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A B S T R A C T

This paper studies the stability of a two-dimensional controlled airfoil system with time delay. First of all,
a hybrid approach based on the frequency sweep test and the eigenvalue problem approximation using the
Taylor series expansion of the delayed term is proposed to predict the critical time delay as well as the angular
frequency of flutter instability. The efficiency of the proposed approach is illustrated by numerical examples for
the prediction of self-sustaining vibrations of a phenomenological airfoil model with two degrees of freedom.
One point of interest is to bring an understanding of the physical phenomena of the dynamic behavior involved
in the appearance of flutter for the controlled airfoil system with time delay. Numerical results indicate that
although one active controller is effective in suppressing airfoil flutter in a controlled system without time
delay, control failure may happen depending on the time delay in control design. Secondly not only the
effectiveness but also some drawbacks of two proposed controllers, namely the linear quadratic regulator
state-feedback controller and the pole placement approach, are discussed through numerical simulations.
1. Introduction

Flutter is one of the classical problems of self-excited systems and
one of the most important instability phenomenon in aeroelasticity.
Due to interaction between the structural dynamic of the mechanical
airfoil system and the surrounding airflow, instability due to flutter can
occur, leading to a reduction in aircraft performance and, in the worst
case, catastrophic failure of the structure.

Several solutions based on passive or active vibration control (Bor-
glund and Kuttenkeuler, 2002; Lee et al., 2007; Tsushima and Su, 2017;
Malher et al., 2017; Ouyang et al., 2021) have been recommended
and studied for the suppression of flutter instability. The use of active
feedback control has attracted the attention of many researchers (Ko
et al., 1999; Platanitis and Strganac, 2004; Bhoi and Singh, 2005). A
brief review on the available linear and nonlinear control techniques
and capabilities for aeroelastic structural systems can also be found
in Librescu and Marzocca (2005). Generally speaking the first step in
engineering is to consider idealized controls for which no time delay
is considered. In reality, time delays are often encountered in various
engineering systems with active control. Some short time delays in
control loop are unavoidable because of the dynamics involved in
feedback controls to stabilize a system and the time it takes for effects
to propagate through system components. It is well-known that the
presence of this time delay may result in degradation in the control

∗ Correspondence to: Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513, École Centrale de Lyon, 69134 Écully, France.
E-mail address: jean-jacques.sinou@ec-lyon.fr.

efficiency and instability of the control system. Therefore, it is crucial
to understand the effect of delays on the control system and the
potential conditions for the unwanted occurrence of flutter instability in
a controlled airfoil system. This topic has been the subject of particular
attention by some researchers in recent years (Ramesh and Narayanan,
2001; Yuan et al., 2004; Librescu et al., 2005; Zhao, 2009, 2011; Luo
et al., 2016).

From a theoretical point of view, the introduction of time delay
in the dynamic equation of a mechanical system leads to a more
complex analysis than in the case of the delay-free controlled system.
Indeed, in the case of a linear time-invariant system, the characteristic
equation becomes transcendental because of the exponential functions
associated with the time-delays. To overcome this difficulty, a number
of methodologies have been proposed to assess the stability of time-
delay systems. In the present work, we use the classical substitute for
the exponential time-delay terms by considering the approximation
based on Taylor series expansion in the characteristic equation with
time delay. One of the originality of the proposed work is to answer
this question by using a hybrid strategy (Sinou and Chomette, 2021)
based on the combination of the frequency sweeping test (Gu et al.,
2003) with an expansion based approach of the delayed term for
approximating the eigenvalues problem.
vailable online 20 November 2021
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The second objective of the present work is to predict the flut-
ter instability of a controlled airfoil system with time delay and to
propose a discussion on the impact of two active controllers (i.e. the
Linear Quadratic Regulator (LQR) state-feedback controller and the
pole placement technique) on the critical time delay.

This paper is organized as follows. First of all, the airfoil model
without control and the associated stability analysis are briefly dis-
cussed. Secondly the dynamic equation of controlled airfoil flutter is
established by considering two strategies based on the LQR state feed-
back design or the pole placement technique. Then the stability analysis
of time-delay systems and more specifically the determination of the
critical time delay based on a hybrid approach are undertaken. Finally
simulation results are discussed to demonstrate the relevance of the
proposed hybrid approach for predicting efficiency flutter instability
of delay-controlled airfoil system. Additionally some comments are
given on the impact of the choice of controllers input parameters on
the value of the critical time delay for the controlled airfoil system
and, consequently, on the occurrence of the flutter instability and its
dynamic behavior.

2. Airfoil model and stability analysis without control

The mechanical system under study corresponds to a two-degrees-
of-freedom airfoil model subjected to quasi-steady aerodynamic load-
ing (Zhao, 2009), as shown in Fig. 1. Considering the two degrees of
freedom which are the plunging deflection ℎ (positive in the downward
direction) and the pitching angle 𝛼 about the elastic axis (positive nose
up), the aeroelastic equations of motion can be expressed as
[

𝑚 𝑚𝑥𝛼
𝑚𝑥𝛼 𝐼𝛼

] [

ℎ̈
�̈�

]

+
[

𝑐ℎ 0
0 𝑐𝛼

] [

ℎ̇
�̇�

]

+
[

𝑘ℎ 0
0 𝑘𝛼

] [

ℎ
𝛼

]

=
[

−𝐿𝑞𝑠
𝑇𝑞𝑠

]

(1)

where 𝐿𝑞𝑠 and 𝑇𝑞𝑠 are the quasi-steady aerodynamic lift and moment
that can be expressed for a two-dimensional and incompressible flow
such as

𝐿𝑞𝑠 = 𝜋𝜌𝑎𝑏𝑠𝑝
(

𝑏
(

ℎ̈ + 𝑉 �̇� − 𝑏�̄��̈�
)

+ 2𝑉
(

𝑉 𝛼 + ℎ̇ + 𝑏
( 1
2
− �̄�

)

�̇�
))

(2)

𝑇𝑞𝑠 = 𝜋𝜌𝑎𝑏
2𝑠𝑝

(

𝑏�̄�ℎ̈ − 𝑉 𝑏
(1
2
− �̄�

)

�̇� − 𝑏2
( 1
8
+ �̄�2

)

�̈�

+2𝑉
( 1
2
+ �̄�

)(

𝑉 𝛼 + ℎ̇ + 𝑏
( 1
2
− �̄�

)

�̇�
))

(3)

The definitions and values of all the parameters are given in Table 1. 𝑉
hat defines the flow speed of the airfoil system is classically considered
s the unfolding parameter for the determination of flutter instability
n airfoil structures. To be noted that the expression of the aerodynamic
odel and the aeroelastic forces in Eqs. (1), (2) and (3) come from the

riginal model of Theodorsen (1935). In the present case the simplified
roposed model is suitable for incompressible flow and by considering
he well known Theodorsen’s circulation function 𝐶 (𝑘) equal to 1
with the reduced frequency 𝑘 given by 𝑘 = 𝜔𝑏

𝑉 where 𝜔 is the
ircular frequency of the body motion, see for example Brunton and
owley, 2013 for more details). It is admitted that the quasi-steady
erodynamics conditions corresponds to 0 ≤ 𝑘 ≤ 0.05 which means
ore precisely that the unsteady effects are usually small.

The second-order differential equations describing the dynamic be-
avior of the system can be rewritten in the following matrix form

ẍ(𝑡) + Cẋ(𝑡) + Kx(𝑡) = 𝟎 (4)

here x = [ℎ 𝛼]𝑇 . The mass, damping and stiffness matrices (M,C,K)
include the contribution of the structural airfoil and the quasi-steady
aerodynamic lift and moment such as

M = M𝑠 +M𝑎𝑒𝑟𝑜 =
[

𝑚 𝑚𝑥𝛼
𝑚𝑥 𝐼

]

+

[

𝜋𝜌𝑎𝑏2𝑠𝑝 −𝜋𝜌𝑎𝑏3𝑠𝑝�̄�
−𝜋𝜌 𝑏3𝑠 �̄� 𝜋𝜌 𝑏4𝑠

(

1 + �̄�2
)

]

(5)
2

𝛼 𝛼 𝑎 𝑝 𝑎 𝑝 8
= C𝑠 + C𝑎𝑒𝑟𝑜 =
[

𝑐ℎ 0
0 𝑐𝛼

]

+
⎡

⎢

⎢

⎣
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1
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(

1
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)
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(

1
2 − �̄�

)

⎤

⎥

⎥

⎦

(6)

K = K𝑠 + K𝑎𝑒𝑟𝑜 =
[

𝑘ℎ 0
0 𝑘𝛼

]

+

[

0 2𝜋𝜌𝑎𝑏𝑠𝑝𝑉 2

0 −2𝜋𝜌𝑎𝑏2𝑠𝑝𝑉 2
(

1
2 + �̄�

)

]

(7)

where M𝑠, C𝑠 and K𝑠 defined the structural mass, damping and stiffness
matrices, respectively (we have M𝑠 = M𝑇

𝑠 , C𝑠 = C𝑇𝑠 and K𝑠 = K𝑇
𝑠 )

while the matrices M𝑎𝑒𝑟𝑜, C𝑎𝑒𝑟𝑜 and K𝑎𝑒𝑟𝑜 correspond to the additional
contributions due to quasi-steady aerodynamic flow conditions (we
have M𝑎𝑒𝑟𝑜 = M𝑇

𝑎𝑒𝑟𝑜, C𝑎𝑒𝑟𝑜 ≠ C
𝑇
𝑎𝑒𝑟𝑜 and K𝑎𝑒𝑟𝑜 ≠ K𝑇

𝑎𝑒𝑟𝑜).
The stability of the airfoil system can be determined by considering

the eigenvalue problem corresponding to Eq. (1) that can be written as
follow
(

𝜆2𝑘M + 𝜆𝑘C + K
)

𝛷𝑘 = 𝟎 (8)

where
(

𝜆𝑘, 𝛷𝑘
)

are the eigenvalues and eigenvectors of the problem.
Stability is determined by considering the complex eigenvalues 𝜆𝑘.
Therefore, three situations are possible in relation to the concept of
stability for the airfoil system :

• if all eigenvalues have negative real parts, the system is stable
(i.e. ℜ(𝜆𝑘) < 0 ∀𝜆𝑘).

• if at least one eigenvalue has positive real part with the associated
imaginary part not equal to zero (i.e. ∃𝜆𝑘 ℜ(𝜆𝑘) > 0 and
ℑ(𝜆𝑘) ≠ 0), the system is unstable and the airfoil encounters
flutter. The imaginary part of the associated positive eigenvalue
defines the angular frequency of the unstable mode. The value of
the flow speed 𝑉 for which the airfoil system becomes unstable is
denoted by the flutter speed 𝑉𝑓 . The associated angular frequency
(classically referred to as the flutter angular frequency) is denoted
by 𝜔𝑓 .

• if at least one eigenvalue has positive real part with the associated
imaginary part equal to zero (i.e. ∃𝜆𝑘 ℜ(𝜆𝑘) > 0 and ℑ(𝜆𝑘) = 0),
the system is unstable and the airfoil encounters divergence. The
value of the flow speed 𝑉 for which the airfoil system becomes
unstable is denoted by the divergence speed 𝑉𝑑 .

Fig. 2 displays the evolutions of real parts and angular frequencies
as a function of the flow speed 𝑉 . For 𝑉 = 0, the two modes, denoted
by mode I and mode II, are stable with angular frequencies equal to
𝜔𝐼,0 = 10.94 rad/s and 𝜔𝐼𝐼,0 = 37.70 rad/s (and the associated real parts
are equal to approximately ℜ(𝜆𝐼,0) = −0.318 and ℜ(𝜆𝐼𝐼,0) = −7.066,
respectively). As the flow speed 𝑉 increases, the real part ℜ(𝜆𝐼,𝑉 ) first
decreases and then increases slowly whereas the real part ℜ(𝜆𝐼𝐼,𝑉 )
decreases continuously. The associated angular frequencies 𝜔𝐼,𝑉 and
𝜔𝐼𝐼,𝑉 tend to get closer. The critical Hopf bifurcation point where the
system loses stability is observed at the flutter speed 𝑉𝑓 = 23.46 m∕s.
As shown in Fig. 2, one complex eigenvalue crosses the complex plane
imaginary axis reflecting the fact that the airfoil system moves from
stable to unstable behavior. For clarity, stable modes are indicated
by green dots while the unstable mode is indicated by red dots in
Fig. 2. The flutter angular frequency 𝜔𝑓 at the Hopf bifurcation point
is equal to 24.32 rad/s and it comes from the evolution of mode I
according to the flow speed. After the Hopf bifurcation point, the
angular frequencies of the two modes remain close and cross at the
flow speed 𝑉 = 25.93 m/s (with 𝜔𝐼,𝑉 = 𝜔𝐼𝐼,𝑉 = 25.65 rad/s). Then
the two angular frequencies tend to move away from each other for
𝑉 > 25.93 m/s with 𝜔𝐼,𝑉 > 𝜔𝐼𝐼,𝑉 . For 𝑉 > 𝑉𝑓 the real parts are
opposite: one mode is stable (i.e., the associated real part is negative
and decreases versus the increase of the flow speed) whereas the other
one is unstable (i.e., the associated real part is positive and increases
versus the increase of the flow speed). In conclusion, the airfoil system
is stable for the flow speed 𝑉 ∈

[

0;𝑉𝑓
[

and encounters flutter instability

for 𝑉 > 𝑉𝑓 .
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Table 1
Geometrical and physical parameters of the airfoil system.
Parameter Notation Value

Span of the airfoil 𝑠𝑝 1 m
Airfoil mass 𝑚 2.049 kg
Dimensionless distance of the elastic axis from midchord �̄� −0.6847
Semichord of the airfoil section 𝑏 0.135 m
Torsional stiffness 𝑘𝛼 6.833 N m/rad
Plunging stiffness 𝑘ℎ 2844.4 N/m
Damping coefficient in pitching 𝑐𝛼 0.036 N s/rad
Damping coefficient in plunging 𝑐ℎ 27.43 N s/m
Air density 𝜌𝑎 1.225 kg/m3

Mass moment of inertia of the airfoil about the elastic axis 𝐼𝛼 𝑚𝑥2𝛼+ 0.0517 kg m2

Distance of the elastic axis from center of mass 𝑥𝛼 (0.0873 − (1 + �̄�) 𝑏) m
Fig. 1. Schematic mechanical system of a two-dimensional airfoil.

Fig. 2. Stability analysis of the two-dimensional airfoil without control (green = stable;
red = unstable). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

3. Controlled airfoil system

For a given flight condition of 𝑉 > 𝑉𝑓 , the flutter instability may
be suppressed by applying an active feedback control. However the
effect of time delay which represents the lag between the time needed
for control gains computation satisfying a specified control objective,
is an important issue because stability switch may be observed with
increase of time delay. In the following, the airfoil system regulated by
state feedback control with time delay is presented. Stability analysis
of the controlled system with a single time-delay and a methodology to
determine the critical time delay for which the stability switch appears
are also discussed.
3

3.1. Airfoil system regulated by state feedback control with time delay

The dynamics of the airfoil system (4) regulated by state feedback
control with time delay 𝜏 can be expressed by

Mẍ(𝑡) + Cẋ(𝑡) + Kx(𝑡) = 𝐛 𝐮(𝑡 − 𝜏) (9)

𝐮(𝑡 − 𝜏) = −𝐟𝑇 ẋ(𝑡 − 𝜏) − 𝐠𝑇 x(𝑡 − 𝜏) (10)

where 𝐛 is the control input distribution matrix. 𝐮 is the associated state
feedback control vector with 𝐟 and 𝐠 being matrices that corresponds
to proportional velocity and displacement feedback control gains. To
be noted that the time delays for the velocity and displacement state
feedback are assumed to be equal.

Substituting the expression of variables separation x(𝑡) = 𝐙𝑒𝑠𝑡
(where 𝐙 is a constant vector) in Eqs. (9) and (10) yields to the
transcendental eigenvalue problem (Ram and Mottershead, 2007; Ram
et al., 2009)
(

𝑠2M + 𝑠
(

C + 𝐛𝐟𝑇 𝑒−𝑠𝜏
)

+ K + 𝐛𝐠𝑇 𝑒−𝑠𝜏
)

𝐙 = 𝟎 (11)

The non-trivial solutions
(

𝑠𝑖,𝐙𝑖 ≠ 𝟎
)

for the closed-loop system with
time delay are eigenpairs of Eq. (11). Note that we have to determine
the proportional velocity and displacement control gains 𝐟 and 𝐠 in the
context of airfoil flutter control. Different strategies exist. In the rest of
the paper we propose to apply two well known strategies:

• The first one is based on the LQR state feedback design. Consider
the continuous time linear dynamic system in the state space form
(with y = [x ẋ]𝑇 )

ẏ = 𝐀y + 𝐁𝐰 (12)

where y and 𝐰 represent respectively the state and control vectors
of the system. The basic theory of the optimal linear quadratic
regulator is to estimate the optimal gain matrix 𝐆 so that the
state-feedback law 𝐰 = −𝐆y minimizes the quadratic cost func-
tion defined as

𝐽𝐿𝑄𝑅 = ∫

∞

0

(

y𝑇𝐐y + 𝐰𝑇𝐑𝐰
)

𝑑𝑡 (13)

where y𝑇𝐐y and 𝐰𝑇𝐑𝐰 define the state cost with weight 𝐐 and
the control cost with weight 𝐑. In other words, LQR selects closed-
loop poles that balance between state errors and control effort.
As a result, the closed-loop poles correspond to the state–space
eigenvalues of 𝐀 − 𝐁𝐆 computable by solving the Riccati equa-
tion (Kwakernaak and Sivan, 1972). Note that the gain matrix
𝐆 is directly linked to the matrices of proportional velocity and
displacement control gains 𝐟 and 𝐠 previously defined in Eq. (10).
Such a linear–quadratic regulator is simply an automated way to
find an appropriate state feedback controller with respect to the
initial system under consideration. One of the drawbacks is that
there is no initial choice on the behavior of the controlled system
as opposed to strategies based on a full state feedback (i.e. the
LQR strategy is to place the pole locations so that the closed-loop
system optimizes the cost function defined in Eq. (13)).
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One of the critical design step in LQR methodology is choosing
the real, symmetric, positive definite weights 𝐐 and 𝐑 in order to
tune the regulator. Classically, one can choose diagonal weights
applying the Bryson’s rule

𝐐𝑖𝑖 =
1

(

𝑦𝑖
)2
𝑚𝑎𝑥

(14)

𝐑𝑖𝑖 =
1

(

𝑤𝑖
)2
𝑚𝑎𝑥

(15)

where
(

𝑦𝑖
)2
𝑚𝑎𝑥 and

(

𝑤𝑖
)2
𝑚𝑎𝑥 define the maximum desired values

or the control input for component of the state/actuator signal.
Although Bryson’s rule generally works well, it is often, from a
practical point of view, only the starting point of an iterative trial-
and-error design procedure to obtain desirable properties for the
closed-loop system.

• A second strategy classically applied is the use of full state feed-
back, also known as pole placement, which is sometimes preferred
because there is a clearer relationship between the controller pa-
rameters and the behavior obtained for the controlled system. In
the present work the classical pole placement algorithm (Kautsky
et al., 1985; Valasek and Olgac, 1995) will be used to place the
closed-loop poles at some specific locations by computing a state-
feedback gain matrix. Consider the linear dynamic system given
in Eq. (12), the pole placement approach computes a gain matrix
𝐆 such that the state feedback 𝐰 = −𝐆y forces the closed-loop
poles to the desired locations. In other words, the state–space
eigenvalues of 𝐀 − 𝐁𝐆 match the predefined locations affecting
the response as desired. In the case of multiple input systems the
gain matrix 𝐆 is not unique and choosing the best 𝐆 values is
not trivial. In the following, the closed-loop poles locations are
chosen so that the complex conjugate eigenvalues associated with
the stable mode remains unchanged (i.e. 𝜆𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑3,4 = 𝜆𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑3,4 )
while the two others complex conjugate eigenvalues associated
with the unstable mode of the uncontrolled systems are placed
such as

𝜆𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑𝑖 = 𝛾ℜ
(

𝜆𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑𝑖
)

+
√

−1ℑ
(

𝜆𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑𝑖
)

for 𝑖 = 1, 2 (16)

where ℜ() and ℑ() define the real and the imaginary part of eigen-
values, respectively. The scalar coefficient 𝛾 corresponds to the
control gain applied on the real part of the uncontrolled poles. If
𝛾 < 0 the controlled system without time delay is stable, assuming
that the uncontrolled system was initially unstable. Moreover the
algorithm proposed by Kautsky et al. (1985) is applied to find
a robust solution, such that the assigned closed-loop poles are
insensitive to perturbations in the system data (i.e. the provided
solution minimizes the sensitivity of the closed-loop poles to
perturbations in the matrices 𝐀 and 𝐁).

.2. Stability analysis of time-delay systems and estimation of the critical
ime delay 𝜏𝑐

In this section we discuss a methodology to analyze the stability
f the airfoil system regulated by state feedback control with time
elay and to predict the critical time delay as well as the angular
requency of the associated unstable mode. The proposed approach is
ased on the determination of the specific point of the frontier stability
urve provided by the frequency sweeping tests (Gu et al., 2003) that
oincides with the evolution of the generalized eigenvalue problem for
Taylor series expansion up to the 𝑝th order of the closed-loop system

with time-delay (Sinou and Chomette, 2021).
4

3.2.1. Preamble on the Taylor series expansion of the delayed term and the
stability of the controlled system with time delay

First of all the eigenvalues of Eq. (11) can be approximated by
converting the transcendental eigenvalue problem to an approximated
eigenvalues problem obtained by Taylor series expansion. Substituting
the Taylor series expansion of the delayed term 𝐮(𝑡 − 𝜏) up to the 𝑝th
rder

(𝑡 − 𝜏) =
𝑝
∑

𝑛=0

(−1)𝑛

𝑛!
𝜏𝑛𝐮(𝑛)(𝑡) (17)

here 𝐮(𝑛) denotes the 𝑛th derivative of 𝐮 with respect to time, the
losed-loop system defined by Eqs. (9) and (10) can be approximated
y

ẍ(𝑡) + Cẋ(𝑡) + Kx(𝑡) = −𝐛𝐟𝑇
𝑝
∑

𝑛=0

(−1)𝑛

𝑛!
𝜏𝑛x(𝑛+1)(𝑡) − 𝐛𝐠𝑇

𝑝
∑

𝑛=0

(−1)𝑛

𝑛!
𝜏𝑛x(𝑛)(𝑡)

(18)

The approximation of the generalized eigenvalues problem (11) by
using the 𝑝th order Taylor expansion yields to the first-order realization
defined by
(

𝐏𝑝 − 𝑠𝐐𝑝
)

𝐕𝑝 = 𝟎 (19)

where 𝐏𝑝 and 𝐐𝑝 are (𝑝+1) × (𝑝+1) matrices and 𝐕𝑝 is a (𝑝+1) vector.
Expression of 𝐏𝑝 is given in Eq. (20) (see Box I) and expressions of 𝐐𝑝
and 𝐕𝑝 in Eq. (21),

𝐐𝑝 = diag
(

𝐈,… , 𝐈, (−1)(𝑝−1) 𝜏
𝑝

𝑝!
𝐛𝐟𝑇

)

; 𝐕𝑝 =
[

𝐙 𝑠𝐙 ⋯ 𝑠𝑝𝐙
]𝑇 (21)

As previously explained in Sinou and Chomette (2021) and Ram
et al. (2009), the controlled system without time delay (i.e. 𝜏 = 0)
has only 2𝑞 eigenvalues (with 𝑞 the number of degrees of freedom).
On the contrary, if we consider the same system with a time delay
𝜏 ≠ 0 there is an infinity of eigenvalues but only 2𝑞 of them affect
the dynamics of the system. These last ones are called the primary
eigenvalues while the others are secondary eigenvalues. One of the
issues is therefore to be able to distinguish between primary and
secondary eigenvalues. A solution can be to follow the evolution of
the primary resonances by continuously increasing the time delay 𝜏
from the reference controlled system without time delay. When the
time delay is increased, if a real part of the eigenvalues related to the
primary resonances becomes greater than zero, the system becomes
unstable and the corresponding time delay defines the critical time
delay 𝜏𝑐 . Moreover, the imaginary part associated with the eigenvalue
with positive real part obviously corresponds to the angular frequency
of the unstable mode. However considering high order Taylor series
expansion may lead to ill-conditioned matrix 𝐐𝑝 for 𝜏 → 0 making it
impossible in some cases to track primary resonances. An alternative
is then to combine the determination of the eigenvalues of the system
(19) with the determination of the stability boundary defined by the
frequency sweeping tests (Gu et al., 2003) that is briefly described in
the following section.

3.2.2. Preamble on the frequency sweeping tests
Before providing a methodology for rapidly detecting the critical

time delay 𝜏𝑐 and the associated angular frequency 𝜔𝑐 for which the
controlled system becomes unstable, stability criteria based on the
frequency sweeping tests is briefly discussed. We consider the refor-
mulation of the problem (9) and (10) in the state space form ẏ(𝑡) =
𝐀0y(𝑡) + 𝐀1y(𝑡 − 𝜏) where y = [x ẋ]𝑇 .

Supposing that the controlled airfoil system is stable at 𝜏 = 0. Let
𝑟𝑎𝑛𝑘

(

𝐀1
)

= 𝑟 and define

𝜏 𝑖𝑙𝑖𝑚 =

⎧

⎪

⎪

⎨

⎪

⎪

min
1≤𝑘≤𝑛

𝜃𝑖𝑘
𝜔𝑖
𝑘

if 𝜆𝑖
((

𝑗𝜔𝑖
𝑘𝐈 − 𝐀0

)

,𝐀1
)

= 𝑒−𝑗𝜃
𝑖
𝑘

for some 𝜔𝑖
𝑘 ∈ (0;∞) , 𝜃𝑖𝑘 ∈ [0; 2𝜋]

∞ if 𝜌
((

𝑗𝜔𝐈 − 𝐀
)

,𝐀
)

> 1 ∀𝜔 > 0

(22)
⎩

0 1
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𝐏𝑝 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝟎 𝐈 𝟎 ⋯ 𝟎
𝟎 𝟎 𝐈 ⋯ 𝟎
⋮ ⋮ ⋮ ⋮
𝟎 𝟎 𝟎 ⋯ 𝐈

K + 𝐛𝐠𝑇 C + 𝐛𝐟𝑇 − 𝜏𝐛𝐠𝑇 M − 𝜏𝐛𝐟𝑇 + 𝜏2

2 𝐛𝐠
𝑇 ⋯ (−1)(𝑝−1) 𝜏𝑝−1

(𝑝−1)!𝐛𝐟
𝑇 + (−1)𝑝 𝜏𝑝

𝑝! 𝐛𝐠
𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(20)

Box I.
a
nd

𝑙𝑖𝑚 = min
1≤𝑖≤𝑟

𝜏 𝑖𝑙𝑖𝑚 (23)

(𝐀) corresponds to the spectral radius of the matrix 𝐀. 𝜏𝑙𝑖𝑚 corresponds
o the delay margin of the controlled system: the controlled system with
ime delay defined in Eqs. (9) and (10) is stable for all 𝜏 ∈

[

0; 𝜏𝑙𝑖𝑚
[

but
ecomes unstable at 𝜏 = 𝜏𝑙𝑖𝑚.

.2.3. Addressing the problem of determining the critical time delay 𝜏𝑐 from
he delay margin 𝜏 (𝜔)

The aim of this section is to discuss an efficient strategy for address-
ng the problem of obtaining the delay margin for a predefined angular
requency interval of interest [𝜔𝑚𝑖𝑛;𝜔𝑚𝑎𝑥] and to predict the critical

time delay 𝜏𝑐 (for which the controlled system becomes unstable) and
the associated angular frequency 𝜔𝑐 that corresponds to the angular
requency of the unstable mode (i.e. the airfoil controlled system with
ime delay 𝜏𝑐 will oscillate at 𝜔𝑐).

Based on the previous Sections 3.2.1 and 3.2.2, the following state-
ents can be made:

• The generalized eigenvalues problem given in Eq. (11) can be
rewritten as the pseudo-polynomial

det
(

𝑠𝐈 − 𝐀0 − 𝐀1𝑒
−𝜏𝑠) = 0 (24)

and Eq. (19) corresponds to its approximation by using the 𝑝th
order Taylor expansion.

• Considering a specific angular frequency interval of interest
[𝜔𝑚𝑖𝑛;𝜔𝑚𝑎𝑥], if

𝜌
((

𝑗𝜔𝐈 − 𝐀0
)

,𝐀1
)

> 1 for all 𝜔 ∈ [𝜔𝑚𝑖𝑛;𝜔𝑚𝑎𝑥] (25)

it can be concluded that the controlled system is stable for all 𝜏 ∈
[0;∞). Otherwise the computation of the problem (22) generates
a nonzero estimate of the delay margin over the finite interval of
interest 𝜔 = [𝜔𝑚𝑖𝑛;𝜔𝑚𝑎𝑥]. This delay margin function (denoted by
𝜏(𝜔) for simplicity in the rest of the paper) can be determined by
sampling the angular frequency interval of interest [𝜔𝑚𝑖𝑛;𝜔𝑚𝑎𝑥],
and at each sample, computing the generalized eigenvalues such
as 𝜏 (𝜔) = min

1≤𝑘≤𝑛

𝜃𝑘
𝜔

with 𝜃𝑘 = −𝑗−1log
(

𝜆𝑘
)

and 𝜃𝑘 ∈ [0; 2𝜋] for any

eigenvalue 𝜆𝑘 of the matrix
(

𝑗𝜔𝐈 − 𝐀0
)−1 𝐀1.

Considering the evolutions of eigenvalues versus 𝜏, defined by 𝜆𝑖 (𝜏),
he crossing of the characteristic roots with the delay margin 𝜏 (𝜔)
epresents the transition from the stable region to the unstable one.
owever multiple crossings may exist and since only the primary
igenvalues are of interest, there are only a finite number of crossing
ith 𝜏 (𝜔) to be consider (to be more precise there are 𝑞 crossings of

nterest). Moreover the pair of interest (𝜏, 𝜔) that gives the critical time
elay 𝜏𝑐 and the associated angular frequency 𝜔𝑐 of the self-excited
ontrolled system that is subjected to flutter instability for 𝜏 > 𝜏𝑐
orresponds to the coincidence between the delay margin 𝜏 (𝜔) and the
igenvalues 𝜆𝑖 (𝜏) such as
(

𝜆
(

𝜏 𝜔
))

< 0 and ℜ
(

𝜆
(

𝜏 𝜔
))

> 0 (26)
5

𝑖 − ( ) 𝑖 + ( )
nd
|

|

|

ℑ
(

𝜆𝑖 (𝜏 (𝜔))
)

− 𝜔||
|

𝜔
< 𝜖 (27)

In fact
(

𝜏𝑐 , 𝜔𝑐
)

corresponds to the crossing of the delay margin 𝜏 (𝜔)
with the primary eigenvalues of the controlled system and Eq. (26)
reflects the fact that one real part of eigenvalues becomes greater than
zero at this crossing. Eq. (27) verifies that the eigenvalue 𝜆𝑖 is in the
neighborhood of the crossing between the delay margin 𝜏 (𝜔) and the
eigenvalues 𝜆𝑖 (𝜏). This second criterion defined in Eq. (27) can be seen
as an estimator of the quality of the prediction of

(

𝜏𝑐 , 𝜔𝑐
)

. The more
this criterion tends towards zero, the better the prediction will be. 𝜖
corresponds to the residual from which the quality of the prediction is
assumed to be sufficient.

Note that it is not necessary to compute the eigenvalues and to
follow their evolution on the full range of interest 𝜏 = [0; 𝜏𝑚𝑎𝑥] with
𝜏𝑚𝑎𝑥 the maximum value fixed for the time delay (or more specifically
𝜏 = [𝜏𝑙𝑖𝑚; 𝜏𝑚𝑎𝑥] due to the fact that the controlled system is stable for
all 𝜏 ∈

[

0; 𝜏𝑙𝑖𝑚
[

, as previously discussed in Section 3.2.2). Indeed the
computation of the eigenvalues is only done on the curve corresponding
to the delay margin 𝜏 (𝜔) (available through the frequency sweeping
test method, see Section 3.2.2) for the prediction of the critical time
delay 𝜏𝑐 and the associated angular frequency 𝜔𝑐 . If the 𝑝th order
Taylor expansion is not sufficient and provides a not precise enough
approximation of the generalized eigenvalues of Eq. (19), it is possible
that no pair (𝜏, 𝜔) checks Eqs. (26) and (27). In this case, it is then
necessary to consider solving the problem (19) with a Taylor expansion
of a higher order. The corollary is that if a pair (𝜏, 𝜔) verifies the
relations (26) and (27) for a given 𝑝th order Taylor expansion, then this
indicates that this order approximation is sufficient to provide reliable
information about the stability of the controlled system with time delay
and the prediction of the critical time delay 𝜏𝑐 for which the controlled
system becomes unstable. Of course, this is also directly related to the
choice of the value of the parameter 𝜖.

We can also point out that, in the case of a controlled system with
only one unstable mode, only one pair

(

𝜏𝑐 , 𝜔𝑐
)

normally verifies the
relations defined by Eqs. (26) and (27) (i.e. the primary eigenvalue
associated with the unstable mode of the controlled system). If by
accident the solution of Eqs. (26) and (27) is not unique this means
that a secondary eigenvalue also intersects the delay margin 𝜏 (𝜔) with
a change of sign of its real part from negative to positive. In practice,
this case is very unlikely. However, if this happens, it is still possible
to select the physical case of interest by distinguishing the primary
and secondary eigenvalues via the evolution of these eigenvalues by
continuously decreasing the time delay 𝜏 from the critical time delay
identified for each eigenvalue. When 𝜏 → 0 the eigenvalue of the
physical case of interest will be consistent with the eigenvalue of the
reference controlled system without time delay.

4. Application and numerical examples

In this section the relevance and effectiveness of the strategy pro-
posed in Section 3.2.3 will be first discussed. We remind that the
airfoil system controlled without time delay is stable and that the main

objective is to estimate the critical time delay 𝜏𝑐 for which the system



European Journal of Mechanics / A Solids 92 (2022) 104465J.-J. Sinou

4
d

L
p
b
p

S
a
c
i
f
s
𝐑

𝛼
v
t
u
v
b
r
t
c
t
o
p

t
o
e
i
t
d

p

T
P
o

c

p
w
a
I
t
t
t

e
a
e
t

become unstable, as well as the angular frequency 𝜔𝑐 of unstable os-
cillations. Moreover, for both LQR control and pole placement method,
a more detailed study will be carried out in order to highlight some
recommendations to be taken into account due to the impact of the
control gain on the critical delay 𝜏𝑐 .

.1. Validation of the proposed methodology for predicting the critical time
elay 𝜏𝑐 from the delay margin 𝜏 (𝜔)

We will only consider the case of the controlled airfoil system via
QR state feedback. The validation of the proposed methodology for
redicting the critical time delay 𝜏𝑐 from the delay margin 𝜏 (𝜔) would
e the same by using the full state feedback controller via the pole
lacement technique.

So to demonstrate the efficiency of the proposed strategy in
ection 3.2.3 for predicting the critical time delay 𝜏𝑐 for the controlled
irfoil system, we consider the case of the unstable system without
ontrol for 𝑉 = 30 m∕s. As a reminder the uncontrolled airfoil system
s stable for 𝑉 ∈ [0;𝑉𝑓 [ with 𝑉𝑓 = 23.46 m/s and it becomes unstable
or 𝑉 > 𝑉𝑓 . The values of control gains 𝐟 and 𝐠 for the case under
tudy are provided in Table 2. These LQR controllers are obtained with
= 𝐈2×2 and 𝐐 = diag

(

1
0.012 ,

1
0.012 , 0, 0

)

. In this case the goal is to reach
the position (ℎ, 𝛼) = (0, 0) with the maximal value ℎ𝑚𝑎𝑥 = 0.01 m and
𝑚𝑎𝑥 = 0.01 rad. Note that we do not constrain the value of these two
ariables with such a condition, but we encourage the system to keep
he variables as close to zero as possible. The associated poles for the
ncontrolled and controlled systems without time delay are also pro-
ided in Table 2 (note that the state–space eigenvalues 𝜆1,2 will always
e associated with the unstable mode of the uncontrolled system in the
est of the paper for clarity). Table 3 gives estimation of the critical
ime delay 𝜏𝑐 and the associated angular frequency 𝜔𝑐 for which the
ontrolled airfoil system becomes unstable. These results are based on
he proposed strategy developed in Section 3.2.3 by considering various
rders for the Taylor expansion in Eqs. (19), (20) and (21). Table 3
rovides also the values of ℜ

(

𝜆𝑖
(

𝜏− (𝜔)
))

and ℜ
(

𝜆𝑖
(

𝜏+ (𝜔)
))

which
are used as indicators to detect the transition from stable to unstable
behavior of the controlled airfoil system (i.e. these two quantities must
be of opposite signs, see Eq. (26)), and the value |ℑ(𝜆𝑖(𝜏(𝜔)))−𝜔|

𝜔 which is
he second criterion to check for ensuring that one is in the vicinity
f the intersection between the delay margin 𝜏 (𝜔) and the primary
igenvalue 𝜆𝑖 whose real part changes sign. It is very clear that by
ncreasing the order of expansion of Taylor the value |ℑ(𝜆𝑖(𝜏(𝜔)))−𝜔|

𝜔
ends to zero and thus we improve the detection of the critical time
elay 𝜏𝑐 and the associated angular frequency 𝜔𝑐 .

In order to verify the validity of the estimate
(

𝜏𝑐 , 𝜔𝑐
)

based on the
roposed methodology, two kinds of verification are conducted:

• at first the evolution of the delay margin 𝜏 (𝜔) based on the fre-
quency sweeping approach as well as the evolution of the primary
and secondary eigenvalues based on the Taylor expansion of 𝑝th
order (i.e. imaginary parts of eigenvalues versus the time delay
𝜏) are shown in Figs. 3. The symbols o correspond to the angular
frequency of modes I and II (with 𝜔𝐼,𝑉 > 𝜔𝐼𝐼,𝑉 at 𝑉 = 30 m∕s)
for the controlled airfoil system without time delay. It appears
without any ambiguity that the prediction of

(

𝜏𝑐 , 𝜔𝑐
)

(defined
by different colored crosses according to the Taylor expansion
orders) is indeed in the vicinity of the crossing of the delay margin
with the primary eigenvalues of the controlled system. For orders
5 and 6, the estimation of the crossover is excellent which is in
total agreement with the value of the proposed criterion defined
in Eq. (27) for the estimation of the quality of the prediction
(see also the values |ℑ(𝜆𝑖(𝜏(𝜔)))−𝜔|

𝜔 in Table 3). To be noted that
the proposed prediction of

(

𝜏𝑐 , 𝜔𝑐
)

for order 3 is a little bit
worse (less close to the crossover). This fact is also in agreement
with the results presented in Table 3 (indeed the quality of the
prediction

(

𝜏 , 𝜔
)

was estimated to be worse for this order). For
6

𝑐 𝑐
able 2
oles for the uncontrolled and controlled systems without time delay and estimation
f f and g for the controlled airfoil system with LQR at 𝑉 = 30 m/s.
Parameter Value

𝜆𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑1,2 4.40 ± 27.14i
𝜆𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑3,4 −20.71 ± 24.50i
𝜆𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑1,2 −6.46 ± 27.95i
𝜆𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑3,4 −20.77 ± 24.09i
f [16.91 7.94 ; 7.94 4.92]
g [375.53 255.13 ; 48.00 85.03]

Table 3
Estimation of the critical time delay 𝜏𝑐 and the associated angular frequency 𝜔𝑐 for the
ontrolled airfoil system with LQR at 𝑉 = 30 m∕s.

Order 𝜏𝑐 (s) 𝜔𝑐 (rad/s) |
ℑ(𝜆𝑖 (𝜏(𝜔)))−𝜔|

𝜔
ℜ

(

𝜆𝑖
(

𝜏− (𝜔)
))

ℜ
(

𝜆𝑖
(

𝜏+ (𝜔)
))

3 0.0270 38.29 0.32620 −0.00044 0.00080
4 0.0281 38.61 0.07774 −0.00153 0.00226
5 0.0280 38.78 0.01410 −0.00077 0.00012
6 0.0280 38.77 0.00144 −0.00131 0.00172

the interested reader this can be simply explained by the fact that
the time delay value for which the controlled system becomes
unstable via the Taylor expansion is not well predicted for a
Taylor expansion of order 3.

• on the other hand a temporal integration of the controlled airfoil
system given in Eqs. (9) and (10) has been carried out for two
values of time delay 𝜏 just before and just after the critical time
delay 𝜏𝑐 (i.e. 𝜏 = 𝜏𝑐 (1 ± 𝜒) with 𝜒 = 0.01). Results are shown in
Figs. 4. Not surprisingly growing (decreasing, respectively) of the
initial oscillations are observed for 𝜏 = 𝜏𝑐 (1 + 𝜒) (𝜏 = 𝜏𝑐 (1 − 𝜒),
respectively) indicating that the controlled airfoil system with
time delay 𝜏 is unstable (stable, respectively). Moreover the an-
gular frequency 𝜔 of the temporal vibrational response of the
controlled airfoil system is estimated to be approximately equal
to 38.8 rad/s which is in perfect agreement with the prediction
𝜔𝑐 found by the proposed method (see Table 3). Note that to
obtain the vibrational oscillations of the controlled system a small
disturbance on the displacement vector around zero is added on
the airfoil system.

All these results unambiguously demonstrate the relevance of the
roposed strategy to determine not only the critical time delay 𝜏𝑐 for
hich the controlled system becomes unstable but also to predict the
ssociated angular frequency 𝜔𝑐 at which the airfoil system oscillates.
t is also illustrated the interest to take into account the impact of the
ime delay 𝜏 in the control feedback and its impact on the stability of
he controlled airfoil system because of the potential unstable behavior
hat can emerge due to a non-zero time delay 𝜏.

As a complement Fig. 5 shows the evolution of the two primary
igenvalues versus the time delay 𝜏 (by applying a classical stability
nalysis of the controlled system with time delay via the Taylor series
xpansion, as indicated in Section 3.2.1). The symbols □ and o define
he starting point (i.e. 𝜏 = 0 s) and the end point (i.e. 𝜏 = 0.04 s) for the

evolution of eigenvalues associated to modes I and II, respectively. It
clearly appears that the controlled airfoil system without time delay is
stable and becomes unstable for 𝜏 > 𝜏𝑐 . The unstable mode corresponds
to mode I. The eigenvalue associated with mode II remains practically
unchanged for the considered time delay interval.

Note that the simulation results proposed in Figs. 3–5 are not
necessary to determine the value of critical time delay 𝜏𝑐 via the hybrid
proposed methodology. They serve only to provide evidence that the

hybrid proposed methodology is operating correctly.
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nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Time responses of the controlled system via LQR for 𝑉 = 30 m∕s and 𝜒 = 0.01 (a) before the critical time delay with 𝜏𝑐 (1 − 𝜒) and (b) after the critical time delay with
𝜏𝑐 (1 + 𝜒).
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4.2. Further study and discussion on the use of LQR state-feedback con-
troller

Simulation results on the use of LQR controller by considering
different speeds 𝑉 from 25 m/s to 60 m/s, with an iteration step of
1 m/s are undertaken. The gain matrices 𝐟 and 𝐠 are obtained with
𝐑 = 𝐈2×2 and 𝐐 = diag

(

1
0.012 ,

1
0.012 , 0, 0

)

as for the previous study
presented in Section 4.1. Table 4 provides the values of 𝐟 and 𝐠 for
ach value of the speed 𝑉 . It can be noted a continuous and significant
volution of each component of the two matrices according to the speed

at which the LQR control is carried out. The associated poles for the
ontrolled airfoil system are also provided in Table 5. Table 6 gives
he prediction of the critical time delay 𝜏𝑐 and the associated angular

frequency 𝜔𝑐 for the controlled airfoil system with LQR, as well as the
values of both criteria defined in Eqs. (26) and (27) that are used for the
estimation of

(

𝜏𝑐 , 𝜔𝑐
)

. Note that the residual 𝜖 that defines the quality of
the prediction is fixed at 10−2 for the rest of the study. It can already be
noticed that the hybrid methodology based on the sweeping frequency
test combined with Taylor series expansion of orders 5 or 6 allows the
prediction of

(

𝜏𝑐 , 𝜔𝑐
)

with the chosen quality criterion 𝜖. Note that the
results provided in Table 6 correspond to the lowest order that verifies
7

i

|ℑ(𝜆𝑖(𝜏(𝜔)))−𝜔|
𝜔 < 𝜖. It is highlighted that the critical time delay 𝜏𝑐 can

volve significantly depending on the speed 𝑉 (in fact it is more exactly
directly dependent on the two gain matrices 𝐟 and 𝐠). In this particular
case studied, increasing the speed 𝑉 decreases the critical time delay
𝜏𝑐 with the smallest value equal to 0.0150 s (for 𝑉 = 60 m/s) which
corresponds to a decrease of more than 2 times compared to the value
obtained for 𝑉 = 25 m/s. At the same time a significant increase of the
angular frequency 𝜔𝑐 of the unstable mode is observed with a transition
from 33.94 rad/s for 𝑉 = 25 m/s to 69.76 rad/s for 𝑉 = 60 m/s.

As previously mentioned in Section 3.1, one of the crucial steps in
he LQR methodology is the choice of 𝐐 and 𝐑. In order to examine
he influence of these settings on the critical time delay 𝜏𝑐 four cases
re investigated as shown in Table 7. The first case corresponds to the
revious case already studied. The second and third cases are based
n 10 times larger and smaller values for ℎ𝑚𝑎𝑥 and 𝛼𝑚𝑎𝑥 for the LQR
ontroller, keeping as an objective to reach the position (ℎ, 𝛼) = (0, 0).
or the last case we choose to limit not only ℎ and 𝛼 but also the
ssociated speeds ℎ̇ and �̇�. Note that we choose diagonal weights
pplying the Bryson’s rule with 𝐑 = 𝐈2×2 for the four cases. These
our conditions are not intended to give a complete overview of the

nfluence of the choice of 𝐐 but only to illustrate its impact on the
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Fig. 5. Evolutions of the two modes versus the time delay 𝜏 (green = stable; red =
unstable). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

stability of the controlled airfoil system with time delay. Figs. 6(a)
shows the poles placement by considering different speeds 𝑉 from
25 m/s to 60 m/s for all these cases. The symbol letters ‘‘I’’ and ‘‘F’’
define the initial starting point (𝑉 = 25 m/s) and the final point (𝑉 =
60 m/s) for each quantity of interest. The placement of the poles for
the uncontrolled airfoil system are also provided by the red symbol o.
Figs. 6(b) gives the prediction of both the critical time delay 𝜏𝑐 and the
associated angular frequency 𝜔𝑐 for the four cases. It appears without
any ambiguity that the choice of 𝐐 can drastically change the value
of the time delay from which the controlled airfoil system becomes
unstable. Moreover, the angular frequency of unstable oscillations is
also directly impacted by this choice which can be a determining factor
when designing the airfoil system with respect to its vibratory behavior.
For the interested reader, it has also been verified that there is no
sensitivity on the generated poles of the controlled system to small
perturbations in 𝐐 (i.e. (1 ± 𝜖)𝐐 with 𝜖 = 10−8).

In conclusion one of the most critical design steps in the LQR
methodology is to appropriately tune the regulator for the design space
of interest and to select the quantity 𝐐 (and 𝐑 even if this case has not
be illustrated for the sake of brevity) to achieve desirable properties
for the closed-loop system, including the critical time delay 𝜏𝑐 which
is an essential factor for robust design of system control in the field of
mechanical engineering.

4.3. Discussion on the use of the pole placement technique

The main objective of this section is to discuss some results on
the sensitivity of the critical delay 𝜏𝑐 for the controlled airfoil system
via the pole placement technique and thus some precautions to take
into consideration. In the following, the closed-loop poles locations
are chosen so that 𝜆𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑3,4 = 𝜆𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑3,4 (i.e. the complex conjugate
eigenvalues associated with the stable mode remains unchanged) while
the two others complex conjugate eigenvalues associated with the un-
stable stable mode of the uncontrolled systems are placed as indicated
in Eq. (16) with 𝛾 = −1.

At first we propose to examine the sensibility of the critical time
delay 𝜏𝑐 by performing 100 simulations with very small perturbations
on the closed-loop poles locations 𝜆𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑1,2 such as (1 + 𝜖) 𝜆𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑1,2 with
𝜖 ∈ [−1; 1] × 10−8. We focus more specifically on the controlled airfoil
system for 𝑉 = 30 m∕s. Fig. 7 shows the associated predictions of 𝜏𝑐
and 𝛥𝜔𝑐 defined by 𝛥𝜔𝑐 = 𝜔𝑐−𝜔0

𝜔0
where 𝜔𝑐 is the angular frequency

at 𝜏𝑐 and 𝜔0 corresponds to the angular frequency of the controlled
system without time delay (i.e. 𝜔 = 27.14 rad/s at 𝑉 = 30 m∕s for mode
8

0

Table 4
Estimation of f and g for the controlled airfoil system with LQR and by considering
different speeds 𝑉 from 25 m/s to 60 m/s.
V (m/s) f g

25 [12.24 5.48 ; 5.48 3.03] [225.94 142.31 ; 30.14 42.74]
26 [13.05 5.87 ; 5.87 3.30] [250.64 159.92 ; 32.26 48.43]
27 [13.94 6.31 ; 6.31 3.62] [278.40 180.18 ; 35.05 55.40]
28 [14.90 6.81 ; 6.81 4.00] [308.84 202.97 ; 38.59 63.78]
29 [15.89 7.36 ; 7.36 4.44] [341.41 228.06 ; 42.90 73.63]
30 [16.91 7.94 ; 7.94 4.93] [375.53 255.13 ; 48.00 85.03]
31 [17.92 8.56 ; 8.56 5.47] [410.63 283.87 ; 53.90 98.00]
32 [18.92 9.19 ; 9.19 6.05] [446.20 313.93 ; 60.57 112.56]
33 [19.89 9.84 ; 9.84 6.68] [481.82 345.02 ; 68.00 128.72]
34 [20.82 10.50 ; 10.50 7.34] [517.13 376.88 ; 76.16 146.48]
35 [21.72 11.17 ; 11.17 8.04] [551.86 409.25 ; 85.03 165.85]
36 [22.57 11.83 ; 11.83 8.77] [585.82 441.93 ; 94.56 186.82]
37 [23.37 12.49 ; 12.49 9.53] [618.83 474.76 ; 104.74 209.38]
38 [24.14 13.15 ; 13.15 10.32] [650.82 507.57 ; 115.53 233.52]
39 [24.86 13.80 ; 13.80 11.13] [681.68 540.23 ; 126.90 259.25]
40 [25.54 14.45 ; 14.45 11.96] [711.38 572.64 ; 138.83 286.53]
41 [26.18 15.08 ; 15.08 12.82] [739.90 604.70 ; 151.29 315.38]
42 [26.78 15.71 ; 15.71 13.68] [767.23 636.32 ; 164.25 345.75]
43 [27.35 16.32 ; 16.32 14.57] [793.36 667.44 ; 177.69 377.66]
44 [27.88 16.93 ; 16.93 15.47] [818.33 698.02 ; 191.59 411.06]
45 [28.38 17.52 ; 17.52 16.38] [842.15 723.00 ; 205.92 445.96]
46 [28.85 18.11 ; 18.11 17.31] [864.85 757.33 ; 220.67 482.32]
47 [29.29 18.68 ; 18.68 18.24] [886.47 786.00 ; 235.82 520.13]
48 [29.70 19.25 ; 19.25 19.18] [907.05 813.98 ; 251.36 559.38]
49 [30.09 19.80 ; 19.80 20.13] [926.61 841.25 ; 267.27 600.03]
50 [30.46 20.34 ; 20.34 21.09] [945.21 867.80 ; 283.54 642.07]
51 [30.80 20.87 ; 20.87 22.05] [962.89 893.62 ; 300.16 685.49]
52 [31.13 21.39 ; 21.39 23.02] [979.67 918.71 ; 317.11 730.25]
53 [31.44 21.90 ; 21.90 23.99] [995.62 943.06 ; 334.39 776.34]
54 [31.72 22.40 ; 22.40 24.96] [1010.75 966.69 ; 351.98 823.73]
55 [32.00 22.90 ; 22.90 25.94] [1025.12 989.59 ; 369.89 872.42]
56 [32.26 23.38 ; 23.38 26.91] [1038.76 1011.77 ; 388.10 922.37]
57 [32.50 23.86 ; 23.86 27.90] [1051.71 1033.25 ; 406.62 973.57]
58 [32.73 24.32 ; 24.32 28.88] [1063.99 1054.02 ; 425.42 1026.00]
59 [32.95 24.78 ; 24.78 29.86] [1075.66 1074.11 ; 444.52 1079.64]
60 [33.17 25.23 ; 25.23 30.84] [1086.73 1093.52 ; 463.90 1134.47]

I). Two categories of results are clearly visible. The first one gives an
estimate of the critical time delay around 0.0075 s while the second one
indicates critical time delay around 0.0175 s, a value more than twice
as high as the previous one. Also it appears very clearly that for the first
category there is an increase of the angular frequency of the unstable
mode 𝜔𝑐 compared to the value for the controlled system without
time delay (i.e. 𝛥𝜔𝑐 > 0) while for the second category a decrease
of 𝜔𝑐 is obtained (i.e. 𝛥𝜔𝑐 < 0). These results illustrate a potential
difficulty of using the pole placement technique as they suggest a strong
sensitivity of the critical time delay 𝜏𝑐 according to pole locations. In
order to better understand the phenomena involved and the reasons for
such different behaviors we suggest comparing the gain matrix 𝐆 for
each simulation. Indeed the pole placement approach computes a gain
matrix 𝐆 in order to force the poles of the closed loop to the desired
locations and then this gain matrix 𝐆 has a direct influence on the
estimation of the critical time delay 𝜏𝑐 .

In order to define a similarity scale between two 2𝑞×𝑞 gain matrices
taken from the 100 previous simulations the correlation coefficient is
used. Considering two gain matrices 𝐆𝑎 and 𝐆𝑏 for the 𝑎th and 𝑏th
simulations, respectively, the associated scalar correlation coefficient
𝑟𝑎,𝑏 is defined by

𝑟𝑎,𝑏 =

2𝑞
∑

𝑖=1

𝑞
∑

𝑗=1

(

𝐆𝑎
𝑖𝑗 − �̄�𝑎

)(

𝐆𝑏
𝑖𝑗 − �̄�𝑏

)

√

√

√

√

( 2𝑞
∑

𝑖=1

𝑞
∑

𝑗=1

(

𝐆𝑎
𝑖𝑗 − �̄�𝑎

)2
)( 2𝑞

∑

𝑖=1

𝑞
∑

𝑗=1

(

𝐆𝑏
𝑖𝑗 − �̄�𝑏

)2
)

(28)

where �̄�𝑎 and �̄�𝑏 corresponds to the mean of all values in array 𝐆𝑎

and 𝐆𝑏, respectively. 𝑟 can range from −1 to 1. If 𝑟 is close to 0,
𝑎,𝑏
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Table 5
Poles for the uncontrolled airfoil system and the controlled airfoil system with LQR and by considering
different speeds 𝑉 from 25 m/s to 60 m/s.
V (m/s) 𝜆𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑1,2 𝜆𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑3,4 𝜆𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑1,2 𝜆𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑3,4

25 1.20 ± 25.21i −16.02 ± 26.00i −6.94 ± 26.86i −15.52 ± 24.92i
26 1.92 ± 25.68i −17.04 ± 25.63i −6.51 ± 27.08i −16.78 ± 24.76i
27 2.59 ± 26.10i −18.01 ± 25.31i −6.30 ± 27.30i −17.89 ± 24.60i
28 3.23 ± 26.47i −18.94 ± 25.02i −6.25 ± 27.52i −18.91 ± 24.44i
29 3.83 ± 26.82i −19.84 ± 24.75i −6.31 ± 27.74i −19.87 ± 24.27i
30 4.40 ± 27.14i −20.71 ± 24.50i −6.46 ± 27.95i −20.77 ± 24.09i
31 4.95 ± 27.45i −21.55 ± 24.26i −6.66 ± 28.17i −21.64 ± 23.91i
32 5.49 ± 27.74i −22.37 ± 24.02i −6.92 ± 28.38i −22.47 ± 23.73i
33 5.97 ± 28.01i −23.17 ± 23.78i −7.20 ± 28.59i −23.28 ± 23.54i
34 6.46 ± 28.28i −23.96 ± 23.54i −7.52 ± 28.80i −24.07 ± 23.34i
35 6.93 ± 28.54i −24.72 ± 23.30i −7.84 ± 29.01i −24.83 ± 23.13i
36 7.38 ± 28.79i −25.47 ± 23.06i −8.18 ± 29.22i −25.59 ± 22.91i
37 7.82 ± 29.03i −26.21 ± 22.81i −8.52 ± 29.42i −26.32 ± 22.69i
38 8.25 ± 29.27i −26.94 ± 22.56i −8.87 ± 29.63i −27.05 ± 22.46i
39 8.67 ± 29.50i −27.66 ± 22.30i −9.22 ± 29.83i −27.76 ± 22.21i
40 9.08 ± 29.73i −28.36 ± 22.03i −9.57 ± 30.03i −28.46 ± 21.96i
41 9.48 ± 29.95i −29.06 ± 21.76i −9.92 ± 30.22i −29.16 ± 21.70i
42 9.87 ± 30.16i −29.75 ± 21.47i −10.27 ± 30.42i −29.84 ± 21.42i
43 10.25 ± 30.38i −30.43 ± 21.18i −10.62 ± 30.61i −30.52 ± 21.14i
44 10.63 ± 30.58i −31.10 ± 20.87i −10.96 ± 30.81i −31.19 ± 20.84i
45 11.00 ± 30.79i −31.77 ± 20.55i −11.30 ± 31.00i −31.85 ± 20.53i
46 11.36 ± 30.99i −32.43 ± 20.22i −11.64 ± 31.18i −32.51 ± 20.21i
47 11.72 ± 31.19i −33.08 ± 19.88i −11.97 ± 31.37i −33.16 ± 19.87i
48 12.07 ± 31.38i −33.73 ± 19.52i −12.30 ± 31.55i −33.80 ± 19.52i
49 12.41 ± 31.57i −34.37 ± 19.15i −12.63 ± 31.74i −34.44 ± 19.15i
50 12.75 ± 31.76i −35.01 ± 18.76i −12.96 ± 31.92i −35.07 ± 18.76i
51 13.08 ± 31.95i −35.64 ± 18.35i −13.28 ± 32.09i −35.71 ± 18.36i
52 13.41 ± 32.13i −36.27 ± 17.92i −13.57 ± 32.27i −36.33 ± 17.93i
53 13.74 ± 32.31i −36.89 ± 17.48i −13.91 ± 32.44i −36.95 ± 17.49i
54 14.06 ± 32.49i −37.51 ± 17.01i −14.22 ± 32.62i −37.57 ± 17.02i
55 14.38 ± 32.66i −38.13 ± 16.51i −14.53 ± 32.79i −38.18 ± 16.53i
56 14.69 ± 32.84i −38.74 ± 15.99i −14.84 ± 32.95i −38.79 ± 16.01i
57 15.00 ± 33.01i −39.35 ± 15.44i −15.14 ± 33.12i −39.40 ± 15.47i
58 15.31 ± 33.18i −39.95 ± 14.85i −15.44 ± 33.28i −40.00 ± 14.88i
59 15.62 ± 33.34i −40.55 ± 14.23i −15.74 ± 33.45i −40.60 ± 14.26i
60 15.92 ± 33.51i −41.15 ± 13.56i −16.03 ± 33.61i −41.20 ± 13.60i
Fig. 6. Illustration of the choice of 𝐐 for the controlled airfoil system with LQR and by considering different speeds 𝑉 from 25 m/s to 60 m/s (a) poles (b) estimation of 𝜏𝑐 and
𝜔𝑐 (+ case 1; + case 2; + case 3; + Case 4; o uncontrolled system). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
there is no relationship between the values for the two selected samples
(i.e. no similarity between the gain matrices 𝐆𝑎 and 𝐆𝑏 of the two
selected simulations). If 𝑟𝑎,𝑏 is close to −1 or 1, it indicates the strongest
possible agreement. Note that a correlation coefficient 𝑟𝑎,𝑏 greater than
zero means a positive relationship while a value less than zero indicates
a negative relationship. Fig. 8 shows the scalar correlation coefficients
𝑟𝑎,𝑏 for 𝑎, 𝑏 = 1,… , 100. It appears that the correlation coefficient is
very close to 1 whatever simulations are chosen and compared. It
means there is a strong similarity between the gain matrices 𝐆𝑎 and
9

𝐆𝑏 that come from two different simulations. However, two groups
appear very clearly (see the dark brown and white squares for each
𝑟𝑎,𝑏). This illustrates the fact that the two categories for the prediction of
the critical time delay 𝜏𝑐 and the angular frequency 𝜔𝑐 previously seen
in Fig. 7 are therefore directly links to the controllers 𝐠 and 𝐟 which
belong one of the two groups estimate of 𝐆.

In order to bring elements of explanation on the physical phenom-
ena involved to explain the prediction of two groups of 𝜏𝑐 so different,
and thus to better understand the indirect effect of the choices of 𝐠 and
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Table 6
Estimation of the critical time delay 𝜏𝑐 and the associated angular frequency 𝜔𝑐 for the controlled airfoil
system with LQR and by considering different speeds 𝑉 from 25 m/s to 60 m/s.

V (m/s) Order 𝜏𝑐 (s) 𝜔𝑐 (rad/s) |
ℑ(𝜆𝑖 (𝜏(𝜔)))−𝜔|

𝜔
ℜ

(

𝜆𝑖
(

𝜏− (𝜔)
))

ℜ
(

𝜆𝑖
(

𝜏+ (𝜔)
))

25 5 0.0360 33.94 0.00740 −0.00066 0.00143
26 6 0.0337 34.78 0.00130 −0.00014 0.00073
27 6 0.0319 35.69 0.00861 −0.00001 0.00008
28 6 0.0304 36.66 0.00355 −0.00017 0.00012
29 6 0.0291 37.69 0.00175 −0.00042 0.00016
30 6 0.0280 38.77 0.00143 −0.00054 0.00018
31 6 0.0270 39.87 0.00146 −0.00065 0.00008
32 6 0.0260 41.00 0.00153 −0.00042 0.00026
33 6 0.0252 42.15 0.00191 −0.00038 0.00019
34 6 0.0245 43.30 0.00272 −0.00039 0.00004
35 6 0.0238 44.45 0.00426 −0.00015 0.00014
36 6 0.0231 45.59 0.00983 −0.00012 0.00004
37 6 0.0223 46.73 0.00999 −0.00007 0.00009
38 6 0.0220 47.86 0.00460 −0.00008 0.00021
39 6 0.0215 48.97 0.00294 −0.00012 0.00033
40 6 0.0210 50.07 0.00215 −0.00011 0.00049
41 6 0.0205 51.16 0.00180 −0.00035 0.00041
42 6 0.0201 52.23 0.00144 −0.00015 0.00077
43 6 0.0197 53.29 0.00122 −0.00003 0.00103
44 6 0.0193 54.34 0.00111 −0.00019 0.00101
45 5 0.0190 55.41 0.00980 −0.00012 0.00116
46 5 0.0186 56.42 0.00902 −0.00007 0.00134
47 5 0.0183 57.44 0.00831 −0.00058 0.00096
48 5 0.0180 58.44 0.00779 −0.00064 0.00103
49 5 0.0177 59.43 0.00735 −0.00078 0.00100
50 5 0.0174 60.41 0.00700 −0.00083 0.00106
51 5 0.0171 61.38 0.00672 −0.00058 0.00141
52 5 0.0168 62.34 0.00642 −0.00092 0.00118
53 5 0.0166 63.30 0.00622 −0.00067 0.00152
54 5 0.0163 64.24 0.00600 −0.00080 0.00148
55 5 0.0161 65.18 0.00589 −0.00005 0.00233
56 5 0.0159 66.11 0.00567 −0.00068 0.00178
57 5 0.0157 67.03 0.00557 −0.00019 0.00235
58 5 0.0155 67.94 0.00537 −0.00102 0.00161
59 5 0.0152 68.85 0.00529 −0.00048 0.00221
60 5 0.0150 69.76 0.00513 −0.00117 0.00160
Table 7
Values of Q and R for the four cases under study.

Case R Q

1 I2×2 diag
(

1
0.012

, 1
0.012

, 0, 0
)

2 I2×2 diag
(

1
0.12

, 1
0.12

, 0, 0
)

3 I2×2 diag
(

1
0.0012

, 1
0.0012

, 0, 0
)

4 I2×2 diag
(

1
0.012

, 1
0.012

, 1
0.12

, 1
0.12

)

𝐟 , we choose to study one case for each group in more detail. The first
one denoted by 30+ corresponds to the case for which 𝛥𝜔𝑐 > 0 and
he second one denoted by 30− for the case 𝛥𝜔𝑐 < 0. We recall that
n each case we consider the controlled airfoil system for 𝑉 = 30 m∕s.
able 8 provides the matrices of proportional velocity and displacement
ontrol gains 𝐟 and 𝐠 for one specific simulation result of both cases
0+ and 30−. Figs. 9 give the evolution of the imaginary parts of
he primary and secondary eigenvalues versus 𝜏 based on the Taylor
xpansion of 𝑝th order (for 𝑝 = 3,… , 6) as well as the delay margin
(𝜔) based on the frequency sweeping approach for both cases 30+

and 30−. Additionally Table 8 gives the prediction of the critical time
delay 𝜏𝑐 based on the proposed methodology previously described in
Section 3.2.3 for different orders of the Taylor expansion. Moreover
the estimation of the quality of the prediction (i.e. |ℑ(𝜆𝑖(𝜏(𝜔)))−𝜔|

𝜔 ) and
he values of ℜ

(

𝜆𝑖
(

𝜏− (𝜔)
))

and ℜ
(

𝜆𝑖
(

𝜏+ (𝜔)
))

are also given. Showing
igs. 9 it can be noted that the evolutions of the imaginary part of
he unstable mode are opposite for cases 30+ and 30−. For case 30+ an
ncrease of the imaginary part with the time delay 𝜏 is observed, while
decrease for case 30− is shown with a crossing between modes I and II
t 𝜏 ≈ 0.002 s. For more clarity evolution of both mode I (i.e. the mode
f the controlled airfoil system that becomes unstable for 𝜏 > 𝜏 ) and
10

𝑐

Fig. 7. Prediction of the critical time delay 𝜏𝑐 and 𝛥𝜔𝑐 for the pole placement technique
and by considering the variability (1 + 𝜖) 𝜆𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑1,2 with 𝜖 ∈ [−1; 1] × 10−8.

mode II versus the time delay is shown in Figs. 10 for cases 30+ and 30−.
Without any doubt it is demonstrated here that the two values of the
predicted critical time delay 𝜏𝑐 for cases 30− and 30+ are indeed related
to two different dynamic behaviors of the controlled airfoil system and
more particularly to a different evolution of mode I versus the time
delay 𝜏, this being directly related to the choice of the control gains 𝐟
and 𝐠.
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Fig. 8. Correlation coefficient 𝑟𝑎,𝑏 for the gain matrices 𝐆 based on 100 simulations for the controlled airfoil system with the pole placement technique at 𝑉 =30 m/s.
Table 8
Estimation of f and g for the two cases 30+ and 30− and by considering the controlled
airfoil system with the pole placement technique.

Case f g

30+ [−5.35 29.68 ; −5.83 22.95] [−689.93 2058.48 ; −62.97 1023.68]
30− [−3.32 39.13 ; −6.56 20.92] [−696.55 2978.33 ; −913.60 1003.73]

In addition, it is worth noting that all the results presented in Ta-
ble 9 and in Figs. 9 (via the crossing between the evolution of imaginary
parts and the delay margin 𝜏 (𝜔)) demonstrate the effectiveness and
relevance of the proposed approach to predict the critical time delay 𝜏𝑐
and the associated angular frequency 𝜔𝑐 . As a complement Figs. 11 give
the temporal vibration responses just before and just after each critical
time delay 𝜏𝑐 of both cases 30− and 30+. The angular frequency of the
unstable mode is estimated to be approximately equal to 36.7 rad/s
and 23.4 rad/s for case 30+ and 30−, respectively. These results are
in perfect agreement with the previous analysis. A full discussion of
the validity of the proposed method for predicting 𝜏𝑐 and 𝜔𝑐 from the
delay margin 𝜏 (𝜔) as well as a detailed investigation of the results
provided in Table 9 and in Figs. 9 and 11 are not proposed in this
section since the argument would be quite similar and redundant with
the explanation already given in Section 4.1. Note that these results
are not in disagreement with the fact that the algorithm used (Kautsky
et al., 1985) finds a robust solution, such that the assigned closed-loop
poles are insensitive to perturbations in the system data (i.e. the pro-
vided solution for the controlled system without time delay minimizes
the sensitivity of the closed-loop poles to perturbations in the input
matrices of the airfoil system). In this present case the algorithm is not
robust against the occurrence of a flutter instability for the controlled
system with time delay since small perturbations in the assigned poles
can induce different values of the critical time delay and, consequently,
an evolution of the flutter instability and the dynamic behavior of
controlled airfoil system with time delay.

Then the dynamic behavior of the controlled airfoil system in rela-
tion to the evolution of the speed 𝑉 from 25 m/s to 35 m/s is briefly
11
Table 9
Estimation of the critical time delay 𝜏𝑐 and the associated angular frequency 𝜔𝑐 for the
two cases 30− and 30+ and by considering the controlled airfoil system with the pole
placement technique.

Case Order 𝜏𝑐 (s) 𝜔𝑐 (rad/s) |
ℑ(𝜆𝑖 (𝜏(𝜔)))−𝜔|

𝜔
ℜ

(

𝜆𝑖
(

𝜏− (𝜔)
))

ℜ
(

𝜆𝑖
(

𝜏+ (𝜔)
))

30+ 3 0.0173 36.58 0.00488 −0.00421 0.00221
30+ 4 0.0174 36.67 0.00109 −0.00428 0.00180
30+ 5 0.0174 36.68 0.00006 −0.00466 0.00148
30+ 6 0.0174 36.68 0.00001 −0.00380 0.00001

30− 3 0.0075 23.45 0.00001 −0.00493 0.00612
30− 4 0.0075 23.45 0.00005 −0.00427 0.00678
30− 5 0.0075 23.45 0.00005 −0.00424 0.00681
30− 6 0.0075 23.45 0.00005 −0.00424 0.00681

undertaken to confirm the analysis and results previously proposed on
the use of the pole placement technique. Fig. 12(a) gives the evolution
of the time delay 𝜏𝑐 and the associated angular frequency 𝜔𝑐 in relation
to the evolution of the speed 𝑉 from 25 m/s to 35 m/s with a step
of 1 m/s. For a given speed two categories, denoted by the symbols
o and □ in Fig. 12(a), are observed for the prediction of the critical
time delay 𝜏𝑐 and the angular frequency 𝜔𝑐 . This result is perfectly
consistent with the previous observations made for the case 𝑉 = 30 m∕s.
Note that the figure summarizes all the results obtained for each speed
between [25;35] m/s: for each speed, several simulations have been
performed and only one result per category is shown. Table 11 gives
the prediction of the critical time delay 𝜏𝑐 and the angular frequency of
the unstable mode 𝜔𝑐 based on the proposed methodology and by using
a 5th order Taylor expansion, as well as the estimation of the quality of
the prediction (i.e. |ℑ(𝜆𝑖(𝜏(𝜔)))−𝜔|

𝜔 ) and the values of ℜ
(

𝜆𝑖
(

𝜏− (𝜔)
))

and
ℜ

(

𝜆𝑖
(

𝜏+ (𝜔)
))

. Table 10 provides the associated controllers 𝐠 and 𝐟 . For
the reader comprehension, the two categories are denoted by 𝑉− and
𝑉+ (with 𝑉 evolving between 25 m/s and 35 m/s with a step of 1 m/s)
respecting the denomination previously chosen in the study for the
specification of the indices − and +. As previously explained for the case
𝑉 = 30 m∕s, the two dynamic behaviors of the controlled airfoil system
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Fig. 9. Evolution of (𝜏, 𝜔), for the controlled airfoil system with the pole placement technique, based on the Taylor expansion of 𝑝th order for (a) case 30+ and (b) case 30−
(- - - 3rd order; - - - 4th order;- - - 5th order; - - - 6th order; + prediction of

(

𝜏𝑐 , 𝜔𝑐
)

; — 𝜏 (𝜔) based on the frequency sweeping approach; ◦ angular frequencies for the controlled
airfoil system without time delay). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Evolution of (a) mode I and (b) mode II versus the time delay 𝜏 (green = stable; red = unstable) for the controlled airfoil system with the pole placement technique
(case 30+ denoted by o and case 30− denoted by □). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
versus the critical time delay are linked to the choice of the control
gains 𝐟 and 𝐠. Fig. 12(b) illustrates this fact by showing the coefficient
of similarity between gain matrices 𝐆 from different simulations in
relation to the evolution of the speed 𝑉 from 25 m/s to 35 m/s with
a step of 1 m/s (i.e. 𝑉− and 𝑉+ with 𝑉 = [25 ∶ 1 ∶ 35] m∕s). We see
very clearly the two categories 𝑉− and 𝑉+ with a perfect correlation
on all the speeds for each category. These results illustrate therefore
all the precautions to be taken when using a controller based on the
pole placement technique. Indeed, different dynamic behaviors of the
controlled airfoil system can appear potentially leading to a more or
less early appearance of flutter instability in relation to the time delay.
Moreover this may induce a strong variation of the flutter frequency
𝜔𝑐 which can be prejudicial in the context of designing a airfoil system
with active control.

Finally Fig. 13 illustrates the prediction of the critical time delay
𝜏𝑐 and the associated angular frequency 𝜔𝑐 of the unstable mode for
the controlled airfoil system with the pole placement technique and
by considering three values for the control gain applied on the real
part of the uncontrolled poles (i.e. 𝛾 = −0.5, 𝛾 = −1 and 𝛾 = −2; see
Eq. (16) for more details). To be noted that the value of 𝛾 previously
used in the study for the pole placement technique is equal to −1.
12
This parametric study is performed by considering 15000 simulations
for different speeds 𝑉 from 25 m/s to 60 m/s. Simulation results
unsurprisingly illustrate the complexity associated with the potential
evolution of

(

𝜏𝑐 , 𝜔𝑐
)

and demonstrate all the precautions to be taken for
the suppression of flutter instability by using active feedback control.
Firstly it can be noted that the control gain 𝛾 has an expected effect with
an overall shift of

(

𝜏𝑐 , 𝜔𝑐
)

to the right by increasing the absolute value
of 𝛾. However, it is important to keep in mind the results presented
earlier, which showed that the phenomena involved are complex, so
an increase in the absolute value of 𝛾 (for a given value of the speed
𝑉 ) will not necessarily result in an increase in the critical time delay 𝜏𝑐 .
Secondly, the two categories previously denoted by 𝑉− and 𝑉+ can also
be guessed on the set of results associated with each control gain 𝛾. For
results that belong to group 𝑉+, a significant variation in the angular
frequency 𝜔𝑐 is also to be reported. This implies that the controller has
a significant impact not only on the value of the critical time delay
but also that the flutter frequency can drastically be modified by the
controller due to unavoidable time delays (in comparison to the flutter
frequency of the uncontrolled or controlled system without time delay).
This can be problematic for engineers in the design process of such
an airfoil system with regard to the problem of flutter instability and
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Fig. 11. Time responses of the controlled airfoil system with the pole placement technique for (a,b) case 30+ and (c,d) case 30− (a,c) before the critical time delay with 𝜏𝑐 (1 − 𝜒)
and (b,d) after the critical time delay with 𝜏𝑐 (1 + 𝜒) for 𝜒 = 0.01.
Fig. 12. Prediction of (a) the critical time delay 𝜏𝑐 and the associated angular frequency 𝜔𝑐 and (b) the correlation coefficient for the controlled airfoil system with the pole
placement technique and by considering different speeds 𝑉 from 25 m∕s to 35 m∕s.
the associated self-excited vibrations, and must therefore be taken into
account and looked at carefully when designing a controller to try
suppressing flutter instability. In some cases, the value of the critical
13
time delay 𝜏𝑐 is very low for the three values of 𝛾 (see all the couples
(

𝜏𝑐 , 𝜔𝑐
)

on the left side of Fig. 13). Due to the fact that such short
time delays in control loop are unavoidable in practice, particular



European Journal of Mechanics / A Solids 92 (2022) 104465J.-J. Sinou
Table 10
Estimation of f and g for the controlled airfoil system with the pole placement technique
and by considering different speeds 𝑉 the from 25 m∕s to 35 m∕s.

Case f g

25− [−8.81 34.24 ; −1.95 13.61] [−777.44 2902.02 ; −687.91 803.53]
25+ [−9.14 34.90 ; −4.42 13.94] [−777.25 2153.15 ; 51.46 803.87]
26− [−7.58 35.50 ; −2.90 15.26] [−761.51 2917.93 ; −729.30 841.87]
26+ [−8.66 32.47 ; −5.75 16.34] [−759.21 2124.62 ; 15.46 848.11]
27− [−5.33 30.94 ; −9.23 15.71] [−729.12 2855.42 ; −792.23 900.23]
27+ [−7.82 31.39 ; −5.96 18.19] [−741.55 2106.99 ; −6.70 891.52]
28− [−5.29 37.37 ; −4.89 18.20] [−729.11 2946.98 ; −819.26 921.17]
28+ [−5.77 33.82 ; −2.65 18.68] [−729.62 2104.92 ; 17.57 922.07]
29− [−4.39 38.74 ; −5.28 19.70] [−713.14 2966.82 ; −862.30 961.79]
29+ [−4.74 33.78 ; −2.00 20.05] [−713.61 2089.43 ; 6.68 962.74]
30− [−3.52 39.95 ; −5.76 21.12] [−697.15 2985.73 ; −907.58 1003.42]
30+ [−3.61 34.23 ; −0.93 21.21] [−697.33 2077.09 ; −0.93 1003.60]
31− [−1.85 37.06 ; −10.05 21.63] [−672.62 2960.27 ; −974.03 1053.41]
31+ [−2.75 34.10 ; −0.49 22.53] [−681.31 2059.68 ; −14.85 1046.04]
32− [−1.73 41.48 ; −7.45 23.61] [−664.84 3017.40 ; −1008.67 1089.00]
32+ [−2.26 33.16 ; −0.93 24.14] [−665.96 2035.75 ; −37.29 1090.98]
33− [−2.37 42.36 ; −8.14 26.25] [−658.83 3031.81 ; −1063.90 1142.53]
33+ [−1.27 36.92 ; 3.31 25.15] [−631.13 2054.74 ; −22.64 1121.58]
34− [−1.62 43.37 ; −8.68 27.44] [−643.50 3050.54 ; −1116.07 1187.61]
34+ [−1.50 34.78 ; 1.69 27.32] [−640.44 2016.93 ; −49.10 1184.66]
35− [−0.90 44.39 ; −9.19 28.61] [−628.51 3069.75 ; −1169.47 1233.64]
35+ [0.18 36.40 ; 3.73 27.52] [−600.10 2013.58 ; −56.30 1210.22]

Table 11
Estimation of the critical time delay 𝜏𝑐 and the associated angular frequency 𝜔𝑐 for
the controlled airfoil system with the pole placement technique and by considering
different speeds 𝑉 the from 25 m∕s to 35 m∕s.

Case 𝜏𝑐 (s) 𝜔𝑐 (rad/s) |
ℑ(𝜆𝑖 (𝜏(𝜔)))−𝜔|

𝜔
ℜ

(

𝜆𝑖
(

𝜏− (𝜔)
))

ℜ
(

𝜆𝑖
(

𝜏+ (𝜔)
))

25− 0.0030 23.37 0.00001 −0.00517 0.00512
25+ 0.0119 31.50 0.00357 −0.59784 0.13228
26− 0.0040 23.33 0.00004 −0.00410 0.00659
26+ 0.0130 32.16 0.00005 −0.00581 0.00365
27− 0.0041 24.20 0.00005 −0.00779 0.00069
27+ 0.0143 33.22 0.00001 −0.00542 0.00555
28− 0.0061 23.27 0.00004 −0.00717 0.00014
28+ 0.0163 35.78 0.00010 −0.00286 0.00810
29− 0.0070 23.23 0.00011 −0.00557 0.00093
29+ 0.0171 37.19 0.00001 −0.00014 0.01085
30− 0.0078 23.25 0.00005 −0.00125 0.00976
30+ 0.0178 38.78 0.00010 −0.00359 0.00209
31− 0.0074 24.19 0.00022 −0.00300 0.00201
31+ 0.0182 40.09 0.00010 −0.00332 0.00773
32− 0.0088 23.60 0.00006 −0.00404 0.00703
32+ 0.0185 41.02 0.00030 −0.00305 0.00147
33− 0.0095 23.53 0.00005 −0.00134 0.00973
33+ 0.0191 44.55 0.00157 −0.00192 0.00066
34− 0.0099 23.71 0.00005 −0.00131 0.00977
34+ 0.0188 45.03 0.00153 −0.00174 0.00086
35− 0.0102 23.90 0.00367 −0.00123 0.00034
35+ 0.0190 46.77 0.00010 −0.00294 0.00814

attention should be paid to the choice of the gain matrix. An alternative
advanced strategy for active aeroelastic control may be used in these
specific cases. To avoid the sensitivity of the controllers to time-delay
a different strategy for active aeroelastic control with time delay might
be to define an effective controller for a given constant time delay
that represents the known offset between the time required to compute
gains/forces for a desired control objective based on sensor signals and
physical actuators to satisfy the control requirements. The development
of such a control strategy is beyond the scope of this work, the reader
can refer to Singh’s article (Singh, 2015) for a complete study on the
subject and the problem addressed in this article.

5. Conclusion

In this work, the efficiency of a hybrid methodology, based on the
frequency sweep test and the eigenvalue problem approximation using
the Taylor series expansion of the delayed term, for flutter instability of
14
Fig. 13. Prediction of
(

𝜏𝑐 , 𝜔𝑐
)

for various control gains (black: 𝛾 = −0.5; red: 𝛾 = −1;
blue: 𝛾 = −2) with the pole placement technique and by considering different speeds
𝑉 from 𝑉 = 25 m∕s to 60 m∕s. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

airfoil controlled systems is illustrated. This computational technique
is more specifically tested to predict the critical time delay of a two-
dimensional airfoil controlled system with time delay as well as the
associated flutter angular frequency. Moreover the use of the hybrid
methodology allows not only an efficient and fast prediction of the
critical time delay but also an estimation of the different dynamic
behaviors that can occur during the appearance of a flutter instability
for a controlled system with time delay. It is illustrated without any
ambiguity that the presence of time delay in controllers may induce
detrimental degradation of the controlled airfoil system with the ap-
pearance of flutter instability. Finally, a discussion is conducted on the
dependence of the critical time delay versus some specific parameters
of the LQR state-feedback controller and the pole placement technique.

Some non-exhaustive interesting outlooks for future research are as
follows:

• One of the main challenges for engineers working on active
control and flutter is to provide practical applications of active
control to suppress or mitigate flutter instability phenomena in
the real world. The study proposed in this paper focuses only
on a simplified theoretical model (i.e. a two-dimensional airfoil
system), in order to illustrate clearly the use of the proposed
hybrid approach for predicting the critical time delay and to illus-
trate the potential limitations or recommendations when applying
well-known linear controllers such as the LQR approach or the
pole placement. This study does not address the question of how
control forces can be applied to airfoil systems in the real world.
Classically, the control forces are most often generated by the
deflection of the trailing edge control surface. Therefore, it would
be necessary to develop in future research more complex airfoil
systems such as the well-known three-dimensional airfoil model
with trailing edge control surface to address this issue. Moreover
the issue of the development and evaluation of control laws in
practical cases is an important task. Indeed control laws can be
described in different ways such as ignoring actuator dynamics,
introducing actuator dynamics with a structural filter or using
only actuator dynamics. It is well-known that actuator dynamics
can cause phase lag in the closed-loop.

• A directly related point concerns the control robustness that is
achieved in practical cases at a cost of increased control surface
activity for the airfoil system. Robust control theory relates more
specifically to the view of controller design that explicitly deals
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with uncertainty. The question is then to be able to design ro-
bust controls to operate correctly even if uncertain parameters
or disturbances are considered. To be noted that defects in the
geometry of the mechanical system under study or dispersion
in the material properties are inherent in the manufacturing
process, which therefore brings possible variability with respect
to a deterministic target reference. In addition, a system is often
subjected to changes due to degradation, thermal effects during
service, or other factors that are difficult to identify precisely.
These variabilities can have an impact on the key characteristics
of controlled airfoil systems, causing deviations in performance
from an optimal initial design, and thus unexpected flutter and
vibration deterioration. Therefore the introduction of uncertain-
ties and the propagation and analysis of the associated results
of the controlled airfoil system with time delay are subjects of
primary importance to adequately address the real problems faced
by engineers and their need to accurately and robustly predict
flutter instability.

• The proposed study focuses on flutter instability and active aeroe-
lastic control with time delay for a airfoil system subjected to
quasi-steady aerodynamic loading. The extension to the case of
an unsteady aerodynamic model should be interesting for active
flutter suppression from a more general point of view.

• The proposed study investigates only the notion of the onset of
the flutter instability (i.e. the study is limited to the linear region).
The extension to the study for estimating the nonlinear responses
of airfoil systems and the effect of the time delay in control design
on the vibrational magnitudes would be an interesting topic. This
would naturally require the consideration of non-linearities in
structural stiffness or aerodynamics.
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