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Hyperspectral Texture Metrology Based on
Joint Probability of Spectral and Spatial Distribution

Rui Jian Chu, Noël Richard, Hermine Chatoux, Christine Fernandez-Maloigne, Jon Yngve Hardeberg

Abstract—Texture characterization from the metrological point
of view is addressed in order to establish a physically relevant
and directly interpretable feature. In this regard, a generic
formulation is proposed to simultaneously capture the spectral
and spatial complexity in hyperspectral images. The feature,
named relative spectral difference occurrence matrix (RSDOM)
is thus constructed in a multireference, multidirectional, and
multiscale context. As validation, its performance is assessed
in three versatile tasks. In texture classification on HyTexiLa,
content-based image retrieval (CBIR) on ICONES-HSI, and land
cover classification on Salinas, RSDOM registers 98.5% accuracy,
80.3% precision (for the top 10 retrieved images), and 96.0% ac-
curacy (after post-processing) respectively, outcompeting GLCM,
Gabor filter, LBP, SVM, CCF, CNN, and GCN. Analysis shows
the advantage of RSDOM in terms of feature size (a mere 126,
30, and 20 scalars using GMM in order of the three tasks) as
well as metrological validity in texture representation regardless
of the spectral range, resolution, and number of bands.

Index Terms—Hyperspectral imaging, texture, metrology

I. INTRODUCTION

HYPERSPECTRAL imaging (HSI) is closely related to
the measurement of physical surface properties and ma-

terial composition. Thanks to the dense spectral sampling up
to hundreds of bands, HSI is able to provide rich information
that allows rapid and nondestructive assessment. However,
highly accurate acquisition does not warrant highly accurate
results. The full exploitation of HSI necessitates proper data
interpretation and enforcement of metrological processing.

The interest of this work is surface nonuniformity or texture
metrology. Under metrology, measurements are to be solely
dependent on measurand and dissociated from sensor. Corre-
spondingly, the similarity between textures is to be preserved
regardless of the imaging sensor (grayscale, color, spectral
etc.) with discrepancy only in accuracy. Feature interpretability
is also of utmost importance for the establishment of a direct
relationship between the measurement (feature) and the mea-
surand (texture). In contrast to data-driven approach, metro-
logical solutions allow the quantification of error, uncertainty,
and bias for traceability [1]. However, many texture analysis
methods are application oriented and far from metrology,
thus mostly ad hoc. Even if they do start with meaningful
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Fig. 1: Texture is defined as joint probability of spectral and
spatial distribution. The feature, RSDOM consists of pixel
differences with spectral reference and spatial neighbor(s).

interpretation of texture, they are often limited by empirical
construction of similarity measures or complexity reduction.

The present work proposes a new perspective in hyperspec-
tral texture analysis in the context of full-band and metro-
logical processing which can be summarized in Fig. 1. Part
of the work has been published in [2], [3], thus the main
interest of this paper lies in the theoretical generalization
of the feature towards multireference, multidirectional, and
multiscale assessment. The contributions of this work are:
• A generic texture definition, encompassing a joint char-

acterization of the spectral-spatial complexity in image.
• An multiscale and multidirectional texture feature extrac-

tion based on pixel differences, thus applicable to images
of any spectral range, resolution, and number of bands.

• A metrological feature with a direct relationship with the
texture’s physical content for high feature interpretability.

• A rigorous assessment of the feature performance via
three different tasks i.e. texture classification, content-
based image retrieval, and land cover classification.

The remainder of this work is organized as follows. In
Section II, a review and critical examination on state-of-the-
art, which is compactly summarized in Fig. 2, is presented.
A texture definition is then proposed in Section III, followed
by a mathematical formulation for the feature in Section IV
and V. The feature similarity measure is devised in Section
VI. Section VII is dedicated to feature validation as well
as interpretation. Experiments and analysis are developed in
Section VIII. Finally, Section IX provides the conclusion.
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II. STATE-OF-THE-ART

A. Tradeoff between accuracy and complexity

To take full advantage of HSI, full-band processing is neces-
sary. Texture features defined this way [2]–[5] benefit from the
high accuracy of spectral specification down to nanometres.
As information is derived directly from the data, the spirit
of metrology is completely preserved. The other side of the
argument, however, claims that such approach leads to high
computational complexity and the curse of dimensionality [6]–
[8]. As such, dimensionality reduction is performed either by
feature (band) transformation [9]–[11] or selection [12]–[14].
Using techniques e.g. principal component analysis (PCA) and
independent component analysis (ICA), feature transformation
projects data into a lower dimensional subspace with desirable
properties such as orthogonality and independence. On the
other hand, feature selection extracts a subset of the spectral
bands by means of ranking, clustering, searching etc. [15].

However, the extraction of texture features preceded by
dimensionality reduction is far from metrology. This is because
feature transformation or selection is essentially an optimiza-
tion problem subjected to the given data (data-dependent).
Consequently, features extracted from different dataset are
incomparable. As data is represented in the newly transformed
or sampled spectral space, the underlying semantics is lost as
well [16], [17]. For example, PCA has the effect of changing
the geometrical properties following the scaling and centering
of data. This results in the loss of physical meaning of data,
prohibiting the establishment of direct relationship between
texture and features as required in metrology.

B. Multichannel consideration

Many texture extraction methods are originally developed
for grayscale images. For multivariate e.g. color and spectral
images, the challenge is to combine information from multiple
channels. The simplest way is marginal processing i.e. by ex-
tracting feature(s) independently from each of the L channels
[9]–[11]. The features are then concatenated to form a L-
dimensional feature vector. Such approach is justified if the
channels are independent (obtained as per PCA, ICA etc.).
Otherwise, cross-channel processing is preferred as it consid-
ers the interchannel correlation [10], [12], [14]. This results in
a feature vector of L2–L dimensions as every possible pair of
channels is considered. Such approach is however, statistically
ad hoc with no theoretical basis in metrology.

The third approach is to consider the spectral channels as a
whole or “vector-like”, which then requires the transposition
of the originally two-dimensional (grayscale) methods in a
three-dimensional (3-D) manner. For example, a 3-D kernel
and spherical neighborhood are considered in 3-D GLCM [18]
and 3-D LBP [19] respectively. For 3-D Gabor filter [20] and
3-D wavelet analysis [21], three-dimensional discrete Fourier
and wavelet transform are utilized respectively.

C. Texture feature extraction

Depending on the texture definition, features are extracted
e.g. through the joint probability of pixel pairs (cooccurrence

Fig. 2: Three common steps in hyperspectral texture analysis.

matrix or GLCM [22]), thresholding of neighborhood (local
binary pattern or LBP [23]), spatial frequency analysis (Gabor
filter [24], wavelets [25]), and model-based methods (autore-
gressive [26], Markovian [27], fractals [28], [29]). On the other
hand, the works on procedural and dynamic textures [30], [31]
are combining model-based and transform-based approaches
for texture fidelity or segmentation purposes considering the
correlation with human visual perception. However, the effi-
ciency of a well-intentioned feature can be limited due to the
lack of metrological considerations. For example, quantization
is necessary to avoid sparsity of the GLCM for statistical
reliability, thus lowering the feature accuracy. On the other
hand, LBP misses out on intensity and contrast information as
it considers only the sign of local differences of pixels with
their neighborhood. More recently, a gravitational-based model
named pattern of local gravitational force (PLGF) has been
developed [32]. Though conceptually interesting, it misses out
on metrology due to the empirical feature concatenation and
the implicit need for quantization using histogram. Thus, it
can be less adapted for multivariate e.g. hyperspectral images.

For the purpose of similarity measurement, a scalar re-
duction or density estimation of the feature is required. For
instance, GLCM is reduced into Haralick (scalar) features [22],
[33]. For transform-based approaches, moments like energy,
mean, variance etc. are extracted from the filter coefficients
[10], [20], [21]. The features are then concatenated to form
a feature vector for which Euclidean metric is used as sim-
ilarity measure [10], [20], [33]. Such practice is however,
inaccurate considering the possible redundancies among the
features. Moreover, the scalar reduction also reduces feature
discriminability. Alternatively, the features can be modeled as
histograms or probability densities [34]–[36]. Then, statistical
distance e.g. divergence can be used as similarity measure.
However, scale or subband independence is commonly as-
sumed so that the densities can be modeled marginally to
reduce computational complexity. This arbitrary assumption
is not true in general and thus violates the spirit of metrology.

The state-of-the-art shows a lack of metrological consid-
erations in texture analysis. To respect metrology, full-band
processing is necessary with a vectorial treatment of spectral
channels. A definition of “measurable” texture is then required
along with a similarity measure that adheres to the mathemat-
ical nature of feature without any empirical reduction.
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III. TEXTURE DEFINITION

We begin by considering image texture as a random field,
that is, a random function, I(x) ∈ RL over an Euclidean
space, x ∈ R2 where L is the number of spectral band.
Generated by a stochastic process, the random field can be
specified by its N th-order joint probability distribution [37].
Commonly termed N th-order statistics in the texture analysis
literature [38]–[40], it refers to the probability to find at any
spatial location(s) a particular N -tuple for a given spatial re-
lationship. For example, first-order statistics is the probability
to find at any spatial location a particular pixel value, whereas
second-order statistics is the probability to find a particular
pixel pair for a given spatial relationship. The higher the order
of statistics, the better the random field is specified.

There is no consensus on the “optimum” order of statistics
for universal texture discrimination [38], [41], [42]. At this
point, we note that the first-order statistics provide information
about the spectral distribution of individual pixels, whereas the
second- and higher order ones describe the spatial distribution
or interaction of the pixels. Inspired by these, we propose
to define texture as the joint probability of the spectral and
spatial distribution. Thanks to the notion of distribution, a
continuous expression of the spectral and spatial properties is
allowed in the spirit of metrology. In retrospect, discretization
is necessary in the case of GLCM (quantization of graylevels)
and LBP (encoding of local differences) which reduces the
efficiency of texture characterization. Besides, a natural usage
of statistical distance e.g. divergence is also possible without
the need for any empirically constructed similarity measure.

In this work, we use first- and second-order statistics to
quantify the spectral and spatial distributions respectively. We
note that the texture definition is generic as it is applicable
for image of any number of spectral band including grayscale
(L = 1) and color (L = 3). In the following section, we de-
velop the texture feature extraction preserving this genericity.

IV. FEATURE EXTRACTION

A. Assessment of spectral distribution

The spectral distribution of an image is accessible using
first-order statistics which is the probability to find at any
spatial location x a particular pixel value. A direct formulation
is the image histogram, P (I(x)). For multivariate image, this
entails a need for multidimensional histogram. Consider a
marginal quantization of T levels for each of the L bands, a
formulation of P (I(x)) would involve calculating and storing
TL bins. For hyperspectral image which contains up to hun-
dreds of spectral bands, this approach is practically infeasible.

As solution, we consider a representation in the difference
space. We represent each pixel or spectrum, I(x) by its
spectral difference, ∆s with a spectral reference, ŝ. Hence,
the first-order statistics can be expressed as the probability to
find at any spatial location x a particular spectral difference
∆s. Hereafter denoted as J1, we express probability density
function (PDF) of the continuous random variable ∆s as:

J ŝ1 (I) = P
(
d
(
I(x), ŝ

)
= ∆s

)
. (1)

TABLE I: NOMENCLATURE

Notation Signification
RD Set of real numbers in D-dimensional space.
I Image in RL with L bands e.g. L = 3 for a color

image.
x Spatial location in R2 e.g. x = (x1, x2).
s Spectrum, considered as a continuous sampled function.
λ Wavelength.
∆s Spectral difference.
∆G,∆W Spectral shape and intensity difference, respectively.
s̄ Normalized spectrum, s̄ = s/ω.
ŝ Spectral reference.
J Texture feature.
J1,J2 First- and second-order statistics, respectively.
r, θ Spatial distance and direction, respectively.
d(·, ·) Difference measure in R+ e.g. d

(
I(x), I(x′)

)
is a

pixel difference.
P (·) Probability density function (PDF).⋂

Logical AND operation.
KL(·‖·) KL measure of information1, defined as KL(f‖g) =∫

f(α) log
(
f(α)
g(α)

)
dα.

KLD(·, ·) Kullback-Leibler (KL) divergence, defined as
KLD(f, g) = KL(f‖g) + KL(g‖f).

‖·‖p p-norm, ‖·‖p = p

√∫
| · |p.

Qz(·) z-th percentile of quantile.

(a) (b) (c)

Fig. 3: An illustration on reference selection in spectral space
(top row) and the resulted representation of clusters A, B, and
C in difference space (bottom row). For maximum discrimi-
nation, the reference should lie just outside the convex hull of
the spectral distribution as in (c). Image adapted from [44].

For maximum spectral discrimination, the spectral refer-
ence, ŝ has to be chosen such that it lies just outside the convex
hull, Conv(s) of the spectral distribution (hereafter called
reference selection rule) [44]. As demonstration, consider
an example in Fig. 3 concerning three choices of ŝ for an
image with two spectral bands. Suppose that the pixels can
be clustered into three groups: A, B, and C. In Fig. 3 (a),
ŝ is very far from Conv(s). Consequently, the clusters are

1In the literature, KL(·‖·) is sometimes referred to as KL divergence.
However, we adhere to the original work of S. Kullback and R. A. Leibler [43]
which defines KL(·‖·) as KL measure of information and their symmetrized
version as the KL divergence, the later also termed Jeffery’s divergence.
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hardly distinguishable in the difference space as the spectral
difference measure saturates. In Fig. 3 (b), ŝ is located inside
Conv(s). As a result, some of the clusters (A and B) cannot
be completely discriminated as they are “equidistant” from ŝ.
In Fig. 3 (c) whereby the reference selection rule is followed,
the clusters are clearly differentiated in the difference space.
Although the discrimination can be less perfect in some cases
(when the spectral diversity is large) despite strict adherence
to the reference selection rule, we show that this risk can be
minimized using multiple references in Section V-A.

It can be shown that the point with largest aggregate
difference with all other points is part of the convex hull.
As such, we propose to determine the optimum spectral
reference by (2). For texture discrimination across different
images, a common spectral reference is required. Therefore,
the calculation of (2) must be based on all the images.

ŝ = arg max
s∈I

∑
s′∈I

d(s, s′). (2)

B. Assessment of spatial distribution

The spatial distribution is accessible using second-order
statistics which is the probability to find a particular pixel
pair for a given spatial relationship. A direct formulation
is the cooccurrence matrix, P

(
I(x), I(x′)

)
such that x and

x′ are separated at a distance r and direction θ. However,
such approach suffers the same problem as image histogram
with a gigantic feature size. Furthermore, such large matrix is
inevitably sparse and requires quantization for any statistical
significance which in turn, accounting to information loss.

We approach such problem by again, working in the dif-
ference space. Given two random variables, their sum and
difference define the principal axes of their joint probability
distribution [45]. As such, cooccurrence matrix can be approx-
imated using sum histogram, P

(
I(x) + I(x′)

)
and difference

histogram, P
(
I(x)− I(x′)

)
. In practice, it has been shown

that the difference histogram performs nearly as powerful as
cooccurrence matrix in texture discrimination [46], [47]. As
spectral subtraction is not physically defined, we consider
instead the spectral difference ∆s′ (to differentiate from ∆s in
J1) induced by the difference between I(x) and I(x′). Hence,
the second-order statistics can be expressed as the probability
to find at any paired spatial locations x and x′ a particular
spectral difference ∆s′. Hereafter denoted as J2, we express
PDF of the continuous random variable ∆s′ as:

J (r,θ)
2 (I) = P

(
d
(
I(x), I(x′)

)
= ∆s′

)
s.t. x′ = x+ r cos θ.

(3)

To illustrate the relationship between spatial distribution
and the PDF of pixel pair difference ∆s′, consider the binary
images in Fig. 4 consisting of just yellow and purple spectra
with varying texton size. For simplicity, the spectral difference
between the yellow and purple is taken as one. With large
texton size (coarser texture), most pixel pairs would be of the
same spectral kind. Therefore, the pixel pair difference would
be mostly zero. As the texton size decreases (finer texture),
more pixel pairs would be of different kind and hence the

(a) (b) (c) (d)

Fig. 4: Textures with varying texton size (top row) and the
corresponding probabilistic distribution of pixel pair difference
(bottom row), the later referred to as second-order statistics.

increasing probability of pixel pair difference being one. The
same trend is observable in more complex textures too.

In an extreme case, the information captured is reduced
when r is the same as texton size. In Fig. 4 (d), the spectral
difference is always one as all pixel pairs are of different kind.
Therefore, care has to be taken while choosing r to avoid such
scenario though it can be otherwise exploited for determination
of the texton size. Nevertheless, this risk can be minimized
with multiscale assessment as detailed in Section V-B.

C. Metrological calculation of pixel difference

The spectral difference1 measure, d(·, ·) is at the core of
J1 and J2 formulation. At metrological level, the choice of
d(·, ·) cannot be disassociated with the physical definition of
spectrum. To obtain a texture feature independent from the
sensor resolution, we consider spectrum as a continuously
function, s = {sl | l ∈ [1, L]} sampled over the wavelengths,
[λmin, λmax] with L spectral bands which are highly correlated.

In previous work [44], [48], it has been demonstrated that
the Kullback-Leibler pseudo-divergence (KLPD) [49] is the
only measure that satisfies all the metrological properties. This
is because KLPD takes into account the spectral correlation
which is otherwise not considered by 2-norm measures such
as root mean squared error (RMSE) and spectral angle mapper
(SAM) [50]. As the spectral variability of a given pixel can
only be described by randomness [51], an information theo-
retic approach is required in place of deterministic methods
i.e. RMSE and SAM. Respecting these physical constraints,
KLPD is highly adapted thanks to its difference measurement
based on the probabilistic discrepancy between the spectra.

KLPD is obtained by adapting Kullback-Leibler (KL) diver-
gence [43] in the context of functions having integral unequal
to one. It requires to define a normalized spectrum, s̄:

s̄ =
s

‖s‖1
s.t. ‖s‖1 =

∫ λmax

λmin

|s| dλ. (4)

By choosing a continuous expression at this level, we assume
that the integral will be transformed into a discrete sum
taking care about the spectral sampling. As the integral of
s̄ is equal to one, KL divergence can then be applied. Such

1The term difference is selected in reference to the CIE term of color
difference. It includes in a common notion the distance and (dis)similarity.
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mathematical construction allows to define KLPD as the 1-
norm of the spectral shape difference, ∆G(s, s′) and the
intensity difference, ∆W (s, s′) between two spectra s and s′:

d(s, s′) = ∆G(s, s′) + ∆W (s, s′),

s.t. ∆G(s, s′) = ‖s‖1 ·KL(s̄‖s̄′) + ‖s′‖1 ·KL(s̄′‖s̄),

∆W (s, s′) = (‖s‖1 − ‖s′‖1) log

(
‖s‖1
‖s′‖1

)
.

(5)

Strictly speaking, KLPD is not a distance metric as it does
not respect the triangular inequality. However, its formulation
is interesting thanks to its separation of spectral difference
into intensity and shape differences. To preserve this additional
discriminability, hereafter we refer d(s, s′) to as (∆G,∆W )
i.e. a pair of differences for a bidimensional representation.

D. A proposed texture feature

Having defined first- and second-order statistics, we propose
a texture feature named relative spectral difference occurrence
matrix (RSDOM) using KLPD for the spectral difference mea-
surement. In accordance to our texture definition in Section III,
RSDOM conveys the joint probability to find at any spatial
location x a particular spectral difference, ∆s = (∆G,∆W )
to a reference and a particular spectral difference, ∆s′ =
(∆G′,∆W ′) to a paired pixel located at x′ for a given spatial
relationship defined by distance r and direction θ. Hereafter
denoted as J , we express the four-dimensional PDF of the
continuous variables ∆G, ∆W , ∆G′, and ∆W ′ as:

J (ŝ,r,θ)(I) = J ŝ1 (I) ∩ J (r,θ)
2 (I)

= P

 d
(
I(x), ŝ

)
= (∆G ,∆W ),

d
(
I(x), I(x′)

)
= (∆G′,∆W ′)


s.t. x′ = x+ r cos θ.

(6)
The formulation of RSDOM as a joint PDF serves three

advantages. First, the expression is mathematically sound in
contrast to other empirical means such as concatenation or
addition of the two statistics. Second, the resulted feature is
natural, intuitive and allows metrological understanding. Third,
the feature is highly discriminative thanks to the dual texture
representation in terms of spectral and spatial properties.

The expression of RSDOM in difference space has several
desirable effects. First of all, this allows the characterization
of spectral and spatial properties in a continuous manner. As
the spectra are not explicitly modeled (but rather the spectral
differences), quantization is unnecessary as in the case of
cooccurrence matrix. Hence, information about the texture is
fully preserved. Furthermore, it allows full-band processing
of RSDOM without the need for dimensionality reduction
e.g. PCA. Therefore, physical fidelity is preserved in line
with metrology. Besides, the feature calculation is independent
from the sensor resolution. This enables texture comparison
across different dataset with varying spectral resolution. By
extension, such difference-based assessment is also applicable
to other image domains including grayscale, color, and multi-
spectral. With adapted pixel difference measure e.g. CIELAB

Fig. 5: An illustration on multireference spectral characteri-
zation for an image with two bands. The discriminability of
each reference is limited, but combined they allows a complete
discrimination of the three spectral groups. The difference loci
are the sets of points that is equidistant from the reference.

∆E∗ab for the case of color images, texture characterization
can be performed in exactly the same manner as RSDOM.

The given formulation of RSDOM is just one mathematical
expression of the proposed texture definition. For textures with
less important spectral variability, RSDOM can be simplified
by considering just the average spectrum [2]. This leads to
a smaller feature size, resulting in a more rapid calculation
and texture similarity measurement. In cases where spectral or
illuminant invariance is a desired property, first-order statistics
can be left out with no effect on the method of feature
parametrization and texture similarity measurement.

V. TOWARDS A RICHER FEATURE

A. A multireference formulation

The selection of spectral reference, ŝ that lies just outside
the convex hull of the spectral distribution is justified in Sec-
tion IV-A. However, a single reference might be insufficient
as demonstrated in Fig. 5. If we consider the representation
in difference space as some kind of “spectral projection”, it is
clear that having multiple references provides complementary
“perspectives” that improves discriminability. Akin to trilater-
ation in the Global Positioning System (GPS), other references
are able to supply additional information when not all spectral
groups are discriminable from any of the references alone.

Thanks to the probabilistic construct, a multireference ex-
tension is straightforward. Considering a spectral reference set,
Ŝ = {ŝ1, . . . , ŝH} consisting of H references, the multirefer-
ence first-order statistics, J1 ∈ R2H is given by:

J Ŝ1 (I) = P

 H⋂
h=1

(
d
(
I(x), ŝh

)
= (∆Gh,∆Wh)

) . (7)

B. A multiscale and multidirectional formulation

As texture varies by scale and can be directional, a mul-
tiscale and multidirectional assessment is necessary for com-
plete texture characterization. This can be accomplished by
simply evaluating RSDOM using a set of r and θ values.
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(a) Spectral shape differences (b) Spectral intensity differences

Fig. 6: A demonstration of the effect of a logarithm trans-
formation on the distribution of spectral difference which is
strictly positive. Evidently, the skewness is visibly reduced
with higher compatibility for statistical modeling e.g. GMM.

Considering R = {r1, . . . , rJ} and Θ = {θ1, . . . , θK}, the
second-order statistics is expressed as a series of PDFs:

J (R,Θ)
2 (I) =

{
J (j,k)

2 (I) | j ∈ [1, J ], k ∈ [1,K]
}
, (8)

where J (j,k)
2 ∈ R2 denotes an evaluation on jth scale and

kth direction. Discarding directionality information, we can
consider the following simplification with rotational invariance
noting that J (r,θ+π)

2 = J (r,θ)
2 :

J (R)
2 (I) =

{
J (j)

2 (I) | j ∈ [1, J ]
}

s.t. J (j)
2 (I) =

∫ π/2

−π/2
J (rj ,θ)

2 (I) dθ. (9)

Considering a set of H references, Ŝ = {ŝh | h ∈ [1, H]},
J distances (scales), R = {rj | j ∈ [1, J ]}, and K directions,
Θ = {θk | k ∈ [1,K]}, the multireference, multiscale, and
multidirectional RSDOM is thus given by:

J (Ŝ,R,Θ)(I) = J Ŝ1 (I) ∩ J (R,Θ)
2 (I)

=
{
J (Ŝ,j,k)(I) | j ∈ [1, J ], k ∈ [1,K]

}
s.t. J (Ŝ,j,k)(I)

= P


H⋂
h=1

(
d
(
I(x), ŝh

)
= (∆Gh ,∆Wh )

)
,

d
(
I(x), I(x′j,k)

)
= (∆G′j,k,∆W

′
j,k)


s.t. x′j,k = x+ rj cos θk. (10)

VI. SIMILARITY MEASUREMENT

Having performed feature extraction, texture is discrimi-
nated thanks to a feature similarity or distance measurement.
We note that for the purpose of metrology, the similarity or
distance measure must be developed respecting the mathemat-
ical nature of the feature. In this regard, the similarity measure
must take into account the probabilistic nature of RSDOM.

For maximum discrimination, we decide not to impose
any a priori assumptions but to extract information directly
from the feature. Given two PDFs, their similarity can be

(a) Sampled spectra (b) Aggregate differences

Fig. 7: The selection of spectral references, ŝ1 and ŝ2 consid-
ering 80% and 90% of the sampled spectra respectively.

measured using likelihood ratio test [52] which is a form of
nonparametric statistical test. It can be shown that maximizing
the log likelihood ratio is equal to minimizing KL measure of
information [53]. Hence, we can use KL divergence for simi-
larity measurement. Although it exists many other alternatives
[54] e.g. α-divergence and Bregman’s divergence as well as s-
divergence [55], the study of an optimal similarity or distance
measurement is beyond the scope of this work.

Due to the multidimensionality of RSDOM, it is impractical
to process the KL divergence directly on histogram features.
Moreover, such approach requires the same PDF support
which can vary greatly depending on the texture. As a solution,
we propose to using Gaussian mixture model (GMM), a class
of density estimation methods that is capable of modeling any
complex PDF given sufficient number of components. Using
GMM, RSDOM can be parameterized using just few parame-
ters with a feature size of M(1+D+D(D+1)/2) where M is
the number of GMM components and D is the dimensionality.
As there is no closed form solution for KL divergence between
GMMs, we use the variational approximation [56].

As RSDOM is a PDF of spectral differences which are
positive measures by definition, it is positively skewed and
dense around zero. To increase feature discriminability and
compatibility to GMM, a diffeomorphism is applied by taking
the logarithm of each dimension. Such transformation has a
desirable effect of stretching the values close to zero while
compressing those far from zero, thus reducing the skewness
and improving the normality as demonstrated in Fig. 6.

VII. FEATURE VALIDATION AND INTERPRETATION

A. Selection of spectral reference

Our reference selection rule states that for maximum dis-
crimination, the reference has to be chosen such that it lies
just outside the convex hull of the spectral distribution. Here,
we perform an illustration based on HyTexiLa.

HyTexiLa is a hyperspectral dataset of 112 images having
spatial dimensions of 1024 × 1024. Obviously, it is impractical
to consider all the pixels (spectra). As such, we randomly
sample 250 spectra from each image as visualized in Fig. 7
(a). Next, we calculate the aggregate shape and intensity dif-
ferences, hereby denoted as

∑
∆GHyTexiLa and

∑
∆WHyTexiLa

respectively as shown in Fig. 7 (b) using histogram. The last
step then would have been to select the spectra with the largest∑

∆GHyTexiLa and
∑

∆WHyTexiLa as the reference.
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(a) “Flower” (b) “Fern” (c) “Hairy leaf”

(d) “Flat leaf” (e) “Needled leaf” (f) “Mushroom”

Fig. 8: Textures considered for the validation of RSDOM
formulation in Table II. Bordered in color are the patches
considered in the illustration of RSDOM in Fig. 9 and 10.

However, selecting reference purely in this manner would
have risked choosing one that is too “far” from majority of the
spectra. This is due to the large spectral diversity as in the case
of HyTexiLa and the presence of outliers which are common
in natural images. This will cause the spectral difference to
saturate, hence reducing the discriminability. Therefore, we
relax the reference selection rule by considering a subset
of the spectra. As a working example, we first consider
the 90th percentile of the aggregate intensity differences,
hereby denoted as Q90

(∑
∆WHyTexiLa

)
as indicated in Fig.

7 (b). Next, we select the z-th (value of z to be determined)
percentile of aggregate shape differences, Qz

(∑
∆GHyTexiLa

)
such that a defined percentage of spectra are considered (in
conjunction with Q90

(∑
∆WHyTexiLa

)
). The spectrum with∑

∆GHyTexiLa ≈ Qz
(∑

∆GHyTexiLa
)

and
∑

∆WHyTexiLa ≈
Q90

(∑
∆WHyTexiLa

)
are then the approximate solution to the

argmax problem in (2) and is taken as reference.
As the spectral characterization is performed in difference

space, what matter are the spectral differences of the reference
to the spectra. Therefore in practice, any spectrum can be
taken as the reference as long as the spectral differences are
preserved. For a multireference assessment, we choose to work
with two references, ŝ1 and ŝ2 which covers approximately
80% (z = 87) and 90% (z = 96) of the sampled spectra
respectively. For flexibility and scalability, ŝ1 and ŝ2 is defined,
but not limited to the following mathematical functions:

ŝ1 = A1 erf

{
s− µ1

σ1

}
+B,

ŝ2 = A2 exp

{
−
(
s− µ2

σ2

)2
}
,

(11)

with A1 = 0.4, B = 0.5, µ1 = 564.95 nm, σ1 = 200 nm,
A2 = 1.576595, µ2 = 884.12 nm, and σ2 = 100

√
3 nm.

The choice of A2 is to ensure that
∫
ŝ1 dλ =

∫
ŝ2 dλ so that

∆W1 = ∆W2 = ∆W for all spectra. Such selection allows
to illustrate the spectral distribution, J1 in three dimensions
for direct visualization as displayed in Fig. 9 (d).

TABLE II: VALIDATION OF RSDOM FORMULATION IN
TERMS OF SPECTRAL-SPATIAL, MULTIREFERENCE, AND
MULTIDIRECTIONAL ASSESSMENT AS WELL THE CHOICE OF
KLPD AS SPECTRAL DIFFERENCE FOR TEXTURES IN FIG. 8.

Spectral
difference Feature Spectral

reference
Direction, θ

(distance, r = 1) Accuracy

KLPD

J1

ŝ1

-

91.1±3.7

ŝ2 93.5±2.8

ŝ1, ŝ2 97.6±1.6

J2 -
0 88.0±5.6

θ = 0, π
4
, π
2
, 3π

4
90.0±3.7

J1, J2

ŝ1
0 91.9±3.6

θ = 0, π
4
, π
2
, 3π

4
95.1±2.6

ŝ2
0 94.1±4.0

θ = 0, π
4
, π
2
, 3π

4
96.0±2.1

ŝ1, ŝ2

0 97.6±2.0

θ = 0, π
4
, π
2
, 3π

4

98.4±1.4

SAM 96.0±2.6

RMSE 91.6±3.3

SID 97.5±1.8

B. Validation of formulation

We verify each element in the formulation of RSDOM
based on six different textures: “flower”, “fern”, “flat leaf”,
“hairy leaf”, “needled leaf”, and “mushroom” from HyTexiLa
as shown in Fig. 8. The discriminability of RSDOM is assessed
both qualitatively and quantitatively through illustrations of
the PDFs (Fig. 9 and 10) and classifications of the textures
respectively (Table II). To aid visualization, we choose to
display the RSDOM only for relatively stationary part (patch)
of the textures as bordered in red, cyan, green, blue, magenta,
and yellow (Fig. 8). Nevertheless, all parts of the textures are
considered for the classification for which the same protocol
from Section VIII-A is employed. The verdicts are:
On spectral characterization: From Table II, it can be seen
that the spectral classification using J1 is quite performant
(97.6%) with two spectral references. In fact, the result is close
to that of spectral-spatial classification (98.4%). This demon-
strates the efficiency of J1 as well as spectral information
being the main source of discrimination for the six textures.
On spatial characterization: The spatial classification using
J2 archives an accuracy of 90.0% with four directions as-
sessed, lower than that of the spectral classification (97.6%).
This is due to the fact texture can exhibit the same spatial
variation but with different spectral characteristics. This shows
that spatial assessment alone is insufficient for texture discrim-
ination and must be aided by spectral assessment.
On spectral-spatial characterization: The spectral-spatial
classification (98.4%) using RSDOM outperforms both spec-
tral (97.6%) and spatial classification (90.0%). The high
discriminability of RSDOM can also be observed in Fig. 9
(e) which shows maximum class separability thanks to the
complete characterization in spectral and spatial variations.
On multireference assessment: The performance of RSDOM
improves (from 91.9% and 94.1% to 97.6% for unidirectional
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(a) Spectral dist. J (ŝ1)
1 (b) Spectral dist. J (ŝ2)

1 (c) Spatial dist., J (r=1)
2

(d) Spectral dist., J (ŝ1,ŝ2)
1

(e) Spectral-spatial dist., RSDOM

Fig. 9: An illustration of RSDOMs calculated using two
spectral references, ŝ1 and ŝ2 for the patches bordered in
color in Fig. 8. Different colors represent different textures.
For visualization, the five-dimensional RSDOMs (joint PDF
of J1 and J2) are depicted in several subspaces. The interest
of the joint spectral-spatial characterization is clearly shown.

assessment; from 95.1% and 96.0% to 98.4% for multidirec-
tional’s) with two references. As demonstrated in Fig. 9 (d),
the class separability increases with multiple references thanks
to the additional perspectives. In particular, the yellow class
(“mushroom”) is perfectly separated from others in J (ŝ1,ŝ2)

1

in contrast to J (ŝ1)
1 and J (ŝ2)

1 ’s. A higher locality is also
observed in all classes which will aid the statistical modeling.
On multidirectional assessment: The performance of RS-
DOM improves (from 91.9% and 94.1% to 95.1% and 96.0%
respectively for single reference assessment; from 97.6% to
98.4% for multireference’s) with multidirectional assessment.
Evidently, evaluation in single direction is sufficient for
isotropic textures but not for directional ones like “mush-
room”. Fig. 10 (a) and (b) show the evolution of RSDOM
with respect to direction, θ. For “hairy leaf” which is isotropic,
the RSDOMs are nearly identical for all θ, demonstrating the
sufficiency of a unidirectional assessment. As for “mushroom”,
the RSDOMs differ according to θ with larger values exhibited
around θ = 5π/8, revealing the main spatial variation in that
direction. Thanks to these properties, RSDOM can also be
exploited to detect and identify directionality in images.
On multiscale assessment: Designed for metrological pur-
poses, RSDOM is not scale-invariant and responses positively
to scale changes as required. This is demonstrated in Fig. 10
(c) and (d) which show the evolution of RSDOM with respect
to distance (scale), r. Nevertheless, fractal dimension can be
directly obtained from this evolution for scale invariance [57].
On the choice of spectral difference: It can be seen that
RSDOM calculated using KLPD performs best (98.4%) thanks
to its metrological decomposition of spectral difference into
shape and intensity for extra discriminality. In contrast, SAM

(a) “Hairy leaf”, r = 3 (b) “Mushroom”, r = 3

(c) “Hairy leaf”, θ averaged (d) “Mushroom”, θ averaged

Fig. 10: Evolution of RSDOM (spectral distribution not
shown) assessed with different direction, θ = kπ/8, k ∈ [0, 7]
and distance, r ∈ [1, 10] for “hairy leaf” and “mushroom”.
Designed for metrology, RSDOM responds positively to scale
and direction changes. For clarity, the RSDOMs for the eight
θ values and ten r values are plotted in different colors.

[50] measures the angle between spectra by treating them
like vectors. Thus by construction, SAM is invariant to the
intensity information which could explain its lower perfor-
mance (96.0%). RMSE or Euclidean distance, on the other
hand, considers the spectral difference marginally (band-by-
band). Like SAM, the spectral correlation is also ignored
which possibly contributes to its lower performance (91.6%).
Related to KLPD, spectral information divergence (SID) [51]
also treats spectra as probabilistic constructs. It forces spectra
into probabilities by dividing them with their 1-norm before
directly processing their KL divergence. Consequently, spec-
tral intensity difference is ignored. In the calculation, equal
weights are also empirically assigned in the KL divergence
(in contrast to the weighting by spectral intensities in KLPD,
which arises naturally in a mathematical development). Lack-
ing in theoretical coherence, it is thus less performant (97.5%).

C. Feature interpretability

For metrological purposes, a direct relationship between
the feature (measurement) and physical texture (measurand)
is expected. In Fig. 11, we demonstrate the interpretation
of J1 and J2 (of which the joint consideration constitutes
RSDOM) in terms of spectral and spatial distribution. For
simplicity, we consider only the spectral shape, ∆G as the
interpretation for spectral intensity, ∆W , is similar. Firstly, the
modality of J1 indicates the “number” of colors in the texture.
For instance, a unimodal J1 indicates the presence of just
one colour whereas a bimodal J1 suggests a bicolor texture.
Secondly, the width of a given peak in J1 reflects the color
variance. A narrow peak indicates a relatively “pure” color
whereas a wide peak signifies the existence of multiple color
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(a) J1 as PDF of pixel difference ∆G with spectral reference

(b) J2 as PDF of pixel pair difference ∆G′

Fig. 11: A demonstration on how to interpret J1 and J2 (of
which the joint consideration constitutes RSDOM) in terms of
spectral and spatial distribution of a given texture.

tints or shades. Thirdly, the distance of a peak to the other(s)
in J1 illustrates their spectral similarity. The further they are
from each other, the more spectrally distinct the color they
represent. Fourthly, the skewness of J2 conveys information
on spatial interaction between the pixels for a given distance,
r. A positively skewed J2 is due to a higher probability of
pixel pairs having the same color which indicates a relatively
larger texton size. In contrast, a negatively skewed J2 is due
to a higher probability of pixel pairs having different colors
which in turn, hints at a relatively smaller texton size.

We illustrate the interpretation of RSDOM with more ex-
amples. Fig. 12 exemplifies feature extraction using RSDOM,
GLCM, Gabor filter, and LBP for three textures: “dotty” (re-
sembling dots), “red” (red + yellow pattern), and “cyan” (cyan
+ green pattern). Suppose that the pixels in “dotty”, “red”,
and “cyan” can be clustered into brown/white, red/yellow, and
cyan/green respectively. Thanks to RSDOM, their spectral-
spatial distribution can be deduced easily. For “dotty”, it can
be seen that there is a very gradual brown/white transition
with significantly more brown-like pixels. Besides, the large
dynamic range of ∆G2 indicates a high spectral dissimilarity
for brown/white. As for “red” and “cyan”, there is a clear
spectral distinction between red/yellow and cyan/green pixels
as indicated by the narrow peaks in J1. However, the spectral
similarity between the two colors for “red” is lower than that
of “cyan” which is indeed the case for red/yellow compared
to cyan/green. On the other hand, the positively skewed J2 of
“dotty” indicates a smaller texton size compared to “red” and
“cyan” which has a nearly symmetric J2. Still, J2 of “red” is
slightly more positively skewed than “cyan”. This agrees well
with our visual inspection that the “red” textons are somewhat
larger than “cyan”’s. Clearly, RSDOM is highly interpretable
with a direct relationship to the texture’s physical content.

The high interpretability of RSDOM is not shared by others
in hyperspectral texture metrology. By design, GLCM sum-
marizes the various image second-order statistical properties,
Gabor energy reflects the energy or “amount” of texture for a
certain scale and direction whereas LBP acts like a texton
dictionary [58]. However, their interpretation is only valid
within the context of a given spectral channel. It is impossible
to reconcile texture information coming from different spectral
channels and to interpret them. Furthermore, the features can
vary greatly if different set of spectral bands is considered. As
such, interpretation is also infeasible among features obtained
using different spectral dimensionality reduction approach.

VIII. EXPERIMENTS AND ANALYSIS

A. Texture classification on HyTexiLa

In this first task, we assess the performance of RSDOM
in a texture classification scheme applied on a hyperspectral
dataset. As each image is treated as a unique class, the entire
image is to be considered for characterization. This allows an
assessment of RSDOM’s capability as a global descriptor.

Dataset: Composed of 112 reflectance images, HyTexiLa
[14] is a dataset of spectrally and spatially high resolution
texture from five categories i.e. food (10), stone (4), textile
(65), vegetation (15), and wood (18). Each image measures
1024× 1024 pixels with L = 186 spectral bands. Sampled at
an interval of 3.19 nm, the wavelengths range from 405.37 nm
to 995.83 nm while covering visible and near infrared regions.

For the classification, we employ a nearest neighbor (1-
NN) search whereby the classification is performed based on
texture similarity alone. Such nonparametric approach allows
us to attribute the classification performance directly to the
feature’s discriminality instead of the classifier’s efficiency.
Furthermore, this also enables us to deal with the issue of
nonstationarity as there is a versatility of texture representation
from which each class can be identified. Each image is
separated into 25 patches without overlapping of which 12
and 13 of them are randomly selected for training and testing
respectively. To reduce bias, we repeat the classification 100
times and consider the average performance. Both accuracy
(percentage correct classification) and F1 score (harmonic
mean of precision and recall) are reported for HyTexiLa
(intercategorical) and intracategorical classification.

Computations: For RSDOM, we employ a multireference,
monoscale, and rotational-invariant assessment. For the spatial
assessment, we choose r = 1 for maximum “sensitivity” to
the tiniest spatial variation assuming negligible noise level.
For rotational invariance, we compute the average of spectral
difference within the digital circle [59] of radius r sampled at
K = 4 directions, Θ = {0, π/4, π/2, 3π/4}, hereafter denoted
as (∆G′Θ,∆W

′
Θ). The resulted RSDOM is a five-dimensional

probability density function of ∆G1, ∆G2, ∆W , ∆G′Θ, and
∆W ′Θ. The number of GMM components, M is selected such
that the classification accuracy is maximized.

As comparison, we also consider a spectral classification
(using J1). The following state-of-the-art are too computed:
• GLCM: A spatial distance of 1 is used with 32 quantiza-

tion levels. As in [18], [60], [61], five Haralick features
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Fig. 12: Texture feature extraction using RSDOM for “dotty”, “red”, and “cyan” from HyTexiLa. Row 1: The hyperspectral
textures. Row 2: The pixel difference with spectral reference (hereafter termed spectral difference) and spatial neighbors
(hereafter termed spatial difference) are computed. Row 3: The spectral and spatial distribution can be interpreted from the
probability density function (PDF) of spectral (J1) and spatial difference (J2) respectively. Row 4 and 5: RSDOM is expressed
as the joint distribution of J1 and J2. For visualization, the five-dimensional RSDOM is illustrated in two three-dimensional
views. Row 6: The marginally processed GLCM, Gabor feature, and LBP are shown for comparison.
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TABLE III: COMPARISONS OF ACCURACY AND F1 SCORE (ITALICIZED) FOR TEXTURE CLASSIFICATION ON HyTexiLa.
BOLD NUMBERS INDICATE THE BEST PERFORMANCE. RESULTS AVERAGED OVER 100 CLASSIFICATIONS. INDICATED IN
BRACKETS ARE THE CORRESPONDING NUMBER OF GMM COMPONENTS.

Full-band Marginal (m-) Cross-channel (cc-)

Category No. class Spectral RSDOM GLCM Gabor LBP GLCM Gabor LBP

Food 10 98.0±1.1 (2) 99.7±0.5 (2) 98.3±1.1 93.2±1.8 92.5±2.4 98.2±1.2 97.6±1.4 99.9±0.3
Stone 4 100±0.0 (8) 100±0.0 (5) 87.7±3.9 91.5±3.1 94.8±2.7 95.5±2.7 91.7±3.4 99.7±0.7
Textile 65 99.8±0.2 (5) 99.9±0.2 (6) 96.3±0.6 98.1±0.7 93.0±0.8 99.2±0.3 99.2±0.4 100±0.1

Vegetation 15 95.5±1.6 (5) 96.9±1.3 (8) 79.3±2.5 81.5±2.8 78.9±2.8 89.3±2.1 91.2±2.5 97.2±1.5
Wood 18 94.5±2.4 (8) 96.3±1.8 (6) 74.2±3.4 82.1±3.3 90.6±3.2 83.8±2.9 85.6±3.0 93.6±2.7

HyTexiLa
(all categories) 112 97.7±0.6 (5) 98.5±0.5 (6) 88.0±1.0 91.6±1.2 89.1±1.3 94.7±0.7 94.7±0.9 98.4±0.6

97.8±0.5 98.6±0.4 88.4±1.0 91.8±1.1 89.4±1.3 94.9±0.7 94.9±0.8 98.5±0.5

i.e. energy, entropy, contrast, correlation, and homogene-
ity are considered. For feature similarity measurement,
normalized Euclidean distance [33] is used.

• Gabor filter: The frequency is set at 0.5 with a bandwidth
of one octave. For each spectral band, the Gabor energy
is defined using 2-norm of the filter responses [10].
Normalized Euclidean distance [33] is used.

• LBP: A neighborhood of eight pixels (K = 8) with radius
1 is considered. Histogram intersection [62] is used.

For multidirectional assessment, the GLCM features and Ga-
bor energies are averaged over K = 4 directions as RSDOM.
We consider only their (and LBP) implementation in marginal
(m-) and cross-channel (cc-) processing [33], [10] and [14] as
their full-band formulation are metrologically impractical due
to computational complexity. For dimensionality reduction, we
employ band selection with uniform spectral spacing of δ = 10
bands so that the interchannel correlation is at least 0.9. The
HyTexiLa images are thus spectrally downsampled to L′ = 18
bands for the computation of GLCM, Gabor filter, and LBP.
In contrast, RSDOM is processed in full-band (L = 186).

Results: From Table III, it can be seen that RSDOM scores
excellently (98.5%) in HyTexiLa classification. It performs sig-
nificantly better than m-GLCM (88.0%), cc-GLCM (94.7%),
m-Gabor (91.6%), cc-Gabor (94.7%), and m-LBP (89.1%).
Compared to cc-LBP (98.4%), RSDOM performs slightly
better (+0.1%) but with a feature size 650 times smaller
(M(1 + D + D(D + 1)/2) = 126 scalars for RSDOM vs.
2K · L′2 = 82944 for cc-LBP). On computational speed, the
time for calculating RSDOM for an image patch (with spatial
dimensions of 204×204 pixels and L = 186 spectral bands) is
measured at 3.1 s or 4.5 s with GMM (M = 6) on an Intel i7
CPU (2.90 GHz). As for cc-LBP, the time is measured at 106.9
s for a full-band processing or 1.1 s for operation on a reduced
set of L′ = 18 bands. Spectral dimensionality reduction is
also unnecessary for RSDOM which is otherwise required for
efficient implementation of cc-LBP. Full-band processed, light,
and performant, RSDOM is clearly adapted for metrology.

Referring to Fig. 13, a number of factors can be attributed to
the HyTexiLa misclassification. The main contributors are the
vegetation and wood images which are highly nonstationary.
For example, more than one kind of texture can present in the
flower image e.g. seed’s and petal’s. Moreover, the black back-
ground (supposedly the imaging platform) is visible in 30%

(a) Nonstationary textures (b) Background exposed

(c) Spectrally similar textures (d) Virtually identical textures

Fig. 13: Instances of HyTexiLa misclassification.

and 17% of vegetation and wood respectively which further
promotes the nonstationarity. Besides, the vegetation and wood
are predominantly green and brown respectively which poses
challenges in spectral discrimination. One of the solutions is
to add spectral references that lie just outside the convex hull
of the green and brown spectra, although this comes at the cost
of increased feature dimensionality. On the other hand, high
similarities are found between “wood 08”, “wood 08 back”,
“wood 09”, and “wood 09 back”. It is highly likely that they
are taken from the same piece of wood, inducing virtually
identical textures that are easily mistaken for each other as
they contribute to 18.8% of the HyTexiLa misclassification.
Last but not least, needless to say some textures would have
been more efficiently discriminated with multiscale analysis.
On a side note, the performance of RSDOM is subjected to the
efficiency of GMM. In some cases, GMM could fail to fully
capture the richness of RSDOM and thus causing its lower
discriminability. An optimization on the statistical modeling
is however, beyond the scope of this work.

B. Content-based image retrieval on ICONES-HSI

In this second task, we assess the performance of RSDOM
in a content-based image retrieval (CBIR) framework in which
the candidate images are ranked according to their relevance to
the query image. Contrary to image classification which could
be optimized by using a complex classifier, image retrieval
is a purely distance-based approach and is therefore highly
dependent on the quality of features extracted. As the entire
image is also considered, the efficiency of RSDOM as a global
descriptor is again evaluated. However, its robustness aspect is
emphasized as the candidate images are often very versatile.
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TABLE IV: COMPARISONS OF PRECISION AT TOP 10 RETRIEVED IMAGES (P@10) AND MEAN AVERAGE PRECISION
(MAP) FOR CONTENT-BASED IMAGE RETRIEVAL ON ICONES-HSI. BOLD NUMBERS INDICATE THE BEST PERFORMANCE.
INDICATED IN BRACKETS ARE THE CORRESPONDING NUMBER OF GMM COMPONENTS.

P@10 MAP

Class No. img. Spectral RSDOM GLCM Gabor LBP Spectral RSDOM GLCM Gabor LBP

Agriculture 50 65.6 (7) 79.0 (2) 58.6 24.2 43.8 40.4 (5) 50.3 (2) 39.6 17.1 29.9
Cloud 29 58.6 (2) 60.0 (6) 38.6 16.2 71.0 34.9 (2) 36.6 (2) 29.9 8.8 52.8
Desert 54 69.3 (9) 72.2 (2) 48.1 23.9 43.0 38.2 (2) 38.7 (2) 27.2 18.8 23.4

Dense urban 73 100.0 (3) 100.0 (3) 84.1 80.4 84.2 96.4 (6) 97.5 (3) 62.3 65.2 65.1
Forest 69 92.2 (5) 93.5 (6) 53.8 33.0 63.9 67.2 (3) 68.6 (6) 37.7 21.4 41.5

Mountain 53 75.3 (7) 75.8 (4) 56.2 37.0 63.4 45.5 (9) 43.7 (4) 39.0 26.2 44.2
Ocean 68 87.9 (3) 91.5 (4) 33.7 45.0 58.8 61.1 (5) 68.9 (6) 17.3 23.7 28.7
Snow 55 87.6 (7) 90.0 (5) 46.9 35.5 71.3 42.3 (2) 49.7 (2) 29.1 17.1 39.9

Wetland 35 19.7 (5) 22.0 (2) 31.1 7.1 28.6 15.7 (9) 15.7 (2) 20.9 9.4 18.8

ICONES-HSI
(all classes) 486 77.3 (5) 80.3 (2) 52.3 37.7 60.5 53.2 (5) 56.2 (5) 35.0 26.0 39.2

Dataset: Composed of 486 radiance images, ICONES-
HSI is a dataset of remote sensing images collected using
AVIRIS sensor. The images are organized into nine classes
i.e. agriculture (50), cloud (29), desert (54), dense urban (73),
forest (69), mountain (53), ocean (68), snow (55), and wetland
(35). Each image measures 300 × 300 pixels with L = 224
spectral bands ranging from 365 nm to 2497 nm, covering
both visible and near infrared regions. To eliminate the manual
border corrections2 in some images, we crop the image from
the center so that the final images measure 250 × 250 pixels.

A careful examination reveals a spectral registration error
or redundancy at several wavelengths. For example, the 32th
band reads 667.561 nm, but the 33th and 34th bands read
655.7923 nm and 665.5994 nm respectively. This is due to the
overlapping of spectral acquisitions between the four sensors
employed for AVIRIS data acquisition. As such, we remove
the 32th, 33th, 96th, 97th, 160th, and 161th bands. On the
other hand, contrary to common practices we keep the noisy
e.g. water absorption bands to stay as faithful as possible to
the measurements. This also allows us to test the resistance of
our feature to noise which is a practical subject in real world
applications. Hence, we consider only L = 218 bands.

Computations: The similarity between images are ranked
by Kullback-Leibler divergence between their RSDOM mod-
eled using GMM. The same parameters as in Section VIII-A
are used for the RSDOM calculation, hence a monoscale
and rotation-invariant assessment with two spectral references.
However, we disregard the spectral intensity information, ∆W
as it offers no help for scene recognition in this CBIR
context. This is because the same scene could exhibit different
brightness depending on the time of acquisition e.g. brighter
if taken in noon, or darker if acquired in early morning or late
evening. This induces a four-dimensional RSDOM considering
just the joint distribution of ∆G1, ∆G2, ∆G′Θ, and ∆W ′Θ.
This demonstrates the easy adaptation of RSDOM in a given
context thanks to its metrological constructions as opposed to
some state-of-the-art which fuzz the spectral and spatial char-

2In some images, a significant number of black pixels can be seen filling
the gap from the border of the acquisition as the plane track is not straight.

acterization. As for GLCM, Gabor filter and LBP approaches,
we consider their cross-channel versions applied on the top
three principal components (PCs) in line with the common
practice in the community [63]–[65]. For ICONES-HSI, this
corresponds to an average (over all images) explained variance
of 98.0%. Other than that, the same implementation and
similarity measurement as in Section VIII-A are employed.

Results: The performances of RSDOM as well as GLCM,
Gabor filter, and LBP are listed in Table IV in terms of the
precision at top 10 retrieved images (P@10) and the mean
average precision (MAP) over the retrieved data. It is observed
that RSDOM (P@10 = 80.3%) outperforms GLCM (52.3%),
Gabor filter (37.7%), and LBP (60.5%) by a considerably wide
margin. Interestingly, spectral features alone (using J1) also
significantly outmatches (77.3%) the state-of-the-art consid-
ered, further confirming the efficiency of our spectral charac-
terization. To avoid suspicion on the inefficiency of GLCM,
Gabor, and LBP due to the low number of PC used, we repeat
the experiment using the top 18 PCs for an average explained
variance of 99.7%. The results indicate improvements only
for LBP with (P@10, MAP) = (64.7%, 44.7%) which is still
far below RSDOM (80.3%, 56.2%), whereas GLCM (42.3%,
28.1%) and Gabor (19.0%, 24.0%) actually perform worse.

Fig. 14 demonstrates few instances of the CBIR using
RSDOM. Clearly, the performances of RSDOM is satisfying.
In particular, the dense urban images (P@10 = 100%) are per-
fectly identified by RSDOM due to its distinct spectral (man-
made objects) and spatial distribution (grid-like structure). The
ocean images (91.5%) are also efficiently retrieved thanks to
their highly stationary texture which is easily captured by
RSDOM. The forest images (93.5%), too, are easily identified
due to their signature chlorophyll reflectance which is in turn,
efficiently characterized by RSDOM. Although the agriculture
images (79.0%) also exhibit signature chlorophyll reflectance,
they are readily differentiated from the forest images thanks
to their block-like structure. This again illustrates the interest
of a joint spectral-spatial texture characterization in RSDOM.
However, the cloud (60.0%) and wetland images (22.0%) are
poorly identified by RSDOM. This is due to the fact that cloud



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 13

Fig. 14: Instances of image retrieval results using RSDOM on ICONES-HSI. Bordered in red are the query images, followed
by the top retrieved images. To avoid favorability in this displayed example, the first image in each class is taken as the query.

is a highly complex texture with a large fractal dimension.
Therefore, a multiscale assessment is necessary which could be
done by processing RSDOM for several scales. Furthermore,
in some cases land and buildings can be seen underneath
the clouds, thus inducing confusion with other classes like
dense urban. On the other hand, the wetland images are highly
heterogeneous as they contain a large variety of textures e.g.
lake, plantations, buildings, and bare soils. Such complexity
could be nonetheless tackled by adapting RSDOM using a bag-
of-words (BoW) model, thus just a question of optimization.

C. Land cover classification on Salinas

In this third and final task, we assess the performance of
RSDOM in a land cover classification scheme on one of
the standard benchmark datasets for hyperspectral classifica-
tion. Different from the previous two tasks, the efficiency
of RSDOM as a local descriptor is highlighted here as the
characterization is performed on pixel-wise levels.

Dataset: The Salinas dataset is a hyperspectral image mea-
suring 512 × 217 pixels with L = 224 spectral bands collected
using AVIRIS sensor over the Salinas valley, California. The
spatial resolution is given by 3.7 m/pixel with various textures
e.g. plantations and soils. About 49% of the pixels have
been manually labeled with one of the 16 classes identified.
For direct comparison with the state-of-the-art [66], [67], we
follow the convention of removing the water absorption bands
(224th, 154th–167th, and 108th–112th). We also remove the
misregistered wavelengths, thus leaving L = 200 bands.

Computations: The calculation of RSDOM is carried out as
in Section VIII-A except that the assessment is done on K = 8
directions, Θ = {0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4} due
to the small spatial support in the pixel-wise classification.
However, RSDOM is not defined for a single pixel as it
is formulated as a probability density function. As such, a
spatial neighborhood of modest size3, 7 × 7 is considered for

3In statistics, the minimum sample size for normality is 30 (heuristic) [68].
The smallest (odd-sized) neighborhood respecting this constraint is 7 × 7.

the five-dimensional PDF construction. In light of the very
reduced number of pixels, a normal approximation (M = 1,
thus a feature size of a mere 20 scalars) is employed for
the statistical modeling. We compare its performance with
cross-channel LBP which been shown to be superior to both
GLCM and Gabor filter in Section VIII-A and VIII-B. The
same implementation as before is employed for LBP by
considering the top three principal components. In addition,
we also incorporate results from [66], [67] for comparisons
with machine learning approaches as briefly explained below:
• SVM: A support vector machine implemented with a

radial basis function (RBF) kernel [66], [69].
• CCF: A canonical correlation forest with 200 trees be-

longing to the decision tree ensemble methods [66], [70].
• CNN: A VGG-like network with spectral attention mod-

ule which emphasizes on informative bands [66].
• GCN: A non-local graph convolutional network taking

advantage of both labeled and unlabeled data [67].
To reduce bias, we repeat the classification 100 times. Fol-

lowing the same protocol as in [66], [67], 50 pixels from each
class are randomly selected for training as exemplified in Fig.
15 (k). As the pixel-wise classification may be less robust to
noise (thus producing the “salt and pepper” effect), some post-
processing is applied to improve the spatial correlation. In this
regard, we perform a minimalistic 3 × 3 majority filtering. For
the evaluation, we consider the mean and standard deviation of
the overall accuracy (OA) i.e. the percentage of test samples
correctly classified, per-class accuracy (PA) i.e. the percentage
of test samples correctly classified for each class (useful for
imbalanced classification as in the case of Salinas), average
accuracy (AA) i.e. the mean of all PAs, and Kappa coefficient
(KP) i.e. a more robust measure of inter-rater reliability.

Results: From Table V and Fig. 15 (b) - (d), it can be seen
that RSDOM performs significantly better than both LBP and
machine learning methods. In fact in spectral classification
alone, the “Spectral” (OA=93.7%) part of RSDOM i.e. J1

already overpasses both SVM (88.8%) and CCF (89.7%) as
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TABLE V: COMPARISONS OF PER-CLASS ACCURACY, OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA), AND KAPPA
COEFFICIENT (KP) FOR LAND COVER CLASSIFICATION ON Salinas. BOLD NUMBERS INDICATE THE BEST PERFORMANCE IN
EACH CLASSIFICATION (SPECTRAL/SPATIAL, POST-PROCESSED). RESULTS AVERAGED OVER 100 CLASSIFICATIONS.

No. pixel Spectral classification Spectral-spatial classification Post-processed

Class Train Test Spectral SVM CCF RSDOM LBP CNN GCN Spectral+ RSDOM+ LBP+

Brocoli...1 50 1959 99.1±1.4 99.0 99.5 99.4±1.2 99.6±0.5 94.8 99.7 99.9±0.6 99.9±0.5 100±0.0
Brocoli...2 50 3676 98.4±1.0 99.7 100 98.9±0.9 97.0±1.2 100 99.2 99.4±0.7 99.5±0.6 98.4±1.2

Fallow 50 1926 98.3±1.0 98.7 99.4 98.2±1.0 93.8±2.0 99.6 99.8 99.5±0.7 99.3±0.7 96.9±2.0
Fallow....plow 50 1344 98.7±1.2 97.8 99.3 99.2±0.8 98.2±1.1 98.9 98.3 99.7±0.7 100±0.2 99.8±0.5

Fallow smooth 50 2628 95.1±2.1 98.3 98.8 95.7±2.0 89.4±2.6 99.8 99.3 96.8±1.9 97.2±1.8 93.0±2.8
Stubble 50 3909 99.7±0.4 99.7 99.8 99.7±0.4 100±0.1 99.7 99.8 100±0.1 100±0.0 100±0.0
Celery 50 3529 98.8±1.2 99.5 99.7 99.0±1.2 95.9±1.2 99.7 99.0 99.7±0.6 99.7±0.7 98.0±1.1

Grapes... 50 11221 83.7±2.8 70.4 67.6 84.2±3.0 67.0±3.1 84.3 79.1 87.7±3.0 88.0±3.2 75.9±3.8
Soil vinyard... 50 6153 97.5±1.3 98.6 99.2 97.9±1.1 80.2±3.1 98.4 97.7 98.9±0.9 99.0±0.9 90.5±3.4
Corn...weeds 50 3228 96.7±1.4 93.7 93.8 97.4±1.3 89.8±2.1 95.1 95.0 98.6±1.1 98.9±1.0 96.1±2.0
Lettuce...4wk 50 1018 99.0±1.6 94.7 95.9 99.2±1.3 97.3±1.5 98.8 94.6 99.5±0.9 99.6±0.9 99.3±1.1
Lettuce...5wk 50 1877 99.5±0.4 99.9 100 99.7±0.3 94.8±2.0 99.6 100 100±0.0 100±0.0 97.8±1.8
Lettuce...6wk 50 866 99.5±0.4 97.8 98.2 99.5±0.4 98.7±1.1 100 99.0 99.8±0.3 99.9±0.2 99.6±0.9
Lettuce...7wk 50 1020 99.5±0.8 97.4 96.9 99.6±0.7 98.1±1.2 99.9 99.4 99.8±0.7 99.8±0.6 99.5±0.9
Vin. untrained 50 7218 87.4±2.9 71.5 80.8 87.8±2.8 82.2±3.3 79.4 84.3 91.6±2.8 92.1±2.7 90.5±3.3

Vin....trellis 50 1757 98.1±1.0 98.2 98.2 98.7±0.9 94.5±2.0 96.9 98.0 99.0±0.9 99.4±0.7 98.4±1.4

800 53329

OA
- -

93.7±0.6 88.8 89.7 94.0±0.6 86.0±0.8 93.0 92.5 95.8±0.6 96.0±0.7 91.4±0.9
AA 96.8±0.3 94.7 95.4 97.1±0.3 92.3±0.5 96.6 96.4 98.1±0.3 98.3±0.3 95.8±0.5

KP ×100 93.0±0.6 87.6 88.6 93.4±0.7 84.5±0.8 92.2 91.6 95.3±0.7 95.5±0.7 90.5±0.9

well as the spectral-spatial methods i.e. LBP (86.0%), CNN
(93.0%), and GCN (92.5%). This shows the high efficiency
of our spectral characterization which is based on spectral
differences with two references. Such achievement is further
surpassed through the incorporation of spatial information by
RSDOM which records an OA of 94.0%. Together with results
in Section VIII-A and VIII-B, the importance of metrological
considerations in feature extraction is clear. When metrology
is strictly observed at all levels, even low-level features can
be as effective as complex machine learning approaches.

Referring to Fig. 15 (i) and (j), we discuss the four
main causes of misclassification by RSDOM. The first reason
is the high texture nonstationarity in “grapes untrained” as
exemplified in region (I) which is clearly of completely
different texture. In fact, “vinyard untrained” is often con-
fused with “grapes untrained” although RSDOM produces the
best discrimination compared to other methods. The second
reason is the existence of foreign objects in the labeled
data as exemplified by the black dot in “fallow smooth”
in region (II). As a result, the pixels around are greatly
misclassified. The third reason is pixel mislabeling which
occurs at quite many places as exemplified by the buildings
labeled as “corn senesced weeds” at region (III). Evidently,
the manual labeling is prone to human errors and care must
be taken to avoid features “learning” these errors. The forth
reason is due to the spatial neighborhood of RSDOM which
causes problems at fine boundaries as in region (IV) as a
result of oversmoothing or border spillover. As solution, the
neighborhood size may be reduced but this comes at a cost
of less accurate statistical modeling. Nevertheless, we show
that this problem can also be easily overcome by some post-
processing e.g. majority filtering as shown in Fig. 15 (f) - (h).

As indicated in Table V, this improves the OA of Spectral,
RSDOM, and LBP by 2.1%, 2.0%, and 5.4% respectively.

On a side note, for comparison with SVM, CCF, CNN,
and GCN (of which the results are taken directly from [66],
[67]) we employ the same performance evaluation protocol
which also coincides with public convention [71]–[75] i.e. by
excluding the training pixels as exemplified in Fig. 15 (k).
However, for a real evaluation the entire spatial neighborhood
of the training pixels as in Fig. 15 (l) should be excluded.
This is due to the possible leakage of information when the
neighborhood of the training and testing pixels overlap [76].

IX. CONCLUSION

We have devised a spectral difference based texture fea-
ture using full-band processing for hyperspectral image. The
formulation is based on the proposed definition of texture
as joint probability of spectral and spatial distribution. The
resulted feature, RSDOM is expressed as a multidimensional
probability density distribution. Thanks to the metrological
spectral difference calculation, the formulation is generic and
applicable for images of any spectral range and number of
bands. The metrological properties are further preserved via
the construction of texture similarity measure using Kullback-
Leibler divergence based on the probabilistic nature of RS-
DOM. Being highly interpretable, RSDOM is fully metrolog-
ical with a direct relationship between the feature and texture.

The discriminability of RSDOM is confirmed thanks to the
performances in three versatile tasks: texture classification on
HyTexiLa, content-based image retrieval on ICONES-HSI, and
land cover classification on Salinas. For the considered tasks,
RSDOM overpasses GLCM, Gabor filter, LBP, SVM, and CCF
and archives the same level as CNN and GCN.
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