N

N
N

HAL

open science

A dedicated approach for model composition traceability

Youness Laghouaouta, Adil Anwar, Mahmoud Nassar, Bernard Coulette

» To cite this version:

Youness Laghouaouta, Adil Anwar, Mahmoud Nassar, Bernard Coulette.
for model composition traceability. Information and Software Technology, 2017, 91, pp.142-159.

10.1016/j.infsof.2017.07.002 . hal-03463565

HAL Id: hal-03463565
https://hal.science/hal-03463565

Submitted on 2 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

A dedicated approach

https://hal.science/hal-03463565
https://hal.archives-ouvertes.fr

OATAO

Cipen Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

This is an author’s version published in:
http://oatao.univ-toulouse.fr/19116

Official URL:
https://www.sciencedirect.com/science/article/pii/S0950584917304494

DOl : https://doi.org/10.1016/j.infsof.2017.07.002

To cite this version: Laghouaouta, Y ouness and Anwar, Adil and
Nassar, Mahmoud and Coulette, Bernard A dedicated approach for model
composition traceability. (2017) International Journal of Information and
Software Technology, 91. 142-159. ISSN 0950-5849

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

A dedicated approach for model composition traceability

Youness Laghouaouta®*, Adil Anwar® Mahmoud Nassar? Bernard Coulette®

2IMS Team, ADMIR Laboratory, Rabat IT Center, ENSIAS, Mohammed V University in Rabat, Morocco
b SIWEB Team, EMI, Mohammed V University in Rabat, Morocco

CIRIT Laboratory, University of Toulouse, France

Keywords:

Model traceability

Model composition
Aspect-oriented modeling
Graph transformations
NFR framework

1. Introduction

ABSTRACT

Context: Software systems are often too complex to be expressed by a single model. Recognizing this, the
Model Driven Engineering (MDE) proposes multi-modeling approaches to allow developers to describe a
system from different perspectives. In this context, model composition has become important since the
combination of those partial representations is inevitable. Nevertheless, no approach has been defined for
keeping track of the composition effects, and this operation has been overshadowed by model transfor-
mations.

Objective: This paper presents a traceability approach dedicated to the composition of models. Two as-
pects of quality are considered: producing relevant traces; and dealing with scalability.

Method: The composition of softgoal trees has been selected to motivate the need for tracing the com-
position of models and to illustrate our approach. The base principle is to augment the specification
of the composition with the behavior needed to generate the expected composed model accompanied
with a trace model. This latter includes traces of the execution details. For that, traceability is consid-
ered as a crosscutting concern and encapsulated in an aspect. As part of the proposal, an Eclipse plug-
in has been implemented as a tool support. Besides, a comparative experiment has been conducted to
assess the traces relevance. We also used the regression method to validate the scalability of the tool
support.

Results: Our experiments show that the proposed approach allows generating relevant traces. In addition,
the obtained results reveal that tracing a growing number of elements causes an acceptable increase of
response time.

Conclusion: This paper presents a traceability approach dedicated to the composition of models and its
application to softgoal trees. The experiment results reveal that our proposal considers the composition
specificities for producing valuable traceability information while supporting scalability.

increasing significantly, traceability management helps mastering
this complexity by exposing intrinsic relationships and by record-

Traceability consists in linking the software development arti-
facts to each other through specific relationships [1]. Its practice is
recognized as an essential activity that enhances quality aspects of
the final solution (e.g. efficiency, maintainability, ...). For example,
functional coverage analysis can be achieved by exploring trace-
ability relationships between requirements and their realizations
[2]. Also, relations between design products and their implementa-
tions provide a support for optimizing maintenance tasks and an-
alyzing impacts of changes [3-5].

Moreover, the complexity of current systems makes it essential
to use a traceability support. The number of software artifacts is

* Corresponding author.
E-mail address: y.laghouaouta@umb5s.net.ma (Y. Laghouaouta).

http://dx.doi.org/10.1016/j.infsof.2017.07.002

ing the life cycle of each artifact. However, this legitimate need
for traceability practice and the various advantages it offers do not
confer a wide scale use. This is due, essentially, to the additional
cost of capturing and maintaining traceability links, and the diver-
gence of interests between the links creators and users [6].

The requirements engineering community was the first to in-
vest in traceability integration. Its purpose being to ensure that the
requirements are well covered by the final product, traceability is
presented as a support to such assessment. Thereafter, the trace-
ability benefits have attracted the interest of Model Driven Engi-
neering (MDE) researches. In this software engineering field, other
aspects of traceability management have emerged. Those aspects
depend in terms of traceability intentions (the users’ expectations
by its practice) and the nature of the elements to be traced (model

or non model artifacts). Essentially, two classes of traceability ap-
proaches were identified [7]: requirements traceability and model
transformations traceability.

Indeed, in a Model Driven Development (MDD) process, the fi-
nal system is obtained by transforming requirements towards so-
lutions that realize them. These solutions are not directly pro-
duced through one shot operation, but they result from sequen-
tial transformations applied to the primary models. Accordingly,
requirements traceability specifically addresses the management
of relationships between requirements and the corresponding so-
lutions. While model transformations traceability focuses on cap-
turing the effects of executing model transformations against the
managed models. Nevertheless, the model transformation opera-
tion does not constitute the only pillar of MDD. The composi-
tion operation is also of major importance as it supports multi-
modeling approaches. Indeed, to reduce the complexity of the
development activity, developers can describe the system by as
many models as they want. These partial representations will
be less complex than the global model. However, they need to
be composed to deal with model validation and synchroniza-
tion issues, and to better understand the interrelations between
them.

Nonetheless, the composition of models remains a complex ac-
tivity. In order to overcome this issue, traceability practice is pre-
sented as a significant solution. Indeed, traces expose the exact
effects of executing the composition and help developer to bet-
ter comprehend interrelations among managed models. Also, they
provide a basis for validating the composition (e.g. each element of
the composed model has to be connected with a traceability link
which justifies its existence) and evolving models when changes
occur (e.g. elements that are impacted by removing a given source
model element can be retrieved from analyzing traceability links
they are connected with). Taking full benefits of the aforemen-
tioned possible exploitations of traceability information implies the
capture of expressive and interesting traces. However, given that
existing transformation traceability supports disregard the compo-
sition features; their application to composition scenarios compro-
mises the expressiveness of traces and leads to the production of
traceability information almost worthless.

Recognizing this, the paper presents a traceability management
approach dedicated to the model composition operation. Our pro-
posal is applied to model compositions specified with a rule based
language. The principal is inspired from the work presented by
Jouault [8] and it consists in allowing the composition to generate
traces like other target elements. Hence, traces that expose the ef-
fects of applying the composition specification to the source mod-
els are constructed similarly and in parallel to the construction of
the composed model elements.

Fig. 1 illustrates this idea. The basic artifact of the traces gen-
eration process is a preexisting specification that allows generat-
ing the composed model. The principle is to augment this speci-
fication with the behavior it needs to generate traceability infor-
mation. After that, the execution of the resulting specification will
produce two outputs: the default composed model, and the corre-
sponding trace model. This latter conforms to a generic traceabil-
ity metamodel that provides the concepts needed to express the
expected traceability information. For implementing such mecha-
nism, we consider traceability as a crosscutting concern that is en-
capsulated in an aspect. The application of this aspect (by means
of a dedicated weaving process) weaves the traces generation pat-
terns into the primary composition specification.

In previous works [9,10], we presented the specialization of this
traces generation process for the Epsilon Merging Language EML
[11] and the ATLAS Transformation Language ATL [12]. We de-
scribed the corresponding traces generation patterns as well as
mechanisms to perform the weaving of these patterns into the

r — Left Model
! Composition Composed
: Specification Model
| 1 Right Model Traceability)
Iy 8 ‘Weaving |
] Process :
Ly
[Composition |
[specification with traces\— — — — — — — I
bee————— eneration pattern
f
conforms to Trace
L L) AR ™| Metamodel

Fig. 1. Global overview of the traces generation process.

composition specifications. The current paper focuses on the val-
idation of the proposed traceability approach. By using the Com-
poseTracer plugin (i.e. the tool support we implemented for the
proposed traceability approach) we realized different composition
scenarios. After that, we calculated and compared the values taken
by some appropriated metrics to validate the relevance of the gen-
erated traces. Also, we relied on a statistical method for analysis
(i.e. linear regression) to predict the variation of response time
depending on the number of elements to be traced. For conve-
nience, we summarize the specific contributions of this paper in
three points:

- Composition of softgoal refinement trees which has been se-
lected to demonstrate the need for a traceability approach ded-
icated to the model composition operation.

» Implementation details of the tool supporting the proposed
traceability approach.

« Results of an empirical study that aims to assess the traces rel-
evance and the scalability of the traceability support.

The remainder of this paper is structured as fol-
lows. In Section2, we introduce our traceability approach.
Section 3 presents an illustrative example that motivates the need
for a dedicated composition traceability approach. Section4 gives
a background to traceability management and lists a set of re-
quirements that have driven our approach. Section5 provides an
overview of our conceptual proposal. In Section 6, we explain im-
plementation details of the ComposeTracer plug-in which supports
the traces generation. Section7 presents the validation of the
proposal. Section 8 discusses our contributions to overcome some
traceability challenges. Section9 lists the related works. Finally,
Section 10 summaries this paper and presents future work.

2. Overview of the proposed traceability approach

The aim of this section is to provide a global overview of our
traceability approach dedicated to the composition of models. Ba-
sically, such approach for generating traces is applied on the com-
position of any type of software artifacts models (e.g. requirements
models, design models, implementation models). However, given
the type of traceability information produced by our approach and
especially its granularity level, the proposed approach is mainly
intended for analysts and designers. Implementation models are
excluded since maintaining their traceability requires fine grained
supports.

Recalling from Section1, the underlying idea is to allow the
composition specification to generate and record traces in an extra-
output model which accompanies the expected composed model.
For that, the composition specification (it consists of a set of

(activity Traceability Approach [E?_\] Traceability Approachu

Users

Analyst/Designer

expressiveness
enhancement?
Basic TGP] .
yes
1 Define no

Extended%t

Contextual Data

-_— 4

Configuration
System

2o |/2 Generate Traces)
=5 Composition 2.1 \
g & Rules _QLWeave 7) I g
|
| Composition Rules 1
with TGP |
s | Left Model | | | Composed Model |
=N W/
o Gt
§En 2(22 compose | I 7
£ B el
@ 8 Right Model Trace Model
2 ;
S| c
5|5 \ﬂ
O
S S Model-Graph 3 Visualize = -
g :>,. Correspondences Traces
(2]
S))
Selec_:t_ion 4 Configure Configured Trace
Conditions Traces Model

TGP: Traces Generation Patterns

—>

Control Flow ——> Object Flow

Fig. 2. Global overview of the proposed traceability approach.

composition rules that define relationships between the source
and composed elements) has to be augmented with the behavior
needed to produce the trace model.

Indeed, for a given composition language, some traces genera-
tion patterns have to be defined around its concepts. Essentially,
for each specific composition rule type, we define the correspond-
ing structure to be added to the rule instances for allowing them
to produce traces upon their applications. This implies an internal
maintenance of the tool supporting the proposed approach and the
new structure is independent of the involved metamodels (i.e. the
metamodels of the left, right and composed models). Hence, such
basic traces generation patterns can be added to various specifica-
tions expressed with the composition language.

On the other side, we offer the possibility to enhance the ex-
pressiveness of the produced traces by defining extended traces

generation patterns (see Fig.2). For a given composition scenario,
the analyst/designer can define the expressive data deemed inter-
esting to be captured (Action 1). In this case, the related gener-
ation patterns may exploit the concepts defined in the involved
metamodels (e.g. values taken by an attribute characterizing a
meta-class) which restrict the using scope of these patterns to the
specific composition scenario.

To allow the analyst/designer generating traces upon the ex-
ecution of a composition specification (Action 2), the basic and
extended traces generation patterns are weaved into the primary
composition rules (more details about the weaving mechanisms
are given in Sections 5.2 and 6.2.2). The application of the resulting
composition rules uses the composition engine (e.g. EML engine,
ATL engine ...)) and it produces the expected composed model ac-
companied with the trace model.

In some scenarios, the trace model may comprise a large
amount of details which compromises the examination of traces.
As a solution, our approach relies on a visualization system (cf.
Section 6.2.4) to represent the trace models like graphs. For that,
the analyst/designer has to specify correspondences between the
abstract elements defined in the involved metamodels and the
graphical representations they have to be displayed like (Action
3). The second solution is to limit the examination to a sub-set of
traces. In this case, the analyst/designer expresses some selection
conditions for the interesting traces (Action 4).

The ability to produce trace models, to visualize them, and
to extract interesting fragments are considered. The remaining
paramount activity is the exploitation of traceability information.
Indeed, trace models are subject to model management operations
to support diverse activities. Among those, we are specifically in-
terested in the model evolution and the verification of consistency.

3. Need for a dedicated model composition traceability
approach: a motivating example

The aim of this section is to motivate the need for a traceabil-
ity approach dedicated to the composition of models. The illustra-
tive example we have chosen is the composition of softgoal trees.
These latter allow representing refinements of Non-Functional Re-
quirements (NFRs) under the NFR framework [13]. We selected this
scenario because problems of handling separated softgoal trees are
clearly identified in the literature [14], and admitting that trace-
ability is a key factor to address them.

We will first provide a brief overview of NFR framework and
present the managed models. Thereafter, we will introduce the
specification that is used to perform the composition scenario.
Then, we will exploit the presented elements to illustrate to what
extend it is required to design a traceability approach which con-
siders the composition specificities.

3.1. lllustrative example

3.1.1. The NER framework

Non-functional requirements describe the customers’ expecta-
tions of how the system should meet functional requirements
[15] (e.g. performance, security, ...). Since the completion or failure
of those needs is tied to achieving software quality [15], their sat-
isfaction is very important to be held into account from the earlier
stages of the software development process. With a view to antici-
pating the consideration of such requirements, the NFR Framework
[13] provides a framework for thinking about ways to meet those
needs. It is a goal-oriented approach that aims to make available
to analysts a support for modeling non-functional requirements
making explicit their representation. Also an analytical approach is
described for graphical treatment of requirement satisfaction. This
latter is based on requirement refinement, interdependencies anal-
ysis, establishment of priorities, and the description of ways to sat-
isfy NFRs. Indeed, this framework considers the NFRs as goals to
be achieved (softgoals) and provides three levels of refinement for
these:

+ NFR softgoals: They represent well identified non-functional re-
quirements and express the first level of softgoals refinement.

« Operationalizing softgoals: They describe the ways in which their
parents’ goals can be met (methods, technical solutions, ac-
cepted functionalities, ...).

+ Claim softgoals: They allow marking priorities between softgoals
and introducing arguments to justify a given refinement.

The refinement of softgoals in more fine grained ones as well
as contributions that have the realization of certain softgoals on

others are represented by a goal tree called SIG (Softgoal Interde-
pendency Graph). This graph comprises a decomposition of soft-
goals using AND/OR relationships. Whereas the satisfaction degree
that has the realization of an operationalizing softgoal on its soft-
goal parent is expressed by a so called “satisficing” relationship.
Four types of contributions are generally used: “Make” if a softgoal
is completely fulfilled through its children (called offspring); “Help”
when meeting a softgoal positively satisficing another; the type
“Hurt” is used to describe cases where the realization of an opera-
tionalizing softgoal compromises its parent; and the type “Break”
expresses that the contribution is completely negative. All these
concepts were defined by Supakkul and Chung in a UML profile
[16]. In what follows, we present examples of SIG models that il-
lustrate the use of these concepts.

3.1.2. On the SIGs composition

The NFR framework aims to provide a detailed view on the
NFRs’ satisfaction. However, several SIGs are generally elaborated,
and they can express complementary viewpoints for some soft-
goals but contradictory for certain contributions. Therefore, the
need for composing them in an integrated and more expressive
view arises. Wei etal. [14] were interested in this composition sce-
nario to address the limitations of handling separated SIGs under
the NFR framework:

 The stakeholder knowledge limitation can cause potential con-
flicts in softgoals refinements. Therefore, a concentration on a
specific viewpoint leads to inconsistency and incompleteness
problems.

» The impact analysis of making a decision to consider or dis-
card a given softgoal. For example, a SIG can express a positive
contribution that has the realization of a given operationalizing
softgoal, but in another model, its realization can be marked as
preventing the achievement of more critical requirements.

The composition mechanism proposed by Wei etal. [14] sepa-
rates the source models in a base SIG and an extension SIG. Indeed,
the first model is enriched by refinements concerning its softgoals
which are expressed in the opposite model. We are interested in
this scenario as a basis for the illustration of our traceability ap-
proach for two main reasons. On the one hand, both the com-
position mechanism and the intended purposes are clearly identi-
fied. On the other hand, if the SIGs composition offers, certainly, a
means of addressing the aforementioned limitations, the recourse
to traceability presents a compelling solution for better manage
these issues.

The composition scenario operates on two SIGs that we have
designed. They express refinements for the “Security” and “Perfor-
mance” NFRs in the context of database management. The base
model presents a decomposition of security which combines the
management of data integrity and confidentiality (Fig. 3). Regarding
the second point, establishing a control over the use of database is
the principal aspect to be considered. This includes the control of
resources and access as well as keeping track of the relevant infor-
mation through logging techniques. As for data integrity, it is sat-
isfied by data validation to ensure data consistency and encryption
to affirm its non-alteration or destruction.

The refinement of security (Fig.3) will be enriched by the
knowledge expressed in the model depicted in Fig.4. Minimizing
the response time is one of the requirements to be considered in
order to enhance performance. By contrast, the logging technique
reduces the system performance as it supposes analyzing transac-
tions. For the same reason, the data validation, spread across the
two presented aspects (preserving referential integrity, and imple-
menting customized business checks through triggers), is an Op-
erationalizing softgoal to avoid. Finally, indexing is proposed as a
solution for minimizing the response time.

<2 NFR Softgoal
€ Operationalizing Softgoal

a0 &3 Claim Softgoal
Security +— AND
H- OR
&7 MAKE

Integrity Confidentiality

+ R < HELP
/ N S ~ BREAK
< HURT
DataValidation Encryption UserControl
++ 7\
—
Logging AccessTracing AccessControl

Fig. 3. Refinement of Security under the NFR Framework (base SIG).

Performance

.|_

ResponseTime |

/';/‘:7 * ?\ R\
¢ DataValidation
Logging Indexing *7 X

<O

Referentiallntegrity ~ Triggers

Fig. 4. Refinement of Performance under the NFR Framework (extension SIG).

Security
+ 7 i
ali i Confidentiality
DataValidation Ll A
+ A = ;
& Encryption UserControl
Referentiallntegrity Triggers ..

& B o
Logging AccessTracing

Fig. 5. Composed SIG.

AccessControl

The model resulting from the composition of these two SIGs is
depicted in Fig.5 (the specification used to automatically produce
the composed model will be detailed in the next section). Since
the composition intention is to enrich the base SIG, all the ele-
ments it includes (softgoals and contributions) were transcribed in
the composed model. Moreover, we can recognize that the soft-
goal “DataValidation” is extended with the knowledge available in
the second SIG. Indeed, the relevant refinement branch is now at-
tached to its equivalent softgoal in the target model.

It is obvious that the resulting refinement of the “Security” NFR
is more expressive in comparison with the base version. However,
this model does not express all effects of a decision-making for
the realization or the omission of a given softgoal on the whole
non-functional requirements. For example, the composed SIG out-
lines the positive contribution that has the logging technique on
database security. However, the softgoals refinement expressed in
the extension SIG stipulates that this technique compromises the
performance aspect. Against this lack of expressiveness, traceabil-
ity proves to be interesting. It allows analysts/designers to reason
about the effective contributions of softgoals belonging to the com-
posed SIG in their relations with those of partial SIGs. On the other

side, traceability will present a detailed view on the composi-
tion execution. This information is valuable for validating the com-
position and optimizing the models synchronization tasks when
changes occur.

3.1.3. The composition specification

We specify the composition of SIG models with the dedicated
merging language EML [11]. Furthermore, to simply express the
composition specification, the handled models will conform to a
metamodel defined around the SIG profile [16]. Our metamodel
depicted in Fig.6 expresses the key concepts needed to construct
the models presented in Section3.1.2. Indeed, it focuses on soft-
goals of types NFRSoftgoal and OperationalizingSoftgoal. As for the
stereotypes SIG, Proposition, Contribution, SatisficingCT and Decom-
positionCT which are defined in the SIG profile, we translated them
into their equivalent meta-classes. An exception is the Type stereo-
type that we have replaced with an attribute characterizing the
Softgoal meta-class.

A composition specification in the Epsilon platform [17] is di-
vided into two separate scripts: the comparison and the merging
modules. In Appendix A, we provide the script ECL (Epsilon Com-
parison Language) [17] that allows establishing correspondences
between the source SIG models. It operates only on softgoals (in-
stances of the NFRSoftgoal and OperationalzingSG metaclasses), and
does not compare contributions (instances of DecompositionCT and
SatisficingCT). After the comparison step, two categories of ele-
ments are identified: softgoals of the base model that have a cor-
responding in the opposite model, and propositions (softgoals and
contributions) with no corresponding.

In order to exploit these correspondences, the merging script
(written in EML) combines a set of declarative and imperative rules
(cf. Appendix A). The principle is to copy all elements of the base
model by following a declarative approach. Besides, each time a
pair of softgoals is merged, the operations which connect the ex-
tension branch to the constructed softgoal are triggered. Thus, the
TransformNFRSoftgoal and TransformOperationalizingSG rules trans-
form softgoals of the base SIG that have no corresponding in
the second one. And given that no comparison rule is applica-
ble for contributions, the TransformDecompositionCT and Transform-
SatisficingCT rules transcribe all contributions belonging to the
base SIG into the composed one. While the MergeNFRSoftgoal and
MergeOperationalizingSG rules allow merging corresponding soft-
goals and producing their target equivalents in the composed
SIG.

The EML language define an equivalent() operation that makes
possible to express rule calls. This operation plays a predominant
role in expressing the specification that composes the SIG mod-
els. It allows linking elements generated in a declarative way with
their successors (offsprings) produced by a same way (this is con-
sidered as an implicit rule call mechanism). However, if the equiv-
alent offspring is not identified (it was not generated by applying a
declarative rule), the equivalent() operation requests a suitable rule
(a lazy rule) to produce this equivalent (the rule call mechanism is
viewed as explicit). Besides, each time one of the lazy rules is acti-
vated to transform a given proposition from the extension SIG, the
equivalent() call triggers appropriate rules to produce the equiva-
lent offsprings. By this means, the merging of two softgoals triggers
operations which recopy, from the extension model, all elements
refining the composed softgoal.

3.2. Discussion

Model composition is not considered as a one block opera-
tion, but it is decomposed into a succession of steps including
the matching and merging phases. A composition specification de-
scribes elements that are required to perform such process. In

H sic
= name : EString

container /1

0.* propositions

<<enumeration> >
@

enumeration: > SatisficingKind
2 DecompositionKind | =-rmake
= and | - he[p
= or J = hurt
= break

{\J £l Proposition | _+
T el

[0.
0.*

offspring parent

£l Softgoal

S type : EString

{ H Contribution

} [\ A

|

B DecompositionCT

| |

£l satisficingCT |

_H NFRSoftgoal [l OperationalizingSG

= decomposition : DecompositionKind ‘ | © satisficing : SatisficingKind
L \.

J

Fig. 6. Abstract syntax for the SIG profile.

B TraceModel B ModelElement | .

o “right
targets

contexts

0. /
i /
b 4
containingContext| g Context /_parent

L *1 = name : Estring s | B Tracelink [q «

Y
0.\ contexts A

0.* child

attributes| H Contextattribute
0.* | @ value : EString
= name ! EString

H MergingLink || H TransformationLink

Fig. 7. Composition traceability metamodel.

general case, it defines model elements that should be composed
(what to compose), and the way wherein the composition should
take place (how to compose) [18,19]. As regards rule based lan-
guages like EML [20], the specification takes the form of a set of
composition rules. Each one defines a selection mechanism for el-
ements on which the rule should be applied. While the rule body
expresses the elementary operations aimed at achieving one of
the three possible behaviors (comparison, merging and transforma-
tion).

During the execution of a composition specification, its rules
are successively applied to the source elements matching their pa-
rameters in order to produce the composed model. We call the
application of a composition rule to certain source elements “rule
activation”. Then, keeping track of rule activations is essentially to
expose details on the composed model construction. Besides, the
specification includes two generative rules (merging and transfor-
mation rules) and then elements of the composed model can be
divided into two categories. For our illustrative example, the target
SIG (Fig.5) contains elements that originate from only one source
SIG (e.g. the “Integrity” softgoal), and those existing in both of
them (e.g. the “DataValidation” softgoal). Hence, the trace model
must not only express the logical relations existing among the
source and target models by capturing traceability links between
the constructed elements and the primary ones. Also, the related
information has to be categorized on merging and transformation
links to enhance traces reusability and expressiveness.

Besides, it is so important to expose details on steps to con-
struct the composed model. For example, the construction of
“DataValidation” precedes the “Triggers” softgoal which is added

for refining it. Such information can be presented by weaving a re-
lation between traceability links that keep track of each construc-
tion. This can be retrieve from rule calls requested during the com-
position. Two mechanisms for expressing rule calls are available:
explicit call that requests the activation of a specific composition
rule; and implicit call when a rule activation accesses an element
that was created by a previous activation. This latter mechanism is
generally allowed by predefined operations that enable the reso-
lution of the target equivalent of certain source elements (e.g. the
equivalent() operation in EML).

Lastly, in order to give more details about the composition, cer-
tain expressive data may be of interest and have to be added to the
trace model. As an example, a traceability link can be characterized
by the name of the composition rule that produced the referenced
target elements.

Nevertheless, existing traceability supports do not allow captur-
ing the composition execution details we just described. Regarding
the EML language, the effects of executing a specification are cap-
tured by an implicit traceability support [17,21]. Indeed, traces are
stored into a trace model that we can access through two mech-
anisms [17]: exporting the overall model, or exploring traces by
invoking the predefined equivalent() and equivalents() EML opera-
tions. However, although the implicit traceability metamodel de-
fines the two types of traceability links we seek to express (merg-
ing and transformation links), it does not provide means for nested
traces. Moreover, as for any implicit traceability support, the traces
generation mechanisms are not configurable to make it possible
to capture expressive data that are not defined by the traceability
metamodel.

As for explicit traceability supports, we did not find any solu-
tion dedicated to the composition of models. Indeed, existing sup-
ports focus on the model transformation operation and they dis-
regard, therefore, the composition specificities. For our illustrative
example (cf. Section 3.1), all correspondences between elements of
the source and composed SIGs will be captured as transforma-
tion links without any specialization. However, given that the com-
position rules express different behaviors (merge and transforma-
tion), such representation compromises the traces expressiveness
and reusability.

4. Traceability management for model composition

In this section, we present the main concepts related to trace-
ability management in MDE. Thereafter, we introduce a set of re-

quirements that must be met by a traceability approach dedicated
to the composition of models.

4.1. Background

Model driven engineering advocates the use of models to repre-
sent any artifact handled by the software development process. In
this vision, models are used throughout the development process
for the expression of requirements, the description of the designed
solution and its components, and constitute a testing support. But
this intensive use of the modeling technique and the plurality of
model representations raise several problems. Among those, model
consistency checking, maintenance issues, and model evolution are
a few examples. Thus, to deal with such issues, traceability man-
agement proves to be promising.

Model transformation traceability refers to the ability to man-
age relationships between elements handled by an MDD operation.
It exposes changes which took place on these model elements and
reveals how the source ones contribute in the production of the
target models. Thus, model elements represent the main develop-
ment artifacts to be traced, while transitions from source model
elements to target ones are captured by a so called “traceability
links”. A traceability link is identified as a relationship between
one or more source model elements and one or more target model
elements [22].

Dirvalos etal. [23] have identified two storage mechanisms for
traceability links: intra-model storage and external storage. In the
first case, traceability information is retained intrinsically in the
source and the target models. However, this approach has sev-
eral limitations concerning the links management [23]. In the sec-
ond approach, the traceability information is stored in a separate
model. This mechanism facilitates the management of traceability
links that are now contained in a dedicated model called “trace
model”. It may conform to a generic or specific traceability meta-
model.

The generic traceability metamodels [8,24] define the basic con-
cepts necessary to the expression of trace models regardless of
traceability scenarios (i.e. independently of specific intentions to
capture traces and types of elements to be traced). By this means,
portability of trace models is supported since all of them conform
to the same metamodel. But this is with the detriment of semantic
richness aspects. Indeed, the expression of certain information in-
teresting for a given scenario risks not to be allowed by the generic
metamodel. Moreover, illegitimate traceability links may be estab-
lished [23].

On the other hand, specific metamodels [23] allow the expres-
sion of semantically rich traceability links. For each scenario, a
suitable metamodel is defined taking into account the specifici-
ties of the managed models and particularly traceability inten-
tions. Essentially, these metamodels provide support for expressing
strongly typified links, and make it possible to define all relevant
information to be assigned to them. Nevertheless, the metamodels
diversity compromises their interoperability.

4.2. Requirements for a dedicated model composition traceability
approach

The scenarios to which our traceability approach is applicable
are compositions of heterogonous models. Such scenarios can be
specified with different languages (EML, ATL, Kermeta, ...) and in-
volve various types of models (SIG models, class diagrams, BPM
models, ...). So, the traceability approach must be generic to deal
with this diversity.

Designing specific traceability metamodels reduces the applica-
tion scope of our proposal since they will not cover all scenarios.
Indeed, within our approach the traceability data have to be stored

in a separate model that conforms to a generic traceability meta-
model. This is to deal with the generic aspect, to support the reuse
of traceability links and to reduce the links management effort. On
the other side, traceability information must be provided in a form
that facilitates its exploitation.

For our specific context, the traceability metamodel has to de-
fine two types of links depending on the possible composition
rule behaviors: merging links and transformation links (compar-
ison rules will not be traced). Moreover, these traceability links
should be related to each other in order to expose the rule calls
sequence (explicit and implicit calls). Accordingly, the traces gen-
eration mechanism has to address four main concerns:

1. Augment the composition specification with the behavior
needed to generate an extra output model (it corresponds to
the trace model).

2. For each rule activation, a traceability link is associated there-
with (with respect to the composition rule type). This link
keeps track of the activation by connecting the concerned
source elements with the target elements.

3. Each explicit call to a composition rule (cf. Section 3.2) is traced
by weaving a nesting relationship between the link correspond-
ing to the current activation (activation of the calling rule) and
the trace link produced by activating the called rule. Thus, the
traceability links nesting will be closely modeled on the rule
calls sequence.

4, Regarding an implicit call (cf. Section3.2), a nesting relation-
ship has to be established between the traceability link that
keeps track of the current activation and the link referencing
the source elements of which the resolution of target equiva-
lents is requested.

In addition, we have set four generic traceability requirements.
These latter were derived from an analysis of existing transforma-
tion traceability solutions:

5. The traces generation behavior must not be tangled with the
primary specification, so as to make it reusable.

6. We aim at reducing the effort to achieve traceability by adopt-
ing an automatic and scalable approach. Furthermore, consid-
ering the traceability intentions, the traces generation process
must be easily configured.

7. The structure of traces must provide an extensibility mecha-
nism. Essentially, this makes it possible to express configurable
trace links with regard to the traceability scenario and the
specifications of contributing models.

8. A visualization system must be provided to allow expressing
trace models in a human friendly presentation.

The following sections detail the core elements of our traceabil-
ity approach dedicated to the composition of models.

5. Conceptual proposal

In this section, we describe first the metamodel that defines
the traceability information to be captured (Section5.1), and then
we detail mechanisms that underpin the production of traces
(Section5.2).

The structuring of traceability information and the generation
mechanisms are designed in such a way to satisfy the aforemen-
tioned requirements. These latter comprises some requirements
that are specific to the model composition operation and generic
ones that were derived from the analysis of the main model trans-
formation traceability approaches. The first subset justifies the pur-
pose of our contribution and represents its novelty to consider the
model composition specificities. This refers to the elements to be
traced, the way traceability information has to be expressed, how

to generate the corresponding traces, and for what traces are cap-
tured. While satisfying the generic requirements allows capitaliz-
ing benefits of existing works in order to address the traceability
challenges [25].

5.1. Composition traceability metamodel

In the literature, several metamodels for model transformation
traceability have been proposed [8,26-28]. The base concept is
the traceability link (TraceLink), which expresses a relationship be-
tween a set of source model elements and their equivalents in the
resulting model. In the case of the model composition operation,
the traceability metamodel must define two types of links: merg-
ing links and transformation links (cf. Section4.2). Such categoriza-
tion is necessary to consider the composition specificities and to
produce expressive and interesting traces.

Thus, trace models produced by the proposed approach con-
form to our generic traceability metamodel depicted in Fig.7. The
TraceLink concept is specialized in MergingLink and Transformation-
Link. On one hand, this categorization allows the expression of the
composition specific correspondences in a native manner (an alter-
native is the allocation of additional information to the TraceLink
concept specifying the link type). On the other hand, it under-
pins the links reusability (e.g. matching correspondences can be
derived directly from merging links). Fig. 11 depicts the graph used
to visualize the trace model generated for the illustrative exam-
ple (cf. Section6.2.4). This graph was generated using the visual-
ization system which is combined to the traceability metamodel
in order to bring greater clarity to its instances (requirement 8, cf.
Section4.2).

A merging link connects two elements that have been com-
bined (they belong to the left and right models) with their corre-
spondent in the composed model. While transformation links keep
track of transitions of certain source model elements to the corre-
sponding target elements. We have to notice that transformation
links express many-to-many correspondences. Furthermore, an in-
stance of the TransformationLink concept may have no source ref-
erence (resp. target reference) to allow tracing the creation of new
elements (resp. the removal of elements).

We express rule calls by a nesting of traces. Indeed, a rule may
invoke another one, and therefore, the traceability link that corre-
sponds to the calling rule (specifically, to the rule activation) must
contain the link produced by the called rule. Such a structure can
be woven between traces through parent-child relationships. By
this means, a multi-scale character is assigned to trace models and
the user can explore traces at the granularity level he desires.

Besides, the Context concept provides another configuration
mechanism. It constitutes the extensibility support which is com-
bined with our generic traceability metamodel (requirement 7, cf.
Section4.2). Depending on the traceability scenario and the im-
plied metamodels, a context allows associating expressive infor-
mation to traceability links. Basically, the developer has to iden-
tify, first, the additional information deemed interesting to express
(e.g. the name of the rule that generates the traceability link, types
of elements that have been traced, the traceability intention, ...).
Thereafter, he defines the context attributes referencing this infor-
mation. Hence, a context can be viewed as a well thought out com-
bination of attributes, and it can be used to structure a set of traces
that share the same contextual information. We have to notice that
mechanisms for generating contexts were presented in a previous
work [10] and are not within the scope of this paper.

5.2. Traces generation mechanisms

This section presents how we can use the Aspect Oriented
Modeling (AOM) and graph transformations techniques to generate

traces in an automatic and configurable manner. We first introduce
the AOM principles and give a brief overview of graph transforma-
tions. After that, we detail the application of graph transformations
for implementing the traceability aspect weaving operation.

5.2.1. Generation techniques

We now describe the two techniques that underpin the gen-
eration of traceability information: aspect oriented modeling and
graph transformations.

Aspect oriented modeling

The Aspect Oriented Software Development (AOSD) [29] pro-
vides a paradigm for encapsulating crosscutting concerns of a sys-
tem (e.g. security, persistence, ...) in appropriate modules, called
aspects. This approach relies on the separation of crosscutting and
business concerns, and it aims mainly to control the system vari-
ability. Besides, AOSD proposes a reusable and configurable evolu-
tion support which does not impact the core system.

The use of models being reduced to communication and doc-
umentation purposes, AOSD was interested in the productive el-
ements: code artifacts. Thus, several supports for Aspect Ori-
ented Programming (AOP) were initially proposed (Aspect] [30],
AspectC++ [31], ...). Afterwards, the large use of models that pro-
vides MDE leads to widening the scope of practicing the aspect
oriented principles. In this perspective, the aspect definition is no
more restricted to programming artifacts, but it concerns any ar-
tifact produced in the upstream development phases. Given that
these development products are expressed by models, the related
aspects are likewise; they are called aspect models.

Thus, the aspect oriented modeling [32] allows the separation
of concerns in the earlier phases of the software development pro-
cess. It results from rising the abstraction levels that portable as-
pects can be defined. Indeed, their definition is independent from
any specific platform, and programming languages which are not
supporting aspect orientation could nevertheless be targeted. The
definition of an aspect comprises two elements: the model repre-
senting the crosscutting concern (the advice), and patterns used to
capture the application points (pointcuts). As for the generation of
the global model (expressing all concerns), it is based on the com-
position of the base model with the aspect model. This compo-
sition, usually called aspect weaving, implies two operations: the
detection of join points where the aspect will be applied; and the
replacement of the identified fragments with the new structure de-
fined in the advice.

Graph transformations

The application of graph transformations [33] relates to several
areas in computer science, such as: language definition, functional
programming, description of compilers [34], or model transforma-
tions within the scope of MDE [35]. This large use is justified by
the intuitive character of graph based representations, as well as
the maturity of the tool supports (AGG [36], VIATRA [37], ...)

A graph transformation consists in applying specific transfor-
mation rules to a source graph. Each transformation specifies the
modification of certain parts of this graph by another. The defini-
tion of this kind of replacement comprises two parts: a Left Hand
Side (LHS) part and a Right Hand Side (RHS) part. The LHS is a
graph which is used to determine the source graph’s fragments
concerned with the application of the rule, while the RHS graph
specifies the replacement structure.

Thus, a graph transformation rule p, also known as graph
rewriting rule, is a couple of graphs (LHS, RHS). Essentially, the ap-
plication of a rule p on a given graph G comes down [34]:

1. Detecting a subgraph of G isomorphic to the LHS part.

2. Removing elements (nodes and edges) of the subgraph captured
by the LHS part which are not present in the RHS part. The
resulting graph is called context graph.

ﬁ SequentialUnit Traceability aspect weaving

Declare trace model

Trace all merge rules
Trace links nesting Trace all transformation rules]

[" temp u.yda'ta] :@

Fig. 8. Graph transformations unit for weaving the traceability aspect.

3. Gluing the RHS graph into the context graph by following the
connection points (elements that have been captured by the
LHS but remain in the context graph).

5.2.2. Graph transformations for traceability aspect weaving

The aspect oriented principles are aligned perfectly with our
objective to generate traces by an automatic and configurable pro-
cess. The generation concern being encapsulated in a traceability
aspect, its application allows the developer to weave, automatically
and on demand, the patterns responsible of producing traces (re-
quirements 5 and 6, cf. Section4.2). Moreover, the aspect definition
can be decomposed into tasks specific modules making it possible
to configure the application of the global aspect (requirement 6, cf.
Section4.2).

Furthermore, we opted for an AOM approach instead of propos-
ing an AOP based solution that manipulates directly the concrete
composition specification. By focusing on the model level, we in-
tend to abstract the specification characteristics, including the con-
crete syntax nature (textual in EML [11], model based in ATL [12])
and its support for the aspect oriented paradigm (aspect oriented
language or not). This will make it possible to define a traceability
approach usable in different contexts, and it falls under our goal to
build a generic traceability aspect.

However, AOM is presented as a paradigm for encapsulating
aspect, at the model level, which requires a mechanism for the
implementation of the weaving operation. Two solutions are dis-
tinguished: the model composition operation [32] (composing the
model that corresponds to the specification to be traced with the
traceability aspect model), and the use of graph transformations
[38]. In our approach, we opted for the second solution as it sup-
ports a better configuration of the aspect application. This advan-
tage is due principally to the following characteristics:

» The modular expression of the traces generation concern by a
set of graph transformation rules.

» Monitoring the rules application through application condi-
tions, priorities, and scheduling rules into transformation units.

Moreover, graph transformations allow a perfect simulation of
the AOM principles, as follows:

+ The traceability aspect corresponds to a graph transformation
unit which classifies certain rules in a specific order.

» The LHS part specifies the points where the traceability aspect
should be applied (it plays the role of pointcut).

« Each RHS part defines the new structure that has to be inserted
into the application points captured by the corresponding LHS
graph (can be viewed as an advice).

The transformation unit depicted in Fig.8 gives an overview of
our traces generation weaving process. This latter addresses the
four specific concerns listed in Section4.2 (requirements 1 to 4). Its
first rule declares the trace model like an additional target model
of the composition scenario. Thereafter, the following two trans-
formation units are applied, in an iterative way, to trace all merge

and transformation rules. We recall that tracing one of these com-
position rules consists in augmenting it with the behavior needed
to produce an appropriate traceability link (merging link or trans-
formation link).

Thus, whenever a composition rule is applied, a traceability link
is generated to keep track of its activation. Those links are struc-
tured in accordance with the rule calls sequence. This is imple-
mented by two graph transformation rules which are encapsulated
in the “Trace links nesting” unit (Fig.8): its first rule corresponds
to the implicit call mechanism, while the second one is defined
for explicit calls. Finally, the remaining unit removes all the tem-
porary data we use to achieve the weaving operation and which
pollute the specification model. The specialization of this weaving
process for the EML [11] and ATL [12] languages is detailed in our
former works [9,10].

6. Technical solution
6.1. Overview of the tool support

In order to provide a proof of concept for our traceability ap-
proach, we have developed an eclipse plug-in called ComposeTracer
as a tool support. It allows generating and visualizing traces that
correspond to the execution of a composition specification. The
fact that EMF is a base for a multitude of MDD tools prompted
us to choose it as a development context of our plug-in. This is to
provide a natural integration of the proposed solution in the ba-
sic MDD framework. Hence, ComposeTracer can be installed in an
eclipse platform integrating EMF and having some dependencies
needed to run the building modules of our tool. These are repre-
sented by “gears” in Fig.9.

.

Serialization module: It gathers a set of parsers that are spe-
cific to the supported composition languages (we focus on EML
within this paper). The parser allows producing the model cor-
responding to the concrete specification to trace (textual in the
case of EML). In addition, it makes it possible to realize the re-
verse operation by transforming any model that conforms to
the EML abstract syntax to the executable specification (ex-
pressed by the EML concrete syntax).

Weaving module: It constitutes the core component of our
tool support, and it allows weaving the traceability aspect.
Essentially, this module is developed in the interest of ap-
plying the graph transformation units which were evoked in
Section5.2.2 on the model resulting from the serialization of
the composition specification.

Composition module: In order to generate traces, our approach
uses the same construction mechanisms that produce the com-
posed model. If the weaving module adds the behavior re-
lated to the traces generation concern, the resulting specifica-
tion must be executed to produce the expected models (the
composed model and the trace model).

Visualization module: The proposal of a visualization system
is a paramount requirement for traceability supports. Its ob-
jective is to improve the readability of trace models with a
view of reasoning about possible exploitations of those. The
proposed visualization module meets this need, and it is based
on a graph placement algorithm defined around our traceability
metamodel.

In what follows, we give some implementation details of each
module.

Composition
specification

I

Corresponding
model

]

A L,
v

Composition specification Serialization Corresponding model agreaccte;l;:‘l]tii
with traces generation code with traces generation patterns P g
Left model Trace model |—)»
A Visualization
v
Right model Models Composed model Trace graph
composition

Fig. 9. Global architecture of the ComposeTracer plug-in.

6.2. Implementation details

6.2.1. Serialization module

The current versions of the languages provided by the Epsilon
platform [20] are not based on EMF metamodels. They rely on
ANTLR! grammars to produce lexical and syntactic analyzers for
converting textual specifications to Abstract Syntax Trees (ASTs).
Consequently, the Epsilon platform does not include any serializa-
tion tool for concrete specifications towards models. Nonetheless,
it proposes, in its official documentation [20], metamodels associ-
ated with some of the supported languages (EOL, ETL, EML, etc.).
These proposals will constitute a basis for the definition of meta-
model based languages pending a future amendment of runtimes
manipulating ASTs to the use of model elements.

Knowing this, we were constrained to implement a serialization
tool for EML. The proposed solution has been developed through
the EMFText? project while relying on the abstract syntax defined
for the EML language [20]. EMFText is a tool to describe correspon-
dences between elements of an abstract syntax expressed by an
Ecore metamodel and their equivalents in a concrete syntax speci-
fied using a formal grammar. It provides a complete infrastructure
associated with the language, including parsers and integrated ed-
itors in the Eclipse platform.

For each concept defined in the EML abstract syntax, an EMF-
Text rule is defined. The latter specifies the textual representation
in which an instance of the concept will appear. This syntax is
derived from the EML grammar, and it is described in a text file
based on EBNF [39].

Once the EML metamodel and the EMFText rules associated
therewith are specified, the corresponding serialization infrastruc-
ture can be automatically generated. Indeed, EMFText integrates a
code generation module that derives a set of plug-ins. Of these, we
were interested in the components responsible of loading and sav-
ing EML models. We use them to implement two operations that
serve as text-to-model and model-to-text transformations and al-
low serializing EML specifications to EMF models and back again.

6.2.2. Weaving module

In Section 5.2.2, we presented the weaving process of our trace-
ability aspect. We recall that specialization details of this process
for the EML language are not within the scope of this paper and

T ANother Tool for Language Recognition http://www.antlr.org/.
2 http://www.emftext.org/index.php/EMFText.

rule TransformNFRSoftgoal

transform 1 : ml!NFRSoftgoal

to t : m3!NFRSoftgoal , tr : trace!TransformationLink

{

t.type = 1l.type;

t.container = sig;

traceModel.links.add (tr);

tr.left.add(1);

tr.targets.add(t);

resolvedElt = l.offspring.equivalent();

t.offspring = resolvedElt.select(it | not it.isKindOf (
trace!TraceLink));

tr.child.addAll(resolvedElt.select (it | it.isKindOf (trace
!'TraceLink)));

HOW©o0 IO U W

e

—
1S}

-
w
-

Listing 1. Example of a composition rule with traces generation code.

they were already presented in a previous work [9]. Basically, the
traces generation behavior is expressed by a set of graph trans-
formations implemented with Henshin [40] and scheduled in a se-
quential unit. The latter can be applied to the model corresponding
to a EML specification.

Listing 1 illustrates an excerpt of the specification resulting from
the application of our weaving process on the composition mod-
ule that is presented in Section3.1.3. Given that the TransformN-
FRSoftgoal rule expresses a transformation behavior, a traceability
parameter of type TransformationLink is declared as another target
parameter (Listing1, line 3). Besides, the traceability information
is assigned to it by initializing the left and target properties with
references of the source and target elements (they correspond to
values that take the 1 and t parameters while a given rule activa-
tion).

In addition, the call to the equivalent() operation has been cap-
tured and replaced with the fragment that divides its return into
trace model elements and default target elements (Listing 1, lines
10-12). The first sub-set is used to perform the original call to
the equivalent() operation (Listing 1, line 11), while traceability ele-
ments are assigned as children of the current trace link (Listing 1,
line 12). By this means, we nest traces depending on the rule calls
sequence.

6.2.3. Composition module

Recalling from Section3.1.3, a composition specification is ex-
pressed in the Epsilon platform by two separated scripts: the com-
parison module, and the merging module. Likewise, the execution
follows the typical composition process and proceeds in two steps:
the matching phase, and the composition (merging) phase. Indeed,
correspondences are first identified and captured in an implicit
traceability model. This latter is then exploited, during the execu-

-
B " trace generator

Trace Generation for EML
Composite Language: () ATL @ EML

Merging Module:

Matching Module:

Left Sources

Model:

Alias: ml

Right Sources

Model:

Alias: ma2

|

]I Target Sources
Model:
Metamodel:

Alias: m3

Dveclipsel\workspace\ISTExamplelspecimerge.eml

D:heclipse\workspace\ISTExample\spechcompare.ecl

D:veclipseworkspacellSTExamplelhmodelshsigl.model

Metamodel: Di\eclipse\workspace\ISTExamplelmetamodelsiinfr.ecore

D:veclipselworkspace\lSTExamplelhmodelshsig2.model

Metamodel: Dieclipse\workspace\ISTExamplelmetamodelsinfr.ecore

DaheclipsehworkspacellSTExamplelmodelshsig2.model

D:heclipselworkspace\ISTExampleimetamodelsinfr.ecore

Trace Model: Dieclipselworkspace\ISTExamplehmodelsitrace.model

Workspace...

Workspace...

Workspace...

Workspace...

Workspace...

Workspace...

Workspace...

Workspace...

Workspace...

m

(o] [Revent)

]
©
=
=

~+

Fig. 10. GUI to launch an EML specification.

tion of the merging module, to switch the application of declara-
tive rules and to resolve target equivalents.

In order to programmatically execute these two modules, we
reuse the EspilonStandalone® class that includes a set of facilities
for launching Epsilon scripts. However, some operations need to
be redefined to specify the launch parameters and target the ap-
propriate engine for our particular context (the EML and ECL en-
gines). Also, some properties concerning the normal composition
scenario (path of the composition module, source models, storage
location for the composed model, implied metamodels packages,
etc.) as well as the storage location for the trace model are re-
quired. A suitable view allows users to set these arguments needed
to perform the composition. This plug-in interface appears when
launching the traces generation process (see Fig.10).

3 http://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.
epsilon.examples.standalone.

6.2.4. Visualization module

The basic building block of our visualization module is a
model-to-text transformation that manipulates the implied mod-
els (source, composed, and trace models) for the purpose of pro-
ducing a single text script written in DOT [41]. The latter is then
interpreted by the placement algorithm of Graphviz [42] to draw
the corresponding graph. The aim is to provide a human friendly
representation for trace models that makes easier their examina-
tion.

The proposed model-to-text transformation can be applied to
any trace model produced by our plug-in as it ignores the defini-
tion of the implied metamodels (to which conform the source and
composed models). Essentially, traceability links are represented by
nodes whose identifiers are used for the construction of possible
edges connected with (traceability nesting relationships in which
they participate). In addition, for each concept defined in our trace-
ability metamodel, we match a characterizing display mode:

~

Base SIG Extension SIG

Performance

Composed SIG

TraceModel ...+

; .

ResponseTime

+

+ +

Referentialintegrity Triggers

Legend:
@ Transformation link

-+

&.Logging

@ Merging link
> Nesting relationship

Fig. 11. Trace model corresponding to the SIGs composition scenario.

 The trace model is represented by a subgraph comprising all its
traceability elements (traceability links, nesting relationships,
contexts).

Merging links correspond to yellow nodes labeled with ‘M’.
Transformation links are represented by a similar mode, except
for the prefix ‘T" which characterizes them.

A traceability nesting relationship corresponds to a solid line
connecting the parent link to its child. A diamond is added to
the edge-end referencing the parent link.

The left, right, and target references of traceability links are rep-
resented by dashed lines.

Any element belonging to the source or composed models is
represented by a simple node labeled with the name of its clas-
sifier and the value taken by the first property. Furthermore,
the corresponding node is arranged inside the subgraph repre-
senting the container model.

Regarding the last point, we chose to represent all elements of
the handled models instead of being limited to those referenced
by the captured traces. Although this choice increases dimensions
of the resulting graph, but allows having a better visibility on the
execution details and reasoning about any inconsistency or incom-
pleteness.

Besides, the generic character of our visualization system com-
promises the expressiveness of the overall representation. Indeed,
the display mode associated with a managed model is too simple
to expose all information it contains and to reveal the intrinsic log-
ical relations. The ideal would be to set up the system in order to
represent each model by its concrete syntax. As for the illustrative
example (cf. Section 3.1), we have configured our visualization sys-
tem for the SIG profile. The trace model generated for this scenario
is depicted in Fig. 11.

7. Validation

After presenting the implementation details, we introduce in
this section a set of points for the validation of the proposed ap-
proach. The main objectives are:

» To assess the relevance of the generated traces by means of
some appropriate metrics (Traces relevance).

« To discuss the extent to which our approach fits to the increase
of elements to be traced (Scalability).

Selection of application examples

v

Design of metrics

|

Execution

|

Data collection

v

Analysis of results

Fig. 12. Validation process.

The validation follows a process inspired from Vara etal. [28].
It includes five steps: selection of application examples, design of
metrics, execution, data collection and analysis of results (Fig. 12).

7.1. Traces relevance

7.1.1. Selection of application examples
In order to assess the traces relevance, three composition sce-
narios were selected:

» Scenario 1: Perform the composition scenario presented as an
illustrative example (cf. Section3.1).

- Scenario 2: Employ the specification we introduced in
Section 3.1.3 to realize the composition scenario presented by
Wei etal. [14]. The selected SIG models are the decompositions
of “Friendliness” (composed version) and “Security”.

- Scenario 3: Use the integrating live reports example which
is described in the Interactive Television Applications (TVApp)
case study”. The selected scenario consists in integrating a live
report in the ChampionsLeague TVApp model. The composition
specification as well as the involved models can be downloaded
from the Epsilon GIT.

On the one side, scenarios 1 and 2 were selected to evaluate
changes in traces relevance following the increase of models size.
On the other side, the last scenario allows us to apply our trace-
ability approach to a pre-existing specification.

7.1.2. Design of metrics

The relevance of a trace model reflects the extent to which in-
formation it includes is complete and does not present any un-
wanted information (noise). This qualitative aspect is very present
in the information retrieval field. In our particular context, two re-
search questions were posed to assess the traces relevance:

1. Does the trace model keep track of all rule activations con-
structing the composed model?

2. Are all composition rule calls traced by traceability nesting re-
lationships?

Accordingly, we have defined two metrics to assess the rele-
vance of a trace model. The first one is related to the traceability
of the Composed Model Construction (CMC). Each element of the
composed model must be connected to a traceability link which
keeps track of its construction. The CMC metric provides an idea
about the percentage of target elements that are traced. It com-
putes the ratio between the number of traceability links and the
number of the composed model elements. While the second met-
ric addresses the Composed Model Structuring (CMS) by providing
the rate of tracing rule calls. The idea is that each relation between
two target elements is woven through a rule call. This latter is per-
formed between the two rule activations which produce the com-
posed elements connected with the relation. The CMS computes
the ratio between the numbers of traceability nesting relationships
and the composed model relations.

Definition 1.

|Ler|
CMC =

[Nwm, |
Definition 2.

|Rer|
CMS =

[Em, |

These metrics are defined based on the following notations. A
trace model (Mgqce) is viewed as a set of traceability links (L)
and a set of traceability nesting relationships (Rs). Furthermore, a
model is generally defined by a graph [43]. We draw on this defi-
nition, and we note by:

* Nj.: All elements (nodes) of a composed model M (e.g. classes,
attributes, softgoals, etc.).

« Ep: All relations (arcs) of a composed model M. They describe
nodes connections (e.g. an attribute belonging to its owned
class).

For the metrics CMC and CMS, a value greater than 1 reflects
that the trace model comprises unwanted information. While a
value less than 1 can determine a possible incompleteness. Nev-
ertheless, the metrics CMC and CMS do not constitute, alone, an
undeniable base for relevance assessment. For example, a trans-
formation rule may construct two target elements upon a single

4 http://www.dsmforum.org/events/MDD-TIFO7/InteractiveTVApps.pdf.

Table 1
Collected data for the selected application examples.

[Nm.| |Em.| Lol IRel INm,| [Nu.|
Scenario1 20 37 19 18 19 00
Scenario 2 31 63 30 31 30 00
Scenario 3 20 19 19 18 19 00
Table 2
Relevance metrics for the selected application ex-
amples.

CMC CMS CMG CMC.

Scenario 1 0,95 0,48 0,95 00
Scenario 2 0,96 0,49 0,96 00
Scenario3 095 094 0,95 00

activation. In this case, the corresponding trace model may be rel-
evant while giving a value less than 1 for CMC (the rule activation
will be captured by a single traceability link). Thus, we define, in
addition to the metrics CMC and CMS, two other metrics that fo-
cus on the coverage rate of target elements by traces. The first one
(CMC,) presents the rate of the composed model elements whose
construction is captured by one traceability link (|NMCl), while the
second metric (CMC+) concerns those related to multiple traceabil-
ity links (|Ny,, |)-

Definition 3.

[Nn, |

CMC; = L
" N
Definition 4.
[Ny

CMC, = &
[N, |

7.1.3. Execution

We started the execution step by developing the specification
we used to composed SIG models (cf. Section3.1.3) and creating
the managed models corresponding to scenarios 1 and 2. For sce-
nario 3, both the composition specification and the involved mod-
els were downloaded from the Epsilon Git. Thereafter, using an
eclipse instance, we launch these specifications using our Compose-
Tracer plugin in order to produce the composed and trace models.

7.14. Data collection

To be able to measure the defined relevance metrics, we calcu-
lated the total number of elements (|Ny,|) and relations (|Ey,|)
belonging to the composed model. Then, we examined the gener-
ated trace model to determine the number of the traceability links
(|Lgr|), the number of the traceability nesting relationships (|Ry|),
and the numbers of the composed model elements that are refer-
enced by only one traceability link (’NMEl |) and those connected

with more than one traceability link (’NME* ’). The following table
summarizes the obtained results (cf. Table 1).

7.1.5. Analysis of results
The results analysis is in accordance with the questions posed
during the design step:

1. Does the trace model keep track of all rule activations con-
structing the composed model?

We remark that for these scenarios, the construction of more
than 95% of the target elements were captured by trace models
(cf. Table2, Column 3). Besides, given that all values of CMC+ are
zero, we can deduce that the generated trace models do not in-
clude redundant links (cf. Table 2, Column 4). Moreover, values of
the metric CMC are less than 1 (cf. Table2, Column 1), and they

do not imply the existence of noise in the generated trace models.
Indeed, the obtained values are very close to 1.

2. Are all composition rule calls traced by traceability nesting re-
lationships?

The results summarized in Table2 show that for the two first
scenarios, traceability nesting relationships keep track of more
than 48% of rule calls (cf. Table2, Column 2). An exception is the
third scenario for which a very high value is associated to the met-
ric CMS.

As for scenarios 1 and 2 that exploit the same specification,
values of the four relevance metrics are very close although these
scenarios involved models of different sizes. This therefore shows
a dependence between the traces generation mechanisms and the
style used to express the specification. Indeed, following a thor-
ough analysis of the selected specifications, we have drawn the fol-
lowing conclusions:

- It is advisable to define a specific composition/transformation
rule for each target metamodel classifier. This rule will con-
struct exclusively the classifier instances.

The metric CMS is very dependent on the use of rule call mech-
anisms that are provided by the language (e.g. the equivalent()
and equivalents() operations in Epsilon task languages [20]). We
encourage, therefore, the use of these operations instead of di-
rectly weaving structural relationships between target model
elements.

7.2. Scalability

7.2.1. Selection of application examples

We have chosen five composition scenarios to assess the scala-
bility of our traceability support. These scenarios apply the spec-
ification that allows composing SIGs (cf. Section3.1.3) to various
models of different sizes.

7.2.2. Design of metrics

Scalability is one of the most crucial aspects to be covered by a
software solution. Its importance is being accentuated as the traces
generation concern remains secondary to the production of the
composed model. Therefore, delay in response should not be felt
by the developer.

For evaluating scalability of our traceability support, we relies
on the assessment of the response time. It measures the difference
between the time of generating the composed model alone (Ty,)
and the time that takes the realization of the same composition
scenario while producing a trace model (Ty,1um,,,.)- This difference
(Atrace) provides an overview of the time required for weaving the
traceability aspect and constructing the trace model.

7.2.3. Execution

The first step was to create the SIG models that are involved
in the selected scenarios. For each case, we used our Compose-
Tracer plug-in to perform the composition scenario with and with-
out trace generation. We ran our experiments on the same eclipse
instance and the JVM monitor was chosen for measuring the exe-
cution time.

7.2.4. Data collection

For each composition scenario, we measured the time required
for generation the composed model alone ((Ty.)), and execution
delay for executing the same scenario while enabling the produc-
tion of traces ((Tyc+m,,q,))- We noted also the number of the com-
posed model elements ((|M|). The following table summarizes the
obtained results (cf. Table 3).

Table 3
Atrace to support traces generation (milliseconds).

[Mc| Ty, (ms) T+ Mypeee (MS) Atrace(ms)
09 47 218 171
18 64 141 177
29 72 250 178
65 78 265 187
104 86 281 195
200
195 -9
190 /
185
¢ Atrace

——Linéaire (Atrace)

180
’/’/
175

170 —2
165 T T T T T 1
0 20 40 60 80 100 120
Fig. 13. A scatter plot of the collected data.
27 °
1 -
L 4
) —e i ; ; 1
=
& , 0 20 40 60 80 100% 120
-2 4 ®
-3 J
M|
Fig. 14. Residual plot.
Table 4
Results of univariate linear regression.
Coefficient 0,237
Constant 170,9
p-value 0,001
R? 0,976

7.2.5. Analysis of results

In this section, we describe the statistical analyses we per-
formed to discover the relationship between the values of Agrce
and the number of the composed model elements (|Mc|). We em-
ploy a univariate regression method as we have determined one
explanatory variable (i.e. number of the composed model ele-
ments) and the dependent variable is Arqce.

The Fig. 13 presents original values for both variables |[M,| and
Apace as well as the corresponding regression line which reveals
a linear distribution. Also, the points in the residual plot are ran-
domly dispersed around the horizontal axis (see Fig.14). Accord-
ingly, the regression line seems to be quite a good fit to the data.

So we applied a univariate linear regression analysis (see
Table 4). For the value of coefficient of determination we obtained
R2= 0.976 which means that 97% of a whole variance is explained
by the model. Besides, the correlation is significant (p-value <
0.005) and it is very close to 1, which means there is a strong
linear association between |M,| and Agqee. Accordingly, we can af-
firm that our traceability support fits to the increase of elements
to be traced in comparison with other nonlinear regression models
(power or exponential regression). Indeed, the delay for producing
traces remains propositional to composed model size.

Configuration Portability

Semantic Richness Traces Reuse

| Scope | Patterns Reuse

|| Visualization System | Genericity

Fig. 15. Refinement of configuration and portability challenges.

8. Discussion

In what precedes, we presented the implementation of the
ComposeTracer plug-in. This prototype served as a support to the
realization of some experiments that have led to validate our ap-
proach. Indeed, we could assess the relevance of the generated
traces and the scalability of the traceability support.

In addition to scalability, we are also interested in two other
significant traceability challenges [25]: configuration and portabil-
ity. But since we have not validated experimentally the satisfac-
tion of these last criteria, this section discusses the contribution
of our approach to overcome them. For these challenges, we have
relied on descriptions proposed by the members of the center of
excellence for software traceability [25] while providing definitions
appropriated to the context of model transformations. Indeed, we
have established a specific set of criteria organized into the re-
tained challenges (Fig.15):

+ Configuration: It specifies the ability of the approach to cap-
ture and to provide valuable information for a given traceability
scenario while supporting changes in user needs. In our analy-
sis, we link this challenge to three sub-criteria. The first is the
extent to which the approach captures any expressive traceabil-
ity information (semantic richness). The second aspect identi-
fies the possibility of choosing a subset of elements to trace
(the scope configuration). The last criterion is related to the ex-
istence of a visualization system that makes explicit the repre-
sentation of the trace model.

Portability: It considers two types of reusable information: the
trace model and the traces generation patterns. Indeed, the way
the traceability links are structured and stored directly affects
their reusability. In addition, the generation patterns can be
loosely coupled to a specification or strongly dependent of it.
The last portability aspect to consider is the applicability of the
approach to various composition/transformation supports (the
generic aspect).

8.1. Configuration

The generated trace model has the advantage of being both rel-
evant and semantically rich (it is possible to capture any informa-
tion deemed useful by the developer via the Context concept). In
addition, it does not only keep track of correspondences between
the source and target model elements, but traceability nesting rela-
tionships are woven between traceability links to expose the rules’
activations sequence. However, we noted in Section 7.1.5 that many
nesting relationships escape the traceability support (an average of
37% for the realized experiments). This is due to the traces genera-
tion mechanism which exclusively captures the rule calls apparent

in the specification. As a solution, an adaptation is envisaged for
our traceability support to analyze other traceable operations, and
therefore generate more fine grained traces.

The selection of model elements to be traced (the scope config-
uration) is another configuration aspect that has guided, from the
outset, the design of our traceability approach. Indeed, the choice
of graph transformations to implement the traceability aspect is
based on their modularity and application control. Accordingly, the
weaving of the traceability aspect can, theoretically, be parameter-
ized according to the traceability scenario. For example, we can
only keep track of the merging rules’ activations by restricting the
application of the aspect to the related transformation unit.

Also, we provide support for a post-generation configuration.
Indeed, our traceability support allows generating a trace model
that covers all possible configurations. Thereafter, the developer
can choose a sub-set of interesting traces by specifying a selection
condition for them (e.g. to be a merging link, to reference a spe-
cific model element type, etc.). This condition constitutes the input
of a reduction algorithm that we have implemented to extract the
interesting links. Besides, the visualization system represents the
selected ones in a reduced graph.

8.2. Portability

The generated traces are stored in an external model that con-
forms to a generic traceability metamodel. By this means, trace-
ability information is reusable in different contexts. In addition,
trace models can be handled by generic transformations without
requiring to be adjusted (e.g. the transformation that generates the
DOT script used to visualize traces).

On the other side, the aspect-oriented modeling techniques al-
low us to encapsulate the traces generation concern in reusable
patterns. Indeed, the graph transformations unit that implements
the traceability aspect [9] is applicable to any composition specifi-
cation written in EML. Moreover, even composition languages that
do not support the aspect orientation can be targeted through the
completion of the weaving operation in a high-level of abstraction.

However, this portability that characterizes the traces genera-
tion support remains dependent of the language used to express
the composition. Indeed, the traceability weaving unit is defined
around the concepts that propose this latter. Given this limitation,
we are examining another solution which relies on a generic com-
position language to accomplish the weaving [44].

9. Related work

This section briefly presents related works that fit under the
transformation traceability field. We recall that the expressiveness
of the generated traces is compromised because existing works
consider the composition of models as a specific case of model
transformations. Indeed, no relevant concept is defined for the
merging behavior. The workaround is the definition of the corre-
sponding expressive data for specifying the link type, but this sup-
poses that the traceability support provides a extensibility mecha-
nism for the structuring of traces. On the other side, the flexibility
of the traces generation support determines if such extensibility is
possible (it is possible to specify how to capture the new data), and
its portability expands the application scope. The overview that
follows focuses on techniques used to build existing traces genera-
tion supports.

The work proposed by Jouault [8] is the basis for several ap-
proaches addressing the transformation traceability management.
The main idea is to derive traceability information from inter-
metamodels relationships that are expressed in the transformation
specification. For that end, the fragments responsible of generat-
ing traces are included in the specification. In addition, this lat-

ter is viewed as an artifact that can be manipulated automatically
for achieving this concern. Indeed, the proposed solution uses a
Higher-Order Transformation (HOT) that can be applied to trace
ATL transformations.

Another group of traceability approaches rely on aspect-
oriented principles to address traceability management issues (es-
sentially, the diversity of transformation languages and the imper-
ative character of some of them). The principle is to consider the
traces generation as a crosscutting concern that has to be encap-
sulated in a traceability aspect. Just as the use of HOTs, the appli-
cation of this aspect allows weaving the traces generation patterns
into the transformation specification. Besides, the main advantage
of adopting such approach is to be able to configure the aspect
application. Within this scope, Amar etal. [26] propose an AOP
based approach to trace Java/EMF transformations. And Grammel
and kastenholz [27] define a support to extend various transfor-
mation languages (i.e. QVT®> and 0AW®) with a traceability mecha-
nism. The authors describe two mechanisms for generating traces:
use AOP to address this task in the absence of an implicit trace-
ability support, and transform the implicit trace model to conform
to their generic metamodel otherwise.

The proposal of Grammel and kastenholz [27] is presented as a
generic traceability support that allows augmenting different trans-
formation languages with a traceability mechanism. However, it
can be viewed as a gathering of various language specific trace-
ability supports. On the other side, the work presented by Vara
etal. [28] is obviously distinguished by its generic character. In-
deed, the extraction of traceability relationships is implemented by
a HOT operating on the high-level specifications of transformations
that are independent from a given language. These specifications
are then transformed to produce low-level specifications and the
executable modules afterwards. The execution of these latter al-
lows generating target models accompanied with the correspond-
ing trace models. However, such approach is applicable when de-
veloping new transformations and it cannot be used to trace exist-
ing ones.

Furthermore, several traceability approaches based on TGGs
(Triple Graph Grammars) [45] were proposed in the literature (e.g.
[46,47]). TGGs provide means for specifying graph transformations
that allow implicit generation of traceability links. Indeed, a TGG
rule consists of a source graph, a target graph and a correspon-
dence graph. This latter can be viewed as a set of traceability links
between corresponding elements belonging to the source and tar-
get graphs [48].

Our proposal takes advantages of existing approaches to provide
an automatic, configurable and portable traces generation support.
Indeed, a HOT allows handling abstract specifications to insert the
traces generation patterns. However, it constitutes a one block and
does not present ways to configure its application. Against this is-
sue, the aspect definition is characterized by its modularity, but
the use of AOP is restricted to textual specifications expressed on
languages that primary support the aspect orientation. Accordingly,
instead of adopting an AOP based approach, we have chosen to
rely on an AOM solution implemented by graph transformations.
By this means, any language could be targeted regardless its fea-
tures (concrete syntax nature, its support for aspect orientation,
etc.).

10. Conclusion and future work

Although traceability management issues in MDE are widely
studied, and that many related contributions have been proposed,

5 Query View Transformation. http://www.omg.org/spec/QVT]/.
6 openArchitectureWare. http://www.openarchitectureware.org/.

we did not find any traceability solution dedicated to the model
composition operation. The only possible option would be to ap-
ply the existing transformation traceability supports to trace com-
position scenarios. Nevertheless, exploiting such solutions leads to
expressiveness and reusability problems.

To address these limitations, our approach can automatically
generate traces of a rule based composition (the EML and ATL lan-
guages are currently supported). The principle is to transform the
composition specification in a version designed to produce, in ad-
dition to the expected composed model, a trace model. For that,
the generation of this extra output is encapsulated in a traceability
aspect implemented by a set of graph transformation rules. As for
the traces structuring, we have defined a traceability metamodel
that expresses the relationships kinds to be captured in a model
composition scenario. Additionally, this generic metamodel is aug-
mented with an extensibility mechanism for introducing traces se-
mantics.

Our traceability approach has been implemented in an Eclipse
plug-in “ComposeTracer”. In order to validate the proposal, the
composition of SIG models has been selected as an illustrative ex-
ample. The corresponding trace models produced by the tool sup-
port have served to assess scalability and the relevance of traces.

Finally, the presented work opens up many perspectives. We di-
vide the future work into two main areas: traces generation and
traces exploitation. Experiments that we have conducted to assess
the traces relevance show that we capture a large part of traces
exposing the composed model construction, but the weaving of
structural relations is not well traced. Therefore, it seems inter-
esting to extend the traceability aspect to ensure a deeper anal-
ysis of the composition specification and gather more fine grained
and complete traces. In the same context, we intend to target other
composition languages.

Regarding the traces exploitation, we have experienced how to
use traceability information to verify the composed model correct-
ness. However, the analysis is completely manual and no support
is available to guide the developer. To address this issue, we are
exploring the definition of heuristics on the compliance of a trace
model to constraints specified dynamically by the developer (e.g.
all instances of a specific source type must be referenced by a
traceability link, the trace model must include one root traceabil-
ity link, etc.). A list of possible causes for non-conformity must be
proposed to reveal errors introduced in the specification or incon-
sistency of source models.

These models being doomed to evolve, the use of traces for an-
alyzing the impact of changes is a widely recognized practice. Ac-
cordingly, we are planning to develop a support that allows detect-
ing changes and propagating their effects in the implied models.
Moreover, this support must preserve the trace model consistency
by ensuring a permanent maintenance of traces.

Appendix A

This section presents the specification that allows compos-
ing softgoal trees. It includes the comparison module written in
ECL (cf. Listing2) and the merging module specified in EML (cf.
Listing 3).

rule MatchNFRSoftgoals
match 1 : ml!NFRSoftgoal
with r : m2!NFRSoftgoal {
compare {
return l.type==r.type;}

}

rule MatchOperationalizingSGs
match 1 : ml!OperationalizingSG
with r : m2!0OperationalizingSG {
compare {
return l.type==r.type;}

Listing 2. ECL specification for comparing SIG models.

pre CreateSIG{

var sig = new m3!SIG;
sig.name=’Global SIG’;
}

rule MergeNFRSoftgoals
merge 1 : ml!NFRSoftgoal
with r : m2!NFRSoftgoal
into t : m3!NFRSoftgoal
{
t.type=1.type;
t.container=sig;
t.offspring=1.offspring.includingAll(r.offspring).
equivalent ();

rule MergeOperationalizingSGs
merge 1 : ml!OperationalizingSG
with r : m2!0OperationalizingSG
into t : m3!0OperationalizingSG
{
t.type=1l.type;
t.container=sig;
t.offspring=1.offspring.includingAll(r.offspring).
equivalent () ;

o«

rule TransformNFRSoftgoal
transform 1 : ml!NFRSoftgoal
to t : m3!NFRSoftgoal {
t.type = 1l.type;
t.container=sig;
t.offspring=1.offspring.equivalent ();

rule TransformOperationalizingSG
transform 1 : ml!OperationalizingSG
to t : m3!0OperationalizingSG
t.type = 1l.type;
t.container=sig;
t.offspring=1.offspring.equivalent ();

rule TransformDecompositionCT
transform 1 : ml!DecompositionCT
to t : m3!DecompositionCT {
t.decomposition=1.decomposition;
t.container=sig;
t.offspring=1.offspring.equivalent ();

rule TransformSatisficingCT
transform 1 : ml!'SatisficingCT
to t : m3!SatisficingCT{
t.satisficing=1.satisficing;
t.container=sig;
t.offspring=1.offspring.equivalent ();

}

Qlazy
rule TransformNFRSoftgoall
transform 1 : m2!NFRSoftgoal
to t : m3!NFRSoftgoal {
t.type = 1l.type;
t.container=sig;
t.offspring=1.offspring.equivalent ();
}

Qlazy
rule TransformOperationalizingSG1
transform 1 : m2!OperationalizingSG
to t : m3!OperationalizingSG {
t.type = 1l.type;
t.container=sig;
t.offspring=1.offspring.equivalent ();
¥

Qlazy
rule TransformDecompositionCT1
transform 1 : m2!DecompositionCT
to t : m3!DecompositionCT {
t.decomposition=1.decomposition;
t.container=sig;
t.offspring=1.offspring.equivalent ();
}

Qlazy

rule TransformSatisficingCT1
transform 1 : m2!'SatisficingCT
to t : m3!SatisficingCT{
t.satisficing=1.satisficing;
t.container=sig;
t.offspring=1.offspring.equivalent ();}

Listing 3. EML specification for composition SIG models.

References

[1] G. Spanoudakis, A. Zisman, Software traceability: a roadmap, in: Handbook of
Software Engineering and Knowledge Engineering, World Scientific Publishing,
2004, pp. 395-428.

[2] S. Walderhaug, E. Stav, U. Johansen, G.K. Olsen, Traceability in model-driven
software development, Des. Softw. Intensive Syst. (2008) 133-159.

[3] J. Cleland-Huang, C.K. Chang, M.. Christensen, Event-based traceability for
managing evolutionary change, IEEE Trans. Softw. Eng. 29 (9) (2003) 796-810,
doi:10.1109/TSE.2003.1232285.

[4] A. von Knethen, M. Grund, Quatrace: A tool environment for (semi-) automatic
impact analysis based on traces, in: 19th International Conference on Software
Maintenance (ICSM 2003), 2003, pp. 246-255, doi:10.1109/ICSM.2003.1235427.

[5] B. Amar, H. Leblanc, B. Coulette, P. Dhaussy, Trace transformation reuse to
guide co-evolution of models, in: ICSOFT 2010 - Proceedings of the Fifth In-
ternational Conference on Software and Data Technologies, Volume 2, 2010,
pp. 73-81.

[6] N. Aizenbud-Reshef, B.T. Nolan, J. Rubin, Y. Shaham-Gafni, Model traceability,
IBM Syst. J. 45 (3) (2006) 515-526, doi:10.1147/sj.453.0515.

[7] L. Galvdo, A. Goknil, Survey of traceability approaches in model-driven engi-
neering, in: 11th IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2007, 2007, pp. 313-326, doi:10.1109/EDOC.2007.42.

[8] E. Jouault, Loosely coupled traceability for ATL, in: European Conference
on Model Driven Architecture, Traceability Workshop ECMDA-TW, 2005,
pp. 29-37.

[9] Y. Laghouaouta, A. Anwar, M. Nassar, B. Coulette, A graph based approach to
trace models composition,]. Softw. JSW 9 (11) (2014a) 2813-2822, doi:10.
4304/jsw.9.11.2813-2822.

[10] Y. Laghouaouta, M. Nassar, A. Anwar,]. Bruel, On the use of graph transfor-
mations for model composition traceability, in: IEEE 8th International Confer-
ence on Research Challenges in Information Science, RCIS 2014, 2014b, pp. 1-
11, doi:10.1109/RCIS.2014.6861075.

[11] D.S. Kolovos, R.F. Paige, F. Polack, Merging models with the epsilon merg-
ing language (EML), in: 9th International ConferenceModel Driven Engineer-
ing Languages and Systems, MoDELS 2006, 2006, pp. 215-229, doi:10.1007/
11880240_16.

[12] E Jouault, I. Kurtev, Transforming models with ATL, in: Satellite Events at the
MoDELS 2005 Conference, 2005, pp. 128-138, doi:10.1007/11663430_14.

[13] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos, Non-Functional Requirements in
Software Engineering, Springer US, 2000, doi:10.1007/978-1-4615-5269-7.

[14] B. Wei, Z. Jin, L. Liu, A formalism for extending the NFR framework to support
the composition of the goal trees, in: 17th Asia Pacific Software Engineering
Conference, APSEC 2010, 2010, pp. 23-32, doi:10.1109/APSEC.2010.13.

[15] R. Laleau, A. Matoussi, A Survey of Non-Functional Requirements in Software
Development Process, Technical Report TR-LACL-2008-7, LACL (Laboratory of
Algorithms, Complexity and Logic), University of Paris-Est (Paris 12), 2008.

[16] S. Supakkul, L. Chung, A UML profile for goal-oriented and use case-driven rep-
resentation of NFRs and FRs, in: Third ACIS International Conference on Soft-
ware Engineering, Research, Management and Applications (SERA 2005), 2005,
pp. 112-121, doi:10.1109/SERA.2005.19.

[17] D.S. Kolovos, R.F. Paige, FA. Polack, Eclipse development tools for epsilon,
Eclipse Summit Europe, Eclipse Modeling Symposium, 2006.

[18] C. Jeanneret, R. France, B. Baudry, A reference process for model composition,
in: The 2008 AOSD Workshop on Aspect-Oriented Modeling, 2008, pp. 1-6.

[19] T.T.T. Nguyen, Codéle: Une Approche de Composition de Modéles Pour la Con-
struction de Systémes i Grande Echelle, Université Joseph-Fourier-Grenoble I,
2008 Ph.D. thesis.

[20] D. Kolovos, L. Rose, A. Garcia-Dominguez, R. Paige, The Epsilon Book, Eclipse,
2015.

[21] D.S. Kolovos, R.F. Paige, FA. Polack, On-demand merging of traceability links
with models, in: European Conference on Model Driven Architecture (ECMDA)
workshop on traceability, 2006.

[22] REE. Paige, N. Drivalos, D.S. Kolovos, KJ. Fernandes, C. Power, G.K. Olsen,
S. Zschaler, Rigorous identification and encoding of trace-links in model-
driven engineering, Softw. Syst. Model. 10 (4) (2011) 469-487, doi:10.1007/
$10270-010-0158-8.

[23] N. Drivalos, R.F. Paige, KJ. Fernandes, D.S. Kolovos, Towards rigorously defined
model-to-model traceability, in: European Conference on Model Driven Archi-
tecture, Traceability Workshop ECMDA-TW, 2008, pp. 17-26.

[24] W. Heaven, A. Finkelstein, UML profile to support requirements engineering
with KAOS, IEE Proc. 151 (1) (2004) 10-28, doi:10.1049/ip-sen:20040297.

[25] O. Gotel, J. Cleland-Huang, J.H. Hayes, A. Zisman, A. Egyed, P. Griinbacher,
A. Dekhtyar, G. Antoniol, J.I. Maletic, The grand challenge of traceability
(v1.0), in: Software and Systems Traceability, 2012, pp. 343-409, doi:10.1007/
978-1-4471-2239-5_16.

[26] B. Amar, H. Leblanc, B. Coulette, C. Nebut, Using aspect-oriented program-
ming to trace imperative transformations, in: the 14th IEEE International En-
terprise Distributed Object Computing Conference, EDOC 2010, 2010, pp. 143-
152, doi:10.1109/EDOC.2010.12.

[27] B. Grammel, S. Kastenholz, A generic traceability framework for facet-based
traceability data extraction in model-driven software development, in: the 6th
ECMFA Traceability Workshop, ECMFA-TW 2010, 2010, pp. 7-14, doi:10.1145/
1814392.1814394.

[28] J.M. Vara, V.A. Bollati, A. Jiménez, E. Marcos, Dealing with traceability in the
MDDof model transformations, IEEE Trans. Softw. Eng. 40 (6) (2014) 555-583,
doi:10.1109/TSE.2014.2316132.

[29] R. Filman, T. Elrad, S. Clarke, M. Aksit, Aspect-oriented Software Development,
first ed., Addison-Wesley Professional, 2004.

[30] G. Kiczales, E. Hilsdale,]. Hugunin, M. Kersten, J. Palm, W.G. Griswold, An
overview of aspectj, in: 15th European Conference Object-Oriented Program-
ming ECOOP 2001, 2001, pp. 327-353, doi:10.1007/3-540-45337-7_18.

[31] O. Spinczyk, A. Gal, W. Schroder-Preikschat, Aspectc++: an aspect-oriented ex-
tension to the C++ programming language, in: The Fortieth International Con-
ference on Tools Pacific: Objects for Internet, Mobile and Embedded Applica-
tions, Australian Computer Society, 2002, pp. 53-60.

[32] R.B. France, I. Ray, G. Georg, S. Ghosh, Aspect-oriented approach to early design
modelling, IEE Proc. 151 (4) (2004) 173-186, doi:10.1049/ip-sen:20040920.

[33] G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations, World Scientific, 1997.

[34] M. Andries, G. Engels, A. Habel, B. Hoffmann, H. Kreowski, S. Kuske, D. Plump,
A. Schiirr, G. Taentzer, Graph transformation for specification and program-
ming, Sci. Comput. Program. 34 (1) (1999) 1-54, doi:10.1016/S0167-6423(98)
00023-9.

[35] G. Taentzer, K. Ehrig, E. Guerra, J. De Lara, L. Lengyel, T. Levendovszky,
U. Prange, D. Varro, S. Varro-Gyapay, Model transformation by graph trans-
formation: a comparative study, Workshop Model Transformation in Practice,
2005.

[36] G. Taentzer, AGG: A graph transformation environment for modeling and val-
idation of software, in: Second International Workshop Applications of Graph
Transformations with Industrial Relevance, AGTIVE 2003, 2003, pp. 446-453,
doi:10.1007/978-3-540-25959-6_35.

[37] D. Varré, A. Pataricza, Generic and meta-transformations for model trans-
formation engineering, in: UML 2004 - 7th International Conference on the
Unified Modelling Language: Modelling Languages and Applications, 2004,
pp. 290-304, doi:10.1007/978-3-540-30187-5_21.

[38] J. Whittle, PK. Jayaraman, MATA: a tool for aspect-oriented modeling based
on graph transformation, in: Models in Software Engineering, Workshops
and Symposia at MoDELS 2007, 2007, pp. 16-27, doi:10.1007/978-3-540-
69073-3_3.

[39] LM. Garshol, BNF and EBNF: What are They and How do they Work?, (http:
/[www.garshol.priv.no/download/text/bnf.html).

[40] T. Arendt, E. Biermann, S. Jurack, C. Krause, G. Taentzer, Henshin: advanced
concepts and tools for in-place EMF model transformations, in: 13th Interna-
tional Conference on Model Driven Engineering Languages and Systems MOD-
ELS 2010, 2010, pp. 121-135, doi:10.1007/978-3-642-16145-2_9.

[41] E. Gansner, E. Koutsofios, S. North, Drawing Graphs with Dot, Technical Report,
AT&T Research, 2006.

[42] E.R. Gansner, S.C. North, An open graph visualization system and its applica-
tions to software engineering, Softw. Pract. Exp. 30 (11) (2000) 1203-1233,
doi:10.1002/1097-024X(200009)30:11(1203::AID-SPE338)3.0.CO;2-N.

[43]]. Bézivin, S. Bouzitouna, M.D.D. Fabro, M. Gervais, F. Jouault, D.S. Kolovos,
I. Kurtev, R.F. Paige, A canonical scheme for model composition, in: Second
European Conference on Model Driven Architecture - Foundations and Appli-
cations, ECMDA-FA 2006, 2006, pp. 346-360, doi:10.1007/11787044_26.

[44] Y. Laghouaouta, A. Anwar, M. Nassar, J. Bruel, A generic traceability frame-
work for model composition operation, in: Enterprise, Business-Process and
Information Systems Modeling - 16th International Conference, BPMDS 2015,
20th International Conference, EMMSAD 2015, Held at CAiSE 2015, Stock-
holm, Sweden, June 8-9, 2015, Proceedings, 2015, pp. 461-475, doi:10.1007/
978-3-319-19237-6_29.

[45] A. Schiirr, Specification of graph translators with triple graph grammars, in:
Graph-Theoretic Concepts in Computer Science, 20th International Workshop,
WG '94, Herrsching, Germany, June 16-18, 1994, Proceedings, 1994, pp. 151-
163, doi:10.1007/3-540-59071-4_45.

[46] F. Klar, S. Rose, A. Schiirr, Tie-a tool integration environment, in: Proceedings
of the 5th ECMDA Traceability Workshop, 2009, pp. 39-48.

[47] E. Guerra, J. de Lara, D.S. Kolovos, R.F. Paige, Inter-modelling: from theory to
practice, in: Model Driven Engineering Languages and Systems - 13th Interna-
tional Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010, Proceed-
ings, Part I, 2010, pp. 376-391, doi:10.1007/978-3-642-16145-2_26.

[48] S. Hildebrandt, L. Lambers, H. Giese, J. Rieke, J. Greenyer, W. Schafer, M. Lauder,
A. Anjorin, A. Schiirr, A survey of triple graph grammar tools, Electr. Commun.
EASST 57 (2013).

