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UNCERTAINTY PRINCIPLES IN GELFAND-SHILOV SPACES AND

NULL-CONTROLLABILITY

JÉRÉMY MARTIN

Abstract. We provide new uncertainty principles for functions in a general class of
Gelfand-Shilov spaces. These results apply, in particular, with the classical Gelfand-
Shilov spaces as well as for spaces of functions with weighted Hermite expansions. Thanks
to these uncertainty principles, we derive null-controllability results for evolution equa-
tions with adjoint systems enjoying smoothing effects in specific Gelfand-Shilov spaces.
More precisely, we consider control subsets which are thick with respect to a quasi lin-
early growing density and establish sufficient conditions on the growth of the density to
ensure null-controllability of these evolution equations.

1. Introduction

This paper aims at broadening the understanding of the link between uncertainty prin-
ciples and localized controllability of evolution equations. An uncertainty principle is a
property which gives some limitations on the simultaneous concentration of a function
and its Fourier transform. There exist different forms of uncertainty principles and one of
them consists in studying the support of functions whose Fourier transforms are localized.
The Logvinenko-Sereda Theorem [20] ensures the equivalence of the norms ‖ · ‖L2(Rd) and

‖ · ‖L2(ω), where ω ⊂ R
d is a measurable subset, on the subspace

{
f ∈ L2(Rd); supp f̂ ⊂ B(0, R)

}
with R > 0,

where f̂ denotes the Fourier transform of f , as soon as ω is thick. The thickness property
is defined as follows:

Definition 1.1. Let d ∈ N
∗ and ω be a measurable subset of Rd. For 0 < γ ≤ 1 and

L > 0, the set ω is said to be γ-thick at scale L > 0 if and only if

∀x ∈ R
d, |ω ∩ (x+ [0, L]d)| ≥ γLd,

where |A| denotes the Lebesgue measure of the measurable set A. The set ω is said to be
thick if and only if ω is γ-thick at scale L > 0 for some 0 < γ ≤ 1 and L > 0.

We define more generally the thickness with respect to a density:

Definition 1.2. Let d ∈ N
∗, 0 < γ ≤ 1, ω be a measurable subset of Rd and ρ : Rd −→

(0,+∞) a positive function. The set ω is said to be γ-thick with respect to ρ if and only if

∀x ∈ R
d, |ω ∩B(x, ρ(x))| ≥ γ|B(x, ρ(x))|,

where B(x,L) denotes the Euclidean ball of Rd centered at x with radius L.

Of course, a measurable subset of Rd is thick if and only if it is thick with respect to a
positive constant density. Kovrijkine provided a quantitative version of the Logvinenko-
Sereda Theorem in [18, Theorem 3]:

2020 Mathematics Subject Classification. 93B05, 93B07.
Key words and phrases. Uncertainty principles, observability, Gelfand-Shilov spaces.

1



2 JÉRÉMY MARTIN

Theorem 1.3 (Kovrijkine [18, Theorem 3]). Let ω ⊂ R
d be a measurable subset γ-thick

at scale L > 0. There exists a universal positive constant C > 0 independent on the
dimension d ≥ 1 such that for all f ∈ L2(Rd) satisfying supp f̂ ⊂ J , with J a cube with
sides of length b parallel to coordinate axes,

(1.1) ‖f‖L2(Rd) ≤ c(γ, d, L, b)‖f‖L2(ω),

with

c(γ, d, L, b) =
(Cd

γ

)Cd(Lb+1)
.

The thickness property was recently shown to play a key role in spectral inequalities
for finite combinations of Hermite functions. In [21, Theorem 2.1], the authors establish
quantitative estimates with an explicit dependence on the energy level N with respect to
the growth of the density appearing in Definition 1.2:

Theorem 1.4 (Pravda-Starov & Martin). Let ρ : Rd −→ (0,+∞) be a 1
2-Lipschitz posi-

tive function with R
d being equipped with the Euclidean norm, such that there exist some

positive constants 0 < ε ≤ 1, m > 0, R > 0 such that

∀x ∈ R
d, 0 < m ≤ ρ(x) ≤ R〈x〉1−ε.

Let ω be a measurable subset of Rd which is γ-thick with respect to the density ρ. Then,
there exist some positive constant κd(m,R, γ, ε) > 0, C̃d(ε,R) > 0 and a positive universal
constant κ̃d > 0 such that

(1.2) ∀N ≥ 1, ∀f ∈ EN , ‖f‖L2(Rd) ≤ κd(m,R, γ, ε)
( κ̃d
γ

)C̃d(ε,R)N1− ε
2

‖f‖L2(ω),

with EN being the finite dimensional vector space spanned by the Hermite functions (Φα)|α|≤N .

We refer the reader to Section 5.1 for the definition and some notations related to
Hermite functions (Φα)α∈Nd . We emphasize that Theorem 1.4 ensures, in particular, the
equivalence of the norms ‖ · ‖L2(Rd) and ‖ · ‖L2(ω) on the subspace EN as soon as the
measurable subspace ω is thick with respect to a suitable density. Actually, contrary to
the case when the functional subspace is the space of functions whose Fourier transforms
are compactly supported, this fact holds true as soon as ω is a measurable subset of positive
measure. As explained by the authors of [7, Section 2], the analyticity property of finite
combinations of Hermite functions together with an argument of finite dimension imply
that for all N ∈ N, there exists a positive constant CN (ω) > 0 such that

∀f ∈ EN , ‖f‖L2(Rd) ≤ CN (ω)‖f‖L2(ω),

as soon as |ω| > 0. The main interest of Theorem 1.4 is the quantitative estimate from
above on the growth of the positive constant CN (ω) with respect to the energy level N ,
which is explicitly related to the growth of the density ρ thanks to ε. As the norms ‖·‖L2(Rd)

and ‖ · ‖L2(ω) are not equivalent on L2(Rd) when |Rd \ ω| > 0, the constant CN (ω) does
have to blow up when N tends to infinity. However, the asymptotic of this blow-up is
very much related to the geometric properties of the control set ω, and understanding this
asymptotic can be assessed as an uncertainty principle.

One of the purpose of this work is to establish new uncertainty principles holding in a
general class of Gelfand-Shilov spaces and to provide sufficient conditions on the growth
of the density allowing these uncertainty principles to hold. Furthermore, this paper aims
at providing new null-controllability results as a byproduct of these uncertainty principles.
Indeed, some recent works have highlighted the key link between uncertainty principles
and localized control of evolution equations matters. Thanks to the explicit dependence
of the constant with respect to the length of the sides of the cube in (1.1), Egidi and
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Veselić [10]; and Whang, Whang, Zhang and Zhang [29] have independently established
that the heat equation

{
(∂t −∆x)f(t, x) = u(t, x)1lω(x) , x ∈ R

d, t > 0,
f |t=0 = f0 ∈ L2(Rd),

is null-controllable in any positive time T > 0 from a measurable control subset ω ⊂ R
d if

and only if the control subset ω is thick in R
d. By using the same uncertainty principle,

Alphonse and Bernier established in [3] that the thickness condition is necessary and
sufficient for the null-controllability of fractional heat equations

(1.3)

{
(∂t + (−∆x)

s)f(t, x) = u(t, x)1lω(x) , x ∈ R
d, t > 0,

f |t=0 = f0 ∈ L2(Rd),

when s > 1
2 . On the other hand, Koenig showed in [15, Theorem 3] and [16, Theorem 2.3]

that the null-controllability of (1.3) fails from any non-dense measurable subset of R when
0 < s ≤ 1

2 . In [4], Alphonse and the author point out the fact that the half heat equation,

which is given by (1.3) with s = 1
2 , turns out to be approximately null-controllable with

uniform cost if and only if the control subset is thick. Regarding the spectral inequalities
in Theorem 1.4, thanks to the quantitative estimates (1.2), Pravda-Starov and the author
established in [21, Corollary 2.6] that the fractional harmonic heat equation

{
∂tf(t, x) + (−∆x + |x|2)sf(t, x) = u(t, x)1lω(x), x ∈ R

d, t > 0,
f |t=0 = f0 ∈ L2(Rd),

with 1
2 < s ≤ 1, is null-controllable at any positive time from any measurable set ω which

is thick with respect to the density

∀x ∈ R
d, ρ(x) = R〈x〉δ ,

with 0 ≤ δ < 2s− 1 and R > 0. More generally, the result of [21, Theorem 2.5] shows that
this thickness condition is a sufficient condition for the null-controllability of a large class
of evolution equations associated to a closed operator whose L2(Rd)-adjoint generates a

semigroup enjoying regularizing effects in specific symmetric Gelfand-Shilov spaces S
1
2s
1
2s

.

The sufficiency of the thickness conditions for control subsets to ensure null-controllability
results for these evolution equations is derived from an abstract observability result based
on an adapted Lebeau-Robbiano method established by Beauchard and Pravda-Starov
with some contributions of Miller in [8, Theorem 2.1]. This abstract observability result
was extended in [6, Theorem 3.2] to the non-autonomous case with moving control sup-
ports under weaker dissipation estimates allowing a controlled blow-up for small times in
the dissipation estimates.

The main limitation in the work [21] is that Hermite expansions can only characterize
symmetric Gelfand-Shilov spaces (see Section 5.2) and therefore, the null-controllability
results in [21] are limited to evolution equations enjoying only symmetric Gelfand-Shilov
smoothing effects. This work partially adresses this matter by investigating the null-
controllability of evolution equations associated to anharmonic oscillators, which are known
to regularize in non-symmetric Gelfand-Shilov spaces. More generally, we establish null-
controllability results for abstract evolution equations whose adjoint systems enjoy smooth-
ing effects in non-symmetric Gelfand-Shilov spaces. This work precisely describes how the
geometric properties of the control subset are related to the two indexes µ, ν defining the
Gelfand-Shilov space Sµ

ν .
This paper is organized as follows: In Section 2.1, new uncertainty principles and quan-

titative estimates are presented. We first establish uncertainty principles for a general class
of Gelfand-Shilov spaces in Section 2.1.1. In a second time, we deal with the particular
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case of spaces of functions with weighted Hermite expansions in Section 2.1.2. These re-
sults are derived from sharp estimates for quasi-analytic functions established by Nazarov,
Sodin and Volberg in [24]. Some facts and results related to quasi-analytic functions are
recalled in Sections 2 and 5.3. Thanks to these new uncertainty principles, we estab-
lish sufficient geometric conditions for the null-controllability of evolutions equations with
adjoint systems enjoying quantitative Gelfand-Shilov smoothing effects in Section 2.2.

2. Statement of the main results

The main results contained in this work are the quantitative uncertainty principles hold-
ing for general Gelfand-Shilov spaces given in Theorem 2.2. The first part of this section
is devoted to present these new uncertainty principles and to discuss the particular case
of spaces of functions with weighted Hermite expansions. In a second part, we deduce
from these new uncertainty principles some null-controllability results for abstract evo-
lution equations with adjoint systems enjoying Gelfand-Shilov smoothing effects. Before
stating these results, miscellaneous facts and notations need to be presented. A sequence
M = (Mp)p∈N of positive real numbers is said to be logarithmically convex if

∀p ≥ 1, M2
p ≤ Mp+1Mp−1,

where N denotes the set of non-negative integers. Let U be an open subset of Rd, with
d ≥ 1. We consider the following class of smooth functions defined on U associated to the
sequence M,

CM(U) =
{
f ∈ C∞(U,C) : ∀β ∈ N

d, ‖∂β
xf‖L∞(U) ≤ M|β|

}
.

A logarithmically convex sequence M is said to be quasi-analytic if the class of smooth
functions CM((0, 1)) associated to M is quasi-analytic, that is, when the only function in
CM((0, 1)) vanishing to infinite order at a point in (0, 1) is the zero function. A necessary
and sufficient condition on the logarithmically convex sequence M to generate a quasi-
analytic class is given by the Denjoy-Carleman theorem (see e.g. [17]):

Theorem 2.1 (Denjoy-Carleman). Let M = (Mp)p∈N be a logarithmically convex sequence
of positive real numbers. The sequence M defines a quasi-analytic sequence if and only if

+∞∑

p=1

Mp−1

Mp
= +∞.

Let us now introduce the notion of Bang degree defined in [5] and [24], and used by
Jaye and Mitkovski in [14],

(2.1) ∀0 < t ≤ 1,∀r > 0, 0 ≤ nt,M,r = sup
{
N ∈ N :

∑

− log t<n≤N

Mn−1

Mn
< r

}
≤ +∞,

where the sum is taken equal to 0 when N = 0. Notice that if M is quasi-analytic, then
the Bang degree nt,M,r is finite for any 0 < t ≤ 1 and r > 0. This Bang degree allows
the authors of [14] to obtain uniform estimates for L2-functions with fast decaying Fourier
transforms and to establish uncertainty principles for a general class of Gevrey spaces.
These authors also define

(2.2) ∀p ≥ 1, γM(p) = sup
1≤j≤p

j
(Mj+1Mj−1

M2
j

− 1
)

and ΓM(p) = 4e4+4γM(p).

We refer the reader to the Section 5.3 for some examples and useful results about quasi-
analytic sequences.
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2.1. Some uncertainty principles.

2.1.1. Uncertainty principles in general Gelfand-Shilov spaces. In this section, we study
uncertainty principles holding in general Gelfand-Shilov spaces. We consider the following
subspaces of smooth functions

GSN ,ρ :=
{
f ∈ C∞(Rd), sup

k∈N, β∈Nd

‖ρ(x)k∂β
xf‖L2(Rd)

Nk,|β|
< +∞

}
,

where ρ : Rd −→ (0,+∞) is a positive measurable function and N = (Np,q)(p,q)∈N2 is a
sequence of positive real numbers. Associated to these spaces, are the following semi-norms

∀f ∈ GSN ,ρ, ‖f‖GSN ,ρ
= sup

k∈N, β∈Nd

‖ρ(x)k∂β
xf‖L2(Rd)

Nk,|β|
.

When
∀x ∈ R

d, ρ(x) = 〈x〉 = (1 + ‖x‖2) 1
2

and N =
(
Cp+q(p!)ν(q!)µ

)
(p,q)∈N2 for some C ≥ 1 and µ, ν > 0 with µ+ ν ≥ 1, GSN ,ρ is a

subspace of the classical Gelfand-Shilov space Sµ
ν , whereas when ρ ≡ 1, the space GSN ,ρ

characterizes some Gevrey type regularity. We choose here to not discuss this particular
case since it is studied in the recent works [4, 14]. In the following, a positive function
ρ : Rd −→ (0,+∞) is said to be a contraction mapping when there exists 0 ≤ L < 1 such
that

∀x, y ∈ R
d, |ρ(x)− ρ(y)| ≤ L‖x− y‖,

where ‖ · ‖ denotes the Euclidean norm. A double sequence of real numbers N =
(Np,q)(p,q)∈N2 is said to be non-decreasing with respect to the two indexes when

∀p ≤ p′,∀q ≤ q′, Np,q ≤ Np′,q′ .

The following result provides some uncertainty principles holding for the spaces GSN ,ρ:

Theorem 2.2. Let 0 < γ ≤ 1, N = (Np,q)(p,q)∈N2 ∈ (0,+∞)N
2
be a non-decreasing

sequence with respect to the two indexes such that the diagonal sequence M = (Np,p)p∈N ∈
(0,+∞)N defines a logarithmically-convex quasi-analytic sequence and ρ : Rd −→ (0,+∞)
a positive contraction mapping such that there exist some constants m > 0, R > 0 so that

∀x ∈ R
d, 0 < m ≤ ρ(x) ≤ R〈x〉.

Let ω be a measurable subset of Rd. If ω is γ-thick with respect to ρ, then there exist some
positive constants K = K(d, ρ) ≥ 1, K ′ = K ′(d, ρ, γ) ≥ 1, r = r(d, ρ) ≥ 1 depending on the
dimension d ≥ 1, on γ for the second and on the density ρ such that for all 0 < ε ≤ N2

0,0,

∀f ∈ GSN ,ρ, ‖f‖2L2(Rd) ≤ Cε‖f‖2L2(ω) + ε‖f‖2GSN ,ρ
,

where

Cε = K ′

(
2d

γ
ΓM(2nt0,M,r)

)4nt0,M,r

with nt0,M,r being defined in (2.1) and

t0 =
ε

1
2

KNd,d
.

It is particularly interesting to notice that Theorem 2.2 provides a quantitative estimate
of the constant Cε with respect to the different parameters. In specific cases, the Bang
degree is easily computable (see Lemma 5.4) and an explicit upper bound on the constant
Cε can be obtained. The above uncertainty principles apply in particular to the case of
the classical Gelfand-Shilov spaces Sµ

ν (Rd) as follows:
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Theorem 2.3. Let A ≥ 1, 0 < µ ≤ 1, ν > 0 with µ + ν ≥ 1 and 0 ≤ δ ≤ 1−µ
ν ≤ 1. Let

ρ : Rd −→ (0,+∞) be a positive contraction mapping such that there exist some constants
m > 0, R > 0 so that

∀x ∈ R
d, 0 < m ≤ ρ(x) ≤ R〈x〉δ.

Let ω be a measurable subset of Rd. If ω is thick with respect to ρ, then for all 0 < ε ≤ 1,
there exists a positive constant Cε,A > 0 such that for all f ∈ S (Rd),

(2.3) ‖f‖2L2(Rd) ≤ Cε,A‖f‖2L2(ω) + ε sup
p∈N,β∈Nd

( ‖〈x〉p∂β
xf‖L2(Rd)

Ap+|β|(p!)ν(|β|!)µ
)2

,

where, when δ < 1−µ
ν , there exists a positive constant K = K(d, γ, ρ, µ, ν) ≥ 1 depending

on the dimension d, ρ and ν such that

0 < Cε,A ≤ eK(1−log ε+A
2

1−µ−δν ),

whereas, when δ = 1−µ
ν , there exists a positive constant K = K(d, γ, ρ, µ, ν) ≥ 1 depending

on the dimension d, ρ and ν such that

0 < Cε,A ≤ eK(1−log ε+logA)eKA2

.

Let us notice that the estimate (2.3) is only relevant when

sup
p∈N,β∈Nd

‖〈x〉p∂β
xf‖L2(Rd)

Ap+|β|(p!)ν(|β|!)µ < +∞,

that is, when f ∈ GSN ,ρ̃, with N = (Ap+q(p!)ν(q!)µ)(p,q)∈N2 and ρ̃ = 〈·〉. The quantitative
estimates given in Theorem 2.3 are playing a key role in order to establish the following
null-controllability results.

The proof of Theorem 2.2 is given in Section 3.1. It follows the strategy developed by
Kovrijkine in [18], and its generalization given in Theorem 1.4 together with a quantitative
result on quasi-analytic functions which is a multidimensional version of [24, Theorem B]
from Nazarov, Sodin and Volberg. Regarding Theorem 2.3, its proof is given in Section 3.5.
It is a direct application of Theorem 2.2 together with Lemma 5.4. Next section shows
that Theorem 2.2 also applies to more general sequences.

2.1.2. Uncertainty principles in symmetric weighted Gelfand-Shilov spaces. Let

Θ : [0,+∞) −→ [0,+∞),

be a non-negative continuous function. We consider the following symmetric weighted
Gelfand-Shilov spaces

GSΘ =
{
f ∈ L2(Rd) : ‖f‖GSΘ

:=
∥∥∥
(
eΘ(|α|)〈f,Φα〉L2(Rd)

)
α∈Nd

∥∥∥
l2(Nd)

< +∞
}
,

where (Φα)α∈Nd denotes the Hermite basis of L2(Rd). The definition and basic facts about
Hermite functions are recalled in Section 5.1.

Before explaining how the spaces GSΘ relate to Gelfand-Shilov spaces defined in Sec-
tion 5.2, the assumptions on the weight function Θ need to be specify further. Let us
consider the following logarithmically-convex sequence

(2.4) ∀p ∈ N, Mp = sup
t≥0

tpe−Θ(t).

Let s > 0. We assume that the sequence (Mp)p∈N satisfies the following conditions:

(H1) ∀p ∈ N, 0 < Mp < +∞,

(H2) There exist some positive constants CΘ > 0, LΘ ≥ 1 such that

∀p ∈ N, pp ≤ CΘL
p
ΘMp,
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with the convention 00 = 1,

(H3)s The sequence (M s
p )p∈N is quasi-analytic, that is,

+∞∑

p=1

(Mp−1

Mp

)s
= +∞,

according to Denjoy-Carleman Theorem. Under these assumptions, the following Bern-
stein type estimates hold for the spaces GSΘ:

Proposition 2.4. Let Θ : [0,+∞) −→ [0,+∞) be a non-negative continuous function. If
the associated sequence (Mp)p∈N in (2.4) satisfies the assumptions (H1) and (H2), then

the space GSΘ is included in the Schwartz space S (Rd), and for all 0 < s ≤ 1, there exists
a positive constant DΘ,d,s ≥ 1 such that

∀f ∈ GSΘ,∀r ∈ [0,+∞),∀β ∈ N
d,

‖〈x〉r∂β
xf‖L2(Rd) ≤ (DΘ,d,s)

1+r+|β|
(
M⌊

r+1+|β|+(2−s)(d+1)
2s

⌋

+1

)s
‖f‖GSΘ

,

where ⌊·⌋ denotes the floor function.

Remark 2.5. Let us notice that Proposition 2.4 implies in particular the inclusion of
spaces GSΘ ⊂ GSN ,ρs, when

1
2 ≤ s ≤ 1, with

∀x ∈ R
d, ρs(x) = 〈x〉2s−1

and

N =
(
(D

(2s−1)p+q+1
Θ,d,s M s

⌊

(2s−1)p+1+q+(2−s)(d+1)
2s

⌋

+1

)
(p,q)∈N2

,

and the following estimates

∀f ∈ GSΘ, ‖f‖GSN ,ρs
≤ ‖f‖GSΘ

.

The proof of Proposition 2.4 is given in Appendix (Section 5). In order to derive
uncertainty principles for functions with weighted Hermite expansions, the sequence M
has in addition to satisfy the assumption (H3)s for some 1

2 ≤ s ≤ 1.
The quantitative estimates in Proposition 2.4 together with the uncertainty principles

given by Theorem 2.2 allow us to establish the following estimates:

Theorem 2.6. Let 0 ≤ δ ≤ 1 and Θ : [0,+∞) −→ [0,+∞) be a non-negative contin-
uous function. Let us assume that the associated sequence (Mp)p∈N in (2.4) satisfies the

assumptions (H1), (H2) and (H3) 1+δ
2
. Let ρ : Rd −→ (0,+∞) be a positive contraction

mapping satisfying

∃m > 0,∃R > 0,∀x ∈ R
d, 0 < m ≤ ρ(x) ≤ R 〈x〉δ .

If ω is a measurable subset of R
d thick with respect to ρ, then there exists a positive

constant ε0 = ε0(Θ, d, δ) > 0 such that for all 0 < ε ≤ ε0, there exists a positive constant
Dε = D(d,Θ, ε, δ, ρ) > 0 so that

(2.5) ∀f ∈ GSΘ, ‖f‖2L2(Rd) ≤ Dε‖f‖2L2(ω) + ε‖f‖2GSΘ
.

The above result provides some uncertainty principles for functions with weighted Her-
mite expansions. Its proof is given in Section 3.6. Let us point out that it is possible to
obtain quantitative estimates on the constant Dε thanks to the ones in Theorem 2.2, and
to recover the spectral inequalities for finite combinations of Hermite functions established
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in [21] with a constant growing at the same rate with respect to N . Indeed, by taking
Θ(t) = t on [0,+∞), we readily compute that

∀p ∈ N, Mp = sup
t≥0

tpe−t =
(p
e

)p

and the Stirling’s formula provides

Mp ∼
p→+∞

p!√
2πp

.

It follows that the assumptions (H1), (H2) and (H3)1 are satisfied. By noticing that

‖f‖2GSΘ
=

∑

|α|≤N

e2|α||〈f,Φα〉L2(Rd)|2 ≤ e2N‖f‖2L2(Rd),

when N ∈ N and f =
∑

|α|≤N 〈f,Φα〉Φα, we deduce from (2.5) while taking ε = 1
2e

−2N

that

∀N ∈ N,∀f ∈ EN , ‖f‖2L2(Rd) ≤ 2D 1
2
e−2N ‖f‖2L2(ω),

where EN = SpanC
{
Φα

}
α∈Nd, |α|≤N

.

We end this section by providing some examples of functions Θ, which define a sequence
M = (Mp)p∈N satisfying hypotheses (H1), (H2) and (H3)s for some 1

2 ≤ s ≤ 1. In [4,
Proposition 4.7], Alphonse and the author devise the following examples in the case s = 1:

Proposition 2.7 ([4], Alphonse & Martin). Let k ≥ 1 be a positive integer and Θk,1 :
[0,+∞) → [0,+∞) be the non-negative function defined for all t ≥ 0 by

Θk,1(t) =
t

g(t)(g ◦ g)(t)...g◦k(t) , where g(t) = log(e+ t),

with g◦k = g ◦ . . . ◦ g (k compositions). The associated sequence MΘk,1 = (M
Θk,1
p )p∈N

defined in (2.4) is a quasi-analytic sequence of positive real numbers.

Let us notice that the assumption (H2) is satisfied as

∀k ≥ 1,∀p ∈ N, M
Θk,1
p = sup

t≥0
tpe−Θk,1(t) ≥ sup

t≥0
tpe−t =

(p
e

)p
.

Proposition 2.7 allows to provide some examples for the cases 1
2 ≤ s ≤ 1:

Proposition 2.8. Let k ≥ 1 be a positive integer, 1
2 ≤ s ≤ 1 and Θk,s : [0,+∞) → [0,+∞)

be the non-negative function defined for all t ≥ 0 by

Θk,s(t) =
ts

g(t)(g ◦ g)(t)...g◦k(t) , where g(t) = log(e+ t),

with g◦k = g ◦ . . . ◦ g (k compositions). The associated sequence MΘk,s = (M
Θk,s
p )p∈N

defined in (2.4) satisfies the assumptions (H1), (H2) and (H3)s.

The proof of Proposition 2.8 is given in Section 5.3.
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2.2. Applications to the null-controllability of evolution equations. This section is
devoted to state some null-controllability results for evolution equations whose adjoint sys-
tems enjoy Gelfand-Shilov smoothing effects. Before presenting these results, let us recall
the definitions and classical facts about controllability. The notion of null-controllability
is defined as follows:

Definition 2.9 (Null-controllability). Let P be a closed operator on L2(Rd), which is the
infinitesimal generator of a strongly continuous semigroup (e−tP )t≥0 on L2(Rd), T > 0
and ω be a measurable subset of Rd. The evolution equation

(2.6)

{
(∂t + P )f(t, x) = u(t, x)1lω(x), x ∈ R

d, t > 0,
f |t=0 = f0 ∈ L2(Rd),

is said to be null-controllable from the set ω in time T > 0 if, for any initial datum
f0 ∈ L2(Rd), there exists a control function u ∈ L2((0, T ) × R

d) supported in (0, T ) × ω,
such that the mild (or semigroup) solution of (2.6) satisfies f(T, ·) = 0.

By the Hilbert Uniqueness Method, see [9] (Theorem 2.44) or [19], the null-controllability
of the evolution equation (2.6) is equivalent to the observability of the adjoint system

(2.7)

{
(∂t + P ∗)g(t, x) = 0, x ∈ R

d, t > 0,
g|t=0 = g0 ∈ L2(Rd),

where P ∗ denotes the L2(Rd)-adjoint of P . The notion of observability is defined as follows:

Definition 2.10 (Observability). Let T > 0 and ω be a measurable subset of Rd. The
evolution equation (2.7) is said to be observable from the set ω in time T > 0, if there
exists a positive constant CT > 0 such that, for any initial datum g0 ∈ L2(Rd), the mild
(or semigroup) solution of (2.7) satisfies

∫

Rd

|g(T, x)|2dx ≤ CT

T∫

0

( ∫

ω

|g(t, x)|2dx
)
dt .

In the following, we shall always derive null-controllability results from observability
estimates on adjoint systems.

2.2.1. Null-controllability of evolution equations whose adjoint systems enjoy non sym-
metric Gelfand-Shilov smoothing effects. In this section, we aim at establishing null-
controllability results for evolution equations whose adjoint systems enjoy Gelfand-Shilov
smoothing effects. We consider A a closed operator on L2(Rd), that is the infinitesimal
generator of a strongly continuous contraction semigroup (e−tA)t≥0 on L2(Rd), that is
satisfying

∀t ≥ 0,∀f ∈ L2(Rd), ‖e−tAf‖L2(Rd) ≤ ‖f‖L2(Rd),

and study the evolution equation

(2.8)

{
∂tf(t, x) +Af(t, x) = u(t, x)1lω(x), x ∈ R

d, t > 0,
f |t=0 = f0 ∈ L2(Rd).

We assume that the semigroup (e−tA∗
)t≥0 generated by the L2(Rd)-adjoint operator A∗,

enjoys some Gelfand-Shilov smoothing effects for any positive time, that is,

∀t > 0,∀f ∈ L2(Rd), e−tA∗
f ∈ Sµ

ν (R
d),
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for some µ, ν > 0 satisfying µ + ν ≥ 1. More precisely, we assume that the following
quantitative regularizing estimates hold: there exist some constants C ≥ 1, r1 > 0, r2 ≥ 0,
0 < t0 ≤ 1 such that

(2.9) ∀0 < t ≤ t0,∀α, β ∈ N
d,∀f ∈ L2(Rd),

‖xα∂β
x (e

−tA∗
f)‖L2(Rd) ≤

C1+|α|+|β|

tr1(|α|+|β|)+r2
(α!)ν(β!)µ‖f‖L2(Rd),

where α! = α1!...αd! if α = (α1, ..., αd) ∈ N
d. In a recent work [2], Alphonse studies the

smoothing effects of semigroups generated by anisotropic Shubin operators

Hm,k = (−∆x)
m + |x|2k,

equipped with domains

D(Hm,k) =
{
f ∈ L2(Rd) : Hm,kf ∈ L2(Rd)

}
,

when m,k ≥ 1 are positive integers. This author establishes in [2, Corollary 2.2] the
following quantitative estimates for fractional anisotropic Shubin operators: for all m,k ≥
1, s > 0, there exist some positive constants C ≥ 1, r1, r2 > 0, t0 > 0 such that

∀0 < t ≤ t0,∀α, β ∈ N
d,∀f ∈ L2(Rd),

‖xα∂β
x

(
e−tHs

m,kf
)
‖L2(Rd) ≤

C1+|α|+|β|

tr1(|α|+|β|)+r2
(α!)νm,k,s(β!)µm,k,s‖f‖L2(Rd),

with

νm,k,s = max
( 1

2sk
,

m

k +m

)
and µm,k,s = max

( 1

2sm
,

k

k +m

)
.

Thanks to these quantitative estimates and the general result of null-controllability for evo-
lution equations whose adjoint systems enjoy symmetric Gelfand-Shilov smoothing effects
in [21, Theorem 2.5], Alphonse derives in [2, Theorem 2.3] a sufficient growth condition
on the density ρ to ensure the null-controllability of evolution equations associated to
the Shubin operators Hl,l, with l ≥ 1, in any positive time from any measurable thick
control subset with respect to ρ. In this work, we extend this result to general Shubin
operators Hm,k, with m,k ≥ 1, and more generally establish the null-controllability of
evolution equations whose adjoint systems enjoy quantitative smoothing effects in specific
Gelfand-Shilov spaces Sµ

ν .
The following result shows that null-controllability holds for the evolution equations

(2.8) when the parameter δ ruling the growth of the density is strictly less than the

critical parameter δ∗ = 1−µ
ν .

Theorem 2.11. Let (A,D(A)) be a closed operator on L2(Rd) which is the infinitesi-
mal generator of a strongly continuous contraction semigroup (e−tA)t≥0 on L2(Rd) whose
L2(Rd)-adjoint generates a semigroup satisfying the quantitative smoothing estimates (2.9)
for some 0 < µ < 1, ν > 0 such that µ + ν ≥ 1. Let ρ : Rd −→ (0,+∞) be a contraction

mapping such that there exist some constants 0 ≤ δ < 1−µ
ν , m > 0, R > 0 so that

∀x ∈ R
d, 0 < m ≤ ρ(x) ≤ R〈x〉δ.

If ω ⊂ R
d is a measurable subset thick with respect to the density ρ, the evolution equation

{
∂tf(t, x) +Af(t, x) = u(t, x)1lω(x), x ∈ R

d, t > 0,
f |t=0 = f0 ∈ L2(Rd),

is null-controllable from the control subset ω in any positive time T > 0; and equivalently,
the adjoint system

{
∂tg(t, x) +A∗g(t, x) = 0, x ∈ R

d, t > 0,
g|t=0 = g0 ∈ L2(Rd),



UNCERTAINTY PRINCIPLES AND NULL-CONTROLLABILITY 11

is observable from the control subset ω in any positive time T > 0. More precisely, there
exists a positive constant K = K(d, ρ, δ, µ, ν) ≥ 1 such that

∀g ∈ L2(Rd),∀T > 0, ‖e−TA∗
g‖2L2(Rd) ≤ K exp

( K

T
2r1

1−µ−δν

) ∫ T

0
‖e−tA∗

g‖2L2(ω)dt.

The proof of Theorem 2.11 is given in Section 4. It is derived from the uncertainty prin-
ciples established in Theorem 2.3 while revisiting the adapted Lebeau-Robbiano method
used in [8, Section 8.3] with some inspiration taken from the work of Miller [22].

Contrary to [21, Theorem 2.5], where the authors take advantage of the characteriza-
tion of symmetric Gelfand-Shilov spaces through the decomposition into Hermite basis,
let us stress that the above proof does not rely on a similar characterization of general
Gelfand-Shilov spaces through the decomposition into an Hilbert basis composed by the
eigenfunctions of a suitable operator. In the critical case δ = δ∗, the null-controllability of
the evolution equation (2.8) whose adjoint system enjoys quantitative smoothing estimates
in the Gelfand-Shilov space Sµ

ν is still an open problem.
As mentionned above, the general Shubin operators Hm,k are self-adjoint and gener-

ate strongly continuous semigroups on L2(Rd), which enjoy quantitative smoothing ef-
fects. Consequently, Theorem 2.11 can be directly applied to obtain the following null-
controllability results:

Corollary 2.12. Let m,k ≥ 1 be positive integers, s > 1
2m and

δ∗m,k,s :=

{
1 if s ≥ m+k

2mk ,
k
m(2sm− 1) if 1

2m < s ≤ m+k
2mk .

Let ρ : Rd −→ (0,+∞) be a contraction mapping such that there exist some constants
0 ≤ δ < δ∗, m > 0, R > 0 so that

∀x ∈ R
d, 0 < m ≤ ρ(x) ≤ R〈x〉δ.

If ω ⊂ R
d is a measurable subset thick with respect to the density ρ, the evolution equation

associated to the fractional Shubin operator
{

∂tf(t, x) +Hs
m,kf(t, x) = u(t, x)1lω(x), x ∈ R

d, t > 0,

f |t=0 = f0 ∈ L2(Rd),

is null-controllable from the control subset ω in any time T > 0.

3. Proof of the uncertainty principles

3.1. Proof of Theorem 2.2. This section is devoted to the proof of Theorem 2.2. Let
ρ : Rd −→ (0,+∞) be a positive contraction mapping such that there exist some positive
constants m > 0, R > 0 so that

(3.1) ∀x ∈ R
d, 0 < m ≤ ρ(x) ≤ R 〈x〉 .

Let ω ⊂ R
d be a measurable subset γ-thick with respect to the density ρ, that is,

∃0 < γ ≤ 1,∀x ∈ R
d, |ω ∩B(x, ρ(x))| ≥ γ|B(x, ρ(x))| = γρ(x)d|B(0, 1)|,

where B(x, r) denotes the Euclidean ball centered at x ∈ R
d with radius r > 0, and where

| · | denotes the Lebesgue measure. Since ρ is a positive contraction mapping, Lemma 5.12
in Appendix and the remark made after the statement of this result show that the family
of norms (‖ · ‖x)x∈Rd given by

∀x ∈ R
d,∀y ∈ R

d, ‖y‖x =
‖y‖
ρ(x)

,

where ‖ · ‖ denotes the Euclidean norm in R
d, defines a slowly varying metric on R

d.
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3.2. Step 1. Bad and good balls. By using Theorem 5.13 in appendix, we can find a
sequence (xk)k≥0 in R

d such that

(3.2) ∃K0 ∈ N,∀(i1, ..., iK0+1) ∈ N
K0+1 with ik 6= il if 1 ≤ k 6= l ≤ K0 + 1,

K0+1⋂

k=1

Bik = ∅

and

(3.3) R
d =

+∞⋃

k=0

Bk,

where

(3.4) Bk = {y ∈ R
d : ‖y − xk‖xk

< 1} = {y ∈ R
d : ‖y − xk‖ < ρ(xk)} = B(xk, ρ(xk)).

Let us notice from Theorem 5.13 that the non-negative integer K0 = K0(d, L) only depends
on the dimension d and L the Lipschitz constant of ρ, since the constant C ≥ 1 appearing
in slowness condition (5.30) can be taken equal to C = 1

1−L . It follows from (3.2) and

(3.3) that

(3.5) ∀x ∈ R
d, 1 ≤

+∞∑

k=0

1Bk
(x) ≤ K0,

where 1Bk
denotes the characteristic function of Bk. We deduce from (3.5) and the Fubini-

Tonelli theorem that for all g ∈ L2(Rd),

‖g‖2L2(Rd) =

∫

Rd

|g(x)|2dx ≤
+∞∑

k=0

∫

Bk

|g(x)|2dx ≤ K0‖g‖2L2(Rd).

Let f ∈ GSN ,ρ \{0} and ε > 0. We divide the family of balls (Bk)k≥0 into families of good
and bad balls. A ball Bk, with k ∈ N, is said to be good if it satisfies

(3.6) ∀p ∈ N,∀β ∈ N
d,

∫

Bk

|ρ(x)p∂β
xf(x)|2dx ≤ ε−122(p+|β|)+d+1K0N

2
p,|β|

∫

Bk

|f(x)|2dx,

On the other hand, a ball Bk, with k ∈ N, which is not good, is said to be bad, that is,
when

(3.7) ∃(p0, β0) ∈ N× N
d,

∫

Bk

|ρ(x)p0∂β0
x f(x)|2dx > ε−122(p0+|β0|)+d+1K0N

2
p0,|β0|

∫

Bk

|f(x)|2dx.

If Bk is a bad ball, it follows from (3.7) that there exists (p0, β0) ∈ N× N
d such that

(3.8)

∫

Bk

|f(x)|2dx ≤ ε

22(p0+|β0|)+d+1K0N
2
p0,|β0|

∫

Bk

ρ(x)2p0 |∂β0
x f(x)|2dx

≤
∑

(p,β)∈N×Nd

ε

22(p+|β|)+d+1K0N2
p,|β|

∫

Bk

ρ(x)2p|∂β
xf(x)|2dx.

By summing over all the bad balls and by using from (3.2) that

1

⋃

bad balls Bk
≤

∑

bad balls

1Bk
≤ K01

⋃

bad balls Bk
,
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we deduce from (3.8) and the Fubini-Tonelli theorem that

(3.9)

∫
⋃

bad balls Bk

|f(x)|2dx ≤
∑

bad balls

∫

Bk

|f(x)|2dx

≤
∑

(p,β)∈N×Nd

ε

22(p+|β|)+d+1N2
p,|β|

∫
⋃

bad balls Bk

|ρ(x)p∂β
xf(x)|2dx.

By using that the number of solutions to the equation p+ β1 + ...+ βd = m, with m ≥ 0,
d ≥ 1 and unknowns p ∈ N and β = (β1, ..., βd) ∈ N

d, is given by
(m+d

m

)
, we obtain from

(3.9) that

(3.10)

∫
⋃

bad balls Bk

|f(x)|2dx ≤ ε
∑

m≥0

(m+d
m

)

2d+14m
‖f‖2GSN ,ρ

≤ ε
∑

m≥0

2m+d

2d+14m
‖f‖2GSN ,ρ

= ε‖f‖2GSN ,ρ
,

since
(
m+ d

m

)
≤

m+d∑

j=0

(
m+ d

j

)
= 2m+d.

Recalling from (3.3) that

1 ≤ 1

⋃

bad balls Bk
+ 1

⋃

good balls Bk
,

we notice that

(3.11) ‖f‖2L2(Rd) ≤
∫
⋃

good balls Bk

|f(x)|2dx+

∫
⋃

bad balls Bk

|f(x)|2dx.

It follows from (3.10) and (3.11) that

(3.12) ‖f‖2L2(Rd) ≤
∫
⋃

good balls Bk

|f(x)|2dx+ ε‖f‖2GSN ,ρ
.

3.3. Step 2. Properties on good balls. As the ball B(0, 1) is an Euclidean ball, the
Sobolev embedding

W d,2(B(0, 1)) −֒→ L∞(B(0, 1)),

see e.g. [1] (Theorem 4.12), implies that there exists a positive constant Cd ≥ 1 depending
only the dimension d ≥ 1 such that

(3.13) ∀u ∈ W d,2(B(0, 1)), ‖u‖L∞(B(0,1)) ≤ Cd‖u‖W d,2(B(0,1)).

By translation invariance and homogeneity of the Lebesgue measure, it follows from (3.1),
(3.4) and (3.13) that for all u ∈ W d,2(Bk),

‖u‖2L∞(Bk)
= ‖x 7→ u(xk + xρ(xk))‖2L∞(B(0,1)) ≤ C2

d‖x 7→ u(xk + xρ(xk))‖2W d,2(B(0,1))

= C2
d

∑

α∈Nd,
|α|≤d

∫

Bk

ρ(xk)
2|α|−d|∂α

xu(x)|2dx = C2
d

∑

α∈Nd,
|α|≤d

∫

Bk

m2|α|−d
(ρ(xk)

m

)2|α|−d
|∂α

xu(x)|2dx
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and

(3.14) ‖u‖2L∞(Bk)
≤ C2

d max(m,m−1)d
∑

α∈Nd,
|α|≤d

∫

Bk

(ρ(xk)
m

)d
|∂α

xu(x)|2dx

= C2
d max(1,m−1)2dρ(xk)

d
∑

α∈Nd,
|α|≤d

∫

Bk

|∂α
xu(x)|2dx.

We deduce from (3.14) that for all u ∈ W d,2(Bk),

(3.15) ‖u‖L∞(Bk) ≤ Cdmax(1,m−1)dρ(xk)
d
2 ‖u‖W d,2(Bk)

.

Let Bk be a good ball. By using the fact that ρ is a L-Lipschitz function, we notice that

(3.16) ∀x ∈ Bk = B(xk, ρ(xk)), 0 < ρ(xk) ≤
1

1− L
ρ(x).

We deduce from (3.15) and (3.16) that for all β ∈ N
d and k ∈ N such that Bk is a good

ball

ρ(xk)
|β|+ d

2 ‖∂β
xf‖L∞(Bk)(3.17)

≤ Cd max(1,m−1)dρ(xk)
|β|+d

( ∑

β̃∈Nd, |β̃|≤d

‖∂β+β̃
x f‖2L2(Bk)

) 1
2

= Cd max(1,m−1)d
( ∑

β̃∈Nd, |β̃|≤d

‖ρ(xk)|β|+d∂β+β̃
x f‖2L2(Bk)

) 1
2

≤ Cd max(1,m−1)d
1

(1− L)|β|+d

( ∑

β̃∈Nd, |β̃|≤d

‖ρ(x)|β|+d∂β+β̃
x f‖2L2(Bk)

) 1
2
.

By using (3.1) and the definition of good balls (3.6), it follows from (3.17) and the fact
that N is non-decreasing with respect to the two indexes that for all β ∈ N

d and k ∈ N

such that Bk is a good ball

ρ(xk)
|β|+ d

2 ‖∂β
xf‖L∞(Bk)

(3.18)

≤ Cd max(1,m−1)d
1

(1− L)|β|+d

( ∑

β̃∈Nd,

|β̃|≤d

ε−122(2|β|+|β̃|)+3d+1K0N
2
|β|+d,|β|+|β̃|

‖f‖2L2(Bk)

) 1
2

≤ ε−
1
2Kd,m,L

( 4

1− L

)|β|
N|β|+d,|β|+d‖f‖L2(Bk),

with

Kd,m,L = Cd max(1,m−1)d
√

2K0

( 4
√
2

1− L

)d
(d+ 1)

d
2 ≥ 1,

since Cd ≥ 1.

3.4. Step 3 : Recovery of the L2(Rd)-norm. Let Bk be a good ball. Let us assume
that ‖f‖L2(Bk) 6= 0. We can therefore define the following function

(3.19) ∀y ∈ B(0, 1), φ(y) = ε
1
2ρ(xk)

d
2

f(xk + ρ(xk)y)

Kd,m,LNd,d‖f‖L2(Bk)
.
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We observe that

‖φ‖L∞(B(0,1)) = ε
1
2ρ(xk)

d
2

‖f‖L∞(Bk)

Kd,m,LNd,d‖f‖L2(Bk)
≥ ε

1
2

|B(0, 1)| 12Kd,m,LNd,d

,

and

(3.20) ∀β ∈ N
d, ‖∂β

xφ‖L∞(B(0,1)) =
ε

1
2ρ(xk)

|β|+ d
2 ‖∂β

xf‖L∞(Bk)

Kd,m,LNd,d‖f‖L2(Bk)
.

It follows from (3.18) and (3.20) that

(3.21) ∀β ∈ N
d, ‖∂β

xφ‖L∞(B(0,1)) ≤
( 4

1− L

)|β|N|β|+d,|β|+d

Nd,d
.

We deduce from (3.21) that φ ∈ CM′(B(0, 1)) with

M′ = (M ′
p)p∈N =

(( 4

1− L

)pNp+d,p+d

Nd,d

)
p∈N

.

The assumption that the diagonal sequence M = (Np,p)p∈N is logarithmically-convex and
quasi-analytic implies that these two properties hold true as well for the sequence M′.
Indeed, the logarithmic convexity of M′ is straightforward and since

+∞∑

p=0

M ′
p

M ′
p+1

=
1− L

4

+∞∑

p=d

Np,p

Np+1,p+1
,

we deduce from the quasi-analyticity of M and from the Denjoy-Carleman’s Theorem
(Theorem 2.1) that the sequence M′ is also quasi-analytic. Furthermore, we observe from
the definition of the Bang degree (2.1) and the equality

∀0 < t ≤ 1,∀n ∈ N
∗,

∑

− log t<p≤n

M ′
p−1

M ′
p

=
1− L

4

∑

− log(te−d)<p≤n+d

Np−1,p−1

Np,p

that

(3.22) ∀0 < t ≤ 1, nt,M′,2ed = nte−d,M, 8d
1−L

e − d ≤ nte−d,M, 8d
1−L

e.

Setting

Ek =
{x− xk

ρ(xk)
∈ B(0, 1) : x ∈ Bk ∩ ω

}
⊂ B(0, 1),

we notice from (3.4) that

(3.23) |Ek| =
|ω ∩Bk|
ρ(xk)d

≥ γ|Bk|
ρ(xk)d

≥ γ|B(0, 1)| > 0,

since ω is γ-thick with respect to ρ and Bk = B(xk, ρ(xk)). From now on, we shall assume
that

(3.24) 0 < ε ≤ N2
0,0.

We deduce from (3.22) and Proposition 5.10 applied with the function φ and the mea-
surable subset Ek of the bounded convex open ball B(0, 1) that there exists a positive
constant Dε = D

(
ε,N , d, γ, L,m

)
> 1 independent on φ and k such that

(3.25)

∫

B(0,1)
|φ(x)|2dx ≤ Dε

∫

Ek

|φ(x)|2dx,

with

Dε =
2

γ

(
2d

γ
ΓM′

(
2nt,M′,2ed

))4nt,M′,2ed

,
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and

t =
ε

1
2

max
(
1, |B(0, 1)| 12

)
Kd,m,LNd,d

.

Notice that from (3.24), we have
0 < t ≤ 1,

since Kd,m,L ≥ 1 and N is non-decreasing with respect to the two indexes. Let us also
notice from the definitions in (2.2) that

∀n ≥ 1, 1 ≤ ΓM′(n) ≤ ΓM(n+ d).

We deduce from (3.22) and the non-decreasing property of ΓM′ that

Dε ≤
2

γ

(
2d

γ
ΓM

(
2nt,M′,2ed + d

))4nt,M′,2ed

(3.26)

≤ 2

γ

(
2d

γ
ΓM

(
2nte−d,M, 8d

1−L
e

))4n
te−d,M, 8d

1−L
e

.

Let us denote

Cε =
2

γ

(
2d

γ
ΓM

(
2nte−d,M, 8d

1−L
e

))4n
te−d,M, 8d

1−L
e

.

We deduce from (3.19), (3.23), (3.25) and (3.26) that

(3.27)

∫

Bk

|f(x)|2dx ≤ Cε

∫

ω∩Bk

|f(x)|2dx.

Let us notice that the above estimate holds as well when ‖f‖L2(Bk) = 0. By using anew
from (3.2) that

1

⋃

good balls Bk
≤

∑

good balls

1Bk
≤ K01

⋃

good balls Bk
,

it follows from (3.12) and (3.27) that

‖f‖2L2(Rd) ≤
∫
⋃

good balls Bk

|f(x)|2dx+ ε‖f‖2GSN ,ρ

≤
∑

good balls

‖f‖2L2(Bk)
+ ε‖f‖2GSN ,ρ

≤ Cε

∑

good balls

∫

ω∩Bk

|f(x)|2dx+ ε‖f‖2GSN ,ρ

≤ K0Cε

∫

ω∩
(
⋃

good balls Bk

) |f(x)|2dx+ ε‖f‖2GSN ,ρ
.

The last inequality readily implies that

‖f‖2L2(Rd) ≤ K0Cε‖f‖2L2(ω) + ε‖f‖2GSN ,ρ
.

This ends the proof of Theorem 2.2.

3.5. Proof of Theorem 2.3. Let A ≥ 1, 0 < µ ≤ 1, ν > 0 with µ + ν ≥ 1 and
0 ≤ δ ≤ 1−µ

ν ≤ 1. Let f ∈ S (Rd). We first notice that if the quantity

sup
p∈N,β∈Nd

‖〈x〉p∂β
xf‖L2(Rd)

Ap+|β|(p!)ν(|β|!)µ = +∞,

is infinite, then the result of Theorem 2.3 clearly holds. We can therefore assume that

(3.28) sup
p∈N,β∈Nd

‖〈x〉p∂β
xf‖L2(Rd)

Ap+|β|(p!)ν(|β|!)µ < +∞.
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By assumption, we have

(3.29) ∃m,R > 0,∀x ∈ R
d, 0 < m ≤ ρ(x) ≤ R〈x〉δ.

We deduce from (3.28), (3.29) and Lemma 5.3 that

∀p ∈ N,∀β ∈ N
d, ‖ρ(x)p∂β

xf‖L2(Rd) ≤ Rp‖〈x〉δp∂β
xf‖L2(Rd)

≤ Rp(4νeνA)p+|β|(p!)δν(|β|!)µ sup
q∈N,γ∈Nd

‖〈x〉q∂γ
xf‖L2(Rd)

Aq+|γ|(q!)ν(|γ|!)µ

≤ (4νeν max(1, R)A)p+|β|(p!)δν(|β|!)µ sup
q∈N,γ∈Nd

‖〈x〉q∂γ
xf‖L2(Rd)

Aq+|γ|(q!)ν(|γ|!)µ ,

which implies that

‖f‖GSN ,ρ
≤ sup

p∈N,β∈Nd

‖〈x〉p∂β
xf‖L2(Rd)

Ap+|β|(p!)ν(|β|!)µ < +∞,

with the non-decreasing sequence

N =
((

4νeν max(1, R)A
)p+q

(p!)δν(q!)µ
)
(p,q)∈N2

.

The assumption 0 ≤ δ ≤ 1−µ
ν implies that the diagonal sequence

M = (Mp)p∈N =
((

4νeν max(1, R)A
)2p

(p!)δν+µ
)
p∈N

is a logarithmically convex quasi-analytic sequence thanks to the Denjoy-Carleman’s the-
orem (Theorem 2.1) and since δν + µ ≤ 1. Since ω is assumed to be γ-thick with re-
spect to ρ for some 0 < γ ≤ 1, we deduce from Theorem 2.2 that there exist some
constants K = K(d, ρ, δ, µ, ν) ≥ 1,K ′ = K ′(d, ρ, γ) ≥ 1, r = r(d, ρ) ≥ 1 so that for all
0 < ε ≤ M2

0 = 1,

(3.30) ‖f‖2L2(Rd) ≤ Cε‖f‖2L2(ω) + ε‖f‖2GSN ,ρ

≤ Cε‖f‖2L2(ω) + ε

(
sup

p∈N,β∈Nd

‖〈x〉p∂β
xf‖L2(Rd)

Ap+|β|(p!)ν(|β|!)µ
)2

,

where

(3.31) Cε = K ′

(
2d

γ
ΓM(2nt0,M,r)

)4nt0,M,r

with

0 < t0 =
ε

1
2

KA2d
≤ 1.

Direct computations

∀N ≥ 1,

N∑

p>− log t0

Mp−1

Mp
= (4νeν max(1, R)A)−2

N∑

p>− log t0

(p − 1)!δν+µ

p!δν+µ
,

show that

nt0,M,r = nt0,Mδν+µ,r′A2 ,

with
Mδµ+ν =

(
(p!)δν+µ

)
p∈N

and r′ = r16νe2ν max(1, R2).

By using from Lemma 5.4 that ΓMδν+µ
is bounded, it follows that there exists a positive

constant D ≥ 1 such that

∀n ∈ N
∗, ΓM(n) = ΓMδν+µ

(n) ≤ D.
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By using anew Lemma 5.4 and (3.31), we deduce that when 0 ≤ δν + µ < 1,

0 < Cε ≤ K ′

(
2d

γ
D

)4nt0,Mδν+µ,r′A2

(3.32)

≤ K ′

(
2d

γ
D

)2
1

1−δν−µ
+2
(
1−log t0+(A2r′)

1
1−δν−µ

)

= K ′

(
2d

γ
D

)2
1

1−δν−µ
+2
(
1+logK+2d logA− 1

2
log ε+(A2r′)

1
1−δν−µ

)

.

Since 0 ≤ logA ≤ A ≤ A
2

1−δν−µ and log ε ≤ 0, it follows from (3.32) that

0 < Cε ≤ K ′

(
2d

γ
D

)D′
(
1−log ε+A

2
1−δν−µ

)

,

withD′ = 2
1

1−δν−µ
+2

max
(
1+logK, 2d+r′

1
1−δν−µ , 12

)
. On the other hand, when δν+µ = 1,

Lemma 5.4 and the estimates (3.31) imply that

0 < Cε ≤ K ′

(
2d

γ
D

)4nt0,M1,r
′A2

(3.33)

≤ K ′

(
2d

γ
D

)4(1−log t0)er
′A2

≤ K ′

(
2d

γ
D

)4(1+logK+2d logA− 1
2
log ε)er

′A2

.

While setting D′ = 4max
(
1 + logK, 2d, r′, 12

)
, we obtain from (3.33)

0 < Cε ≤ K ′

(
2d

γ
D

)D′(1+logA−log ε)eD
′A2

.

This ends the proof of Theorem 2.3.

3.6. Proof of Theorem 2.6. Let 0 ≤ δ ≤ 1 and Θ : [0,+∞) −→ [0,+∞) be a non-
negative continuous function such that the associated sequence (Mp)p∈N in (2.4) satisfies
the assumptions (H1), (H2) and (H3) 1+δ

2
. Beforehand, let us notice that the logarithmic

convexity property of the sequence (Mp)p∈N, that is,

∀p ∈ N
∗, M2

p ≤ Mp+1Mp−1,

implies that

∀p ∈ N
∗,

Mp

Mp+1
≤ Mp−1

Mp
≤ M0

M1
,

sinceMp > 0 for all p ∈ N. It follows that the modified sequence (M ′
p)p∈N =

((
M0
M1

)p
Mp

)
p∈N

is a non-decreasing logarithmically convex sequence. Let f ∈ GSΘ and s = 1+δ
2 . According

to Proposition 2.4, there exists a positive constant DΘ,d,δ ≥ 1 independent on f , such that
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for all r ≥ 0, β ∈ N
d,

‖〈x〉r∂β
xf‖L2(Rd) ≤ (DΘ,d,δ)

1+r+|β|
(
M⌊

r+1+|β|+(2−s)(d+1)
2s

⌋

+1

)s
‖f‖GSΘ

= (DΘ,d,δ)
1+r+|β|

(M1

M0

)s
⌊

r+1+|β|+(2−s)(d+1)
2s

⌋

+s(
M ′

⌊

r+1+|β|+(2−s)(d+1)
2s

⌋

+1

)s
‖f‖GSΘ

≤ D′1+r+|β|
(
M ′

⌊

r+1+|β|+(2−s)(d+1)
2s

⌋

+1

)s
‖f‖GSΘ

,

where D′ = D′(Θ, d, δ) ≥ 1 is a new positive constant. Since the sequence (M ′
p)p∈N is

non-decreasing and 1
2 ≤ s ≤ 1, we deduce that

∀r ≥ 0,∀β ∈ N
d, ‖〈x〉r∂β

xf‖L2(Rd) ≤ D′1+r+|β|
(
M ′

⌊

r+|β|
2s

⌋

+2d+4

)s
‖f‖GSΘ

.

This implies that f ∈ GSN ,ρ and

‖f‖GSN ,ρ
≤ ‖f‖GSΘ

with

N = (Np,q)p,q∈Nd =
(
max(R, 1)pD′1+p+q

(
M ′

⌊ δp+q
1+δ ⌋+2d+4

) 1+δ
2
)
(p,q)∈N2

.

We conclude by applying Theorem 2.2. To that end, we notice that the non-decreasing
property of the sequence (M ′

p)p∈N ensures that the sequence N is non-decreasing with
respect to the two indexes. We deduce from the Denjoy-Carleman Theorem (Theorem 2.1)
and assumption (H3) 1+δ

2
that the diagonal sequence

(Np,p)p∈N =
(
max(R, 1)pD′1+2p(M ′

p+2d+4)
1+δ
2
)
p∈N

,

is quasi-analytic since

+∞∑

p=0

Np,p

Np+1,p+1
=

1

max(R, 1)D′2

+∞∑

p=2d+4

( M ′
p

M ′
p+1

) 1+δ
2

=
1

max(R, 1)D′2

(M1

M0

) 1+δ
2

+∞∑

p=2d+4

( Mp

Mp+1

) 1+δ
2

= +∞.

The result of Theorem 2.6 then follows from Theorem 2.2. It ends the proof of Theorem 2.6.

4. Proof of Theorem 2.11

This section is devoted to the proof of the null-controllability result given by Theo-
rem 2.11.

Let (A,D(A)) be a closed operator on L2(Rd) which is the infinitesimal generator of a
strongly continuous contraction semigroup (e−tA)t≥0 on L2(Rd) that satisfies the following
quantitative smoothing estimates: there exist some constants 0 < µ < 1, ν > 0 with
µ+ ν ≥ 1 and C ≥ 1, r1 > 0, r2 ≥ 0, 0 < t0 ≤ 1 such that

(4.1) ∀0 < t ≤ t0,∀α, β ∈ N
d,∀g ∈ L2(Rd),

‖xα∂β
x (e

−tA∗
g)‖L2(Rd) ≤

C1+|α|+|β|

tr1(|α|+|β|)+r2
(α!)ν(β!)µ‖g‖L2(Rd),

where A∗ denotes the L2(Rd)-adjoint of A. Let ρ : R
d −→ (0,+∞) be a L-Lipschitz

positive function with R
d being equipped with the Euclidean norm and 0 < L < 1 such

that there exist some constants 0 ≤ δ < 1−µ
ν , m > 0, R > 0 so that

∀x ∈ R
d, 0 < m ≤ ρ(x) ≤ R〈x〉δ.
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Let ω ⊂ R
d be a measurable subset that is thick with respect to the density ρ. Let us show

that Theorem 2.11 can be deduced from the uncertainty principles given in Theorem 2.3.
To that end, we deduce from the estimates (4.1) and Lemma 5.2 that there exists a positive
constant C ′ = C ′(C, d) ≥ 1 such that

(4.2) ∀0 < t ≤ t0,∀p ∈ N,∀β ∈ N
d,∀g ∈ L2(Rd),

‖〈x〉p∂β
x (e

−tA∗
g)‖L2(Rd) ≤

C ′1+p+|β|

tr1(p+|β|)+r2
(p!)ν(|β|!)µ‖g‖L2(Rd).

It follows from (4.2) and Theorem 2.3 applied with f = e−tA∗
g ∈ S (Rd) that there exists a

positive constant K = K(γ, d, ρ, µ, ν) ≥ 1 such that ∀0 < t ≤ t0,∀g ∈ L2(Rd),∀0 < ε ≤ 1,

(4.3) ‖e−tA∗
g‖2L2(Rd) ≤ eK(1−log ε+(C′t−r1 )

2
1−s )‖e−tA∗

g‖2L2(ω) +
C ′2

t2r2
ε‖g‖2L2(Rd),

with 0 < s = δν+µ < 1. Thanks to the contraction property of the semigroup (e−tA∗
)t≥0,

we deduce that for all 0 < τ ≤ t0,
1
2 ≤ q < 1, 0 < ε ≤ 1, g ∈ L2(Rd),

‖e−τA∗
g‖2L2(Rd) ≤

1

(1− q)τ

∫ τ

qτ
‖e−tA∗

g‖2L2(Rd)dt

≤ eK(1−log ε+(C′(qτ)−r1 )
2

1−s )

(1− q)τ

∫ τ

qτ
‖e−tA∗

g‖2L2(ω)dt+ ε
C ′2

(qτ)2r2
‖g‖2L2(Rd)

≤ eK(1−log ε+(C′2r1τ−r1 )
2

1−s )

(1− q)τ

∫ τ

qτ
‖e−tA∗

g‖2L2(ω)dt+ ε
4r2C ′2

τ2r2
‖g‖2L2(Rd).

For 0 < τ ≤ t0 and 1
2 ≤ q < 1, we choose

0 < ε = exp
(
− τ−

2r1
1−s

)
≤ 1.

Since 1 ≤ 1
τ2r1

, it follows that there exists a new constantK ′ = K ′(γ, d, ρ, δ, µ, ν, C ′, r1, s) ≥
1 such that for all 0 < τ ≤ t0,

1
2 ≤ q < 1, g ∈ L2(Rd),

‖e−τA∗
g‖2L2(Rd) ≤

eK
′τ

−
2r1
1−s

(1− q)τ

∫ τ

qτ
‖e−tA∗

g‖2L2(ω)dt+ exp
(
− τ−

2r1
1−s

)4r2C ′2

τ2r2
‖g‖2L2(Rd).

We follow the strategy developed by Miller in [22]. Let 0 < t1 ≤ t0 such that for all
0 < τ ≤ t1,

exp
(
K ′τ−

2r1
1−s

)

τ
≤ exp

(
2K ′τ−

2r1
1−s

)

and

exp
(
− τ−

2r1
1−s

)4r2C ′2

τ2r2
≤ exp

(
− τ−

2r1
1−s

2

)
.

It follows that for all 0 < τ ≤ t1,
1
2 ≤ q < 1, g ∈ L2(Rd),

(1− q) exp
(
− 2K ′

τ
2r1
1−s

)
‖e−τA∗

g‖2L2(Rd)

≤
∫ τ

qτ
‖e−tA∗

g‖2L2(ω)dt+ (1− q) exp
(
− 2K ′ + 1

2

τ
2r1
1−s

)
‖g‖2L2(Rd).

Setting f(τ) = (1− q) exp
(
− 2K ′

τ
2r1
1−s

)
and choosing q so that

max
(( 2K ′

2K ′ + 1
2

) 1−s
2r1 ,

1

2

)
≤ q < 1,
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we obtain that for all 0 < τ ≤ t1 and g ∈ L2(Rd),

(4.4) f(τ)‖e−τA∗
g‖2L2(Rd) ≤

∫ τ

qτ
‖e−tA∗

g‖2L2(ω)dt+ f(qτ)‖g‖2L2(Rd).

Thanks to this estimate, the observability estimate is established as follows: let 0 < T ≤ t1
and define the two sequences (τk)k≥0 and (Tk)k≥0 as

∀k ≥ 0, τk = qk(1− q)T and ∀k ≥ 0, Tk+1 = Tk − τk, T0 = T.

By applying (4.4) with e−Tk+1A
∗
g, it follows that for all g ∈ L2(Rd) and k ∈ N,

f(τk)‖e−TkA
∗
g‖2L2(Rd) − f(τk+1)‖e−Tk+1A

∗
g‖2L2(Rd)

≤
∫ τk

τk+1

‖e−(t+Tk+1)A
∗
g‖2L2(ω)dt =

∫ Tk

τk+1+Tk+1

‖e−tA∗
g‖2L2(ω)dt ≤

∫ Tk

Tk+1

‖e−tA∗
g‖2L2(ω)dt.

By summing over all the integers k ∈ N and by noticing that

lim
k→+∞

f(τk) = 0, lim
k→+∞

Tk = T −
∑

k∈N

τk = 0,

and

∀k ≥ 0, ‖e−TkA
∗
g‖L2(Rd) ≤ ‖g‖L2(Rd),

by the contraction property of the semigroup (e−tA∗
)t≥0, it follows that

‖e−TA∗
g‖2L2(Rd) ≤

1

1− q
exp

( 2K ′

((1 − q)T )
2r1

1−µ−δν

) ∫ T

0
‖e−tA∗

g‖2L2(ω)dt.

By using anew the contraction property of the semigroup (e−tA∗
)t≥0, we deduce that for

all g ∈ L2(Rd), T ≥ t1,

‖e−TA∗
g‖2L2(Rd) ≤ ‖e−t1A∗

g‖2L2(Rd) ≤
1

1− q
exp

( 2K ′

((1− q)t1)
2r1

1−µ−δν

) ∫ t1

0
‖e−tA∗

g‖2L2(ω)dt

≤ 1

1− q
exp

( 2K ′

((1 − q)t1)
2r1

1−µ−δν

) ∫ T

0
‖e−tA∗

g‖2L2(ω)dt.

This ends the proof of Theorem 2.11.

5. Appendix

5.1. Bernstein type estimates. This section is devoted to the proof of the Bernstein
type estimates given in Proposition 2.4. To that end, we begin by recalling basic facts
about Hermite functions. The standard Hermite functions (φk)k≥0 are defined for x ∈ R,

φk(x) =
(−1)k√
2kk!

√
π
e

x2

2
dk

dxk
(e−x2

) =
1√

2kk!
√
π

(
x− d

dx

)k
(e−

x2

2 ) =
ak+φ0√

k!
,

where a+ is the creation operator

a+ =
1√
2

(
x− d

dx

)
.

The Hermite functions satisfy the identity

∀k ∈ N,
(
− d2

dx2
+ x2

)
φk = (2k + 1)φk.
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The family (φk)k∈N is a Hilbert basis of L2(R). We set for α = (αj)1≤j≤d ∈ N
d, x =

(xj)1≤j≤d ∈ R
d,

Φα(x) =

d∏

j=1

φαj (xj).

The family (Φα)α∈Nd is a Hilbert basis of L2(Rd) composed of the eigenfunctions of the
d-dimensional harmonic oscillator

H = −∆x + |x|2 =
∑

k≥0

(2k + d)Pk, Id =
∑

k≥0

Pk,

where Pk is the orthogonal projection onto SpanC{Φα}α∈Nd,|α|=k, with |α| = α1+ · · ·+αd.
Instrumental in the sequel are the following basic estimates proved by Beauchard, Jam-

ing and Pravda-Starov in the proof of [7, Proposition 3.3] (formula (3.38)).

Lemma 5.1. With EN = SpanC{Φα}α∈Nd, |α|≤N , we have for all N ∈ N, f ∈ EN ,

∀(α, β) ∈ N
d × N

d, ‖xα∂β
xf‖L2(Rd) ≤ 2

|α|+|β|
2

√
(N + |α|+ |β|)!

N !
‖f‖L2(Rd).

We can now prove Proposition 2.4. Let Θ : [0,+∞) −→ [0,+∞) be a non-negative
continuous function such that the associated sequence (Mp)p∈N in (2.4) satisfies the as-

sumptions (H1) and (H2). Let f ∈ GSΘ, 0 < s ≤ 1 and (α, β) ∈ N
d × N

d. We begin by

proving that there exist some positive constants C ′
Θ > 0, C̃Θ > 0, independent on f , α

and β such that

‖xα∂β
xf‖L2(Rd) ≤ C ′

ΘC̃
|α|+|β|
Θ

(
M⌊

|α|+|β|+(2−s)(d+1)
2s

⌋

+1

)s
‖f‖GSΘ

.

It is sufficient to prove that there exist some positive constants C ′
Θ > 0, C̃Θ > 0, indepen-

dent on f , α and β such that for all N ≥ |α|+ |β|+ 1,

(5.1) ‖xα∂β
xπNf‖L2(Rd) ≤ C ′

ΘC̃
|α|+|β|
Θ

(
M⌊

|α|+|β|+(2−s)(d+1)
2s

⌋

+1

)s
‖f‖GSΘ

,

with πNf the orthogonal projection of the function f onto the space SpanC{Φα}α∈Nd, |α|≤N

given by

(5.2) πNf =
∑

α∈Nd,
|α|≤N

〈f,Φα〉L2(Rd)Φα.

Indeed, by using that (πNf)N∈N converges to f in L2(Rd) and therefore in D′(Rd), we

obtain that the sequence (xα∂β
xπNf)N∈N converges to xα∂β

xf in D′(Rd). If the estimates

(5.1) hold, the sequence (xα∂β
xπNf)N∈N is bounded in L2(Rd) and therefore weakly con-

verges (up to a subsequence) to a limit g ∈ L2(Rd). Thanks to the uniqueness of the limit

in D′(Rd), it follows that g = xα∂β
xf ∈ L2(Rd). Moreover, we have

‖xα∂β
xf‖L2(Rd) ≤ lim inf

N→+∞
‖xα∂β

xπφ(N)f‖L2(Rd) ≤ C ′
ΘC̃

|α|+|β|
Θ

(
M⌊

|α|+|β|+(2−s)(d+1)
2s

⌋

+1

)s
‖f‖GSΘ

.

Let us prove that the estimates (5.1) hold. Since π|α|+|β| is an orthogonal projection on

L2(Rd) and therefore satisfies

‖π|α|+|β|f‖L2(Rd) ≤ ‖f‖L2(Rd),
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we deduce from Lemma 5.1 and (5.2) that for all N ≥ |α|+ |β|+ 1,

‖xα∂β
xπNf‖L2 ≤ ‖xα∂β

xπ|α|+|β|f‖L2 + ‖xα∂β
x (πN − π|α|+|β|)f‖L2

≤ 2
|α|+|β|

2

√
(2(|α| + |β|))!
(|α|+ |β|)! ‖f‖L2(Rd) +

∑

γ∈Nd,
|α|+|β|+1≤|γ|≤N

| 〈f,Φγ〉L2 |‖xα∂β
xΦγ‖L2(Rd).

By using anew Lemma 5.1, it follows that for all N ≥ |α|+ |β|+ 1,

‖xα∂β
xπNf‖L2

(5.3)

≤ 2|α|+|β|(|α|+ |β|)
|α|+|β|

2 ‖f‖L2(Rd) +
∑

γ∈Nd,
|α|+|β|+1≤|γ|≤N

| 〈f,Φγ〉L2 |2
|α|+|β|

2

√
(|γ| + |α| + |β|)!

|γ|!

≤ 2|α|+|β|(|α|+ |β|)
|α|+|β|

2 ‖f‖L2(Rd) +
∑

γ∈Nd,
|α|+|β|+1≤|γ|≤N

| 〈f,Φγ〉L2 |2|α|+|β||γ|
|α|+|β|

2 .

On the first hand, it follows from 0 < s ≤ 1 that for all N ≥ |α|+ |β|+ 1,

∑

γ∈Nd,
|α|+|β|+1≤|γ|≤N

| 〈f,Φγ〉L2 ||γ|
|α|+|β|

2

(5.4)

≤
∑

γ∈Nd,
|γ|≥1

| 〈f,Φγ〉L2 |esΘ(|γ|)|γ|−
(2−s)(d+1)

2 |γ|
|α|+|β|+(2−s)(d+1)

2 e−sΘ(|γ|)

≤
(
M⌊

|α|+|β|+(2−s)(d+1)
2s

⌋

+1

)s ∑

γ∈Nd,
|γ|≥1

| 〈f,Φγ〉L2 |esΘ(|γ|)|γ|−
(2−s)(d+1)

2

≤
(
M⌊

|α|+|β|+(2−s)(d+1)
2s

⌋

+1

)s
||
(
〈f,Φγ〉L2

)
γ∈Nd ||1−s

l∞(Nd)

∑

γ∈Nd,
|γ|≥1

(
| 〈f,Φγ〉L2 |eΘ(|γ|)

)s
|γ|−

(2−s)(d+1)
2 .

Hölder’s inequality implies that for all 0 < s ≤ 1,

(5.5)
∑

γ∈Nd,
|γ|≥1

(
| 〈f,Φγ〉L2 |eΘ(|γ|)

)s
|γ|−

(2−s)(d+1)
2 ≤ Dd,s

∥∥∥∥
(
eΘ(|γ|) 〈f,Φγ〉L2

)
γ∈Nd

∥∥∥∥
s

l2(Nd)

,

with

Dd,s =
( ∑

γ∈Nd,
|γ|≥1

|γ|−(d+1)
)1− s

2
< +∞.

Since Θ(|γ|) ≥ 0 for all γ ∈ N
d, it follows that

(5.6) ||
(
〈f,Φγ〉L2

)
γ∈Nd ||l∞(Nd) ≤ ||

(
〈f,Φγ〉L2 e

Θ(|γ|)
)
γ∈Nd ||l∞(Nd) ≤ ‖f‖GSΘ

.

We deduce from (5.4), (5.5) and (5.6) that

(5.7)
∑

γ∈Nd,
|α|+|β|+1≤|γ|≤N

| 〈f,Φγ〉L2 ||γ|
|α|+|β|

2 ≤ Dd,s

(
M⌊

|α|+|β|+(2−s)(d+1)
2s

⌋

+1

)s
‖f‖GSΘ

.
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On the other hand, the assumption (H2) implies that there exist CΘ ≥ 1 and LΘ ≥ 1 such
that if |α|+ |β| ≥ 1 then

(|α| + |β|)
|α|+|β|

2 = (2s)
|α|+|β|

2

( |α|+ |β|
2s

)s
|α|+|β|

2s
(5.8)

≤ (2s)
|α|+|β|

2

(⌊ |α| + |β|
2s

⌋
+ 1

)s

(
⌊

|α|+|β|
2s

⌋

+1

)

≤ (2s)
|α|+|β|

2 Cs
ΘL

s
ΘL

|α|+|β|
2

Θ

(
M⌊

|α|+|β|
2s

⌋

+1

)s
.

The last inequality holds true as well when |α|+ |β| = 0 with the convention 00 = 1 since
CΘM1 ≥ 1 and LΘ ≥ 1. The logarithmical convexity of the sequence (Mp)p∈N gives

∀p ∈ N, Mp ≤
M0

M1
Mp+1

and therefore,

∀0 ≤ p ≤ q, Mp ≤
(M0

M1

)q−p
Mq.

By using this estimate together with the following elementary inequality

∀x, y ≥ 0, ⌊x+ y⌋ ≤ ⌊x⌋+ ⌊y⌋+ 1,

we obtain

(5.9) ∀0 ≤ r ≤ r′, M⌊r⌋ ≤ max
(
1,

M0

M1

)⌊r′−r⌋+1
M⌊r′⌋.

It follows from (5.8) and (5.9) that

(|α|+ |β|)
|α|+|β|

2 ≤ Cs
ΘL

s
Θ

(√
2sLΘ

)|α|+|β|
max

(
1,

M0

M1

)s(
⌊

(2−s)(d+1)
2s

⌋

+1)(
M⌊

|α|+|β|+(2−s)(d+1)
2s

⌋

+1

)s

(5.10)

≤ Cs
ΘL

s
Θ

(√
2sLΘ

)|α|+|β|
max

(
1,

M0

M1

)d+2(
M⌊

|α|+|β|+(2−s)(d+1)
2s

⌋

+1

)s
,

since 0 < s ≤ 1. We deduce from (5.3), (5.7) and (5.10) that for all N ≥ |α|+ |β|+ 1,

‖xα∂β
xπNf‖L2(Rd) ≤ KΘ,sK

′|α|+|β|
Θ,s

(
M⌊

|α|+|β|+(2−s)(d+1)
2s

⌋

+1

)s
‖f‖GSΘ

,

with KΘ,s = Dd,s + Cs
ΘL

s
Θmax

(
1, M0

M1

)d+2
≥ 1 and K ′

Θ,s = 2max(1,
√
2sLΘ) ≥ 1. This

implies that f ∈ S (Rd) and for all α, β ∈ N
d,

(5.11) ‖xα∂β
xf‖L2(Rd) ≤ KΘ,sK

′|α|+|β|
Θ,s

(
M⌊

|α|+|β|+(2−s)(d+1)
2s

⌋

+1

)s
‖f‖GSΘ

.

By using Newton formula, we obtain that for all k ∈ N,

‖ 〈x〉k ∂β
xf‖2L2(Rd) =

∫

Rd

(
1 +

d∑

i=1

x2i

)k
|∂β

xf(x)|2dx

=

∫

Rd

∑

γ∈Nd+1,
|γ|=k

k!

γ!
x2γ̃ |∂β

xf(x)|2dx =
∑

γ∈Nd+1,
|γ|=k

k!

γ!
‖xγ̃∂β

xf‖2L2(Rd),
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where we denote γ̃ = (γ1, ..., γd) ∈ N
d if γ = (γ1, ...γd+1) ∈ N

d+1. It follows from (5.9) and
(5.11) that for all k ∈ N and β ∈ N

d,

‖ 〈x〉k ∂β
xf‖2L2(Rd) ≤

∑

γ∈Nd+1,
|γ|=k

k!

γ!
K2

Θ,sK
′2(|γ̃|+|β|)
Θ,s

(
M⌊

|γ̃|+|β|+(2−s)(d+1)
2s

⌋

+1

)2s
‖f‖2GSΘ

(5.12)

≤
∑

γ∈Nd+1,
|γ|=k

k!

γ!
K2

Θ,sK
′2(k+|β|)
Θ,s max

(
1,

M0

M1

)k−|γ̃|+2(
M⌊

k+|β|+(2−s)(d+1)
2s

⌋

+1

)2s
‖f‖2GSΘ

≤K2
Θ,s(d+ 1)k max

(
1,

M0

M1

)k+2
K

′2(k+|β|)
Θ,s

(
M⌊

k+|β|+(2−s)(d+1)
2s

⌋

+1

)2s
‖f‖2GSΘ

,

since ∑

γ∈Nd+1,
|γ|=k

k!

γ!
= (d+ 1)k,

thanks to Newton formula. Let r ∈ R
∗
+ \ N. There exist 0 < θ < 1 and k ∈ N such that

r = θk + (1− θ)(k + 1).

By using Hölder inequality, it follows from (5.12) that

(5.13) ‖ 〈x〉r ∂β
xf‖L2(Rd) ≤ ‖〈x〉k∂β

xf‖θL2(Rd)‖〈x〉k+1∂β
xf‖1−θ

L2(Rd)

≤ KΘ,s(d+1)
r
2 max

(
1,

M0

M1

) r
2
+1

K
′r+|β|
Θ,s

(
M⌊

k+|β|+(2−s)(d+1)
2s

⌋

+1

)sθ(
M⌊

k+1+|β|+(2−s)(d+1)
2s

⌋

+1

)s(1−θ)
‖f‖GSΘ

.

By using anew (5.9), we have

M⌊

k+|β|+(2−s)(d+1)
2s

⌋

+1
≤ max

(
1,

M0

M1

) r+1−k
2s

+1
M⌊

r+1+|β|+(2−s)(d+1)
2s

⌋

+1

and

M⌊

k+1+|β|+(2−s)(d+1)
2s

⌋

+1
≤ max

(
1,

M0

M1

) r−k
2s

+1
M⌊

r+1+|β|+(2−s)(d+1)
2s

⌋

+1
,

since k ≤ r. We deduce from (5.13) that

‖ 〈x〉r ∂β
xf‖L2(Rd) ≤ KΘ,smax

(
1,

M0

M1

) 2r+θ−k
2

+1+s
(d+ 1)

r
2K

′r+|β|
Θ,s

(
M⌊

r+1+|β|+(2−s)(d+1)
2s

⌋

+1

)s
‖f‖GSΘ

≤ KΘ,smax
(
1,

M0

M1

) r
2
+3

(d+ 1)
r
2K

′r+|β|
Θ,s

(
M⌊

r+1+|β|+(2−s)(d+1)
2s

⌋

+1

)s
‖f‖GSΘ

,

since 0 < s ≤ 1, k ≤ r < k+1 and 0 < θ < 1. Let us notice that the above inequality also
holds for r ∈ N. Indeed, it follows from (5.9) and (5.12) that

‖ 〈x〉k ∂β
xf‖L2(Rd) ≤KΘ,s(d+ 1)

k
2 max

(
1,

M0

M1

)k
2
+1

K
′k+|β|
Θ,s

(
M⌊

k+|β|+(2−s)(d+1)
2s

⌋

+1

)s
‖f‖GSΘ

≤KΘ,s(d+ 1)
k
2 max

(
1,

M0

M1

)k
2
+1+ 1

2
+1

K
′k+|β|
Θ,s

(
M⌊

k+1+|β|+(2−s)(d+1)
2s

⌋

+1

)s
‖f‖GSΘ

≤KΘ,s(d+ 1)
k
2 max

(
1,

M0

M1

)k
2
+3

K
′k+|β|
Θ,s

(
M⌊

k+1+|β|+(2−s)(d+1)
2s

⌋

+1

)s
‖f‖GSΘ

.

This ends the proof of Proposition 2.4.
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5.2. Gelfand-Shilov regularity. We refer the reader to the works [11, 12, 25, 26] and
the references herein for extensive expositions of the Gelfand-Shilov regularity theory. The
Gelfand-Shilov spaces Sµ

ν (Rd), with µ, ν > 0, µ+ν ≥ 1, are defined as the spaces of smooth
functions f ∈ C∞(Rd) satisfying the estimates

∃A,C > 0, |∂α
x f(x)| ≤ CA|α|(α!)µe−

1
A
|x|1/ν , x ∈ R

d, α ∈ N
d,

or, equivalently

∃A,C > 0, sup
x∈Rd

|xβ∂α
x f(x)| ≤ CA|α|+|β|(α!)µ(β!)ν , α, β ∈ N

d,

with α! = (α1!)...(αd!) if α = (α1, ..., αd) ∈ N
d. These Gelfand-Shilov spaces Sµ

ν (Rd)
may also be characterized as the spaces of Schwartz functions f ∈ S (Rd) satisfying the
estimates

∃C > 0, ε > 0, |f(x)| ≤ Ce−ε|x|1/ν , x ∈ R
d; |f̂(ξ)| ≤ Ce−ε|ξ|1/µ, ξ ∈ R

d.

In particular, we notice that Hermite functions belong to the symmetric Gelfand-Shilov

space S
1/2
1/2(R

d). More generally, the symmetric Gelfand-Shilov spaces Sµ
µ(Rd), with µ ≥

1/2, can be nicely characterized through the decomposition into the Hermite basis (Φα)α∈Nd ,
see e.g. [26, Proposition 1.2],

f ∈ Sµ
µ(R

d) ⇔ f ∈ L2(Rd), ∃t0 > 0,
∥∥(〈f,Φα〉L2 exp(t0|α|

1
2µ )

)
α∈Nd

∥∥
l2(Nd)

< +∞

⇔ f ∈ L2(Rd), ∃t0 > 0, ‖et0H
1
2µ
f‖L2(Rd) < +∞,

where H = −∆x + |x|2 stands for the harmonic oscillator. We end this section by proving
two technical lemmas:

Lemma 5.2. Let µ, ν > 0 such that µ+ ν ≥ 1, C > 0 and A ≥ 1. If f ∈ Sµ
ν (Rd) satisfies

(5.14) ∀α ∈ N
d,∀β ∈ N

d, ‖xα∂β
xf‖L2(Rd) ≤ CA|α|+|β|(α!)ν(β!)µ,

then, it satisfies

∀p ∈ N,∀β ∈ N
d, ‖〈x〉p∂β

xf‖L2(Rd) ≤ C(d+ 1)
p
2Ap+|β|(p!)ν(|β|!)µ.

Proof. Let f ∈ Sµ
ν (Rd) satisfying the estimates (5.14). By using Newton formula, we

obtain that for all p ∈ N, β ∈ N
d,

(5.15) ‖〈x〉p∂β
xf‖2L2(Rd) =

∫

Rd

(
1 +

d∑

i=1

x2i

)p
|∂β

xf(x)|2dx

=

∫

Rd

∑

γ∈Nd+1,
|γ|=p

p!

γ!
x2γ̃ |∂β

xf(x)|2dx =
∑

γ∈Nd+1,
|γ|=p

p!

γ!
‖xγ̃∂β

xf‖2L2(Rd),

where we denote γ̃ = (γ1, ..., γd) ∈ N
d if γ = (γ1, ..., γd+1) ∈ N

d+1. Since for all α ∈ N
d,

α! ≤ (|α|)!, it follows from (5.14) and (5.15) that

‖〈x〉p∂β
xf‖2L2(Rd) ≤ C2

∑

γ∈Nd+1,
|γ|=p

p!

γ!
A2(|γ̃|+|β|)(|γ̃|!)2ν(|β|!)2µ

≤ C2(d+ 1)pA2(p+|β|)(p!)2ν(|β|!)2µ,
since ∑

γ∈Nd+1,
|γ|=p

p!

γ!
= (d+ 1)p.



UNCERTAINTY PRINCIPLES AND NULL-CONTROLLABILITY 27

�

Lemma 5.3. Let µ, ν > 0 such that µ+ν ≥ 1, 0 ≤ δ ≤ 1, C > 0 and A ≥ 1. If f ∈ Sµ
ν (Rd)

satisfies

(5.16) ∀p ∈ N,∀β ∈ N
d, ‖〈x〉p∂β

xf‖L2(Rd) ≤ CAp+|β|(p!)ν(|β|!)µ,
then, it satisfies

∀p ∈ N,∀β ∈ N
d, ‖〈x〉δp∂β

xf‖L2(Rd) ≤ C(8νeνA)p+|β|(p!)δν(|β|!)µ.

Proof. Let f ∈ Sµ
ν (Rd) satisfying the estimates (5.16). It follows from Hölder inequality

that for all r ∈ (0,+∞) \ N and β ∈ N
d,

(5.17) ‖〈x〉r∂β
xf‖2L2(Rd) =

∫

Rd

(
〈x〉2⌊r⌋|∂β

xf(x)|2
)⌊r⌋+1−r(〈x〉2(⌊r⌋+1)|∂β

xf(x)|2
)r−⌊r⌋

dx

≤ ‖〈x〉⌊r⌋∂β
xf‖2(⌊r⌋+1−r)

L2(Rd)
‖〈x〉⌊r⌋+1∂β

xf‖2(r−⌊r⌋)
L2(Rd)

,

where ⌊·⌋ denotes the floor function. Since the above inequality clearly holds for r ∈ N,
we deduce from (5.16) and (5.17) that for all r ≥ 0 and β ∈ N

d,

‖〈x〉r∂β
xf‖L2(Rd) ≤ CAr+|β|(⌊r⌋!)(⌊r⌋+1−r)ν

(
(⌊r⌋+ 1)!

)(r−⌊r⌋)ν
(|β|!)µ(5.18)

≤ CAr+|β|
(
(⌊r⌋+ 1)!

)ν
(|β|!)µ

≤ CAr+|β|(⌊r⌋+ 1)(⌊r⌋+1)ν(|β|!)µ

≤ CAr+|β|(r + 1)(r+1)ν(|β|!)µ.

It follows from (5.18) that for all p ∈ N
∗, β ∈ N

d,

‖〈x〉δp∂β
xf‖L2(Rd) ≤ CAp+|β|(p+ 1)(δp+1)ν (|β|!)µ ≤ CAp+|β|(2p)(δp+1)ν (|β|!)µ(5.19)

≤ C(2νA)p+|β|pν(2p)δνp(|β|!)µ ≤ C(8νeνA)p+|β|(p!)δν(|β|!)µ,
since for all positive integer p ≥ 1,

p+ 1 ≤ 2p ≤ 2p and pp ≤ epp!.

Notice that from (5.16), since 8νeν ≥ 1, estimates (5.19) also hold for p = 0. This ends
the proof of Lemma 5.3. �

5.3. Quasi-analytic sequences. This section is devoted to recall some properties of
quasi-analytic sequences and to state a multidimensional version of the Nazarov-Sodin-
Volberg theorem (Corollary 5.8). This theorem plays a key role in the proof of Theorem 2.2.
We begin by a lemma which provides some quasi-analytic sequences and quantitative
estimates on the Bang degree nt,M,r defined in (2.1):

Lemma 5.4. Let 0 < s ≤ 1, A ≥ 1 and Ms = (Ap(p!)s)p∈N. If 0 < s < 1, then for all
0 < t ≤ 1, r > 0,

(5.20) nt,Ms,r ≤ 2
1

1−s
(
1− log t+ (Ar)

1
1−s

)
.

If s = 1, then for all 0 < t ≤ 1, r > 0,

(5.21) nt,M1,r ≤ (1− log t)eAr.

Moreover,

∀0 < s ≤ 1,∀p ∈ N
∗, 0 ≤ γMs(p) ≤ s.
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Proof. Let 0 < s ≤ 1 and 0 < t ≤ 1. The sequence Ms is logarithmically convex. By
using that the Riemann series

A−1
∑ 1

ps
=

∑ Ap−1((p − 1)!)s

Ap(p!)s

is divergent, we notice that for all r > 0, nt,Ms,r < +∞. When 0 < s < 1, we have that
for all integers p ≥ 1,

1

1− s

(
(p+ 1)1−s − p1−s

)
=

∫ p+1

p

1

xs
dx ≤ 1

ps
.

It follows that for all N ∈ N
∗,

1

1− s

(
(N + 1)1−s − (− log t+ 1)1−s

)
≤

∑

− log t<p≤N

1

ps
.

By taking N = nt,Ms,r and since 0 < 1− s < 1, it follows that

nt,Ms,r ≤
(
(1− log t)1−s +Ar

) 1
1−s

.

The result then follows by using the basic estimate

∀x, y ≥ 0, (x+ y)
1

1−s ≤ 2
1

1−s max
(
x

1
1−s , y

1
1−s

)
≤ 2

1
1−s

(
x

1
1−s + y

1
1−s

)
.

By proceeding in the same manner in the case when s = 1, we deduce the upper bound
(5.21) thanks to the formula

∀p ∈ N
∗, log(p+ 1)− log p =

∫ p+1

p

dx

x
≤ 1

p
.

By noticing that

∀0 < s ≤ 1,∀j ∈ N
∗, (j + 1)s − js =

∫ j+1

j

s

x1−s
dx ≤ s

1

j1−s
,

we finally obtain that for all 0 < s ≤ 1, p ∈ N
∗,

γMs(p) = sup
1≤j≤p

j
(Mj+1Mj−1

M2
j

− 1
)
= sup

1≤j≤p
j1−s

(
(j + 1)s − js

)
≤ s < +∞.

�

Let us now prove Proposition 2.8. This proof uses the following lemmas established
in [4]:

Lemma 5.5 ([4, Lemma 4.4]). Let M = (Mp)p∈N and M′ = (M ′
p)p∈N be two sequences

of positive real numbers satisfying

∀p ∈ N, Mp ≤ M ′
p.

If M′ is a quasi-analytic sequence, so is the sequence M.

Lemma 5.6 ([4, Lemma 4.5]). Let Θ : [0,+∞) → [0,+∞) be a continuous function. If
the associated sequence MΘ in (2.4) is quasi-analytic, so is MTΘ+c for all c ≥ 0 and
T > 0.

Let k ≥ 1 be a positive integer, 1
2 ≤ s ≤ 1 and Θk,s : [0,+∞) −→ [0,+∞) be the non-

negative function defined in Proposition 2.8. We first notice that the assumption (H1)
clearly holds for MΘk,s . Let us check that the assumption (H2) holds as well. To that
end, we notice that

∀t ≥ 0, Θk,s(t) ≤ t+ 1
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and we deduce that

∀p ∈ N, M
Θk,s
p ≥ sup

t≥0
tpe−(t+1) = e−1

(p
e

)p
.

It remains to check that (H3)s holds. Thanks to the morphism property of the logarithm,
it is clear that

Θk,s(t) ∼
t→+∞

sΘk,1(t
s)

and this readily implies that there exists a positive constant Ck,s > 0 such that

∀t ≥ 0, Θk,s(t) + Ck,s ≥ sΘk,1

(
ts
)
.

It follows that

∀p ∈ N,
(
M

Θk,s
p

)s
= esCk,s

(
M

Θk,s+Ck,s
p

)s
≤ esCk,s sup

t≥0
tspe−s2Θk,1(t

s)

= esCk,s sup
t≥0

tpe−s2Θk,1(t)

= esCk,sM
s2Θk,1
p .

By using Proposition 2.7 together with Lemmas 5.5 and 5.6, the quasi-analyticity of the

sequence
(
(M

Θk,s
p )s

)
p∈N

follows from the quasi-analyticity of MΘk,1 .

The following result by Nazarov, Sodin and Volberg [24] provides an uniform control on
the uniform norm of quasi-analytic functions ruled by their values on a positive measurable
subset. Originally stated in [24, Theorem B], it has been used by Jaye and Mitkovski ([14])
in the following form:

Theorem 5.7 ([14, Theorem 2.5]). Let M = (Mp)p∈N be a logarithmically convex quasi-
analytic sequence with M0 = 1 and f ∈ CM([0, 1]) \ {0}. For any interval I ⊂ [0, 1] and
measurable subset J ⊂ I with |J | > 0,

sup
I

|f | ≤
(ΓM(2n‖f‖L∞([0,1]),M,e)|I|

|J |
)2n‖f‖L∞([0,1]),M,e

sup
J

|f |.

The following corollary is instrumental in this work:

Corollary 5.8. Let M = (Mp)p∈N be a logarithmically convex quasi-analytic sequence
with M0 = 1 and 0 < s, t ≤ 1. There exists a positive constant C = C(M) ≥ 1 such that
for any interval I ⊂ [0, 1] and measurable subset J ⊂ I with |J | ≥ s > 0,

∀f ∈ CM([0, 1]) with ‖f‖L∞([0,1]) ≥ t, sup
I

|f | ≤
(ΓM(2nt,M,e)|I|

s

)2nt,M,e

sup
J

|f |.

Corollary 5.8 is directly deduced from Theorem 5.7 by noticing that for all f ∈ CM([0, 1])
satisfying ‖f‖L∞([0,1]) ≥ t,

n‖f‖L∞([0,1]),M,e ≤ nt,M,e.

In order to use this result in control theory, we need a multidimensional version of Corol-
lary 5.8:

Proposition 5.9. Let d ≥ 1 and U be a non-empty bounded open convex subset of Rd

satisfying |∂U | = 0. Let M = (Mp)p∈N be a logarithmically convex quasi-analytic sequence
with M0 = 1, 0 < γ ≤ 1 and 0 < t ≤ 1. For any measurable subset E ⊂ U satisfying
|E| ≥ γ|U | > 0, we have

(5.22) ∀f ∈ CM(U) with ‖f‖L∞(U) ≥ t,

sup
U

|f | ≤
(d
γ
ΓM

(
2nt,M,ddiam(U)e

))2nt,M,ddiam(U)e

sup
E

|f |.
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Proof. Let 0 < γ ≤ 1 and 0 < t ≤ 1. Let E be a measurable subset of U satisfying
|E| ≥ γ|U | > 0 and f ∈ CM(U) with ‖f‖L∞(U) ≥ t. Since U is compact and that f can be

extended as a continuous map on U , there exists x0 ∈ U such that

(5.23) sup
U

|f | = |f(x0)|.

By using spherical coordinates, we have

|E| =
∫

Rd

1lE(x)dx =

∫

Rd

1lE(x0 + x)dx =

∫ +∞

0

∫

Sd−1

1lE(x0 + tσ)dσtd−1dt.

Since U is convex, we deduce that

0 < |E| =
∫

Sd−1

∫ JU (σ)

0
1lE(x0 + tσ)td−1dtdσ

=

∫

Sd−1

JU (σ)
d

∫ 1

0
1lE

(
x0 + JU (σ)tσ

)
td−1dtdσ

≤
∫

Sd−1

JU (σ)
d

∫ 1

0
1lE

(
x0 + JU (σ)tσ

)
dtdσ ≤

∫

Sd−1

JU (σ)
d|Iσ|dσ,

with

(5.24) JU (σ) = sup{t ≥ 0 : x0 + tσ ∈ U} and Iσ =
{
t ∈ [0, 1] : x0 + JU (σ)tσ ∈ E

}
,

when σ ∈ S
d−1. Notice that

∀σ ∈ S
d−1, JU (σ) < +∞,

since U is bounded. It follows that there exists σ0 ∈ S
d−1 such that

(5.25) |E| ≤ |Iσ0 |
∫

Sd−1

JU (σ)
ddσ.

By using the assumption that |∂U | = 0 and U is an open set, we observe that

|U | = |U | =
∫

Sd−1

JU (σ)
d

∫ 1

0
td−1dtdσ =

1

d

∫

Sd−1

JU (σ)
ddσ.

By using that |E| ≥ γ|U |, the estimate (5.25) and the above formula provide the lower
bound

(5.26) |Iσ0 | ≥
γ

d
> 0.

Setting

(5.27) ∀t ∈ [0, 1], g(t) = f
(
x0 + JU (σ0)tσ0

)
,

we notice that this function is well-defined as x0 + JU (σ0)tσ0 ∈ U for all t ∈ [0, 1]. We
deduce from the fact that f ∈ CM(U), the estimate

JU (σ0) ≤ diam(U ) = diam(U),

where diam(U) denotes the Euclidean diameter of U , and the multinomial formula that
for all p ∈ N,

‖g(p)‖L∞([0,1]) ≤
∑

β∈Nd,
|β|=p

p!

β!
‖∂β

xf‖L∞(U )

(
JU (σ0)

)p

≤
( ∑

β∈Nd,
|β|=p

p!

β!

)
diam(U)pMp =

(
ddiam(U)

)p
Mp.
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We observe that the new sequence

M′ :=
((

ddiam(U)
)p
Mp

)
p∈N

,

inherits from M its logarithmical convexity, its quasi-analytic property with the following
identity for the associated Bang degrees

nt,M′,e = nt,M,ddiam(U)e.

The function g belongs to CM′([0, 1]). By using from (5.26) that |Iσ0 | > 0 and ‖g‖L∞([0,1]) ≥
|g(0)| = ‖f‖L∞(U) ≥ t, we can apply Corollary 5.8 to obtain that

(5.28) sup
[0,1]

|g| ≤
(ΓM′(2nt,M′,e)

|Iσ0 |
)2nt,M′,e

sup
Iσ0

|g|.

By noticing that

ΓM = ΓM′ ,

we deduce from (5.23), (5.24), (5.26), (5.27) and (5.28) that

sup
U

|f | = |f(x0)| = |g(0)| ≤ sup
[0,1]

|g| ≤
(d
γ
ΓM(2nt,M,ddiam(U)e)

)2nt,M,d diam(U)e

sup
Iσ0

|g|

≤
(d
γ
ΓM(2nt,M,ddiam(U)e)

)2nt,M,ddiam(U)e

sup
E

|f |.

This ends the proof of Proposition 5.9. �

In order to use estimates as (5.22) to derive the null-controllability of evolution equations
posed in L2(Rd), we need the following L2-version of the Nazarov-Sodin-Volberg Theorem:

Proposition 5.10. Let d ≥ 1 and U be a non-empty bounded open convex subset of
R
d. Let M = (Mp)p∈N be a logarithmically convex quasi-analytic sequence with M0 = 1,

0 < γ ≤ 1 and 0 < t ≤ 1. If E ⊂ U is a measurable subset satisfying |E| ≥ γ|U |, then for
all f ∈ CM(U) with ‖f‖L∞(U) ≥ t,

∫

U
|f(x)|2dx ≤ 2

γ

(2d
γ
ΓM

(
2nt,M,ddiam(U)e

))4nt,M,d diam(U)e
∫

E
|f(x)|2dx.

Proof. Let 0 < t ≤ 1, f ∈ CM(U) so that ‖f‖L∞(U) ≥ t and E be a subset of U satisfying
|E| ≥ γ|U | > 0. Setting

Ẽ =
{
x ∈ E : |f(x)|2 ≤ 2

|E|

∫

E
|f(y)|2dy

}
,

we observe that

(5.29)

∫

E
|f(x)|2dx ≥

∫

E\Ẽ
|f(x)|2dx ≥ 2|E \ Ẽ|

|E|

∫

E
|f(x)|2dx.

Let us prove by contradiction that the integral
∫

E
|f(x)|2dx > 0,

is positive. If ∫

E
|f(x)|2dx = 0,

then,

EZ =
{
x ∈ E : f(x) = 0

}
,
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satisfies |EZ | = |E| > 0. We therefore deduce from Proposition 5.9, since ‖f‖L∞(U) ≥ t
and |EZ | > 0, that f = 0 on U . This contradicts the assumption ‖f‖L∞(U) ≥ t > 0 and
therefore ∫

E
|f(x)|2dx > 0.

We deduce from (5.29) that

|Ẽ| = |E| − |E \ Ẽ| ≥ |E|
2

≥ γ

2
|U | > 0.

Applying Proposition 5.9 provides that

sup
U

|f | ≤
(2d
γ
ΓM(2nt,M,ddiam(U)e)

)2nt,M,ddiam(U)e

sup
Ẽ

|f |

≤
(2d
γ
ΓM(2nt,M,ddiam(U)e)

)2nt,M,ddiam(U)e

√
2√
|E|

( ∫

E
|f(x)|2dx

) 1
2
.

It follows that∫

U
|f(x)|2dx ≤ |U |

(
sup
U

|f |
)2 ≤

(2d
γ
ΓM(2nt,M,d diam(U)e)

)4nt,M,ddiam(U)e 2|U |
|E|

∫

E
|f(x)|2dx

≤
(2d
γ
ΓM(2nt,M,d diam(U)e)

)4nt,M,ddiam(U)e 2

γ

∫

E
|f(x)|2dx.

This concludes the proof of Proposition 5.10. �

In [14], the authors also establish a multi-dimensional version and a L2-version of the
Nazarov-Sodin-Volberg Theorem (Theorem 5.7) but the constants obtained there are less
explicit than the ones given in Propositions 5.9 and 5.10. Quantitative constants will be
essential in Section 2.2 to set up an adapted Lebeau-Robbiano method in order to derive
null-controllability results. We end this section by illustrating the above result with an
example:

Example 5.11. Let 0 < s ≤ 1, A ≥ 1, R > 0, d ≥ 1, 0 < t ≤ 1, 0 < γ ≤ 1 and
M = (Ap(p!)s)p∈N. Let E ⊂ B(0, R) be a measurable subset of the Euclidean ball centered
at 0 with radius R such that |E| ≥ γ|B(0, R)|. There exists a constant K = K(s, d) ≥ 1
such that for all f ∈ CM(B(0, R)) with ‖f‖L∞(B(0,R)) ≥ t,

‖f‖L∞(B(0,R)) ≤ Ct,A,s,R,γ,d‖f‖L∞(E) and ‖f‖L2(B(0,R)) ≤ Ct,A,s,R,γ,d‖f‖L2(E),

where when 0 < s < 1,

0 < Ct,A,s,R,γ,d ≤
(K
γ

)K(1−log t+(AR)
1

1−s )

and when s = 1,

0 < Ct,A,1,R,γ,d ≤
(K
γ

)K(1−log t)eKAR

.

Let us check that Example 5.11 is a consequence of Propositions 5.9 and 5.10, together
with Lemma 5.4. We deduce from Propositions 5.9 and 5.10 that for all f ∈ CM(B(0, R))
with ‖f‖L∞(B(0,R)) ≥ t,

‖f‖L∞(B(0,R)) ≤
(d
γ
ΓM(2nt,M,2Rde)

)2nt,M,2Rde‖f‖L∞(E)

and

‖f‖L2(B(0,R)) ≤
√

2

γ

(2d
γ
ΓM(2nt,M,2Rde)

)2nt,M,2Rde‖f‖L2(E).
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Furthermore, Lemma 5.4 provides that

∀n ∈ N
∗, ΓM(n) ≤ e4+4s

and if 0 < s < 1 then,

nt,M,2Rde ≤ 2
1

1−s
(
1− log t+ (2ARde)

1
1−s

)
,

whereas if s = 1, then

nt,M,2Rde ≤ (1− log t)e2ARde.

The result of Example 5.11 therefore follows from the above estimates.

5.4. Slowly varying metrics. This section is devoted to recall basic facts about slowly
varying metrics. We refer the reader to [13] (Section 1.4) for the proofs of the following
results. Let X be an open subset in a finite dimensional R-vector space V and ‖ · ‖x a
norm in V depending on x ∈ X. The family of norms (‖ · ‖x)x∈X is said to define a slowly
varying metric in X if there exists a positive constant C ≥ 1 such that for all x ∈ X and
for all y ∈ V satisfying ‖y − x‖x < 1, then y ∈ X and

(5.30) ∀v ∈ V,
1

C
‖v‖x ≤ ‖v‖y ≤ C‖v‖x.

Lemma 5.12. [13, Example 1.4.8]. Let X be an open subset in a finite dimensional
R-vector space V and d(x) a 1

2-Lipschitz continuous function, positive in X and zero in
V \X, satisfying

∀x, y ∈ X, |d(x)− d(y)| ≤ 1

2
‖x− y‖,

where ‖ · ‖ is a fixed norm in V . Then, the family of norms (‖ · ‖x)x∈X given by

‖v‖x =
‖v‖
d(x)

, x ∈ X, v ∈ V,

defines a slowly varying metric in X.

The proof given in [13, Example 1.4.8] shows more generally that result of Lemma 5.12
holds true as well when d is a contraction mapping function, that is, when there exists
0 ≤ k < 1 such that

∀x, y ∈ X, |d(x) − d(y)| ≤ k‖x− y‖.
Let us consider the case when X = V = R

d and ‖ · ‖ is the Euclidian norm. If 0 < δ ≤ 1

and 0 < R < 1
δ , then the gradient of the function ρδ(x) = R 〈x〉δ given by

∀x ∈ R
d, ∇ρδ(x) = Rδ

x

〈x〉2−δ
,

satisfies ‖∇ρδ‖L∞(Rd) ≤ Rδ < 1. The mapping ρδ is then a positive contraction mapping

and Lemma 5.12 shows that the family of norms ‖ · ‖x = ‖·‖

R〈x〉δ
defines a slowly varying

metric on R
d.

Theorem 5.13. [13, Theorem 1.4.10]. Let X be an open subset in V a R-vector space of
finite dimension d ≥ 1 and (‖ · ‖x)x∈X be a family of norms in V defining a slowly varying
metric. Then, there exists a sequence (xk)k≥0 ∈ XN such that the balls

Bk = {x ∈ V : ‖x− xk‖xk
< 1} ⊂ X,

form a covering of X,

X =

+∞⋃

k=0

Bk,
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such that the intersection of more than N =
(
4C3 + 1

)d
two by two distinct balls Bk

is always empty, where C ≥ 1 denotes the positive constant appearing in the slowness
condition (5.30).
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[26] J. Toft, A. Khrennikov, B. Nilsson, S. Nordebo, Decompositions of Gelfand-Shilov kernels into kernels

of similar class, J. Math. Anal. Appl. 396 (2012), no. 1, 315-322



UNCERTAINTY PRINCIPLES AND NULL-CONTROLLABILITY 35
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