Comparative Study and Limits of Different Level-Set Formulations for the Modeling of Anisotropic Grain Growth - Archive ouverte HAL
Article Dans Une Revue Materials Année : 2021

Comparative Study and Limits of Different Level-Set Formulations for the Modeling of Anisotropic Grain Growth

Brayan Murgas
Sebastian Florez
  • Fonction : Auteur
  • PersonId : 1046342
Julien Fausty
Marc Bernacki

Résumé

In this study, four different finite element level-set (FE-LS) formulations are compared for the modeling of grain growth in the context of polycrystalline structures and, moreover, two of them are presented for the first time using anisotropic grain boundary (GB) energy and mobility. Mean values and distributions are compared using the four formulations. First, we present the strong and weak formulations for the different models and the crystallographic parameters used at the mesoscopic scale. Second, some Grim Reaper analytical cases are presented and compared with the simulation results, and the evolutions of individual multiple junctions are followed. Additionally, large-scale simulations are presented. Anisotropic GB energy and mobility are respectively defined as functions of the mis-orientation/inclination and disorientation. The evolution of the disorientation distribution function (DDF) is computed, and its evolution is in accordance with prior works. We found that the formulation called “Anisotropic” is the more physical one, but it could be replaced at the mesoscopic scale by an isotropic formulation for simple microstructures presenting an initial Mackenzie-type DDF.
Fichier principal
Vignette du fichier
materials-14-03883-v2.pdf (23.57 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03463746 , version 1 (02-12-2021)

Licence

Identifiants

Citer

Brayan Murgas, Sebastian Florez, Nathalie Bozzolo, Julien Fausty, Marc Bernacki. Comparative Study and Limits of Different Level-Set Formulations for the Modeling of Anisotropic Grain Growth. Materials, 2021, 14 (14), pp.3883. ⟨10.3390/ma14143883⟩. ⟨hal-03463746⟩
49 Consultations
19 Téléchargements

Altmetric

Partager

More