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ABSTRACT
A gradient-based texture feature for hyperspectral image is
formulated with straightforward application to grayscale and
color images. Processed in full band, GHOST is expressed
as a four-dimensional probability density distribution encom-
passing joint metrological assessment of spectral and spatial
properties. Its performance is close to Opponent Band Local
Binary Pattern (OBLBP) in HyTexiLa texture classification
(91 % - 99 % accuracy) with feature size 0.2 % of OBLBP’s.

Index Terms— texture, metrology, spectral, gradient

1. INTRODUCTION

There is a plethora of texture feature extraction methods in
the literature [1]. Few, however, defines what texture is. This
results in numerous ad-hoc approaches which correlate little
with metrology, despite attaining supreme accuracy in some
specific tasks e.g. segmentation, classification and image re-
trieval. Consequently, one often finds difficulty in applying
them for the metrology of industrial quality control or real-
time remote sensing due to the lack of training dataset, com-
plication in pre-processing and intricacy of parameter tuning.

In contrast, a metrological approach seeks to first define
the measurand before performing the measurement. There-
fore, the result is interpretable while qualities such as accu-
racy, bias and uncertainty are quantifiable. In the context
of texture analysis, this means that such scheme is not con-
strained by the sensor properties; the texture difference should
be invariant of its nature, be it grayscale, color, spectral or
even beyond visible spectrum e.g. X-ray and fluorescence.

We note that images are inherently continuous despite the
post-processed digital representation. As such, we choose to
develop our assessment in hyperspectral context with straight-
forward application in grayscale and color domains. We first
provide a texture definition in Sec. 2. Then, we devise a fea-
ture formulation as well as a measure for quantifying texture
dissimilarity in Sec. 3. For validation, we present a texture
classification scheme and result analysis in Sec. 4. Finally, in
Sec. 5 we provide our concluding remarks for this work.

This work is supported by the French national projects ANR DigiPi and
ERDF NUMERIC / e-Patrimoine.

Fig. 1: An illustration of the concept of texture as a joint
spectral-spatial distribution using spectral (shape, intensity)
and gradient (texture “magnitude”, direction) measures.

2. TEXTURE DEFINITION

Julesz pioneered the study of texture analysis in 1962. He
conjectured to discriminate texture based on N th-order statis-
tics, which is the probability to find at any spatial location
a particular N -tuple for a given spatial relationship [2]. For
example, the first-order statistics refers to the probability to
find a particular pixel value, whereas the second-order statis-
tics represents the probability to find a particular pixel pair for
a given spatial relationship. Such consideration is applicable
for any images be it of monovariate e.g. grayscale and X-ray
or multivariate e.g. color, multispectral, and hyperspectral.

There has been numerous researches but no consensus on
the optimumN for preattentive visual discrimination [3, 4, 5].
However, they all imply the need for the joint consideration of
spectral and spatial properties in texture recognition. This can
be easily demonstrated from the fact that when the tonal vari-
ation is small, the dominant properties are the spectral ones;
when the variation is large, the noticeable aspects are the spa-
tial ones. In any cases, both kind of properties are always
present and inextricable. Accordingly, we define texture as
the joint distribution of spectral and spatial properties, with
the later assessed via gradient measures in this work.



3. FEATURE FORMULATION

3.1. Assessing spatial properties

Consider an image, I : R2 → RL with L bands, the gradient,
∇I(x) at a given position x = (x1, x2) is given by:

∇I(x) =
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T

, (1)

which is really the Jacobian matrix. The spatial correlation
matrix, M is defined using full vector gradient (FVG) [6]:

M(x) = ∇I(x)TG∇I(x) =

[
M11(x) M12(x)
M21(x) M22(x)

]
, (2)

where G is the Gram matrix, necessary to take into account
the non-orthogonality of spectral channels. It is defined using
the scalar product for integrable functions:
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where Si is the spectral sensitivity function for the ith band.
The eigenvalues, λ± of M and eigenvectors1 oriented at

angle θ± such that θ− = θ+ + (π/2) is given by [7]:

λ± = −1

2

(
tr(M)±

√
tr(M)2 − 4|M |

)
,

θ+ = sgn(M12) arcsin

(
λ+ −M11

2λ+ − tr(M)

) 1
2

, (4)

where sgn(·), | · | and tr(·) are the sign function, matrix de-
terminant and trace respectively. To interpret λ± and θ± (see
Fig. 2), we first introduce the directional derivative,∇θI(x):

∇θI(x) = ∇I(x) · ûθ, (5)

where ûθ is an unit vector oriented at angle θ. The spatial
correlation matrix, M and∇θI(x) are related by:

‖∇θI(x)‖22 = ûTθM(x)ûθ. (6)

Thanks to the eigendecomposition of M , we note that the
quadratic form ‖∇θI(x)‖22 can also be expressed as:

‖∇θI(x)‖22 = λ+ cos(θ+ − θ) + λ− sin(θ+ − θ), (7)

For k ∈ Z, the extrema of ‖∇θI(x)‖2 =
√
‖∇θI(x)‖22 are:

max
0≤θ<2π

‖∇θI(x)‖2 = ‖∇(θ++kπ)I(x)‖2 =
√
λ+,

min
0≤θ<2π

‖∇θI(x)‖2 = ‖∇(θ−+kπ)I(x)‖2 =
√
λ−, (8)

Fig. 2: Geometric interpretation of λ± and θ± in the context
‖∇θI(x)‖2, where ∇θI(x) is the directional derivative.

with its root mean square, RMS
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Three kinds of local structure can be inferred from λ±:
λ+ � λ− indicates an edge; λ± � 0 indicates a corner;
λ+ ≈ λ− ≈ 0 indicates uniformity [8]. Correspondingly,
one may be prompted to measure texture in terms of “edge-
likeness” and thus use λ+ [9] or λ+ − λ− [10]. Alterna-
tively, one may choose to measure texture in terms of “corner-
likeness” using λ− [11]. If both edge-likeness and corner-
likeness are considered, then one could choose λ+ + λ− [6].

We propose to measure the spatial properties in terms of
texture “magnitude” (degree of texturedness) and direction.
To measure texture “magnitude” (hereby denoted as T ), we
consider the following possibilities2: f(λ+), f(λ−), f(λ+ +
λ−) and f(λ+−λ−). We analyze them if they fulfill all of the
following criteria which are expected from a valid measure:

• In the absence of texture i.e. ‖∇θI(x)‖2 = 0, T = 0
(discounting the effect of noise): violated by none.

• In the presence of texture, T 6= 0: violated by f(λ−)
and f(λ+ − λ−) as they can be null for texture made
up of only edges and corners respectively.

• At a given scale, T should have higher values for im-
ages more textured than that of less textured: violated
by f(λ+), f(λ−) and f(λ+−λ−) as illustrated in Fig.
3. The ignorance of λ− by f(λ+) induces a lack in as-
sessment as the pixel variation in directions other than
the maximum’s (θ+) are not taken into account. Like-
wise, f(λ−) does not consider directions other than the
minimum’s (θ−), while f(λ+ − λ−) cancels out when
λ+ = λ− e.g. for corners of equal strength.

1θ± are undefined if tr(M)2 − 4|M | = 0 because then ‖∇θI(x)‖22
(related to change of pixel values) is the same in any direction as λ+ = λ−.
Fortunately, studies show that such case is unlikely in practical natural images
due to noise, quantization level and sensor characteristics [7].

2The notation f(y) means “the function of” e.g. 2y, y/2,
√
y etc.



Fig. 3: Specified by ‖∇θI(x)‖22 (visualized as black ellipse),
the pixels are ranked according to their texture “magnitude”
based on (a) λ+, (b) λ−, (c) λ+ + λ− and (d) λ+ − λ−.

Clearly, f(λ+ + λ−) is the only one that fulfill all the
criteria set. Also supported by the fact that it is dissociated
from directionality by definition (see Eq. 9), we select T =√
λ+ + λ−/

√
2 as the measure for texture “magnitude”. As

for texture direction, the obvious choice is θ+ as it refers to
the direction on which the pixel variation is the maximum. If
the texture is isotropic, then the distribution of θ+ is uniform,
indicating non-directionality. We therefore express our mea-
sure of the spatial properties, hereby denoted as JN , as the
probability to find at any spatial location a particular texture
“magnitude” and direction. Computing the gradient using a
N = N ′×N ′ filter, we express JN as the probability density
function (PDF) of the continuous random variables T and θ+:

JN
(
T, θ+

)
= P

(
∇I(x) =

(
T, θ+

))
, (10)

with the subscript of “N” due to its relationship with N th-
order statistics as defined in Julesz conjecture [2].

3.2. Assessing spectral properties

To quantify the spectral distribution is to construct a spectral
histogram of P (s), akin to the concept of image histogram
where s is a given spectrum. However, due to the high dimen-
sionality of hyperspectral data, it is computationally infeasi-
ble to directly define P (s). Consider a marginal quantization
ofQ levels for each of the L channels, a histogram ofQL bins
would be required which is memory extensive.

As solution, we transpose the formulation in difference
space. In particular, we represent I(x) = s ∈ RL by spectral
difference, ∆(s, s′) ∈ RL′ to a spectral reference, ŝ such that
L′ � L. Using Kullback-Leibler pseudo-divergence (KLPD)
[12], the difference between two spectra, s and s′ is:

∆(s, s′) = ∆G(s, s′) + ∆W (s, s′),

∆G(s, s′) = ‖s‖1 ·KL(s̄‖s̄′) + ‖s′‖1 ·KL(s̄′‖s̄),

∆W (s, s′) = (‖s‖1 − ‖s′‖1) log

(
‖s‖1
‖s′‖1

)
,

(11)

where ∆G and ∆W are the intensity and shape differences
respectively. While KL(·‖·) is the Kullback-Leibler diver-

gence, s̄ is the normalized spectrum with ‖s‖1 =
∫
s(λ)dλ.

We therefore express our measure of the spectral properties as
the probability to find at any spatial location a particular spec-
tral difference with respect to the selected spectral reference.
Such measure, hereby denoted as J1 can then be expressed as
a PDF of the continuous random variables ∆G and ∆W [13]:

J ŝ1 (∆G,∆W ) = P

(
∆
(
I(x), ŝ

)
= (∆G,∆W )

)
, (12)

with the subscript of “1” due to its relationship with first-order
statistics as defined in Julesz conjecture [2].

3.3. The texture feature and difference measure

In accordance to our definition in Sec. 2, we propose a tex-
ture feature, J embedding a simultaneous measurement of
the spectral and spatial properties. It expresses the probability
to find at any spatial location a particular spectral difference
to a reference and a particular texture “magnitude” as well as
direction. As a four-dimensional PDF, J is expressed as:

J ŝ(∆G,∆W,T, θ+) (13)

= P

(
∆
(
I(x), ŝ

)
= (∆G,∆W ) ∧ ∇I(x) =

(
T, θ+

))
,

which we name as Gradient Histogram Of Spectral Texture
(GHOST). Despite its development in hyperspectral context,
it should be clear that GHOST is applicable to grayscale and
color images with adapted gradient and difference measures.

For texture dissimilarity measurement, we use Jeffrey’s
divergence, which is the symmetric version of Kullback-
Leibler divergence (KLD) [14]. Due to the multi-dimensionality
of GHOST, it is computationally expensive to process KLD
directly based on histogram modeling. As an alternative, we
use Gaussian mixture model (GMM) to statistically model
the feature. As there exists no close form solution for KLD
between two GMMs, we use variational approximation [15].

4. RESULT AND DISCUSSION

4.1. Texture classification and feature computation

We assess GHOST’s performance by applying texture classi-
fication on HyTexiLa [16]. Consisting of 112 images measur-
ing 1024 × 1024 with L = 186 spectral bands ranging from
405.37 nm to 995.83 nm, HyTexiLa is a collection of texture
from food (10 images), stone (4 images), textile (65 images),
vegetation (15 images) and wood (18 images). We split each
image into 25 patches with a train:test ratio of 12:13 and per-
form nearest neighbor classification. To avoid bias, we repeat
both intra-categorical and inter-categorical classification 100
times and report the average accuracy with standard deviation.

In this work, we compute GHOST using a 3 × 3 filter
constructed using a Gaussian function and its derivative as de-
fined in [6]. We use the same reference as the one used in [13].



Category A. spectrum GHOST OBLBP

Food 96.3 ± 0.5 97.9 ± 0.9 99.9 ± 0.3
Stone 86.7 ± 1.2 99.2 ± 1.2 99.9 ± 0.3
Textile 98.7 ± 0.1 99.2 ± 0.2 99.9 ± 0.1

Vegetation 83.9 ± 0.6 94.6 ± 2.0 97.4 ± 1.2
Wood 78.9 ± 0.7 91.0 ± 3.1 94.2 ± 2.5

All 91.4 ± 0.3 96.1 ± 0.9 98.4 ± 0.6

Table 1: Comparison of texture classification accuracy using
average spectrum (baseline), GHOST, and OBLBP. “All” de-
notes inter-classification involving all 112 HyTexiLa images.

We compare our performance with that of spectral classifi-
cation (baseline) using average spectrum as well as OBLBP
[16]. The average spectrum is defined marginally for each
of the patches. On the other hand, OBLBP is basically LBP
considered in the context of cross-channel processing for hy-
perspectral application. The LBP is constructed considering
J = 8 pixels in a circular neighborhood of radius r = 1.

Modeled using 8 GMM components (as optimally deter-
mined based on Bayesian Information Criterion), GHOST is
processed in full-band whereas OBLBP is processed on a re-
duced set of spectral bands, L̃ = 18. The feature size for
GHOST and OBLBP are 168 and 82944 scalars respectively.

4.2. Subjective evaluation: Milkcoffee and Wood

We analyze the texture content of two hyperspectral images:
Milkcoffee and Wood as shown in Fig. 4 (a) and (b) respec-
tively. On spectral properties, we observed that Milkcoffee
is more spectrally homogeneous in contrast to Wood which
is more spectrally diverse with alternating strips of different
color appearance. This is reflected in the larger spread of
∆G for Wood compared to that of Milkcoffee. On the other
hand, Milkcoffee is visually darker while Wood is brighter.
Depending on the choice of spectral reference, one will have
larger ∆W than the other. In this case, clearly the reference
is at similar intensity level with Wood, hence the lower val-
ues of ∆W for Wood and higher values for Milkcoffee. On
spatial properties, Milkcoffee is less textured than Wood and
isotropic, hence its lower T values in average and the uniform
distribution of θ+. In comparison, Wood is highly textured
with a directional variation, hence its higher T values with
θ+ peaked around 0. Evidently, GHOST is able to capture
the complexity of spectral-spatial properties in an extremely
efficient, compact and interpretable manner.

4.3. Comparison with spectral classification and OBLBP

OBLBP considers only the sign of pixel difference in a circu-
lar neighborhood. As a result, information about the magni-
tude and permutation is lost. In comparison, GHOST records
gradient (T and θ+) in a continuous manner without any

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4: Two hyperspectral textures, illustrated in color (row
1) with their GHOST in black (row 2, not plotted in the same
scale). For a three-dimensional view, the dimensions of ∆G
and ∆W are collapsed into one using their sum. The red and
blue plots are projections on the (T,∆G+ ∆W ) and (θ+, T )
planes respectively. For detailed assessment, (∆G,∆W ) and
(θ+, T ) are plotted in row 3 and 4 respectively.

quantization, preserving the integrity of the information ex-
tracted. Thanks to the probabilistic construct, a natural and
metrological texture similarity measure is thus possible.

From Table 1, it can be seen that GHOST performs well
in HyTexiLa classification. It is able to correctly classify at
least 91 % of the textures in each category. Its performance
clearly overpasses that of spectral classification (using aver-
age spectrum) whereas OBLBP achieves the highest classifi-
cation accuracy in overall. Among other factors, we attribute
our lower performance mainly to the GMM modeling. Obvi-
ously, the efficiency of GHOST is subjected to adequate sta-



tistical modeling by GMM. It is quite possible that GMM fails
to capture the complexity of the distribution, thus causing its
lower discriminability. On the other hand, for simplicity we
use the same number of components for every texture. In real-
ity, each texture might need different number of components
for adequate modeling. Besides, the choice of filter for the
gradient computation may yet be optimized. Moreover, the
spectral reference, by which GHOST’s performance is highly
affected, is also selected empirically at this stage.

Nevertheless, the excellent performance of OBLBP is
tainted by its huge feature size (500 times larger than GHOST).
As OBLBP is formed by concatenation of J−bits histogram
at each channel (total bin = 2J · L̃2), there is no possibility of
interpretation at multivariate level. While OBLBP “mix” to-
gether the spectral and spatial information, GHOST embeds
them in different dimensions as probabilistic measures, thus
enabling a intuitive analysis. Thanks to its implementation
using FVG and KLPD, GHOST is processed in a full-band
manner without the need for dimensionality reduction at the
spectral level. This preserves data integrity and the underly-
ing spectral-spatial details which is crucial for metrology.

Our next work is to devise a multiscale analysis to con-
sider texture at different scales as well as a multireference
formulation to improve spectral discriminability. Alternatives
to GMM modeling will also be studied for more efficient sim-
ilarity assessment between high-dimensional distributions.

5. CONCLUSION

We have devised a gradient-based texture feature using full-
band processing for hyperspectral image. The formulation
is based on the proposed definition of texture as joint spec-
tral and spatial distribution. The resulted feature, GHOST is
expressed as a four-dimensional probability density distribu-
tion. Thanks to the metrological gradient and spectral dif-
ference calculation, the formulation is generic and applica-
ble for images of any spectral band and range. Intuitive and
rich in information, GHOST jointly measures texture “magni-
tude”, direction and spectral distribution. We have validated
our approach via a HyTexiLa classification scheme. GHOST
registers comparable performance with OBLBP, attaining an
accuracy of 91 % - 99 % with feature size 0.2 % of OBLBP’s.
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