation
arises because of the restriction to the measurement of linear
spin observables, which no longer capture the fine features of
non-Gaussian quantum states [25]. A recording of the full
measurement statistics may overcome this problem, as can
be shown by an analysis of the Fisher information [5, 26],
but this is often unpractical due to the demanding require-
ments in measurement resolution. An alternative is given
by measurement-after-interaction strategies (MAI), such as
squeezing echos, which combine nonlinear evolutions with
the measurement of linear observables [27-33]. These strate-
gies can in principle achieve Heisenberg scaling, i.e., a quan-
tum enhancement proportional to the atom number N, even
in the presence of considerable detection noise [28, 29, 32].
However, this requires a stable and coherent interacting evo-

lution on sufficiently long time scales, which remains a chal-
lenge in systems with large N.

One-axis-twisting generates non-Gaussian spin states with
sensitivities beyond the reach of spin-squeezed states already
on much shorter time scales. Such over-squeezed spin states
are created after an evolution that is longer than that of spin-
squeezed states (yt ~ N~2/3, where y is the frequency asso-
ciated with the nonlinearity in the one-axis-twisting Hamilto-
nian), but remains far below the times (yz ~ N~!/?) that are re-
quired to reach Heisenberg scaling. States in this intermediate
regime are already available with considerable particle num-
bers in state-of-the-art experiments [34, 35] and are of prin-
cipal interest for experimental demonstrations of metrologi-
cal quantum enhancements beyond squeezing [36, 37]. The
non-Gaussian fluctuations of these states, however, prevent
a practical characterization of their properties with standard
methods, such as the spin-squeezing coefficient [2], and con-
sequently their metrological potential in the relevant limit of
large N has so far remained unknown.

In this article, we analytically determine the scaling of
quantum enhancements for states generated by one-axis-
twisting dynamics on time scales yt ~ N with 1 > a >
1/2. We show that suitable nonlinear observables for non-
Gaussian spin states can be efficiently accessed by MAI tech-
niques, leading to a maximal quantum gain that scales as
(AG)%QL /(AB)* ~ N>~ where « determines the preparation
time. We demonstrate that this scaling law fully describes the
metrological potential of non-Gaussian over-squeezed states
and continuously connects various optimal strategies spanning
from the SQL (@ = 1), linear (@« = 2/3) and second-order
squeezing (@ = 4/7), up to the Heisenberg scaling of echo
protocols on longer time scales (¢ = 1/2). Finally, we study
how this scaling is modified by dominant dephasing processes
in atomic experiments. In the thermodynamic limit N > 1,
we analytically predict a discontinuous change in the scaling
of the quantum gain at a critical value of @, which naturally
determines the optimal nonlinear evolution time as a func-
tion of the dephasing rate. In realistic atomic systems, this
abrupt transition is washed out by finite-size effects but the
onset of a discontinuity can be observed as the atom number
is increased.

From linear to second-order spin squeezing.—The goal of
an atomic clock is to determine with high precision the energy



difference 7iw between two internal atomic levels. The infor-
mation about w is contained in the rotation angle § = wT
of the collective spin state of the atoms after an evolution
time T. We consider an ensemble of N atoms that is de-
scribed by collective spin observables §=@8.8 s ST, with
Sy =3V, &g) /2 and o-f:) is a Pauli matrix for the ith atom.

The axis 7 of the rotation e~ with $; = i - § can be con-
trolled by rotations of the spin state with external fields. To
estimate the value of 6, the average value of an observable X
is measured, which, after many repeated measurements, leads
to an estimation error of (A6)? = (AX')z/I([X, S‘ﬁ])l2 2, 3].

Spin-coherent states yield the lowest achievable estimation
error among all separable spin states, which determines the
SQL as (A9)§QL = 1/N. Entangled spin states with quantum
fluctuations below the SQL can achieve lower uncertainties
(AF)? = £2/N, where & < 1 indicates a quantum enhancement
that is quantified by the parameter £ = (A)3,, /(A0)* =
KIX, S DI /(N(AX)?) [2, 25]. To maximize the sensitivity, the
rotation axis 7 and the measurement observable X are opti-
mized, under the consideration of possible constraints. If there
are no constraints on the measurement observable X, the full
metrological potential of the state can be harnessed, leading
to the maximal sensitivity gain maxg &2 = Fo/N, where Fy
is the quantum Fisher information [38].

For the generation of metrologically useful entangled
states, we consider the one-axis-twisting evolution |y/(2)) =
e~™M!My0) of an initial spin-coherent state [iyo) with S ,Jyo) =
%W/O), generated by the nonlinear Hamiltonian H = fiy$ 2. On
short times, this leads to the generation of spin-squeezed states
whose features are efficiently captured by linear (L) spin ob-
servables X = §; and in the limit N > 1 achieve the quantum
enhancement &2 ~ 2 x 373N?/3 [24, 39, 40]. An evolution
beyond the optimal squeezing time yt =~ 3'/°N=2/3 gives rise
to non-Gaussian spin states whose metrological sensitivity is
higher, but can only be extracted through the measurement of
nonlinear spin observables, which can be optimized [25].

Interestingly, already the measurement of a single second-
order observable {§ o S <}, where {A, B} = AB + BA is the anti-
commutator, in addition to § i, enables a significant gain over
linear spin squeezing. An analytical calculation of moments
up to fourth order of the collective spin components of the
state |y(7)) for arbitrary N [41] allows us to use the technique
of Ref. [25] to identify the optimal nonlinear (NL) measure-
ment observable of the form X = myS’y + szAZ + %{S‘x, S'Z},
as well as the optimal rotation axis 7, such that the sensitiv-
ity for the states [(#)) is maximized. In the limit N > 1,
we find that optimal over-squeezed states are generated after
xt = (5/2)!/1033/10N-3/5 and yield a maximum quantum gain
of

-2 2 - 3/5 a74/5
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We further obtain the leading corrections for finite-sized sys-
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O(N73/5)]. Extending this optimization to the measurement
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FIG. 1. Scaling laws for the quantum gain. (a) The quantum metro-
logical gain &2 optimized over the preparation time y for linear (L),
nonlinear (NL), quadratic (Q), and MAI measurement strategies as
a function of N compared to the standard quantum limit (SQL) and
the Heisenberg limit (HL). Solid lines represent the analytical scal-
ing laws in the limit of large N including finite size corrections. The
leading term is indicated in the plot. (b) Modification of the scal-
ing laws for the MAI method in the presence of ballistic noise with
fluctuations that scale with y for € = 0.05 (see text).

of arbitrary linear combinations of spin observables up to sec-
ond order yields the maximal quantum gain for quadratic (Q)
spin squeezing £,° = (6/7)°/75%/7 N/7 after a preparation time
xt =~ (7/6)1/1453/14N=4/7 [42]. The analytical scaling laws for
linear, nonlinear and second-order spin squeezing are com-
pared in Fig. 1 (a).

Nonlinear spin observables can be extracted from the higher
moments of the measurement statistics of linear spin observ-
ables [34-36, 44]. However, this increases the measurement
time and requires low detection noise, which is challenging
to achieve in systems with large atom numbers. This require-
ment can be avoided by MAI techniques that employ an ad-
ditional nonlinear evolution before the measurement of a lin-
ear spin observable [28, 29, 32]. To identify the possibilities
of this technique in the present context, we consider a sec-
ond one-axis-twisting evolution U, = ¢=%™? which is imple-
mented after the phase imprinting and is followed by a mea-
surement of S ;. This effectively gives access to the nonlinear
observables )A(MAI = (A]ZSA‘,,»,UT or

Ryiar = e (cos(2y78 )8 5, + sin2y7$ )8 ) + mS.. (2)

where /7ty = (my, my, 0)7, i, = (my, —m,, 0)". For small 7, we
can expand (2) up to linear order in 7, and with m, = 0, we
obtain the nonlinear observable Xy = S o+ )(Tmy{S‘ o S o+
O(y7)*. Hence, a nonlinear evolution up to x7 = my/(2m,)
followed by a measurement of the collective spin observable
S with i = (my, my, m;)T is equivalent to first order in 7 to



the measurement of the optimal observable X for interme-
diate over-squeezed states [43].

Scaling laws for MAI methods.—We now explore the gen-
eral potential of the continuous set of observables (2) that are
made available by MAI techniques for the states |y/(7)). To this
end, we analytically identify the optimal choice of 77 € R? in
Xwar that maximizes the sensitivity gain &2 for arbitrary ¢ and
7. In the next step, numerical optimizations over 7 reveal that
in the limit of large N, the choice T = —¢ maximizes the sen-
sitivity gain in the relevant time frame yz < 1/ VN [45]. This
corresponds to the echo protocol that was first suggested in
Ref. [28] to achieve Heisenberg scaling with long state prepa-
ration times. In the following we identify the metrological po-
tential of the echo protocol with T = —¢ for arbitrary states that
are prepared on the time scales yt = oN™* with 1 > @ > 1/2.
We obtain the scaling law for the optimal quantum gain in the
limit N > 1, as a function of the preparation time scale, as

Eviar = {

We first note that the scaling law (3) reproduces and contin-
uously interpolates between all the cases that were discussed
above: At relatively short times, @ = 2/3, we recover the
quantum gain §£2 ~ N?/3 of (linear) spin-squeezed states. For
a = 3/5, we recover the &7 ~ N*° scaling of intermedi-
ate, over-squeezed states, and for @ = 4/7 the full potential of
second-order spin squeezing, £5° ~ N°/7, is exploited. Max-
imal sensitivity is obtained when the nonlinear evolution can
be implemented on the longest possible time scales, i.e., at
a = 1/2. In this case, after an additional optimization over
o, we recover the Heisenberg scaling fi,IZAI = N/e for states at
xt =1/ VN [28]. As we will discuss in further detail below,
in practical situations the minimal achievable « is limited by
decoherence.

The result (3) shows that the MAI technique effectively
uncovers the metrological features of squeezed and non-
Gaussian spin states over a wide range of time scales. To
fully assess the quality of the sensitivity (3) that is extracted
by MAI, we compare to the sensitivity that can be achieved by
the unconstrained optimization over all possible quantum ob-
servables X to capture the features of the states [4(7)), leading
to the quantum Fisher information. This optimization can be
carried out analytically and yields in the limit N > 1:

0_2N2—2a’

2
o2e @ N,

1>a>1/2

a=1/2 )

oIN?2 1>a>1/2

L1 -e)N, a=1/2 @

max &2 = Fo/N = {
X

Comparison with (3) reveals the remarkable optimality of the
MALI protocol over the entire range of time scales 1 > a >
1/2. Even though this protocol requires only measurements of
the average value of the observable (2), no other measurement
scheme could achieve higher sensitivity based on the same
quantum state [y(z)). At @ = 1/2, MAI yields Heisenberg
scaling with a modified pre-factor.

Effect of decoherence.—Our results so far predict an in-
creasing quantum gain with longer evolution times. In order

to determine the limitations on the coherent nonlinear evolu-
tion times, we now consider the impact of dominant decoher-
ence processes on these scaling laws. Different realizations
of the one-axis-twisting Hamiltonian are dominated by differ-
ent decoherence processes. Implementations based on cold
collisions in Bose-Einstein condensates [13, 17, 20, 46] are
fundamentally limited by particle losses and finite tempera-
ture [47, 48], whose effect on spin squeezing can both be de-
scribed with a dephasing model and lead to ballistic behavior
of the spin fluctuations (AS y)? [39]. Similarly, in trapped-ion
implementations [7, 35, 49], ballistic collective dephasing is
caused by fluctuating magnetic fields [7, 50, 51]. Another path
is offered by cavity squeezing of cold thermal atomic ensem-
bles [21]. In this case, cavity loss defines the dominant noise
process, and is described by a collective dephasing of the spin
that is of diffusive nature [52, 53].

Ballistic dephasing.—We first focus on the case of a time-
independent, random dephasing process. This process is gov-
erned by the evolution of the Hamiltonian H = fiy(S2 + DS ,),
where a phase rotation of constant strength D has been added
to the one-axis-twisting Hamiltonian. We assume that D,
which fluctuates from one experimental realization to the next,
is a Gaussian random variable with (D) = 0 and variance
(D?) = eN”, with 0 < y < 1. Starting from the spin-coherent
state |io) and considering the MAI scheme with two non-
linear evolutions of duration ¢, the spin moments under this
noise process can be determined analytically, showing that in
the limit N > 1, the noise in the relevant spin observable in-

creases as (?VS/{EZ ~ 1+4eN"(y1)>+O(xt)*. The characteristic
quadratic increase of the variance over time reveals the ballis-
tic nature of this dephasing process. By including the effect of
ballistic dephasing in our optimization of the quantum gain,

we observe that the scaling law (3) is modified to

0_2N272ry
o Tems 12a>1/2 5
fMAI,bal =) 2N -1/2 . )
1+4€0?N7 > @ = /

The scaling with N now depends on the precise interplay of
the evolution time and the noise via y and «, see Fig. 1 (b).
We observe an abrupt change of the scaling law at the critical
value of

Q. = ——. (6)
For times shorter than this critical value, @ > a,., we obtain
-2 2 A72-2
Enviarpa = 0N, (N

i.e., the scaling (3) of the ideal, noiseless evolution is pre-
served. For longer times, @ < a., however, the quantum gain

1
-2 1—
EMALbal = @N 7 ®)

is limited by the dephasing process. Note that the long-time
scaling always represents the maximum quantum gain for any
given vy, i.e., 1 —y > 2 — 2a. This scaling is achieved ex-
actly at the critical point a., as well as by all longer times
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FIG. 2. Discontinuous scaling law in the presence of ballistic de-
phasing. Quantum metrological gain of the MAI method f&zm,ba]
with 7 = —f, € = 0.05, y = 0.65 as a function of a: Larger
values of 1 — & correspond to longer preparation times as we set
xt = oN~*. The normalized quantum gain &, .,/(N'"7/4€) (top)
and &7, /N*7>* (bottom) illustrates how the scaling in the thermo-
dynamic limit, Eqs. (7) and (8) for short and longer times, respec-
tively, is approached as N increases. At . (6) the transition becomes
discontinuous in the thermodynamic limit.

since (8) is independent of a. The critical value (6) thus natu-
rally identifies the optimal preparation time @ = «, as a func-
tion of the dephasing strength vy in the thermodynamic limit
N — oo. Furthermore, at @ = a, the results (7) and (8) pre-
dict a discontinuous change of the scaling law as a function of
the preparation time.

This critical behavior is blurred by finite-size effects in re-
alistic atomic samples, but an onset of the discontinuity is dis-
cernible with increasing N, see Fig. 2. Higher-order correc-
tions to Eq. (5) show that &7, ., exhibits a maximum in the
region a < a. at yt =~ (4€)""/*N~1/2¥/% where the optimal
sensitivity (8) is attained. This maximum becomes increas-
ingly flat as N grows until the maximum sensitivity (8) is at-
tained by any value of @ < a, in the thermodynamic limit.

In the limit y = 0, we find that the metrological quantum
gain is entirely insensitive to decoherence, independently of a.
In general, we can interpret the critical value (6) as a defini-
tion of the maximal tolerable level of ballistic dephasing noise
v = 2a — 1 as a function of the desired quantum gain, which
scales with . Naturally, these constraints become more de-
manding for higher quantum enhancements. For instance,
to achieve the optimal sensitivity enhancement of linear spin
squeezing &2 ~ N*3, noise with y < 1/3 may be tolerated
in the experiment, whereas second-order spin squeezing with
5(‘22 ~ N®7 requires y < 1/7. In the extreme case y = 1, our
result confirms that strong dephasing prevents the generation
of quantum enhancements that increase with N [39].

It was shown in Ref. [39] that the effect of particle losses
on optimal linear spin squeezing is well described by ballis-
tic dephasing with y = 1 and € = Njoss/(3N), where Njogs 1S
the average number of lost atoms. This correspondence can
indeed be generalized to nonlinear spin squeezing, f&%, as we
have confirmed analytically using Monte-Carlo wave function

methods, extending the results of Ref. [47] to the case of a
nonlinear measurement. This implies that for a given atom
number, the nonlinear measurement leads to an improvement
over linear spin squeezing as long as N/Njos = N>/3.

Diffusive dephasing.—Finally, we consider a dephasing
process described by the Lindblad master equation (0/9t)p =
—i[H,p] + yc($.pS. + %{S’?,ﬁ}), where the relative strength
of the dephasing is quantified by the parameter € = y¢/x.
In contrast to the previous noise process, here the variance
% ~ 1 + 2eNyt + O(xt)? increases linearly in time, re-
vealing the diffusive nature of this dephasing processes. An
analogous procedure now yields for any € > 0:

672 %Nl—(l’ 1>a> 1/2 (9)
- 2 ’
MALdif rre26 N2, a=1/2

Diffusive dephasing thus leads to a reduction of the scaling
exponent by a factor of 2, independently of the preparation
time @. An optimization over @ and o shows that, at fixed e,
the largest achievable quantum gain is given by &2 ~ N'/2,
which analytically confirms a result that was numerically ob-
tained in Ref. [33]. When choosing @ = 3/5, we obtain a
maximal gain of &2 ~ N?/°. This scaling was found to be
optimal for linear spin squeezing in the presence of diffusive
dephasing due to cavity losses [52-54].

Unifying expression.—Our results can be summarized in a
single unifying expression for the sensitivity gain in the limit
of large N that is valid over the full range of time scales yt <
N2

= N>(x1)* Fo/N

~ ~ . 10
1+M+B 1+M+B (10)

This expression describes precisely how the sensitivity gain
is limited by sub-optimal measurements (M) and noise (B).
Depending on the chosen measurement scheme, we obtain
My = N*(x0)%/6, M = NO(x1)'0/270, Mq = N3(xt)'*/875
and Mya1 = 0. The effect of decoherence is accounted for by
the terms By, = €N 1Jr“V(Xt)z and Bgir = €Nyt for all measure-
ments except MAI which gives rise to Bpymar = 4€N %7 (y1)?
and Bgis = 2eNyt because of the two nonlinear evolutions of
duration yt. The result (10) predicts the scaling laws and op-
timal times in all cases discussed above. A detailed derivation
of all results and an extended discussion will be exposed in a
separate paper [41].

Conclusions.—We analytically identified the metrological
potential associated with states that are generated by the one-
axis-twisting evolution beyond the optimal squeezing time.
We have found a unified scaling law of the metrological
gain that continuously connects different optimal measure-
ment strategies as a function of the preparation time. We
further showed how the sensitivity scaling is modified by the
presence of dominant dephasing processes in atomic exper-
iments. For ballistic dephasing, we reveal in the thermody-
namic limit a discontinuous behavior of the quantum gain
as a function of the preparation time. The critical behavior
presents characteristic traits of a phase transition. However,



the discontinuity is observed here as a function of the evolu-
tion time in a dissipative system. Whether a connection with
generalized concepts of quantum phase transitions [55, 56]
can be established remains an interesting open question.

The critical preparation time, after which further quan-
tum gains are suppressed by decoherence, predicts how much
noise can be tolerated in order to sustain a quantum advantage
with increasingly sensitive spin states. Our results identify
optimal strategies for achieving significant quantum enhance-
ments with non-Gaussian spin states in atomic experiments
under realistic conditions.
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