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Abstract

Rare event probability estimation is an important topic in reliability analysis. Stochastic
methods, such as importance sampling, have been developed to estimate such probabilities
but they often fail in high dimension. In this paper, we propose a new cross-entropy-based
importance sampling algorithm to improve rare event probability estimation in high di-
mension. We focus on the cross-entropy method with Gaussian auxiliary distributions
and we suggest to update the Gaussian covariance matrix only in a one-dimensional sub-
space. For that purpose, the main idea is to consider the projection in the one-dimensional
subspace spanned by the sample mean vector, which gives an influential direction for the
variance estimation. This approach does not require any additional simulation budget
compared to the basic cross-entropy algorithm and we show on different numerical test
cases that it greatly improves its performance in high dimension.

Keywords: Rare event simulation, Failure probablity, Importance sampling,
Cross-entropy, High dimension, Projection.

1. Introduction

Classical algorithms for reliability analysis. In reliability analysis, an important goal is
to determine the probability of failure of an engineering system, often represented as
the probability that a function, called limit-state or performance function, exceeds a given
threshold. Estimating directly this probability can be difficult because calls to the function
can be computationally expensive and the failure of the system is often a rare event.

Various techniques have been developed to estimate such rare event probabilities [1,
2]. First/second order reliability methods (FORM/SORM [3]) seek the most probable
failure point (or design point) which minimizes the distance, in the standard normal space,
between the failure hypersurface and the origin, and then realize a linear (FORM) or
second-order (SORM) approximation of the limit-state function at this design point in
order to estimate the probability with this approximation. Sampling techniques based
on Monte Carlo simulations take advantage of the law of large numbers for rare event
probability estimations [4], where this probability is estimated as the average number of
random samples which fall in the failure domain. Another sampling alternative is the

Email addresses: melmasri@onera.fr (Maxime El Masri), jerome.morio@onera.fr (Jérôme Morio),
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subset simulation method [5, 6, 7], or adaptive splitting, that expresses the probability as
the product of several conditional probabilities.

In this article, we focus on the Importance Sampling (IS) method [8, 9] that is an-
other well-known Monte Carlo method considered in rare event simulation. IS consists
in sampling from an alternative density, called auxiliary density, for which the failure is
more frequent. Different techniques exist to find an efficient auxiliary density, as this
choice has a strong influence on the performance of the overall IS estimation scheme. The
performance comparison of IS with other failure probability estimation techniques is be-
yond the scope of this article. However, some insights are proposed in the recent article
[10] that analyses the results of classical Monte Carlo, subset simulation and importance
sampling, combined with a surrogate model on different reliability problems. One of the
most well-known method is the cross-entropy method [11, 12], which we will simply refer
to as CE in the rest of the paper. CE aims to determine the best auxiliary density within
a given, usually parametric, family of densities: here “best” refers to the density which
minimizes the Kullback–Leibler (KL) divergence with the optimal auxiliary density, which
is intractable as it involves the unknown probability. Many papers are still published on
the CE method, aiming at improving or applying CE in various contexts ([13, 14, 15, 16]).
When the goal is to estimate a probability, a variant of CE (called improved cross-entropy
method and referred to as iCE in the sequel) has also been developed in [13] to improve its
efficiency by using a smooth approximation of the indicator function of the failure event.
CE and iCE, which are the basis of the present work, are recalled in the Appendix. CE
belongs to a larger family of sampling algorithms called Adaptive Importance Sampling
(AIS) [17, 18], where one seeks for a valuable auxiliary density in a parametric family by
successive updates of the parameters. A non-parametric IS has also been proposed, con-
sidering kernel density estimation to approximate iteratively the optimal auxiliary density
(see [19] or [20]).
New Challenges in importance sampling for reliability analysis. While the fundamentals
of IS are relatively well established, IS suffers from several limitations that may hinder its
applicability. First of all, IS often requires a computational budget of at least a thousand
calls to the simulation code, which can be too prohibitive in practice. To this end, it is in-
teresting to couple surrogate models and IS and different approaches have been described
to optimally achieve this coupling [21, 22, 23]. The enrichment of the surrogate model and
particularly the choice of the calculations [24] to be carried out or the characterisation of
the uncertainty [25] due to the surrogate model on the probability estimation are among
others emerging research questions. Unlike classical Monte Carlo approaches, IS is not
immediately suitable for high-dimensional problems because the search space for an effi-
cient auxiliary density becomes very large [20, 26, 27] and also because of the degeneracy
of the IS weights [28]. To counter this limitation, new approaches for intrinsic dimension
analysis and dimension reduction [29, 30] have recently been proposed to focus on the
dimensions most influential on integration. We give more details about this issue on the
specific case of CE in the next paragraph.
Rare event probability estimation with CE in high dimension. All these techniques face
the curse of dimensionality and become inaccurate as the dimension increases. For CE
this is due to the weight degeneracy phenomenon in high dimension, which involves the
collapse of the estimated covariance matrix to 0 due to weight degeneracy [28, 31]. In [32],
auxiliary densities focus on the most influential variables which are selected beforehand,
to reduce the number of updated parameters and decrease the variance of the IS estima-
tor. However the technique is not efficient when all variables are influential. [15] proposes
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to directly generate a sample from the optimal unknown IS distribution with an MCMC
method and then estimate the CE-optimal parameter. This one should be more accurate
and thus lead to a better probability estimation, but in high dimension the MCMC step
can require a large simulation budget to reach convergence. Another idea to improve CE
in high dimension is to use different, lower-dimensional parametric families of auxiliary
densities. For instance, [33] propose to use von Mises–Fisher mixtures and [13] to use von
Mises–Fisher–Nakagami mixtures: both distributions are supported by the hypersphere
which reduces the number of parameters compared to Gaussian mixtures [34] which are
not efficient in high dimension. These methods are mainly well suited to multimodal
problems, that will not be tackled in this paper, and require a large number of samples.

Closer to the spirit of our paper, the recent paper [30] proposes to construct a subspace,
called the Failure-Informed Subspace (FIS), which identifies a low-dimensional structure
of the problem and then applies CE on the FIS by projecting the samples: the resulting
algorithm is a variation of iCE called iCEred. The FIS is chosen based on a theoretical
bound which suggests that it induces a small KL divergence: however its computation
requires the evaluation of the gradient of the limit-state function. This presents two draw-
backs: 1) the limit-state function needs to be differentiable and 2) computing its gradient
is often expensive (and sometimes even out of reach).

Novel methodological contribution. In the present paper, we propose two new algorithms,
CE-m∗ and iCE-m∗, which pursue the line of research recently initiated in [30], namely
circumventing the curse of dimensionality faced by CE (and iCE) for the estimation of a
failure probability. The main idea of this article is to project the generated samples on
a suitable low-dimensional space. The proposed projection direction is the sample mean
vector of the input conditioned on failure (see Section 3.2 for more details) whose compu-
tation does not require any additional model evaluations compared to CE or iCE as it is
not based on the gradient. This direction is motivated by heuristic arguments presented
in Section 3.3 and on all the numerical examples that we considered, in particular the
representative ones that we report in Section 4, they improve the performance of CE.
In many cases and even for simplistic linear performance functions, CE and iCE do not
converge for dimensions larger than 30 whereas our algorithms provide accurate estimates
up to dimensions 200 and above.

Organization of the paper. The following study is divided in four sections. Section 2
recalls the foundations of IS, CE and iCE. Section 3 explains why CE does not work in
high dimension and then introduces the two proposed algorithms, CE-m∗ and iCE-m∗.
Their performance is numerically evaluated in Section 4 on four different examples. We
conclude the paper in Section 5, giving a short summary and some perspectives.

2. The cross-entropy method

2.1. Rare event probability estimation

Let X be an n-dimensional random vector from a continuous probability distribution
function f modeling the input variables. Define a failure domain F = {x ∈ R

n : ϕ(x) ≥ 0}
and the associated probability of failure as:

P = Pf (ϕ(X) ≥ 0) = Ef (I{ϕ(X)≥0}) =
∫

Rn
I{ϕ(x)≥0}f(x)dx
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where I{ϕ(x)≥0} = 1 when ϕ(x) ≥ 0 and 0 otherwise. Throughout the paper Pf and Ef

denote the probability and the expectation with respect to f . The function ϕ represents
a computationally demanding engineering model and is considered as a black box, so that
the probability P cannot be estimated analytically. Naive Monte Carlo methods with
independent and identically distributed (i.i.d.) samples from f can be used to estimate P ,
but they require a large number of samples when the failure is a rare event.

2.2. Importance sampling (IS)

IS [8, 9] consists in sampling the input variables from an alternative distribution g well
suited to the failure domain, that is, such that the probability of failure with respect to g is
not too rare. Let g be a probability density function such that g(x) = 0 ⇒ I{ϕ(x)≥0}f(x) =
0, then we have

P =

∫

Rn
I{ϕ(x)≥0}L(x)g(x)dx = Eg

(
I{ϕ(X)≥0}L(X)

)

where L = f/g is called the likelihood ratio (or importance weight), and g is the auxiliary
density. The IS estimator of P is then

P̂ =
1

N

N∑

i=1

I{ϕ(Xi)≥0}L(Xi)

where X1, . . . , XN are i.i.d. random vectors drawn from g. The auxiliary density has a
strong influence on the accuracy of the estimation. The optimal auxiliary density g∗ is
the distribution conditioned on the failure domain, i.e.,

g∗(x) =
I{ϕ(x)≥0}f(x)

P
, x ∈ R

n. (1)

With this distribution, the probability estimate P̂ is exactly P and has zero variance.
But g∗ depends on P , the unknown probability, hence it cannot be used in practice. For
this reason, one often looks for an approximation of g∗ in a parametric family of densities
G = {gλ : λ ∈ Λ} called auxiliary density family. A natural choice for λ is the parameter
λ∗ that minimizes the variance, i.e.,

λ∗ = argmin
λ∈Λ

Vargλ
(P̂ (λ)) = argmin

λ∈Λ
Vargλ

(
I{ϕ(X)≥0}Lλ(X)

)

with P̂ (λ) = (1/N)
∑N

i=1 I{ϕ(Xi)≥0}Lλ(Xi) the IS estimator and Lλ = f/gλ. The vari-
ance minimization problem is not convex with no analytical solution. An alternative and
popular choice, which we discuss next, is the cross-entropy method which estimates the
parameter λ that minimizes the Kullback-Leibler divergence between g∗ and gλ.

2.3. The cross-entropy method (CE)

The Kullback-Leibler (KL) divergence between two densities f and h with f absolutely
continuous with respect to h is defined by:

D(f, h) = Ef

[
log

(
f(X)

h(X)

)]
=

∫
f(x) log

(
f(x)

h(x)

)
dx.

The KL divergence measures a “distance” between the two densities. It is always non-
negative, and it is zero only when f = h almost everywhere. In order to find an efficient
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auxiliary density, we can minimize the KL divergence between the optimal g∗ and the
given parametric auxiliary family and choose λ∗ given by

λ∗ = argmin
λ∈Λ

D(g∗, gλ).

Since D(g∗, gλ) = Eg∗ [log(g∗(X))] − Eg∗ [log(gλ(X))] and the first term in the right-
hand side is independent of λ, this problem reduces to maximizing the cross-entropy
Eg∗ [log(gλ(X))]. Using finally that g∗ = fI{ϕ≥0}/P with P independent of λ, we get

λ∗ = argmax
λ∈Λ

Ef

[
log (gλ(X)) I{ϕ(X)≥0}

]
. (2)

This maximization problem is called the cross-entropy problem. Contrary to the vari-
ance minimization problem, the cross-entropy problem is generally concave and differen-
tiable [11, 4], so the solution can be found by setting the gradient with respect to λ equal
to zero. Another advantage is the existence of analytical solutions of the cross-entropy
problem for exponential families.

From now on, we suppose that the initial density f is the standard normal density
g0,In and that the auxiliary density is a Gaussian distribution {gm,Σ : m ∈ R

n,Σ ∈
M+

n }, which belongs to the exponential family. Here and in the sequel, gm,Σ denotes
the Gaussian density with mean m ∈ R

n and covariance matrix Σ ∈ M+
n with M+

n ⊂
R

n×n the set of symmetric, positive-definite matrices, and In is the identity matrix in
dimension n. It is convenient to work in the standard normal space, because it enables
easier implementation and computation. By transforming the random inputs X with
isoprobabilistic transformations [35, 36], we can in principle always come back to this
case.

In this case, we have λ = (m,Σ) ∈ R
n × M+

n and the cross-entropy maximization
problem (2) can be solved explicitly and gives

m∗ = Ef (X | ϕ(X) ≥ 0) and Σ∗ = Ef

(
(X − m∗)(X − m∗)⊤ | ϕ(X) ≥ 0

)
, (3)

see for instance [11, 34]. Since m∗ and Σ∗ depend on the unknown distribution conditional
on failure g∗, we cannot compute them explicitly but, provided we have a relevant auxiliary
density h, we can estimate them by IS through

m̂ =
N∑

i=1

wiXi and Σ̂ =
N∑

i=1

wi(Xi − m̂)(Xi − m̂)⊤ (4)

where wi = w′
i/

∑
j w′

j and w′
i = I{ϕ(Xi)≥0}f(Xi)/h(Xi) are the unnormalized importance

weights, and the Xi are i.i.d. samples of density h.
To find a good auxiliary density h, we can consider sequential simulation techniques to

define a sequence of parameters (m0,Σ0), (m1,Σ1), . . . Provided (mt,Σt) is given, the idea
is to generate a sample according to gmt,Σt

and estimate (mt+1,Σt+1) from the empirical
ρ-quantile (ρ ∈ (0, 1)) of ϕ(X1), . . . , ϕ(XN ). This is a classical algorithm often referred to
as the multilevel cross-entropy algorithm (CE). For completeness, a detailed description of
CE is provided in Appendix A, Algorithm 3 (see also [11]). Without giving all the details
recalled in the appendix, it is important to have in mind the following overview of one
iteration of CE’s main step:

1. Draw a sample X1, . . . , XN from gmt,Σt
with (mt,Σt) the current estimate of (m∗,Σ∗);
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2. Compute γt the empirical ρ-quantile of the sample ϕ(X1), . . . , ϕ(XN ), and get a new
estimation (mt+1,Σt+1) of the conditional mean and variance by

mt+1 =
N∑

i=1

wiXi and Σt+1 =
N∑

i=1

wi(Xi − mt+1)(Xi − mt+1)
⊤ (5)

where wi = w′
i/

∑
j w′

j and w′
i = I{ϕ(Xi)≥γt}(f/gmt,Σt

)(Xi).

Remark 1 (Smooth updating of the parameters). Instead of updating mt+1 and Σt+1

from (5), it is sometimes more efficient to perform a smoothed updating rule, as follows :

m̃t+1 = αmt+1 + (1 − α)m̃t and Σ̃t+1 = αΣt+1 + (1 − α)Σ̃t

where mt+1 and Σt+1 are estimated in (5), m̃t and Σ̃t are the smoothed parameters
computed at the previous step ”t”, and α ∈ [0, 1] is the smoothing parameter. This
procedure can avoid a too fast convergence to degenerate solutions, especially in discrete
optimization problems (see [1, 11, 37] for instance). The smoothing parameter α can be
fixed beforehand (static smoothing) or updated at each iteration (dynamic smoothing).
In the numerical analysis of Section 4, we do not perform the smoothing procedure (or
equivalently, we keep α = 1) since it does not improve significantly the estimation results.

2.4. Improved cross-entropy (iCE) method

One of the limitations of CE lies in the estimations of equation (4) of the conditional
distribution at each step of the algorithm. This estimation only uses a fraction ρ of the
sample (recall that ρ ∈ (0, 1) is a parameter of CE, see Section 2.3), and the idea of iCE
is to replace the indicator function I{ϕ(X)≥0} by a smooth approximation as suggested in
[13, 38], for instance. The method proposed in [13] considers the approximation I{ϕ(x)≥0} ≈
F (ϕ(x)/σ) with F a cumulative distribution function, typically of the standard normal
random variable, so that for ϕ(x) Ó= 0 we have F (ϕ(x)/σ) → I{ϕ(x)≥0} as σ → 0. We
present this approach with Gaussian densities in Algorithm 4 of Appendix A.

2.5. Comment on the choice of auxiliary family

As mentioned above, we restrict our study to the Gaussian auxiliary family {gm,Σ :
m ∈ R

n,Σ ∈ M+
n }. This choice is well suited for unimodal problems, which is the

typical case that we have in mind, and in such cases CE is known to work well for small
dimensions. Our goal here is to improve the efficiency of CE when the dimension increases.
In particular, the heuristic arguments justifying CE-m∗ presented in Section 3.3 work in
this case and not necessarily in more general settings; moreover, we have only considered
such test cases for the numerical applications. In case the failure domain is not unimodal,
the auxiliary family needs to be updated, see for instance [13, 33, 34].

3. New algorithms CE-m∗ and iCE-m∗ with projection

3.1. Inefficiency of CE in high dimension

The inefficiency of CE in high dimension is well documented: the general behavior,
even outside a reliability context, is that the estimation of the covariance matrix collapses
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Figure 1: Evolution of the estimation of the probability P = Pf (ϕ(X) > 0) as the dimension increases for ϕ
linear given by (6) and for different algorithms. Results are obtained with parameters set as in Section 4.1.
In dashed are three algorithms which provide accurate and indistinguishable results: IS with the optimal
density gm∗,Σ∗ , CE with auxiliary family G = {gm,Σ∗ }m∈Rn where one uses the optimal variance and
estimates the mean, and CE with auxiliary family G = {gm,Σ}

m∈Rn,Σ∈D
+
n

where one estimates the mean

and only the diagonal of the covariance matrix. In green with triangle is CE with {gm,Σ}
m∈Rn,Σ∈M

+
n

(both the mean and the full covariance matrix are estimated). In red with diamonds is iCE with the
same auxiliary family. In blue with circles is CE with {gm∗,Σ}

Σ∈M
+
n

(one uses the optimal mean m∗

and estimates the full covariance matrix). In black with squares is CE with {gm∗,Σ}
Σ∈M

+′

n

(one uses the

optimal mean m∗ and estimates 3/4-th of the covariance matrix).

very suddenly to 0 [28, 32, 39]. To illustrate this, let us consider the simple yet illustrative
example where ϕ is the following affine function:

ϕ : x = (x1, . . . , xn) ∈ R
n Ô→

n∑

j=1

xj − 3
√

n (6)

such that P = Pf (ϕ(X) ≥ 0) = P(Z ≥ β) ≃ 1.35 · 10−3 independently of n, with Z
following the standard normal distribution on R. The evolution of the mean probability
estimation by CE and iCE is represented in Figure 1 (green triangles for CE, red dia-
monds for iCE). As the dimension increases, the estimation becomes less accurate for
both methods. For CE, the error is significant even for dimensions as low as n ≈ 15, while
iCE delivers accurate estimations only up to dimensions n ≈ 25, after what its accuracy
dramatically drops. Thus even for moderately high dimensions (n ≈ 30), both methods
fail to provide accurate estimations.

The degradation is due to errors in the parameters estimation. Indeed, both methods
aim at finding a good auxiliary density, close to g∗, in the family {gm,Σ}m∈Rn,Σ∈M+

n
: to

do so, they use sequential simulation techniques to get estimates m̂ and Σ̂ of the optimal
parameters m∗ and Σ∗. As m∗ ∈ R

n and Σ∗ ∈ R
n×n is symmetric, this actually involves

the estimation of n + 1
2n(n + 1) = 1

2n(n + 3) parameters, a number which grows quickly
(quadratically) as the dimension increases. Thus, although the error in each dimension
may be low, their global effect may actually be quite significant in the final estimation.
This is supported by the numerical results presented in Figure 1. First, we see indeed
that IS with the optimal auxiliary density gm∗,Σ∗ works very well, so final estimation
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errors indeed come from considering approximations m̂ and Σ̂ of m∗ and Σ∗. The four
other curves related to CE are somehow in-between the case gm∗,Σ∗ where 0 parameter
has to be estimated, and the case {gm,Σ}m∈Rn,Σ∈M+

n
where n + n(n + 1)/2 have to be

estimated. In the case {gm,Σ∗}m∈Rn and {gm,Σ}m∈Rn,Σ∈D+n one only has to estimate n and

2n parameters, respectively (D+
n is the set of n-dimensional matrices with positive entries

on the diagonal and 0’s elsewhere), and CE with these auxiliary families behave very well.
In the two other cases the number of parameters to be estimated grows quadratically in n
where we have estimated P with four different methods: among them {gm∗,Σ}

Σ∈M+′

n
with

3n(n + 1)/8 parameters to estimate behaves better than {gm∗,Σ}Σ∈M+
n
with n(n + 1)/2

parameters to estimate (M+′

n is the subset of matrices in M+
n equal to the identity except

for the north-west corner of size 3n/4). In other words, Figure 1 suggests that the efficiency
of a given auxiliary family depends on the number of parameters to be estimated: the
efficiency improves as the number of parameters to be estimated decreases and a linear
number of parameters to estimate behaves very well. This suggests the idea of the present
paper, namely lowering the number of estimations needed for the covariance matrix by
only estimating the variance in one direction.

3.2. Presentation of CE-m∗ and iCE-m∗

From Figure 1 one could be tempted to use the auxiliary family {gm,Σ}m∈Rn,Σ∈D+n
where one only estimates diagonal entries: however, even if it behaves very well on the
particular example of the sum (6), until dimension 60, this actually corresponds to a
particular choice of auxiliary densities proscribing correlations between input which may
in some cases be undesirable. Moreover, this choice involves more parameter estimation
in non influential directions than the proposed method, which can result in inaccurate
probability estimation or even the non-convergence of the algorithm in high dimension (see
results in Section 4). Despite these limitations, we have studied this algorithm numerically
as it fits within the framework of the present paper as it can be seen as a dimension-
reduction algorithm, see Remark 4 below.

The proposition of this paper is to estimate the variance in the direction of the current
estimation of m∗: similarly as the choice {gm,Σ}m∈Rn,Σ∈D+n this presents the advantage
of only necessitating a linear number of estimations (actually, n + 1) but in contrast to
{gm,Σ}m∈Rn,Σ∈D+n this is a more generic choice that does not make any a priori assumption
on the problem. In fact, an advantage of estimating the variance only in the direction of
the updated mean vector is that we do not cancel all the correlation coefficients contrary
to the diagonal form of the covariance matrix. The optimal auxiliary IS distribution has
dependent components and thus a non diagonal covariance matrix is adapted. Thus, in
low dimensions, the lack of flexibility of the proposed model compared to the diagonal
covariance matrix is compensated by a better model assumption. The diagonal form
assumption constrains the update of the variance in all the directions given by the canonical
basis. Among the n directions, very few canonical directions have a variance different from
1 in high dimension and thus do really need to be updated. On the contrary, in the rare
event context, the direction given by the sample mean vector is relevant since the variance
has to decrease in this direction even if it is not always the direction that offers the best
variance reduction. Having only 1 covariance matrix parameter to update whatever the
dimension n becomes clearly an advantage in high dimensions and explains why CE with
diagonal covariance matrix suffers more from the curse of dimensionality than CE-m∗,
iCE-m∗. The precise algorithm is detailed in Algorithm 1 and its improved (in the sense
of iCE) version in Algorithm 2. Its main step can be summarized as follows:
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1. Draw a sample X1, . . . , XN from gmt,Σt
with (mt,Σt) the current estimate of (m∗,Σ∗);

2. Compute the empirical ρ-quantile γt of the sample ϕ(X1), . . . , ϕ(XN ) and get a new
estimation mt+1 of the conditional mean m∗ by

mt+1 =
N∑

i=1

wiXi with wi =
w′

i∑
j w′

j

and w′
i = I{ϕ(Xi)≥γt}

f(Xi)

gmt,Σt
(Xi)

;

3. Define Yi = R⊤Xi where R⊤ = m⊤
t+1/‖mt+1‖: the Yi’s are the projections of the

Xi’s on span(mt+1), by linearity their weighted mean is equal to R⊤mt+1 = ‖mt+1‖;
4. Compute the variance v̂ in the direction of mt+1 through

v̂ =
N∑

i=1

wi(Yi − ‖mt+1‖)2;

5. Get a new estimation Σt+1 of Σ∗ by considering a variance of v̂ in the direction of
mt+1 and a unit variance In−1 in its orthogonal: as will be discussed below, this
amounts to taking Σt+1 = In + (v̂ − 1)RR⊤.

The only difference between CE (Algorithm 3) and CE-m∗ (Algorithm 1) is step 9 of
CE-m∗: in CE, one estimates the whole covariance matrix through

Σt+1 =
N∑

i=1

wi(Xi − mt+1)(Xi − mt+1)
⊤

whereas in CE-m∗, one only estimates a scalar

v̂ =
N∑

i=1

wi(Yi − ‖mt+1‖)2

and then uses Σt+1 = In + (v̂ − 1)mt+1m⊤
t+1/‖mt+1‖2 (actually, with an additional εIn

term, see Remark 2 below). The number of parameters to be estimated in CE-m∗ thus
reduces from 1

2n(n + 3) in CE to n + 1.
Having the variance updated in only one direction d ∈ R

n amounts to seeking an
auxiliary density of the form X = µ+σGd+R⊥G⊥ with G ∼ N (0, 1) and G⊥ ∼ N (0, In−1)
independent standard Gaussian vectors in dimension one and n − 1, respectively, σ2 the
variance of X in the direction of d and R⊥ : Rn−1 → R

n that lifts a vector expressed
in the basis of span(d)⊥ (the orthogonal of the vector space spanned by d) to span(d)⊥,
which satisfies dd⊤ + R⊥R⊤

⊥ = In. From the expression X = µ + σGd + R⊥G⊥, one gets
that X follows an n-dimensional Gaussian distribution with mean µ and covariance

Var(X) = σ2dd⊤ + R⊥R⊤
⊥ = In + (σ2 − 1)dd⊤

which justifies the update rule for Σt+1 in step 9 of CE-m∗.

Remark 2. As can be seen in Algorithms 1 and 2, we actually update Σt+1 through
Σt+1 = (1+ε)In+(v̂−1)RR⊤: the additional εIn term is here to avoid degeneracy problems
due to numerical rounding errors. This numerical trick is also used in the implementation
of CE and iCE available on the authors’ website [40]. In all our simulations the value of ε
is set to ε = 10−6.
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Algorithm 1: Proposed algorithm: CE-m∗ = CE + projection on span(m∗).

Data: parameter ρ ∈ (0, 1), sample size N
Result: Estimation P̂ of the failure probability Pf (ϕ(X) ≥ 0)

1 Initialization: set t = 0, mt = 0 and Σt = In;
2 Generate X1, . . . , XN independently according to gmt,Σt

and define Lt = f/gmt,Σt
;

3 Compute ϕi = ϕ(Xi) for i = 1, . . . , N ;
4 Sort them in ascending order : ϕ(1) ≤ · · · ≤ ϕ(N), and set γt = ϕ(⌊(1−ρ)N⌋);

5 Compute the weights wi = w′
i/

∑
j w′

j with w′
i = I{ϕi≥γt}Lt(Xi);

6 while γt < 0 do

7 Compute mt+1 =
∑N

i=1 wiXi;

8 Define R⊤ = m⊤
t+1/‖mt+1‖ ∈ R

1×n the projection on span(mt+1);

9 Compute the projected samples Yi = R⊤Xi and their conditional variance

v̂ =
∑N

i=1 wi(Yi − ‖mt+1‖)2 and set Σt+1 = (v̂ − 1)RR⊤ + (1 + ε)In;
10 Set t ←− t + 1;
11 Repeat Steps 2, 3, 4 and 5 ;

12 end

13 Return P̂ =
1

N

N∑

i=1

I{ϕ(Xi)≥0}Lt(Xi).

Remark 3. As for the CE and iCE algorithms, it is possible to use a smoothed updating
procedure (see remark 1) in CE-m∗ and iCE-m∗. In this paper, the parameters are not
updated with the smoothing rule in the simulations proposed in this article, since it does
not improve the results significantly.

Remark 4. The auxiliary family {gm,Σ}m∈Rn,Σ∈D+n amounts to only evaluating variance
terms in the n canonical directions of Rn. As such, it is of the same nature than the
algorithms CE-m∗ and iCE-m∗ that we propose here, i.e., it seeks to improve results by
projecting. However, the details differ significantly: although we propose here to project
on one adaptive direction, using {gm,Σ}m∈Rn,Σ∈D+n amounts to projecting on n static di-
rections. As will be seen below, CE-m∗ and iCE-m∗ behave better than {gm,Σ}m∈Rn,Σ∈D+n ,
which suggests that it is better to have a smaller number of carefully chosen directions,
rather than using many directions but which are not adapted to the samples.

3.3. Justification

The idea of CE-m∗, and other projection algorithms such as [30], is to only estimate
variance parameters in relevant directions. In [30] the choice of the directions is suggested
by a theoretical result which provides an upper bound on the KL divergence. However,
the computation of these directions requires to compute the gradient of the limit-state
function which presents two drawbacks: 1) the limit-state function needs to be differen-
tiable and 2) computing its gradient is often expensive (and sometimes even out of reach).
In comparison, the advantage of CE-m∗ is twofold: 1) the gradient need not be computed:
this can save a significant amount of simulation budget, and makes the method applica-
ble even if the performance function is not differentiable (which is for instance the case

10



Algorithm 2: Proposed algorithm: iCE-m∗ = iCE + projection on span(m∗).
Data: parameter δtarget, sample size N
Result: Estimation P̂ of the failure probability Pf (ϕ(X) ≥ 0)

1 Initialization: set t = 0, mt = 0, Σt = In and σt = ∞;
2 Generate X1, . . . , XN independently according to gmt,Σt

and define Lt = f/gmt,Σt
;

3 Compute ϕi = ϕ(Xi) for i = 1, . . . , N ;
4 Compute ĉv the empirical coefficient of variation of the I{ϕi≥0}/F (ϕi/σt);

5 while ĉv ≥ δtarget do

6 Compute σt+1 = argmin(δ̂t(σ) − δtarget)
2 where the minimum is taken over

σ ∈ (0, σt) and δ̂t(σ) is the coefficient of variation of the F (ϕi/σ)Lt(Xi) with
Lt = f/gmt,Σt

;
7 Compute the weights wi = w′

i/
∑

j w′
j with w′

i = F (ϕi/σt+1)Lt(Xi);

8 Compute mt+1 =
∑N

i=1 wiXi and set R = mt+1/‖mt+1‖;
9 Compute the projected samples Yi = R⊤Xi and their conditional variance

v̂ =
∑N

i=1 wi(Yi − ‖m′
t+1‖)2 and set Σt+1 = (v̂ − 1)RR⊤ + (1 + ε)In;

10 Set t ←− t + 1;
11 Repeat Steps 2, 3 and 4;

12 end

13 Return P̂ =
1

N

N∑

i=1

I{ϕ(Xi)≥0}Lt(Xi).

for the financial application considered in Section 4.3); and 2) it is extremely simple, in
particular there is no additional model evaluation compared to CE. Last but not least, in
high dimension where CE behaves poorly, it can significantly improve the performance.

At a high level, a good direction in which to project the random variable X|ϕ(X) ≥ 0
(and thus estimate its variance) is a direction in which its variance is significantly different
from the variance of the initial density of X, i.e 1 : indeed, this means that the conditioning
by the limit state function plays a role on the resulting variance, in contrast to what
happens in directions where the variance remains close to a unit value. We notice in the
simulations that it is indeed the case for the direction m∗, i.e., in all the test cases that
we considered, the variance in the direction of m∗ is systematically smaller than one. The
reason for that lies in the very light tail of the Gaussian distribution which makes the
variance of the overshoot very small. More precisely, if X is normally distributed, then
conditionally on X > S we have for large S the asymptotic expansion X ≈ S +E/S with
E an exponential random variable. More formally, by considering Laplace transforms, it
is easy to establish that S(X − S) conditionally on X > S converges in distribution to an
exponential random variable from which we can show that the variance of X conditional
on X > S goes to 0 as S → ∞. We illustrate this situation in Figure 2, where we simulate
with acceptance-rejection 20 samples of a standard normal variable X knowing that X > S
for an increasing sequence of thresholds S. The variance of the resulting samples tends to
0 as S increases.

This behavior is relevant for our purposes because by construction, m∗ is the direction
to which the CE “pushes” the sample, and so heuristically this direction points toward the
failure domain. Because of the light tail property of the normal distribution and because
the updated variance is only computed on the “overshoots”, i.e., the points exceeding the
border of the failure domain, it is natural that the variance in the direction of m∗ decreases.

11
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Figure 2: 20 standard normal samples conditionally to be greater than three different thresholds in dimen-
sion 1.

Note that this heuristic argument relies on the unimodal nature of the failure domain (see
Section 2.5), since otherwise it can easily be put in default (consider for instance the
one-dimensional case ϕ(x) = |x| − 10 where the conditional variance actually increases).
Note also that this unimodal underlying assumption also intuitively guarantees that the
conditional mean m∗ is non-zero, thereby leading to a proper definition of the projection
on its span.

Consistent with our choice of auxiliary family, it is therefore natural that the variance
decreases in the direction of m∗, which makes it a good direction to estimate the variance.
This does not mean that it is always the best direction, and we provide indeed an example
in Section 4.4 where, for instance, m∗ = ‖m∗‖e1 while the best direction (the one in which
the variance evolves the most) is e2. However, even in this case, CE-m∗ is more efficient
than CE in high dimension (updating the full covariance matrix or only the diagonal), see
Section 4.4 for more details.

4. Numerical Results

We compare the two proposed algorithms CE-m∗ and iCE-m∗ to CE and iCE, with
full covariance matrix and diagonal covariance, on four examples. The cross-entropy al-
gorithms updating only the diagonal of the covariance are named CEd and iCEd, while
the ones updating the full covariance are still called CE and iCE. The first example is the
linear model already considered above, which illustrates the performance of our algorithms
on a simple case where CE has already been shown to fail. The second example considers
a modified Ackley function [41], which is a classical test case in optimization. The third
example considers an example from finance (see [15, 42]), with a limit-state function which
is not differentiable. Finally, the last example considers a simple parabolic function that
illustrates potential limits of our methods, and thus also ways of improvement.

In all simulations we use ρ = 0.1 for CE and δ = 1.5 for iCE, which are classical choices
recommended by the authors in [12] and [13], ρ = 0.1 for CE-m∗ and CEd, and δ = 3 for
iCE-m∗ and iCEd. For our proposed algorithms, the parameters were selected empirically
as the parameters giving the most accurate results. As mentioned in Remarks 1 and 3,
all the algorithms are performed without smoothing. The sample size may vary from one
algorithm to another because the number of iterations may be different, and it is chosen
so that the total average simulation budget of the different algorithms is the same (around
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8,000). Each algorithm is repeated 100 times, which produces a sample P̂1, . . . , P̂100 of
100 independent copies of P̂ . In the following tables we report five quantities: the mean
estimation, the coefficient of variation, the relative bias, the sample size N and the average
simulation budget of these 100 samples. When P is known they are defined as

Mean =
1

100

100∑

k=1

P̂k, C.o.V. =

√
1

100

∑100
k=1(P̂k − P )2

P
and Relative bias =

Mean − P

P
,

and when P is unknown then it is first-hand estimated by a crude Monte Carlo method
with a high simulation budget.

Moreover, we set the maximum number of iterations of the algorithm to 10: if after 10
iterations the algorithm did not stop, we report NC (No Convergence) in the tables. As
will be seen below, this is systematically the case for CE and iCE for dimensions 100 and
above. Heuristically, if the algorithm does not converge, this means that it did not manage
to build an auxiliary density which samples sufficiently often in the failure domain. This
may essentially be due to three reasons:

1. either because the estimated mean mt does not bring the sample close enough to the
failure domain: this can typically happen in all six algorithms because the variance
decreases, so that increments mt+1 − mt become small and the algorithm gets stuck;

2. or because the weights are collapsing quickly to 0, hence the estimations in (4) are
not even possible because of divisions by 0; this mainly happens in CEd and iCEd
for very high dimension in our examples;

3. or mt gets close to the failure domain, but the variance does not “fit” the failure
domain: this can typically happen in CE-m∗ and iCE-m∗ because m∗ is not good
enough as a direction of projection (see Remark 5 in Section 4.4).

We have to note that the non-convergence of these algorithms for the two first reasons
can sometimes be avoided with a smoothing procedure or by varying the parameters
ρ (for the CE-based methods), and δ (for the iCE-based methods), but the estimation
results stay very inaccurate. Indeed, with a smoothing parameter α between 0.5 and
0.7 the algorithms can converge in less than 10 iterations, and with a simulation budget
around 8000, but the probability estimation is far from the true probability (often less
than 10−10 instead of ≃ 10−3). In the same way, decreasing ρ (or increasing δ for iCE)
can make the algorithms converge quickly but the probabilities are almost equal to 0,
since the estimations are computed with very small samples (e.g. ρN with ρ = 0.01 and
N = 4000). Conversely, increasing ρ (or decreasing δ) does not allow to converge and adds
some unnecessary iterations.

4.1. Toy example: sum of independent variables

First we come back to the linear case (6) of Section 3.1 where ϕ(x) ≈ ∑n
j=1 xj − 3

√
n

and P = P(ϕ(X) ≥ 0) = 1.35 · 10−3, for all dimension n. We already saw in Figure 1
that the performance of CE and iCE degrades significantly as the dimension n increases.
Figure 1 also presents results for CE-m∗, iCE-m∗, CEd and iCEd (in dotted lines) which
are indistinguishable from those obtained by, for instance, CE with the optimal auxiliary
density gm∗,Σ∗ . This shows that projecting on m∗ stabilizes the estimation up to the
dimension n = 60 considered in this figure. However, CEd and iCEd have also similar
performance on this test case.
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iCE iCE-m∗ iCEd CE CE-m∗ CEd

n = 30
Mean (×10−3) 0.011 1.35 1.36 5.8 · 10−5 1.34 1.35

P = 1.35 · 10−3
C.o.V. 99% 2.6% 5.1% 100% 4.6% 5.8%

Relative bias −99% −0.1% 0.9% −100% −0.5% 0.4%

Sample size 1,000 2,700 3,700 1,000 2,700 3,400

Simu. budget 8,500 8,000 8,000 8,300 8,100 8,000

n = 100
Mean (×10−3) NC 1.35 1.36 NC 1.35 1.37

P = 1.35 · 10−3
C.o.V. NC 4.6% 6.8% NC 4.4% 7.4%

Relative bias NC 0.04% 0.9% NC −0.08% 1.1%

Sample size NC 2,900 3,700 NC 2,700 3,600

Simu. budget NC 8,000 8,100 NC 8,100 8,100

n = 300
Mean (×10−3) NC 1.35 1.36 NC 1.34 1.31

P = 1.35 · 10−3
C.o.V. NC 7.3% 11.2% NC 12.6% 27.6%

Relative bias NC −0.2% 0.6% NC −0.8% −3.2%

Sample size NC 4,000 3,700 NC 2,700 3,700

Simu. budget NC 8,000 8,000 NC 8,100 8,000

Table 1: Simulation results when ϕ is given by the sum of coordinates (6). Recall that NC means no
convergence, see beginning of Section 4.

We report in Table 1 quantitative results for dimensions n = 30, 100 and 300. As
suggested by Figure 1, even for dimension n = 30 both CE and iCE provide inaccurate
estimates with almost −100% relative bias, meaning that almost no sample falls in the
failure domain, whereas for the same dimension, the relative bias of the other algorithms is
less than 1% with coefficients of variation between 2 and 6%. In dimensions n = 100 and
300, CE and iCE fail to converge. In sharp contrast, the performance of CE-m∗ and iCE-
m∗ remains very good, with relative bias less than 1% and coefficient of variation between
4 and 13%. The C.o.V. and the relative bias of CEd and iCEd are slightly larger than
for CE-m∗ and iCE-m∗ respectively, in dimension n = 100. For n = 300, iCEd is again
slightly less efficient than iCE-m∗ (C.o.V. equal to 11.2% against 7.3%, and similar relative
bias), and CEd is clearly less accurate than CE-m∗ since the coefficient of variation is twice
larger. We suggest that CE-m∗ is better than CEd in high dimension because CEd updates
more parameters which are not influential on the estimation and involve more estimation
errors whereas CE-m∗ updates the variance in the optimal direction. We note that on this
example, iCE-m∗ and iCEd perform better than CE-m∗ and CEd respectively, with lower
or comparable coefficient of variation and lower relative bias. Moreover, iCE-m∗ converges
faster (with less iterations) which makes its sample size larger in dimension n = 300.

4.2. Application in optimization: modified Ackley function

The Ackley function [41] is a non-convex function widely used to test optimization
algorithms that we use here to test the performance of CE-m∗ and iCE-m∗ against the
dimension. Thus we consider

ϕ(x) = 20 exp


−0.2

√√√√ 1

n

n∑

j=1

(ajxj − 3)2


 + exp


 1

n

n∑

j=1

cos (2π(ajxj − 3))


 − cn (7)
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iCE iCE-m∗ iCEd CE CE-m∗ CEd

n = 30
Mean (×10−3) 1.23 1.62 1.65 0.92 1.62 1.66

P = 1.64 · 10−3
C.o.V. 89% 7.6% 9.0% 75% 13.2% 9.9%

Relative bias −24.7% −1.1% 0.6% −43.9% −1.2% 0.9%

Sample size 1,000 2,700 2,700 2,700 2,200 2,700

Simu. budget 8,100 8,000 8,100 8,100 8,000 8,100

n = 100
Mean (×10−3) NC 1.17 1.19 NC 1.22 1.20

P = 1.18 · 10−3
C.o.V. NC 13.0% 10.0% NC 29.4% 21.4%

Relative bias NC −1.2% 0.9% NC 3.4% 1.6%

Sample size NC 2,700 2,700 NC 2,200 2,700

Simu. budget NC 8,100 8,100 NC 8,000 8,100

n = 200
Mean (×10−3) NC 1.71 1.69 NC 1.72 1.82

P = 1.72 · 10−3
C.o.V. NC 9.1% 11.6% NC 26.9% 120%

Relative bias NC −0.5% −1.5% NC −0.05% 5.7%

Sample size NC 2,700 2,700 NC 2,700 3,700

Simu. budget NC 8,100 8,000 NC 8,100 8,000

Table 2: Simulation results when ϕ is given by the modified Ackley function (7).

with a = (a1, . . . , an) = 2
n(0, 1, 2, . . . , n − 1) ∈ R

n a fixed vector and cn a real-valued
constant depending on the dimension that we adjust in order to choose the value of the
probability. The standard Ackley function corresponds to ai = 1 for all i: for this choice,
symmetry considerations imply that m∗ = ‖m∗‖(1, . . . , 1) is the vector where all coor-
dinates are equal. This is the same as in the previous example, and we introduce the
additional parameter a in order to break this symmetry. Indeed, we can numerically esti-
mate m∗ = (m∗

1, . . . , m∗
n), for instance by brute force Monte Carlo with a large simulation

budget, and we get m∗
1 ≈ 0.01 < m∗

2 < · · · < m∗
n ≈ 0.46. In addition, the function does

not depend on the first variable x1, since a1 = 0. We plot the 2-dimensional modified
Ackley function in Figure 3, and its projection in the plane {x1 = 0}. The failure domain
corresponds to the points (x1, x2) such that ϕ(x1, x2) ≥ 0, i.e. values of x2 such that the
blue curve is above the red line on the right graph of Figure 3, since the function does not
depend on x1.

The results are given in Table 2 and are qualitatively similar to those of the previous
example with the sum: for dimension n = 30, CE and iCE give poor results (although
better than for the sum, the absolute relative bias being between 25 and 45%) while CE-
m∗, iCE-m∗, CEd, and iCEd give good estimation with a relative bias of 1% or less and
coefficient of variation between 7 and 13%. As the dimension increases CE and iCE do
not converge and the results for CE-m∗, iCE-m∗, and iCEd stay qualitatively similar: the
relative bias remains small, between 1 and 3%, and the coefficient of variation between 9
and 30%. CEd is also very close to CE-m∗ in dimension n = 30 and 100, and even a little
more accurate (since the C.o.V. and the relative bias are smaller), however, in dimension
n = 200, CEd has large coefficient of variation (120%) and relative bias (5.7%) contrary
to CE-m∗. Then, CEd seems to be less efficient than CE-m∗ in high dimension because
it estimates too many non-influential parameters. Similarly as for the sum, we note that
the iCE-based methods perform better than the ones based on CE.
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Figure 3: 2-dimensional modified Ackley function 7 (left) and the projection in the plane {x1 = 0} (right).
The failure threshold is represented by the red line.

4.3. Application in finance: large portfolio losses

iCE iCE-m∗ iCEd CE CE-m∗ CEd

n = 30
Mean (×10−3) 0.0028 4.29 4.38 2.7 4.24 4.32

P = 4.29 · 10−3
C.o.V. 100% 10.1% 8.1% 54% 7.2% 9.0%

Relative bias −100% −0.06% 2.1% −37% −1.3% 0.8%

Sample size 1,000 2,700 3,200 2,600 2,700 2,700

Simu. budget 8,400 7,900 8,000 8,000 8,100 8,100

n = 100
Mean (×10−3) NC 1.9 1.8 NC 1.8 1.8

P = 1.8 · 10−3
C.o.V. NC 8.5% 7.1% NC 8.4% 14.4%

Relative bias NC 3.0% 2.0% NC 1.3% −1.8%

Sample size NC 3,000 2,700 NC 2,700 2,700

Simu. budget NC 8,000 8,000 NC 8,100 8,100

n = 250
Mean (×10−5) NC 1.01 0.049 NC 0.94 NC

P = 1.0 · 10−5
C.o.V. NC 110% 98% NC 60% NC

Relative bias NC 1.0% −95% NC −5.9% NC

Sample size NC 1,600 1,500 NC 2,100 NC

Simu. budget NC 8,000 8,000 NC 8,100 NC

Table 3: Simulation results when ϕ is given by the portfolio loss function (8).

Next we consider a financial application taken from [15, 42]. In this example, the
failure probability is P = P(L(Z) > bn), where L is a loss function defined by

L(z) =
n∑

j=1

I{zj≥0.5
√

n}.

We choose b = 0.45 when n = 30, and b = 0.25 when n = 100 and 250. The entries Zj are
dependent real variables defined by

Zj =
(
qU + (1 − q2)1/2ηj

)
µ−1/2
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where U ∼ N (0, 1), ηj ∼ N (0, 9), j = 1, . . . , n, µ ∼ Gamma(6, 6) are all independent
variables, and q = 0.25. The same realisation of U and µ is considered for the computation
of all the variables Zj . In our methods, as we work only with normal distributions and
our initial density f has to be standard normal, we set ηj = 3η̃j , for all j = 1, . . . n
and µ = F −1

Γ (FN (µ̃)) with η̃j , µ̃ independent standard normal variables and FΓ, FN the
cumulative distribution functions of the Gamma(6, 6) and N (0, 1) respectively. Hence, if
we set X1 = U, X2 = µ̃ and (X3, . . . , Xn+2) = η̃ ∈ R

n and we define

ϕ(X) =
n∑

j=1

I{ψ(U,µ̃,η̃j)≥0.5
√

n} − bn (8)

with

ψ(U, µ̃, η̃j) =
(
qU + 3(1 − q2)1/2η̃j

) [
F −1

Γ (FN (µ̃))
]−1/2

then the sought probability P = P(L(Z) > bn) gets rewritten as P = P(ϕ(X) > 0) with
X a standard Gaussian vector in dimension n+2. Then we test the performance of CE-m∗

and iCE-m∗ against CE, iCE, CEd and iCEd for dimension n = 30, 100 and 250. Results
are gathered in Table 3.

Similarly as in the previous examples, iCE fails in dimension n = 30 while CE leads to
an inaccurate estimate with a relative bias of −37% and a coefficient of variation of 54%.
For the same dimension and with a similar simulation budget, CE-m∗, iCE-m∗, CEd and
iCEd give an estimation with relative bias less than 2% and coefficient of variation less
than 10%. In dimension n = 100, CE and iCE fail to converge while the four other
algorithms remain accurate with a relative bias less than 3% and a coefficient of variation
of 8%, except CEd which has 14.4% of C.o.V. and is slightly less accurate. Although
CE-m∗ and iCE-m∗ behave similarly in dimension n = 30 and 100, in dimension n = 250
CE-m∗ behaves better than iCE-m∗ with a comparable relative bias (6% vs. 1%) but a
coefficient of variation which is twice smaller (60% vs. 110%). On the other hand, in
dimension n = 250, we observe that CEd doesn’t converge because of the fast weight
degeneracy to 0, and iCEd fail to estimate accurately the probability with a relative bias
of −95%.

4.4. Example where m∗ is not the best direction

We conclude this numerical section with an example showing the robustness of CE-m∗

and iCE-m∗. This is an example where, although m∗ is clearly not the best direction in
which to estimate the variance, they do still improve on CE and iCE in high dimension.
Consider the function

ϕ(x) = x1 − 3x2
2 − 3, x ∈ R

n (9)

whose failure domain is represented in Figure 4. By symmetry it is clear that under
the optimal auxiliary density g∗, which is the distribution conditional on failure, the
average m∗ is of the form m∗ = αe1 with α ≈ 3.4 numerically evaluated and the variance Σ∗

is equal to the identity, except for the variance terms associated to the first two coordinates,
which can be numerically estimated to Σ∗

11 ≈ 0.095 and Σ∗
22 ≈ 0.044. Once the mean is

within the failure domain, it is clear that one should decrease the variance in the direction
of e2 because the failure domain is quite narrow in this direction, as is reflected by the fact
that Σ∗

22 < Σ∗
11. And indeed, one can check that IS with such an auxiliary density behaves

better. However, CE-m∗ only updates the variance in the (approximate) direction of e1
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Figure 4: Projection on the (x1, x2) plane of the failure domain of the function ϕ(x) = x1 − 3x22 − 3
considered in (9) and the samples of every iteration of CE (left) and CE-m∗ (right), with dimension
n = 100. Since ϕ does not depend on other coordinates, the full failure domain is a tube around this
two-dimensional shape.

and not e2, so the density is not optimal to estimate the probability of failure, as we can
see in Figure 4. Nevertheless, in high dimension CE-m∗ converges and is able to estimate
the probability whereas CE doesn’t because of the fast covariance matrix shrinkage. From
a theoretical point of view, we do not fully understand why the covariance matrix collapses
for CE and CE-m∗. Preliminary investigation suggests that this has to do with errors made
in covariance terms, which are larger for CE than CE-m∗. The reason why CE-m∗ avoids
the covariance matrix shrinkage problem constitutes in our view an interesting research
question.

We can see it in the simulation results given in Table 4. Similarly to the previous
examples, in dimension n = 30, CE and iCE already give inaccurate estimations with
100% of coefficient of variation and −100% of relative bias, whereas CE-m∗ and iCE-m∗

are very efficient (around 11% of coefficient of variation and between 0.5 and 1% of relative
bias). iCEd is even more accurate with 5.2% of C.o.V. and 0.2% of relative bias but CEd
isn’t so efficient since its coefficient of variation is 37% and its relative bias is −11%. For
higher dimension, CE and iCE fail to converge. In dimension n = 100, iCE-m∗ and iCEd
are still very accurate with a coefficient of variation between 7 and 12%, whereas CE-
m∗ and CEd gives 28.3% and 87% of C.o.V. respectively. CEd is particularly inaccurate
since its relative bias is −52%, while the three other convergent algorithms have a relative
bias lower than 1.3%. For dimension n = 300, iCEd and CEd doesn’t converge anymore,
because of the weight degeneracy, whereas CE-m∗ and iCE-m∗ are still able to estimate
the probability with a small relative bias (−1.5% and 3.5% respectively), although the
coefficient of variation can be large, especially for CE-m∗ (88% against 29% for iCE-m∗).

Hence, although m∗ is not the optimal direction to estimate the covariance matrix, this
example shows that CE-m∗ and iCE-m∗ are able to efficiently estimate the probability in
high dimension while CE, iCE, CEd and iCEd fail.

Remark 5. If we consider a narrower parabola, (for example with ϕ(x) = x1 − 25x2
2 − 3),

then CE-m∗ is not converging anymore. Indeed, in such cases the final density does not
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iCE iCE-m∗ iCEd CE CE-m∗ CEd

n = 30
Mean (×10−4) 2 · 10−6 2.9 2.9 9 · 10−8 2.9 2.6

P = 2.9 · 10−4
C.o.V. 100% 11.4% 5.2% 100% 11.2% 37%

Relative bias −100% 1.0% 0.2% −100% 0.5% −11%

Sample size 1,000 2,700 2,700 1,000 1,600 2,000

Simu. budget 8,800 8,000 8,100 8,800 7,900 8,000

n = 100
Mean (×10−4) NC 2.9 2.9 NC 3.0 1.4

P = 2.9 · 10−4
C.o.V. NC 11.3% 7.2% NC 28.3% 87%

Relative bias NC 1.1% −0.3% NC 1.3% −52%

Sample size NC 2,700 2,600 NC 1,900 2,000

Simu. budget NC 8,000 8,000 NC 8,100 8,000

n = 300
Mean (×10−4) NC 3.0 NC NC 2.9 NC

P = 2.9 · 10−4
C.o.V. NC 29.2% NC NC 88% NC

Relative bias NC 3.5% NC NC −1.5% NC

Sample size NC 2,300 NC NC 2,400 NC

Simu. budget NC 8,100 NC NC 8,000 NC

Table 4: Simulation results when ϕ is given by the parabola function (9).

“fit” the failure domain and most of the samples fall outside the domain. This happens
because m∗ is not the best direction in which updating the covariance matrix. So this is a
case where CE-m∗ does not improve CE performance. However, CE, CEd, iCE and iCEd
do not converge either in high dimension on this example. Moreover, in high dimension,
we did not find any test case (satisfying the unimodal assumption) where CE-m∗ degrades
CE performance. And as shown in the above numerical examples, most of the times it
greatly improves it.

5. Conclusion

In this paper, we present a new CE-based importance sampling method using a one-
dimensional projection that provides accurate estimation of rare event probabilities in high
dimension, provided the target optimal auxiliary density is unimodal. At each step of the
algorithm, the idea is to only estimate variance and covariance terms in the direction of
the current estimate of the best auxiliary parameter m∗: the light tail of the Gaussian
distribution guarantees that the variance decreases in this direction which ensures that
there will be more information than noise in estimating the variance in this direction.
Empirically, our results show that, in high dimension, it is much more efficient to only
estimate variance terms in one “good” direction than blindly in the whole space as is done
in CE, or to estimate the variance diagonal terms (as in CEd). Although extremely simple,
our algorithm turns out to be very efficient, all the more considered that it does not require
gradient estimation. Indeed, we find that it cannot degrade CE performance and that in
most cases, it actually greatly improves it, typically providing accurate estimates where
CE simply failed to converge. Moreover, in moderately high dimension (say until 100),
CE-m∗ is as efficient as CEd, and it is often more accurate in higher dimension (more than
200).

This method opens many interesting research direction which we aim to pursue. First,
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it would be interesting to get stronger theoretical justification of the accuracy and ro-
bustness of our algorithm. It seems in particular that it avoids the well-known shrinkage
problem of CE because it estimates less covariance terms, and it would be interesting to
confirm this hypothesis. Moreover, the intuition behind the choice of m∗ as a direction to
project could be deepened to select alternative, possibly better directions. The intuition
being that the variance evolves in the direction of m∗, this naturally suggests to look at
specific eigenvalues of the covariance matrix, which we are currently investigating. Fi-
nally, it would be interesting to extend our approach to the multi-modal case by trying to
combine it with existing algorithms developed in this case in low dimensions.

Appendix A.

In this appendix we simply recall the basic CE and iCE algorithms.

Algorithm 3: CE method [11]

Data: parameter ρ ∈ (0, 1), and sample size N
Result: Estimation P̂ of the failure probability Pf (ϕ(X) ≥ 0)

1 Initialization: set t = 0, mt = 0 and Σt = In;
2 Generate X1, . . . , XN independently according to gmt,Σt

;
3 Compute ϕi = ϕ(Xi);
4 Sort the samples in ascending order: ϕ(1) ≤ · · · ≤ ϕ(N), and set γt = ϕ(⌊(1−ρ)N⌋);

5 Compute the weights wi = w′
i/

∑n
j=1 w′

j with w′
i = I{ϕi≥γt}Lt(Xi);

6 while γt < 0 do

7 Compute mt+1 =
∑N

i=1 wiXi and Σt+1 =
∑N

i=1 wi(Xi − mt+1)(Xi − mt+1)
⊤;

8 Set t ←− t + 1;
9 Repeat Steps 2, 3, 4 and 5;

10 end

11 Return P̂ =
1

N

N∑

i=1

I{ϕ(Xi)≥0}Lt(Xi).
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Algorithm 4: Improved CE method of [13].

Data: parameter δtarget, sample size N
Result: Estimation P̂ of the failure probability Pf (ϕ(X) ≥ 0)

1 Initialization: set t = 0, mt = 0, Σt = In and σt = ∞;
2 Generate X1, . . . , XN independently according to gmt,Σt

;
3 Compute ϕi = ϕ(Xi) for i = 1, . . . , N ;
4 Compute ĉv the empirical coefficient of variation of the I{ϕi≥0}/F (ϕi/σt);

5 while ĉv ≥ δtarget do

6 Compute σt+1 = argmin(δ̂t(σ) − δtarget)
2 where the minimum is taken over

σ ∈ (0, σt) and δ̂t(σ) is the coefficient of variation of the F (ϕi/σ)Lt(Xi) with
Lt = f/gmt,Σt

;
7 Compute the weights wi = w′

i/
∑

j w′
j with w′

i = F (ϕi/σt+1)Lt(Xi);

8 Compute mt+1 =
∑N

i=1 wiXi and Σt+1 =
∑N

i=1 wi(Xi − mt+1)(Xi − mt+1)
⊤;

9 Set t ←− t + 1;
10 Repeat Steps 2, 3 and 4;

11 end

12 Return P̂ =
1

N

N∑

i=1

I{ϕ(Xi)≥0}Lt(Xi).
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