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Abstract. In this paper, we propose two related versions of a dissimilarity-based measure of 13 

functional beta diversity, together with the associated tests for differences in beta diversity among 14 

different groups of samples. Both measures are based on the optimal functional matching between 15 

the species in two samples. As such, they are tightly connected to Hurlbert’s seminal work on 16 

encounter-based diversity measures. The behavior of the proposed measures is illustrated with one 17 

worked example on the functional turnover of Alpine species along a successional gradient. Results 18 

show that both measures proved able to detect the functional turnover of vegetation along the 19 

chronosequence. The method, for which we provide a simple R function, further allows to evaluate 20 

the functional contribution of single sampling units to the overall beta diversity of any kind of 21 

species assemblages. 22 

 23 
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 26 
1. Introduction 27 

Beta diversity measures the variability in species composition among a set of sampling units and 28 

is considered to be a key signature of the ecological processes that make species assemblages more 29 

or less similar to one another (Anderson et al. 2011; Bennet and Gilbert 2016). Since the pioneering 30 

work by Whittaker (1972), there have been intense discussions on how to measure beta diversity 31 

and how to test for differences in beta diversity among different groups of samples. For reviews, see 32 

e.g. Lande (1996), Koleff et al. (2003), Anderson et al. (2006, 2011), Jost (2007), Tuomisto (2010a, 33 

2010b), Chase et al. (2011), Chao and Chiu (2016), Legendre and De Cáceres (2013), Ricotta 34 

(2017), Chao and Ricotta (2019) and references therein. 35 

Irrespective of how beta diversity is measured, an important requisite for diversity measures is 36 

their ecological interpretability. According to the seminal paper of Stuart Hurlbert (1971), 37 

meaningful diversity indices should have a straightforward biological interpretation: “We therefore 38 

can muddle along with a plethora of indices, each supported by at least one person’s intuition and a 39 

few recommended by fashion, or we can sharpen our thoughts and rephrase our questions in terms 40 

of biologically meaningful properties [...]” (Hurlbert 1971 p. 579). 41 

Among these properties, the probability of intra- and interspecific encounters is a variable of 42 

interest, as it is directly related to the potential ecological interactions among all individuals and 43 

species in the community (Hurlbert 1971; Patil and Taillie 1982). This encounter-based approach is 44 
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even more important for functional diversity where, unlike for classical diversity measures, the 45 

species are not considered equally dissimilar from each other. In a sense, dealing with functional 46 

diversity measures, the potential amount of ecological interactions among different individuals is 47 

ideally related to their functional resemblance. 48 

In this paper, we thus propose two different versions of a dissimilarity-related index of functional 49 

beta diversity, together with the associated tests for differences among different groups of samples. 50 

Both indices are based on the optimal functional matching between the species in two samples. As 51 

such, they are tightly connected to Hurlbert’s encounter-based approach. 52 

 53 

2. A dissimilarity-based index of functional beta diversity 54 

Given a set of N samples, let 
jkp  be the relative abundance of species 1,2,...,j S  in sample 55 

1,2,...,k N  such that 0 1jkp   and 1
S

jkj
p  . The information on the species functional 56 

organization within samples is usually represented by a symmetric S S  matrix of pairwise 57 

functional dissimilarities 
ijd  between species i and j in the range [0,1]  (with 

ij jid d  and 0iid  ) 58 

which represent the multivariate differences in the character states among the S species. 59 

To calculate a dissimilarity-based index of functional beta diversity, the first step consists in 60 

calculating the pairwise functional dissimilarity 
hkD  between any pair of samples h and k. To this 61 

end, Ricotta et al. (2021a) first used an algorithmic measure originally developed by Kosman 62 

(1996) and Gregorius et al. (2003) to calculate genetic distances between populations. The measure 63 

is based on the optimal matching between the species abundances in h and k so as to minimize the 64 

overall functional dissimilarity between both samples. 65 

The dissimilarity index 
hkD  is calculated as follows: given two samples h and k, with n 66 

individuals in both samples, each individual in h is matched to an individual in k in order to get n 67 

pairs that minimize the sum of functional dissimilarities between the individuals in each pair 68 

(Kosman & Leonard, 2007). The pairs are built such that all individuals in both samples are used 69 

only once. The overall functional dissimilarity between the two samples is then obtained as the 70 

mean dissimilarity between each pair of individuals (i.e. by dividing the sum of functional 71 

dissimilarities by the n pairs of individuals). However, since the number of individuals in h and k is 72 

generally not the same, to get a complete matching between the samples, this procedure is usually 73 

performed on the species relative abundances in both samples. The algorithmic dissimilarity 
hkD  74 

can be thus interpreted as the minimum cost per individual needed to change the character states of 75 

the species in sample h to the states of the species in k (Gregorius et al. 2003). 76 
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Finding the optimal matching between the species abundances in h and k is known as the 77 

assignment problem, a special type of linear programming or linear optimization problem (Dantzig 78 

and Thapa 1997). Dealing with species relative abundances, the functional dissimilarity between 79 

samples h and k can be formulated as (Gregorius et al., 2003): 80 

 81 

 min ,
S S

hk iji j
D d i j


                         (1) 82 

 83 

where ( , )i j  is the relative abundance of species i in sample h that is matched with species j in 84 

sample k. Since 
hkD  is essentially a mean dissimilarity between matched pairs of individuals, if the 85 

functional dissimilarity 
ijd  between each pair of individuals is in the range [0, 1], the resulting 86 

mean dissimilarity also ranges between 0 and 1. Kosman (2014) further showed that if all species in 87 

h and k are considered maximally dissimilar from each other (i.e. if 1ijd   for all species i in sample 88 

h and species j in sample k), 
hkD  will be equal to 

,

1

2

S

hk ih jki j
D p p  . 89 

A simple way to generalize 
hkD  to more than two samples, which is usually adopted in 90 

community ecology for calculating the beta diversity of a set of N samples (but see e.g. Diserud and 91 

Ødegaard 2007), consists in calculating the mean value of 
hkD  for all possible pairs of samples: 92 

 93 

 1 2

N

hkk h
N

D

N N
 




                          (2) 94 

 95 

Once beta diversity has been calculated, the next step is how to test for differences in beta 96 

diversity among different groups of samples. To this end, Anderson (2006) proposed a multivariate 97 

analogue of Levene’s (1960) test, which is directly connected to the way 
N  is calculated. The test 98 

can be considered in two steps: first, starting from the functional dissimilarities between all pairs of 99 

sampling units 
knD , the dissimilarity 

kD of each individual sample from its group centroid in 100 

multivariate space is calculated according to McArdle and Anderson (2001). Next, the average of 101 

these dissimilarities among groups is compared using ANOVA. A P-value can be then obtained 102 

with either the traditional tables on F-distribution or by using a permutation procedure (Anderson 103 

2006). 104 

A drawback of this method is that the dissimilarity of individual samples from the group centroid 105 

depends on the number of samples in each group. Take for example a group composed of five 106 
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maximally dissimilar samples, i.e. with 1hkD   for all h k . In this case, the dissimilarity 
kD  of 107 

each individual sample from its group centroid is equal to 0.632kD  . By contrast, for ten 108 

maximally dissimilar samples, 0.671kD   (for details, see Anderson 2006). Accordingly, this test 109 

works correctly only with fully balanced designs with the same number of samples in each group. 110 

To overcome this problem, a possible solution may consist in substituting 
kD  with the mean 111 

dissimilarity of each individual sample k from all other 1N   samples in the same group: 112 

 113 

1





N

hkh k

k

D
D

N
                          (3) 114 

 115 

The same approach was used by Violle et al. (2017) and Kosman et al. (2019) to calculate the 116 

mean distance in trait space of a species to all other species in a community. The main advantage of 117 

k
D  over 

kD  is that 
k

D  is not influenced by the number of samples in each group. Like for the 118 

Anderson (2006) test, the average of these dissimilarities among groups can be then compared using 119 

standard ANOVA (see the example in Appendix 1). 120 

 121 

3. A second index of beta diversity 122 

A second method for deriving a measure of multiple-site functional dissimilarity among 123 

sampling units may consist in calculating the dissimilarity of Kosman (1996) and Gregorius et al. 124 

(2003) kD   between the species relative abundances in sample k and the species relative 125 

abundances in an hypothetical complementary sample η. This complementary sample is obtained by 126 

pooling together the species relative abundances of all 1N   samples that are different from k such 127 

that the relative abundance of species j in η is calculated as: 128 

 129 

1






N

jhh k
j

p
p

N
                          (4) 130 

 131 

According to this leave-one-out approach, η can be interpreted as the compositional centroid of 132 

the 1N   samples that differ from k in Euclidean space (see Champely and Chessel 2002). A 133 

multiple-site measure of beta diversity can be then obtained by taking the mean of the 134 

dissimilarities kD   over the N samples: 135 

 136 
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D
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                           (5) 137 

 138 

If beta diversity is calculated according to Eq. 5, a test for differences in beta diversity among 139 

different groups of samples can be then performed in the usual way, by comparing the mean values 140 

of 
kD   within each group with ANOVA. 141 

 142 

4. Worked example 143 

4.1. Data 144 

To illustrate the behavior of the proposed measures, we used a data set of Alpine vegetation 145 

sampled by Caccianiga et al. (2006) along a primary succession at the foreland of the Rutor Glacier 146 

(Northern Italy). The data set has been already used in previous studies on community structure and 147 

diversity (Ricotta et al., 2016; Ricotta et al., 2020) and is composed of 45 species in 59 plots of 148 

approximately 25 m
2
. All data are available in Ricotta et al. (2016, Appendix S2). The species 149 

abundances in each plot were measured with a five-point ordinal scale transformed to ranks. The 150 

plots were classified into three successional stages based on the age of the glacial deposits: early-151 

successional stage (17 plots), mid-successional stage (MSS; 32 plots), and late-successional stage 152 

(10 plots). 153 

For all 45 species sampled at the three successional stages, we used six quantitative traits that are 154 

related to their successional status along the primary succession: canopy height (CH; mm), leaf dry 155 

mass content (LDMC; %), leaf dry weight (LDW; mg), specific leaf area (SLA; mm2 × mg−1), leaf 156 

nitrogen content (LNC; %), and leaf carbon content (LCC; %). All traits can be found in Caccianiga 157 

et al. (2006, Table 2). 158 

First, we used the Euclidean distance to compute a matrix of pairwise functional distances 159 

between the 45 species from the six functional traits. For this purpose, all trait values for the 45 160 

species were standardized to zero mean and unit standard deviation. The output functional distances 161 

were then scaled in the range  0,1  by dividing each distance by the maximum value in the 162 

distance matrix. 163 

Using the algorithmic approach of Kosman (1996) and Gregorius et al. (2003), we next 164 

calculated the beta diversity components (i.e. dissimilarities) 
k

D  and kD   for each sample in each 165 

successional stage. All calculations were performed with a new R script (available in the electronic 166 

Appendix 1 and 2 of this paper) that modifies the R function dislptransport in Ricotta et al. 167 

(2021, Appendix S3). We finally tested for differences in beta diversity among the three 168 

successional stages by comparing the average of these dissimilarities among groups with ANOVA. 169 
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P-values were obtained by using a permutation procedure. Among the many available permutation 170 

procedures in ANOVA designs (Anderson and Ter Braak 2003; Anderson 2004), we used the 171 

simplest approach, which consists in permuting individual observation units among the three 172 

successional stages of the Rutor chronosequence. To this end, we reshuffled 17 32 10 59    173 

observed dissimilarities 
k

D  and 
kD   into random groups of 17, 32, and 10 units, respectively (9999 174 

permutations) and recalculated the F-values for each permutation. The same permutation procedure, 175 

was then used to perform a post-hoc pairwise t-test with Holm correction of the values of 
k

D  and 176 

kD   between the three successional stages. 177 

 178 

4.2. Results 179 

The results of the permutational ANOVA on the values of 
k

D  and 
kD   among the three 180 

successional stages were in both cases highly significant ( ( ) 71.56
k

F D , 0.001p   and 181 

( ) 18.91kF D   , 0.001p  ). For both dissimilarity coefficients 
k

D  and 
kD  , the within-group 182 

dispersion (or beta diversity) progressively decreased along the primary succession (Figure 1). As 183 

shown by Caccianiga et al. (2006) and Ricotta et al. (2016), the significantly higher beta diversity of 184 

the early-successional samples may be due to the random dispersal mechanisms that drive the 185 

colonization of the moraine ridges in the first successional stages (abiotic filter). In contrast, the 186 

lower beta diversity of the mid- and late successional samples is associated to a lower level of 187 

stochasticity in the colonization process of the later successional stages and hence to an increased 188 

level of functional homogeneity among different sampling units (biotic filter). 189 

Note that, since 
k

D  is essentially an average dissimilarity between pair of samples, while kD   is 190 

the dissimilarity between a given sample k and a complementary sample η that is obtained by 191 

pooling together the species relative abundances of all samples that are different from k, the values 192 

of kD   are generally lower than the values of 
k

D  (see e.g. Figure 1). 193 

 194 

5. Discussion 195 

In this paper we proposed two measures of functional beta diversity, 
N  and   which originate 196 

from Whittaker’s (1972) suggestion that beta can be summarized from a dissimilarity coefficient 197 

between pairs of samples (see also Chao and Chiu 2016). The proposed measures are tightly 198 

connected to each other to the point that both of them can be considered ‘variazioni sul tema’ of the 199 

same approach. In particular, kD   represents the dissimilarity of sample k from the pooled set of 200 

species in the 1N   samples that differ from k. Therefore, this index, together with the 201 
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corresponding beta diversity  , is directly related to the notion of originality (or distinctiveness, 202 

Pavoine et al. 2017). A sample is functionally original if its functional characteristics are rare in the 203 

pooled set of samples. The index is also related to the notion of the complementarity of a sample 204 

compared to a reference set of samples: complementarity being the gain in biodiversity units 205 

provided by adding an area (or sample) to a set of areas (samples) (Faith et al. 2004). These two 206 

notions (originality and complementarity) are used in conservation biology to identify sites with 207 

distinct species/functional/phylogenetic composition (and thus sites for which conservation actions 208 

should be a priority because of their distinct composition) (e.g. Mishler et al. 2014). 209 

From the perspective of conservation biology, Kosman et al. (2019) recently proposed an 210 

additional indicator for estimating functional differences among samples: functional uniqueness, or 211 

singularity. Based on this approach, a sample that is on average quite distant from most samples but 212 

functionally similar to another sample has a lower conservation priority compared to a sample with 213 

the same average distance to other samples but without a close neighbor in functional space. To 214 

summarize this property, Violle et al. (2017) calculated the minimum pairwise distance between a 215 

focal sample and all other samples, while the singularity measure of Kosman et al. (2019) is based 216 

on variation in distances of the focal sample to all other samples, not just the nearest neighbor in 217 

trait space. Nonetheless, irrespective of how singularity is calculated, it can be easily derived from 218 

the distances 
hkD  in Eq. 1. 219 

Unlike the vast majority of functional dissimilarity measures used in community ecology, the 220 

algorithmic index of Kosman (1996) and Gregorius et al. (2003), is not based on the excess of 221 

among-sample diversity compared to within-sample diversity (e.g. Chao et al. 2014; Chiu and Chao 222 

2014; Pavoine and Ricotta 2014). Therefore, it is very flexible as it can be based on any between-223 

species dissimilarity measure of choice without restrictions on their geometrical properties (see e.g. 224 

Pavoine and Ricotta 2014). Also, the index of Kosman (1996) and Gregorius et al. (2003) satisfies 225 

an important requisite for functional dissimilarity measures which requires that dissimilarity 226 

remains unchanged if a given species j is replaced by two functionally identical species with the 227 

same total abundance of j. For mathematical details, see Leinster and Cobbold (2012); Pavoine and 228 

Ricotta (2019). From an ecological viewpoint, this means that the measures that conform to this 229 

requisite summarize the functional dissimilarity among samples irrespective of the identity of the 230 

species that support these functions. Accordingly, this algorithmic dissimilarity is closer to the 231 

essence of functional dissimilarity than the measures that do not conform to this requisite. 232 

Regarding the test for differences in functional beta diversity among different groups of samples, 233 

the principle is the same as that of Anderson (2006). However, the values of 
k

D  and kD   are not 234 

influenced by the number of samples in each group. In addition, we do not need to calculate the 235 
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functional centroid of each group, and this renders the test much easier to perform, especially if the 236 

dissimilarities 
hkD  and 

kD   are not embeddable in Euclidean space without distortion (for details, 237 

see McArdle and Anderson 2001). 238 

Nonetheless, alongside the pros, there are also a few potential cons for this test: like for the 239 

Anderson test, the values of 
k

D  and 
kD   are not fully independent of each other. This is because, 240 

for a given sample k the quantity 
k

D  (
kD  ) is obtained by averaging all dissimilarities 

hkD  (all 241 

species relative abundances 
jhp ) over all 1N   samples that are different from k (see Eq. 3 and 4, 242 

respectively). This nonindependence may become relevant for small numbers of samples such that 243 

in the most critical situation of 2N , the values of 
k

D  and 
kD   are identical for both samples. 244 

Even more importantly, the randomization process associated to this test, while being 245 

statistically sound, has only little biological foundation. Beta diversity describes the spatial 246 

variability in species composition and is considered to be a key signature of a number of community 247 

assembly processes, such as dispersal, habitat filtering, intra- and inter-specific competition, or the 248 

species responses to environmental conditions (Bennet and Gilbert 2016). Therefore, while the 249 

permutation of the dissimilarities 
k

D  and 
kD   among sampling units has no clear biological 250 

meaning, a biologically sound null model should provide some indication on whether differences in 251 

beta diversity among groups of samples are actually related to deterministic assembly processes that 252 

deviate from stochastic patterns of species co-occurrence (Chase et al. 2011). This may be achieved, 253 

for example, by restricted permutation of species occurrences among the samples in each group. 254 

However, to construct an adequate randomization test that correctly addresses the ecological 255 

questions under study without confounding within group heterogeneity with between group 256 

heterogeneity, some additional work is needed. In the meantime, the tests described in this paper 257 

may represent an acceptable, though ecologically imperfect solution to the problem. 258 
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Figure 1. Box plots of the beta diversity components (dissimilarity coefficients) 
k

D  and 
kD   for the 367 

three successional stages of the Alpine vegetation of the Rutor glacier. ESS = early-successional 368 

stage; MSS = mid-successional stage; LSS = late-successional stage. Different letters a and b 369 

indicate significantly different distributions at p < 0.001 for 
k

D  and p < 0.01 for 
kD   370 

(permutational t-test with Holm adjustment for multiple tests based on 9999 randomizations). 371 

 372 

 373 

 374 

 375 

 376 

 377 


