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Axiomatic characterization of the χ2 dissimilarity
measure∗

Denis Bouyssou† Thierry Marchant‡ Marc Pirlot§

Abstract

We axiomatically characterize the χ2 dissimilarity measure.

1 Introduction

Let N = {1, 2, . . . , n} be a set of categories (with n ≥ 2). The vector
x = (x1, . . . , xn) represents the respective numbers of observations in each
category and the total number of observations is denoted by s(x) =

∑
i∈N xi.

We want to measure the dissimilarity between the observed distribution
x and a reference distribution π = (π1, . . . , πn), with

∑
i∈N πi = 1 and

πi ∈ Q++ for all i ∈ N , where Q++ is the set of positive rational numbers.
We exclude reference distributions with null components because the χ2

dissimilarity measure is not defined when a component is zero. The set of
all observed distributions is X = NN , i.e. the set of all mappings from N to
N0, where N0 is the set of non-negative integers. The set Π of all reference
distributions is defined by Π = {π ∈ QN

++ :
∑

i∈N πi = 1}.
A dissimilarity measure f is a mapping from X×Π to R+ (the set of non-

negative real numbers) satisfying f(x, π) = 0 iff x/s(x) = π. It measures
how far the observed distribution is from the reference. In this paper, we
axiomatically characterize the χ2

1 dissimilarity measure defined by

χ2
1(x, π) =

∑
i∈N

(s(x)πi − xi)
2

s(x)πi

and frequently used in statistics as a measure of goodness of fit.
The dissimilarity measure χ2

0 defined by χ2
0(x, π) = χ2

1(x, π)/s(x) has
been characterized in [Kaufman et al., 1972] and we will also provide a new
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characterization thereof. It is popular in ecology [Greenacre, 2017], sociology
[Reardon and Firebaugh, 2002], economics [Yalonetzky, 2012], and so on.

While we consider in our paper that the number n of categories is given
and fixed, Kaufman et al. [1972] consider that n can vary. Depending on
the context, one or the other assumption can be more relevant. For in-
stance, when we use Pearson’s χ2 test, we have a sample distributed over n
categories and the p-value is computed conditional on a theoretical proba-
bility distribution with the same number n of categories. If we repeat the
experiment and draw other samples, we obtain other p-values always based
on the same theoretical probability distribution with the same number n of
categories. It therefore makes sense to consider n as given.

A common feature of [Kaufman et al., 1972] and our paper is that we
use a framework in which π can vary and such that comparisons of the
dissimilarity measure across different reference distributions are relevant.
Yet, unlike Kaufman et al. [1972], we also consider the case in which the
reference distribution π is fixed (as in our Pearson’s χ2 example).

For characterizations of other dissimilarity measures, in the context of
political sciences, see Bouyssou et al. [2020]. See [Bertoluzza et al., 2004]
for a characterization of a wide class of dissimilarity measures. While we
consider dissimilarity measures in this paper, it is also interesting to consider
dissimilarity rankings as in [Cowell et al., 2015].

Section 2 presents our main conditions and results. Section 3 shows the
independence of the conditions used in our results. Section 4 concludes. All
proof are gathered in Section 5.

2 Axioms and results

The χ2
0 and χ2

1 dissimilarity measures are respectively homogeneous of degree
0 and 1, where homogeneity is defined as follows.

A 1 Homogeneity of degree ω. For all positive integer λ and x ∈ X,
f(λx, π) = λωf(x, π).

In statistics, it seems unanimously accepted that a dissimilarity measure
(used as a goodness-of-fit statistic) should be homogeneous of degree 1, but
in ecology, many researchers seem to favour homogeneity of degree 0. Indeed,
when they measure the dissimilarity between the species distribution in an
ecosystem and a reference distribution, they want the dissimilarity to be
independent of the size of the ecosystem. It is easy to see that Homogeneity
of degree 0 (resp. 1) is satisfied by χ2

0 (resp. χ2
1). Indeed, we have

χ2
0(λx, π) =

∑
i∈N

(πi − λxi/s(λx))
2

πi
=
∑
i∈N

(πi − xi/s(x))
2

πi
= χ2

0(x, π)

2



and

χ2
1(λx, π) =

∑
i∈N

(s(λx)πi − λxi)
2

s(λx)πi
= λ

∑
i∈N

(s(x)πi − xi)
2

s(x)πi
= λχ2

1(x, π).

Suppose the dissimilarity between a distribution x and π is zero. This
implies x = kπ for some positive integer k. The next condition states that,
when we modify kπ by moving a single individual from category l to j, then
the dissimilarity measure is inversely proportional to the harmonic mean of
πj and πl. Let 1

i ∈ X be a vector such that 1ii = 1 and 1ij = 0 for all j ̸= i.

A 2 Inverse Effects. If kπ, kπ′ ∈ X, then, for all j, l, r, s ∈ N , with j ̸= l
and r ̸= s,

f(kπ + 1j − 1l, π)

f(kπ′ + 1r − 1s, π′)
=

1
πj

+ 1
πl

1
π′
r
+ 1

π′
s

.

In our first result, we will use a restricted variant of Inverse Effects in
which π = π′. This weaker condition is named Restricted Inverse Effects
and is trivially satisfied when n = 2. We now prove that Inverse Effects is
satisfied by χ2

0:

χ2
0(kπ + 1j − 1l, π) =

(−1/k)2

πj
+

(1/k)2

πl
=

1

k2

(
1

πj
+

1

πl

)
.

The proof for χ2
1 is similar.

Let x and y be two observed distributions of size k. The deviation
between x and kπ is x − kπ. The corresponding deviation for y is y − kπ.
If we add these two vectors of deviations, we obtain x + y − 2kπ and the
corresponding observed distribution is x+y−2kπ+kπ = x+y−kπ (provided
all components are non-negative). Hence, f(x + y − kπ, π) represents the
dissimilarity corresponding to the additive combination of two deviations:
between x (resp. y) and kπ. Similarly, f(x− y + kπ, π) corresponds to the
subtractive combination of the same two deviations. Finally, f(x + y −
kπ, π) + f(x− y + kπ, π) corresponds in some sense to four deviations (two
x- and two y-deviations) combined once additively and once subtractively.
Our next condition states that this must be equal to 2f(x, π) + 2f(y, π),
which is another way to combine the same four deviations.

A 3 Deviations Balancedness. For all x, y ∈ X with s(x) = s(y) = k, if
x+ y − kπ ∈ X and x− y + kπ ∈ X, then

f(x+ y − kπ, π) + f(x− y + kπ, π) = 2
(
f(x, π) + f(y, π)

)
.

This condition is inspired from [D’Agostino and Dardanoni, 2009], in which
they characterize the Euclidean distance in Rn. Let us prove that χ2

1 satisfies
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Deviations Balancedness. We have

χ2
1(x+ y − kπ, π) =

∑
i∈N

(
s(x+ y − kπ)πi − (xi + yi − kπi)

)2
s(x+ y − kπ)πi

=
∑
i∈N

(2kπi − xi − yi)
2

kπi

and

χ2
1(x− y + kπ, π) =

∑
i∈N

(
s(x− y + kπ)πi − (xi − yi + kπi)

)2
s(x− y + kπ)πi

=
∑
i∈N

(xi − yi)
2

kπi
.

Hence, χ2
1(x+ y − kπ, π) + χ2

1(x− y + kπ, π) is equal to∑
i∈N

(2kπi − xi − yi)
2

kπi
+
∑
i∈N

(xi − yi)
2

kπi

=
∑
i∈N

2(k2π2
i + x2i − 2kπixi) + 2(k2π2

i + y2i − 2kπiyi)

kπi

=2χ2
1(x, π) + 2χ2

1(y, π).

We are now ready to state our first result in which we consider that π is
given and does not vary.

Theorem 1 Assume π is given. For ω ∈ {0, 1}, a dissimilarity measure f
satisfies Homogeneity of degree ω, Deviations Balancedness and Restricted
Inverse Effects iff f = γχ2

ω, for some positive γ ∈ R. Restricted Inverse
Effects is not required when n = 2.

Notice that Theorem 1 does not hold when π is not fixed. Indeed, for
any ϕ : Π → R+ with ϕ not constant, the dissimilarity measure

fϕ(x, π) = ϕ(π)
∑
i∈N

(πi − xi/s(x))
2

πi

satisfies Homogeneity of degree 1, Deviations Balancedness and Restricted
Inverse Effects but is not of the form γχ2

0 or γχ2
1. In order to characterize

the χ2 dissimilarity measure when π varies, we need the full power of Inverse
Effects.

Theorem 2 For ω ∈ {0, 1}, a dissimilarity measure f satisfies Homogene-
ity of degree ω, Deviations Balancedness and Inverse Effects iff f = γχ2

ω,
for some positive γ ∈ R.
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3 Independence of the axioms

In order to prove the independence of the conditions characterizing χ2
0 with

π variable, we provide three examples of dissimilarity measures violating
only one of the three conditions in Theorem 2.

The dissimilarity measure χ2
1 violates Homogeneity of degree 0 but satis-

fies Deviations Balancedness and Inverse Effects. The dissimilarity measure

f(x, π) =
∑
i∈N

|πi − xi/s(x)|
πi

violates Deviations Balancedness but satisfies Homogeneity of degree 0 and
Inverse Effects. The dissimilarity measure

f(x, π) =
∑
i∈N

(πi − xi/s(x))
2

violates Inverse Effects but satisfies Homogeneity of degree 0 and Deviations
Balancedness.

Our examples are easily adapted to prove the independence of the con-
ditions characterizing χ2

1 with π variable. Finally, our examples can also
be used for Theorem 1 since it involves the same conditions as Theorem 2
except for Restricted Inverse Effects which is weaker than Inverse Effects.

4 Discussion

Theorems 1 and 2 characterize the dissimilarity measures χ2
0 and χ2

1 up to
a multiplication by a positive real number γ. We could easily add a con-
dition characterizing exactly χ2

0 or χ2
1. For instance, the extra condition

f
(
11, (1/n, . . . , 1/n)

)
= n − 1 is enough to force γ = 1 in both characteri-

zations. Yet, unlike Kaufman et al. [1972], we consider that such a normal-
ization is not really interesting. Indeed χ2

1 and γχ2
1 (with γ ̸= 1) convey

exactly the same information, just like a distance measurement in meter or
yard. In particular, if we want to perform a Pearson’s χ2 test, we are free
to use Pearson’s statistic (i.e. χ2

1) and to compute the p-value using the χ2

density or to use γχ2
1 (with an arbitrary γ) and to compute the p-value using

the corresponding density. The resulting p-value will of course be identical.
The same holds for χ2

0 and γχ2
0.

5 Proofs

We need a few lemmas before proving Theorem 1.
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Lemma 1 Let f(x, π) = s(x)f ′(x, π). Then f satisfies Homogeneity of
degree 1 iff f ′ satisfies Homogeneity of degree 0. And f satsifies Deviations
Balancedness (resp. Inverse Effects) iff f ′ satisfies Deviations Balancedness
(resp. Inverse Effects).

Proof. Since f satisfies Homogeneity of degree 1, we have f(λx, π) =
λf(x, π) for all positive integer λ. We thus have λs(x)f ′(λx, π) = λs(x)f ′(x, π).
Hence f ′(λx, π) = f ′(x, π) and f ′ is homogeneous of degree 0. The proof of
the reverse implication is similar. The rest of the proof is left to the reader.
2

Lemma 2 Suppose π is fixed. If a dissimilarity measure f satisfies Homo-
geneity of degree 0, then f(x, π) = F (x/s(x)), for some mapping F : Π →
R+.

Proof. Since π is fixed, we can define a mapping g : X → R+ such that
f(x, π) = g(x). Define now the mapping F : Π → R+ as follows. For any
p ∈ Π, F (p) = g(x) if there is x ∈ X such that p = x/s(x). The mapping F
is defined everywhere because p has rational components and, hence, there
is always x ∈ X such that p = x/s(x). The mapping F is well defined. In-
deed, suppose now there are x, y such that p = x/s(x) and p = y/s(y). By
Homogeneity of degree 0, f(x, π) = f(y, π). Therefore, F (p) = g(x) = g(y).
2

We say that a set S in Qk is rational convex if whenever u, v ∈ S, then
αu+ (1− α)v ∈ S for all rational α ∈ [0, 1].

Lemma 3 Let S be a rational convex subset of Q2 such that S is full-
dimensional. Let g : S → R+ be a mapping such that the graph of g is a
parabola on any line segment r ⊂ S. Then g(u, v) = ρu2+σv2+ τuv+µu+
νv + ξ for some real ρ, σ, τ, µ, ν, ξ.

Proof. Since S is full-dimensional, the interior of S is not empty and we
can suppose without loss of generality that (0, 0) ∈ intS. Let us consider
the line defined by (αt, (1 − α)t) for some α ∈ Q and all t ∈ Q. The
intersection of this line with S defines a line segment rα passing by the
origin. The graph of g on rα is a parabola. We can express this by means
of the following polynomial of degree 2 in t :

g(αt, (1− α)t) = kαt
2 + lαt+mα, (1)

where kα, lα and mα are real numbers.
Let us now consider the line defined by (αt, (1 − α)t) for some t ∈ Q

and all α ∈ Q. The intersection of this line with S defines a line segment
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st. We can express that the graph of g on st is a parabola by means of a
polynomial of degree 2 in α :

g(αt, (1− α)t) = α2βt + αγt + δt, (2)

where βt, γt and δt are real numbers. Setting t = 0 in (2) yields, g(0, 0) =
α2β0+αγ0+δ0. Since this must be true for all α, we must have β0 = γ0 = 0.

Equating (1) and (2) yields

kαt
2 + lαt+mα = α2βt + αγt + δt. (3)

Setting t = 0, t = 1 and t = 2 in (3) yields

mα = δ0

kα + lα +mα = α2β1 + αγ1 + δ1

4kα + 2lα +mα = α2β2 + αγ2 + δ2.

The solution of this system is

mα = δ0

kα = α2 β2 − 2β1
2

+ α
γ2 − 2γ1

2
+

δ2 − 2δ1 + δ0
2

lα = α2 4β1 − β2
2

+ α
4γ1 − γ2

2
+

4δ1 − δ2 − 3δ0
2

.

Let us rewrite (1) :

g(αt, (1− α)t) =

(
α2 β2 − 2β1

2
+ α

γ2 − 2γ1
2

+
δ2 − 2δ1 + δ0

2

)
t2

+

(
α2 4β1 − β2

2
+ α

4γ1 − γ2
2

+
4δ1 − δ2 − 3δ0

2

)
t+ δ0.

Letting αt = u, (1 − α)t = v, α = u/(u + v) and t = u + v, this equation
becomes,

g(u, v) = u2
β2 − 2β1

2
+ u(u+ v)

γ2 − 2γ1
2

+ (u+ v)2
δ2 − 2δ1 + δ0

2

+
u2

u+ v

4β1 − β2
2

+ u
4γ1 − γ2

2
+ (u+ v)

4δ1 − δ2 − 3δ0
2

+ δ0. (4)

The graph of g(u, v) must be a parabola on the line segment correspond-
ing to v = u+ 1. That is,

u2
β2 − 2β1

2
+ u(2u+ 1)

γ2 − 2γ1 + γ0
2

+ (2u+ 1)2
δ2 − 2δ1 + δ0

2

+
u2

2u+ 1

4β1 − β2
2

+ u
4γ1 − γ2 − 3γ0

2
+ (2u+ 1)

4δ1 − δ2 − 3δ0
2

+ δ0
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must be a parabola in u. This is possible only if 4β1 − β2 = 0. We have
therefore reached the conclusion that (4) can be written as in the statement
of the lemma. 2

Let K = {1, 2, . . . , k} and K∗ = {1, 2, . . . , k − 1}.

Lemma 4 Let S be a rational convex subset of Qk such that S is full-
dimensional. Let g : S → R+ be a mapping such that the graph of g is a
parabola on any line segment r ⊂ S. Suppose the restriction of g to the
hyperplane defined by

∑
i∈K ui = t ( for all t ∈ R such that the hyperplane

intersects S) has the form g(u1, . . . , uk−1, t −
∑

i∈K∗ ui) =
∑

i∈K∗ σiiu
2
i +∑

i,j∈K∗,i<j σijuiuj +
∑

i∈K∗ σiui + σ0 for some real σii, σij , σi, σ0.

Then g(u1, . . . , uk) =
∑

i∈K ρiiu
2
i +

∑
i,j∈K,i<j ρijuiuj +

∑
i∈K ρiui + ρ0

for some real ρii, ρij , ρi, ρ0.

Proof. Since S is full-dimensional, there is u ∈ intS and we can suppose
without loss of generality that u = (0, . . . , 0). Let us consider the line defined
by (α1t, α2t, . . . , αk−1t, (1 −

∑
i∈K∗ αi)t) for some α1, . . . , αk−1 ∈ R and all

t ∈ R. The intersection of this line with S defines a line segment rα passing
by the origin. The graph of g on rα is a parabola. We can express this by
means of the following polynomial of degree 2 in t :

g(α1t, α2t, . . . , αk−1t, (1−
∑
i∈K∗

αi)t) = kαt
2 + lαt+mα, (5)

where kα, lα and mα are real numbers.
Let us now consider the hyperplane defined by (α1t, α2t, . . . , αk−1t, (1−∑

i∈K∗ αi)t) for some t ∈ R and αi ∈ R, ∀i ∈ K∗. We assumed in the
statement of the lemma,

g(α1t, α2t, . . . , αk−1t, (1−
∑
i∈K∗

αi)t) =∑
i∈K∗

σt
iiα

2
i +

∑
i,j∈K∗,i<j

σt
ijαiαj +

∑
i∈K∗

σt
iαi + σt

0. (6)

Setting t = 0 in (6) yields, g(0, . . . , 0) =
∑

i∈K∗ σ0
iiα

2
i +
∑

i,j∈K∗,i<j σ
0
ijαiαj+∑

i∈K∗ σ0
i αi + σ0

0. Since this must be true for all αi ∈ R, i ∈ K∗, we must
have σ0

ii = σ0
ij = σ0

i = 0, for all i, j ∈ K∗.
Equating (5) and (6) yields

kαt
2 + lαt+mα =

∑
i∈K∗

σt
iiα

2
i +

∑
i,j∈K∗,i<j

σt
ijαiαj +

∑
i∈K∗

σt
iαi + σt

0. (7)
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Setting t = 0, t = 1 and t = 2 in (7) yields

mα = σ0

kα + lα +mα =
∑
i∈K∗

σ1
iiα

2
i +

∑
i,j∈K∗,i<j

σ1
ijαiαj +

∑
i∈K∗

σ1
i αi + σ1

0

4kα + 2lα +mα =
∑
i∈K∗

σ2
iiα

2
i +

∑
i,j∈K∗,i<j

σ2
ijαiαj +

∑
i∈K∗

σ2
i αi + σ2

0.

The solution of this system is

mα = σ0

kα =
∑
i∈K∗

α2
i

σ2
ii − 2σ1

ii

2
+

∑
i,j∈K∗,i<j

αiαj

σ2
ij − 2σ1

ij

2

+
∑
i∈K∗

αi
σ2
i − 2σ1

i

2
+

σ2
0 − 2σ1

0 + σ0
0

2

lα =
∑
i∈K∗

α2
i

4σ1
ii − σ2

ii

2
+

∑
i,j∈K∗,i<j

αiαj

4σ1
ij − σ2

ij

2

+
∑
i∈K∗

αi
4σ1

i − σ2
i

2
+

4σ1
0 − σ2

0 − 3σ0
0

2
.

Let us rewrite (5) : g(α1t, α2t, . . . , αk−1t, (1−
∑

i∈K∗ αi)t) =∑
i∈K∗

α2
i

σ2
ii − 2σ1

ii

2
+

∑
i,j∈K∗,i<j

αiαj

σ2
ij − 2σ1

ij

2
+
∑
i∈K∗

αi
σ2
i − 2σ1

i

2
+

σ2
0 − 2σ1

0 + σ0
0

2

 t2

+

∑
i∈K∗

α2
i

4σ1
ii − σ2

ii

2
+

∑
i,j∈K∗,i<j

αiαj

4σ1
ij − σ2

ij

2
+
∑
i∈K∗

αi
4σ1

i − σ2
i

2
+

4σ1
0 − σ2

0 − 3σ0
0

2

 t+σ0.

Letting αit = ui, ∀i ∈ K∗, (1−
∑

i∈K∗ αi)t = uk, we have αi = ui/
∑

i∈K ui
and t =

∑
i∈K ui, and the previous equation becomes, g(u1, . . . , uk) =

∑
i∈K∗

u2i
σ2
ii − 2σ1

ii

2
+

∑
i,j∈K∗,i<j

uiuj
σ2
ij − 2σ1

ij

2
+
∑
i∈K∗

ui
∑
j∈K

uj
σ2
i − 2σ1

i

2

+

(∑
i∈K

ui

)2
σ2
0 − 2σ1

0 + σ0
0

2
+
∑
i∈K∗

u2i∑
j∈K uj

4σ1
ii − σ2

ii

2
+

∑
i,j∈K∗,i<j

uiuj∑
j∈K uj

4σ1
ij − σ2

ij

2

+
∑
i∈K∗

ui
4σ1

i − σ2
i

2
+
∑
i∈K

ui
4σ1

0 − σ2
0 − 3σ0

0

2
+ σ0.
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For any j ∈ K∗, the graph of g(u1, . . . , uk) must be a parabola on the
line segment corresponding to ui = 0,∀i ∈ K∗ \ {j}, uk = uj + 1. That is,
g(0, . . . , 0, uj , 0, . . . , 0, uj + 1) =

u2j
σ2
jj − 2σ1

jj

2
+ uj(2uj + 1)

σ2
j − 2σ1

j

2
+ (2uj + 1)2

σ2
0 − 2σ1

0 + σ0
0

2

+
u2j

2uj + 1

4σ1
jj − σ2

jj

2
+ uj

4σ1
j − σ2

j

2
+ (2uj + 1)

4σ1
0 − σ2

0 − 3σ0
0

2
+ σ0

must be a parabola in uj . This is possible only if 4σ1
jj − σ2

jj = 0 for all
j ∈ K∗.

Similarly, for any i, j ∈ K∗ with i < j, the graph of g(u1, . . . , uk) must
be a parabola on the line segment corresponding to ui = uj , ul = 0,∀l ∈
K∗ \ {i, j}, uk = ui +1. That is, g(0, . . . , 0, ui, 0, . . . , 0, ui, 0, . . . , 0, ui +1) =

u2i
σ2
ii − 2σ1

ii

2
+ u2i

σ2
jj − 2σ1

jj

2
+ u2i

σ2
ij − 2σ1

ij

2
+ ui(3ui + 1)

σ2
i − 2σ1

i

2

+ ui(3ui + 1)
σ2
j − 2σ1

j

2
+ (3ui + 1)2

σ2
0 − 2σ1

0 + σ0
0

2
+

u2i
3ui + 1

4σ1
ij − σ2

ij

2

+ ui
4σ1

i − σ2
i

2
+ ui

4σ1
j − σ2

j

2
+ (3ui + 1)

4σ1
0 − σ2

0 − 3σ0
0

2
+ σ0

must be a parabola in ui. This is possible only if 4σ1
ij − σ2

ij = 0 for all
i, j ∈ K∗ with i ̸= j. We have therefore reached the conclusion that g has
the desired form. 2

Lemma 5 Let S be a rational convex subset of Qk such that (0, 0, . . . , 0) ∈
intS. Let g : S → R+ be a mapping such that g(u1, . . . , uk) = 0 iff
(u1, . . . , uk) = (0, . . . , 0) and the graph of g is a parabola on any line segment
r ⊂ S. Then g(u1, . . . , uk) =

∑
i∈K ρiiu

2
i +

∑
i,j∈K,i<j ρijuiuj for some real

ρii, ρij.

Proof. By induction and Lemma 4 and 3 , g(u1, . . . , uk) =
∑

i∈K ρiiu
2
i +∑

i,j∈K,i<j ρijuiuj +
∑

i∈K ρiui + ρ0 for some real ρii, ρij , ρi, ρ0. On the line

u2 = u3 = . . . = uk = 0, g(u1, 0, . . . , 0) = ρ11u
2 + ρ1u + ρ0. The graph of

this function of u must be a parabola with vertex in 0. Hence ρ1 = ρ0 = 0.
Similarly, for any i ∈ K, considering the line defined by uj = 0, ∀j ̸= i en-
tails ρi = 0. In conclusion, g(u1, . . . , uk) =

∑
i∈K ρiiu

2
i +

∑
i,j∈K,i<j ρijuiuj .

2

Lemma 6 Suppose π is fixed and the dissimilarity measure f satisfies Ho-
mogeneity of degree 0 and Deviations Balancedness. Then, for all p, q ∈ Π
such that p+ q − π ∈ Π and p− q + π ∈ Π, we have

F (p+ q − π) + F (p− q + π) = 2F (p) + 2F (q). (8)

10



Proof. Let p, q be as in the statement of the lemma. There are two
distributions x, y ∈ X such that x/s(x) = p and y/s(y) = q. Hence F (p) =
f(x, π) and F (q) = f(y, π). By Homogeneity of degree 0, F (p) = f(x, π) =
f(s(y)x, π) and F (q) = f(y, π) = f(s(x)y, π). The two distributions s(y)x
and s(x)y have the same size, i.e., s(x)s(y). Hence we can apply Deviations
Balancedness and we find

2F (p) + 2F (q) = 2f(s(y)x, π) + 2f(s(x)y, π)

= f(s(y)x+ s(x)y − s(x)s(y)π, π)

+f(s(y)x− s(x)y + s(x)s(y)π, π).

By definition of F ,

f(s(y)x+ s(x)y − s(x)s(y)π, π) = F (p+ q − π)

and
f(s(y)x− s(x)y + s(x)s(y)π, π) = F (p− q + π).

In conclusion,

F (p+ q − π) + F (p− q + π) = 2F (p) + 2F (q).

2

For every l ∈ N , define Nl = N \ {l} and Nlm = N \ {l,m}.

Lemma 7 Suppose π is fixed and the dissimilarity measure f satisfies Ho-
mogeneity of degree 0 and Deviations Balancedness. Then, for every l ∈ N
and p ∈ Π,

F (p) =
∑
i∈Nl

ρlii(pi − πi)
2 +

∑
i,j∈Nl:i<j

ρlij(pi − πi)(pj − πj)

for some real ρlii, ρ
l
ij .

Proof. Let r be a line segment with extremities s, t ∈ Π, with s ̸= t.
Every point of r ∩ Π can be written as αt + (1 − α)s with α ∈ [0, 1] and
α rational. Consider any two points p, q ∈ r ∩ Π, the position of which on
r is characterized by α and β respectively. Then p + q − π lies on the line
segment between 2t− π and 2s− π and it can be written as(

α+ β

2

)
(2t− π) +

(
1− α+ β

2

)
(2s− π).

Similarly, p− q+ π lies on the line segment between t− s+ π and s− t+ π
and it can be written as(

α− β + 1

2

)
(t− s+ π) +

(
1− α− β + 1

2

)
(s− t+ π).

Notice that (α+ β)/2 ∈ [0, 1] and (α− β+1)/2 ∈ [0, 1] for any α, β ∈ [0, 1].
Define three mappings as follows :

11



• L : [0, 1] ∩Q → R+ by L(α) = F (p) if p = αt+ (1− α)s;

• G : [0, 1]∩Q → R+ by G(α) = F (p) if p = α(2t−π)+ (1−α)(2s−π);

• H : [0, 1]∩Q → R+ byH(α) = F (p) if p = α(t−s+π)+(1−α)(s−t+π).

Then (8) can be rewritten as

G

(
α+ β

2

)
+H

(
α− β + 1

2

)
= 2L(α) + 2L(β) (9)

and it holds for all rational α, β ∈ [0, 1]. This functional equation is a
generalization of Equation (18) discussed in [Aczél, 1966, p.82].

If α = β, then G(α) +H(1/2) = 4L(α) obtains. In other words, G(α) =
4L(α)+ δ′ for some real number δ′. If α = 1−β, then G(1/2)+H(1−β) =
2L(1 − β) + 2L(β). So, H(1 − β) = 2L(β) + 2L(1 − β) + δ′′ for some real
number δ′′. We can now rewrite (9) as

4L

(
α+ β

2

)
+ 2L

(
α− β + 1

2

)
+ 2L

(
β − α+ 1

2

)
= 2L(α) + 2L(β) + δ′′′

(10)
with δ′′′ = −δ′−δ′′. If we now let α = (m−2)c and β = mc withm a positive
integer (m ≥ 2) and c a positive rational number such that mc ∈ [0, 1], then

4L ((m− 1)c)+2L ((1/2)− c)+2L ((1/2) + c) = 2L((m−2)c)+2L(mc)+δ′′′.

If we divide this equation by 2 and reorder the terms (with δ = δ′′′/2), we
obtain

L(mc)− L((m− 1)c) = L((m− 1)c)− L((m− 2)c) + L((1/2)− c) + L((1/2) + c) + δ

= L((m− 2)c)− L((m− 3)c) + 2
(
L((1/2)− c) + L((1/2) + c) + δ

)
= L((m− 3)c)− L((m− 4)c) + 3

(
L((1/2)− c) + L((1/2) + c) + δ

)
= . . .

= L(c)− L(0) + (m− 1)
(
L((1/2)− c) + L((1/2) + c) + δ

)
.

Notice that, for all m ∈ N(m ≥ 2) and c ∈ Q++ such that mc ∈ [0, 1],

L(mc) =
m∑
i=1

(
L(ic)− L((i− 1)c)

)
+ L(0)

=

m∑
i=1

(
L(c)− L(0) + (i− 1)

(
L((1/2)− c) + L((1/2) + c) + δ

))
+ L(0)

= mL(c) + (1−m)L(0)

+
m(m− 1)

2

(
L((1/2)− c) + L

(
(1/2) + c) + δ

)
. (11)
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If m = 0, it is easy to verify that (11) still holds. Indeed,

L(0c) = 0L(c) + (1− 0)L(0) +
0(0− 1)

2

(
L((1/2)− c) + L

(
(1/2) + c) + δ

)
.

A similar reasoning holds when m = 1. Hence, for any fixed value of c (a
positive rational number), L(β) is a polynomial of degree 2 in β for every
β ∈ [0, 1] that can be written as mc for some integer m, hence we can also
write (11) as

L(β) = aβ2 + bβ + d,

for some real numbers a, b, d. Let c = 1/2; β can take the values 0, 1/2, 1. We
have 

L(0) = d
L(1/2) = 1/4 a+ 1/2 b+ d
L(1) = a+ b+ d

This is a non-singular (determinant = −1/4) system of linear equations
which determines unique values for a, b, d. These are a linear combination
of the values of L(β) for β = 0, 1/2, 1. There is a single parabola that passes
through the three points (β, L(β)) for β = 0, 1/2, 1.

Consider now any rational number β = w
w′ . If w′ is odd, we also have

that β = 2w
2w′ so that we can assume that w′ is even. Using (11), we have

that L(β) = a′β2 + b′β + d′ for some a′, b′, d′ and for any integer w in the
interval [0, w′]. We have to show that these constants are a, b, d. Indeed, for
w = 0, w′/2, w′, we have that β = 0, 1/2, 1 respectively. Hence, the points
(β, L(β)) for β = 0, 1/2, 1 are also on the parabola with coefficients a′, b′, c′

and these points are the same as in the case w′ = 2 since L is a single
function. Since there is only one parabola through these points and the
parabola with coefficients a, b, c passes through these points, we conclude
that a = a′, b = b′ and d = d′.

This being true for any (even) value of w′, we have that L(β) is a
quadratic function of β independently of the denominator of the rational
number β.

Of course, the coefficients of the polynomial a, b and d depend on the
line segment r joining t and s. So, we better write Lr(β) = arβ

2+ brβ+ dr.
We now go back to F . Since Lr is a polynomial of degree 2 for any r,
we find that the graph of F is a parabola on any line segment r. Define
G : Π → R+ by G(p − π) = F (p). Then G is like g in the statement of
Lemma 5, with k = n − 1 (because Π has only n − 1 dimensions). Then,
G(p− π) = F (p) =

∑
i∈Nl

ρlii(pi − πi)
2 +
∑

i,j∈Nl,i<j ρ
l
ij(pi − πi)(pj − πj) for

some real ρlii, ρ
l
ij . Notice that, for each l ∈ N , we have such an expression. 2

Proof of Theorem 1.
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Case n = 2.

f is homogeneous of degree 0. Since n = 2, we have (p1−π1)
2 =

(p2 − π2)
2. Then Lemma 7 yields F (p) = ρ211(p1 − π1)

2 =
ρ211
2

(
(p1 − π1)

2 +
(p2 − π2)

2
)
and

f(x, π) =
ρ211
2

((
x1
s(x)

− π1

)2

+

(
x2
s(x)

− π2

)2
)
. (12)

f is homogeneous of degree 1. By Lemma 1, f/s(x) satisfies
Homogeneity of degree 0 and Deviations Balancedness. By (12), f/s(x) is
proportional to χ2

0 and f to χ2
1.

Case n ≥ 3.

f is homogeneous of degree 0. We know from the previous lemma
that F can be expressed as

F (p) =
∑
i∈Nn

ρnii(pi − πi)
2 +

∑
i,j∈Nn:i<j

ρnij(pi − πi)(pj − πj) (13)

for some real ρnii, ρ
n
ij . Recall that Nn = N \ {n}. So, for all j, l ∈ Nn, with

j ̸= l,

f(kπ + 1j − 1l, π) =
ρnjj + ρnll − ρnjl

k2
, (14)

and

f(kπ + 1n − 1j , π) =
ρnjj
k2

. (15)

For the sake of simplicity, for all j, l ∈ N , let Ajl denote
πj+πl

πjπl
. Then, thanks

to Restricted Inverse Effects, we can write, for all j, l ∈ Nn with j ̸= l.

f(kπ + 1j − 1l, π)

f(kπ + 11 − 12, π)
=

ρnjj + ρnll − ρnjl
ρn11 + ρn22 − ρn12

=
Ajl

A12
,

f(kπ + 1j − 1n, π)

f(kπ + 11 − 1n, π)
=

ρnjj
ρn11

=
Ajn

A1n

and
f(kπ + 11 − 1n, π)

f(kπ + 11 − 12, π)
=

ρn11
ρn11 + ρn22 − ρn12

=
A1n

A12
.

Using each of these three equations separately, we find

ρnjl = ρnjj + ρnll +
Ajl

A12
(ρn12 − ρn11 − ρn22), ∀j, l ∈ Nn : j ̸= l, (16)
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ρnjj = ρn11
Ajn

A1n
, ∀j ∈ Nn (17)

and
ρn11 + ρn22 − ρn12

A12
=

ρn11
A1n

. (18)

If we substitute (17) and (18) in (16), we obtain

ρnjl = ρn11

(
Ajn

A1n
+

Aln

A1n
−

Ajl

A1n

)
, ∀j, l ∈ Nn : j ̸= l,

= 2ρn11
π1

π1 + πn
.

From (17), we find

ρnjj = ρn11
πj + πn

πj

π1
π1 + πn

, ∀j ∈ Nn.

Let us define
γ = ρn11

π1πn
π1 + πn

.

Then,

ρnjl = 2γ
π1 + πn
π1πn

π1
π1 + πn

= 2
γ

πn
, ∀j, l ∈ Nn : j ̸= l,

and

ρnjj = γ
π1 + πn
π1πn

πj + πn
πj

π1
π1 + πn

= γ
πj + πn
πjπn

, ∀j ∈ Nn.

If we now substitute the expressions of ρnjl and ρnjj into (13), we obtain
f(x, π)

=
∑
i∈Nn

(
γ

πi
+

γ

πn

)(
πi −

xi
s(x)

)2

+
∑

i,j∈Nn:i<j

2γ

πn

(
πi −

xi
s(x)

)(
πj −

xj
s(x)

)

=
∑
i∈Nn

γ

πi

(
πi −

xi
s(x)

)2

+
∑
i∈Nn

γ

πn

(
πi −

xi
s(x)

)2

+
∑

i,j∈Nn:i<j

2γ

πn

(
πi −

xi
s(x)

)(
πj −

xj
s(x)

)

=
∑
i∈Nn

γ

πi

(
πi −

xi
s(x)

)2

+
γ

πn

(∑
i∈Nn

(
πi −

xi
s(x)

))2

=
∑
i∈Nn

γ

πi

(
πi −

xi
s(x)

)2

+
γ

πn

(
1−

∑
i∈Nn

πi − 1 +
∑
i∈Nn

xi
s(x)

)2

=
∑
i∈Nn

γ

πi

(
πi −

xi
s(x)

)2

+
γ

πn

(
πn − xn

s(x)

)2

=
∑
i∈N

γ

πi

(
πi −

xi
s(x)

)2

= γχ2
0(x, π). (19)
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f is homogeneous of degree 1. By Lemma 1, f/s(x) satisfies
Homogeneity of degree 0, Deviations Balancedness and Inverse Effects. By
(19), f/s(x) is proportional to χ2

0 and f to χ2
1. 2

Proof of Theorem 2. We prove the result only for χ2
1 (the case of

χ2
0 being similar). We want to prove that there exists γ > 0 such that

f(x, π) = γχ2
1(x, π) for all x ∈ X and all π ∈ Π. From Theorem 1, we have

f(x, π) = γπχ
2
1(x, π), where we now use the notation γπ to make clear that

γπ can depend on π. Thanks to Inverse Effects, for all π, π′ ∈ Π, we have

f(kπ + 1j − 1l, π)

f(kπ′ + 1j − 1l, π′)
=

γπ

(
1
πj

+ 1
πl

)
γπ′

(
1
π′
j
+ 1

π′
l

) =

1
πj

+ 1
πl

1
π′
j
+ 1

π′
l

.

This is possible only if γπ = γπ′ for all π, π′ ∈ Π. 2
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