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Abstract – Graph Visualization is a technique that helps users to easily comprehend connected 

data (social networks, semantic networks, etc.) based on human perception. With the prevalence of 

Big Data, these graphs tend to be too large to decipher by the user’s visual abilities alone. One of 

the leading causes of this problem is when the nodes leave the visualization space. Many attempts 

have been made to optimize large graph visualization, but they all have limitations. Among these 

attempts, the most famous one is the Force Directed Placement Algorithm. This algorithm can 

provide beautiful visualizations for small to medium graphs, but when it comes to larger graphs it 

fails to keep some independent nodes or even subgraphs inside the visualization space. In this 

paper, we present an algorithm that we have named "Forced Force Directed Placement". This 

algorithm provides an enhancement of the classical Force Directed Placement algorithm by 

proposing a stronger force function. The “FForce”, as we have named it, can bring related nodes 

closer to each other before reaching an equilibrium position. This helped us gain more display 

space and that gave us the possibility to visualize larger graphs. 

Keywords: Big Data, Force Directed Placement, Graphs, Graph Visualization, Large Graphs 

Nomenclature 

FDP Force Directed Placement 

FFDP “Forced” Force Directed Placement 

T-FDP “Temporal” Force Directed Placement 

I. Introduction

Graph visualization has imposed itself lately as a 

blossoming research area. Indeed, it offers the possibility 

to quickly grasp complex issues such as network 

analysis, bioinformatics, or transport, based on human’s 

visual prowess. In general, graphs display abstract data as 

well as their patterns and connections and design them so 

that they could make more sense or tell a story. For 

example, let’s check out this social network {Zakaria – 

Taha, Zakaria – Amine, Taha – Hamza, Zakaria – Anass, 

Anass – Amine, Hamza – Zakaria}. We can understand 

that Zakaria is a friend of Anass and Amine is also a 

friend of Anass and so on. However, it is more 

challenging to find a general pattern of the relationships 

between all of these persons. On the other hand, the 

graph in Figure 1 can help us quickly understand the 

relationships between all of the individuals in the social 

network in order to find out that the graph has two 

clusters (groups of people) and that Zakaria is the person 

that connects them. 

According to Purchase et al. [1], an excellent graph 

layout leads to a smooth cognition of the underlying 

information while a bad layout makes the graph 

confusing and obliges the reader to spend more time only 

to understand a part of the information. This urged 

Purchase to define some esthetic criteria to define a 

“good” graph layout. 

Fig. 1. Graph representing a social network 

In order to respect these rules, several graph 

representations (or layouts) were suggested. Hu and Shi 

[2] have presented a survey of these graph layouts and

categorized them into six distinct models:

Spring-Electrical Model: In this model, further 
detailed in Section 2, the links are presented as 
springs while the nodes are displayed as steel rings. 
The primary purpose of this model's algorithms is to 
minimize the attractive-repulsive energy within the 
nodes. 

Stress Model: The main objective to achieve by 
adopting this model is to reduce the energy of the 
springs. For instance, Kamada and Kawai [3] 
provided an algorithm that reduces the stress energy 
within the edges by bringing the distance between the 
nodes to the ideal length of their connecting spring. 



Strain Model (or Classical MDS): This model tries to 

find the best inner product between the nodes’ 

positions instead of the actual distance between them. 

The final embedding should be centered on the origin, 

and ideally the distance between the nodes is equal to 

the ideal edge length. 

MDS for Large Graphs: This model represents the 
improvements to the Strain Model, either by 
multiscaling it [4] or by approximating it [5]-[6]. 
Some algorithms suggest starting by drawing some 
reference nodes (called landmarks [7] or pivots [8]). 

High-Dimensional Embedding: This model provides 
coordinates to the nodes in a k-dimensional space, 
and then projects them into a regular 2D or 3D space 
using principal component analysis [9]. 

Algorithms Based on the Spectral Information of the 
Laplacian: This model takes the node positioning 
problems and transforms them into problems of 
defining positions with a minimum weighted sum of 
the squared distances between the nodes [10]. This 
will make the solution simply become the eigenvector 
with the smallest positive eigenvalue of the weighted 
Laplacian matrix. 

Hu and Shi’s study [2] affirmed that, even if it was 

more costly than the other models cited earlier, the 

Spring Electrical Model gave a better graph visualization. 

Dong et al. [11] confirmed it by stating that, thanks to 

their ability to produce esthetically beautiful graphs, 

Spring-Electrical based algorithms, such as Force 

Directed Placement (FDP), are widely used. This has 

compelled us to direct our research toward the Spring-

Electrical Model (Section 2) and to focus our work on 

improving the performance of the FDP algorithm to open 

more possibilities regarding large graph visualization 

(Section 3). 

The improvement that we propose in the present paper 

is by replacing the function used in the classical Force-

Directed Placement with a stronger one. The new 

function that we chose to call “FForce” will enable us to 

refine the nodes final equilibrium positions while 

bringing them closer to each other. As a result, we were 

able to gain more visualization space to draw more nodes 

and, therefore, visualize larger graphs.  

Moreover, thanks to the dimension depending 

repulsion term of our function, we were also able to keep 

the disconnected smaller subgraphs close to each other 

and to the larger ones, while in other algorithms, they 

tended to push themselves further away and eventually 

leave the visualization space (screen). Tests were run, in 

Section 4, to observe the performances of the improved 

algorithm, called "Forced Force Directed Placement" 

(FFDP).  

These tests are based on a comparison between FFDP, 

the standard FDP algorithm, and two other algorithms. 

The first one is used in the open source graph 

visualization tool Gephi [12], while the other one is used 

in a tool developed by previous members of our team, 

VisuGraph [13]. Section 5 concludes the paper and 

presents an idea of our future works. 

   

II. Related Works

II.1. Spring-Electrical Model

To visualize graphs, Tutte [14] proposed to lay down 

at first, some of the nodes, then the later ones on the 

barycenters of their neighbors. The nodes’ positions are 

easily determined by solving a system of linear functions. 

However, the final disposition is not always the best. 

Eades [15] has suggested a model called “Spring Layout” 

where the nodes are given an initial positioning, and then 

the edges (represented as springs) recall the nodes back 

to an equilibrium position corresponding to a global 

energy minimum. Fruchterman and Reingold later 

improved this work by introducing an algorithm called 

“Force Directed Placement” (FDP) [16]. In this 

algorithm, the attractive force of the spring between two 

connected nodes is proportional to the squared distance 

between them. Thus, the attraction force is expressed as: 

(1) 

K is a parameter related to the nominal edge length of 

the final layout. 

On the other hand, the repulsive force between any 

couple of nodes is inversely proportional to the distance 

between them. It is expressed as: 

(2) 

The attraction force is applied amidst two adjacent 

nodes while the repulsion force is administered by each 

node on the rest of the nodes. Once the forces are 

calculated, the node will shift toward the position where 

the system attains a state of minimal energy. The 

algorithm starts by calculating the attraction forces 

between neighboring nodes; then, it calculates the 

repulsion forces between each pair of nodes and, finally, 

limits the total movement using a temperature criterion. 

For a graph , every iteration requires a 

computation cost of  for calculating the attraction 

forces and  for calculating the repulsion forces 

[17]. Fruchterman and Reingold later considered 

reducing the complexity of this algorithm by introducing 

a cell grid into which the drawing space will be split. The 

objective here is to compute the local repulsive energy 

between nodes in non-neighboring cells. The problem 

with this approach is the fact that it may cause several 

calculation errors. That is because it neglects the 

repulsive forces that may exist between non-neighboring 

nodes. 

Tunkelang [18] and Quigley [19] were able to remedy 

this problem by introducing quadtrees. A quadtree is a 

grouping of nodes presentable as a "Super-Node" with a 

repulsive force approximately equal to the total repulsive 

force of the nodes it contains. If a group of nodes is far 

enough from an individual node, it is safe to consider this 

group of nodes as a super-node. 



Other methods were proposed, such as the multilevel 

approach, and a suitable metaheuristic was used in 

solving several common issues, such as graph 

partitioning [20], traveling salesman [21], and graph 

drawing [22].  

This method, as described by Hu and Shi [2], has three 

steps: coarsening, coarsest graph layout, and refinement. 

In the first step, a series of coarser and coarser graphs, 

, is engendered. In this series, every 

graph contains a small number of nodes and edges 

along with information about its parent . The 

coarsening stops when we reach a graph with the 

smallest number of nodes. Therefore, the layout of the 

coarsest graph becomes cheaper, and laying out the other 

graphs is prolonged and refined recursively. 

The algorithms cited earlier tend to fall into local 

minima when the graphs to be drawn reach a certain size 

level. In order to answer Big Data related visualization 

requests, we need an algorithm that is able to draw large 

and visible graphs. 

II.2. Graph Visualization Tools

Several trials for algorithms have been launched in 

order to have better large graph visualization. In this 

paragraph, we will focus on the most important tools that 

have adopted Spring-Electrical Model based algorithms. 

A more detailed description will be dedicated to Gephi 

[12] and VisuGraph [13], the tools utilizing the closest

algorithms to ours. Gephi is known for being one of the

most famous tools available on the market while

VisuGraph is a tool that was developed by former

members of our research team and the present work is an

amelioration of it. A comparison between the

visualization provided by our algorithm “FFDP” and the

algorithms adopted by Gephi and VisuGraph will be

demonstrated in Section 4.

1) OGDF: Developed by Chimani et al. [23], it is an

open source C++ library providing graph drawing 

solutions among other possibilities. It is an algorithmic 

layer to be used within other programs to be developed. 

2) Cytoscape [24]: Licensed as an open source 
software platform. Cytoscape was originally designed for 

biological research purposes. It later became a general 

platform for large graph analysis and visualization. It is 

based on Java, but it also provides a JavaScript library 

for web oriented development. 

3) D3.js: Short for “Data Driven Documents for 
JavaScript”, it is an open source JavaScript library that 

allows amazing rendering charts out of diverse data 

sources using HTML, SVG, and CSS. This library, 

developed by Bostock et al. [25], is capable of some 

seriously advanced visualizations with complex data sets 

and allows for smooth interaction and sharing. 

4) Gephi:, It is a free software program for graph 
visualization and analysis developed by Jacomy et al. 

[12]. This tool comes both as an executable and as 

programming APIs, providing the most common graph 

visualization algorithms. 

    

The most important visualization algorithm provided 

by Gephi is called “ForceAtlas2” (FA2). It is a Force-

Directed Placement algorithm developed by the Gephi 

team. It presents the graph as a physical system where 

nodes push each other away using a repulsive force while 

links attract the connected nodes back using an attractive 

force. 

The basic expression of the Attractive Force (Fa) 

according to this model is equal to the distance between 

these nodes: 

(3) 

The Repulsive Force (Fr) between two nodes, 

however, depends on the degrees of the nodes. It allows 

centering the highly connected nodes while repelling the 

less connected ones to the suburbs: 

(4) 

Kr is a coefficient to be fixed by the settings, and the 

(+1), different from Noack’s expression [26], is a term 

added so that we can ensure that even the nodes with a 0 

degree can have a repulsive force. 

Combining these two forces creates a movement that 

converges to an equilibrium position. 

This algorithm may provide a display that eases the 

visual interpretation of the data structure under study. 

However, it doesn’t take the nodes attributes into 

consideration during the positioning process. This can be 

a problem if the coordinates were to be used in the 

analysis. 

5) VisuGraph: Developed within our team at IRIT

[13]. Its approach regarding large graph visualization is 

particularly interesting with its two principal features: 

Graph Visualization. 

Time Dependent Evolutionary Aspect.. 

a) Graph Visualization: Loubier has proposed a

minor modification of the FDP by setting the

attraction and repulsion forces as:

The attraction force:

(5) 

 “β” is a constant coefficient.  

“ ” is the distance between two nodes  and .  

“ ” is a coefficient used to alter the attraction 

between the two nodes by either increasing or 

decreasing it. 
“ ” is a coefficient computed according to the 
dimensions of the drawing space:  

(6) 

“ ” is the length of the drawing space, and “ ” is 
its width. 



The repulsion force: 

(7) 

“ ” is a constant coefficient.  

“ ”is a coefficient used to alter the repulsion 

between the nodes  and  by either increasing or 

decreasing it. 

b) Evolutionary aspect using Time Slices: Loubier

[13] has noted that when the analysis is time

dependent, a graph can send mixed signals.

Therefore, she adopted a time based graph

presentation where each “Time Slice” represents a

particular period.

Taking the temporal dimension into account in

the graph visualization goes in two steps:

First, a global time independent graph is 
drawn.  

Second, virtual nodes representing the time 

slices are scattered in the drawing space, 

while the graph nodes are positioned close to 

the virtual nodes representing their 

correspondent time slice. 

III. Forced Force-Directed Placement

The proposed solution is an alteration of the standard 

FDP. This algorithm is called “Forced Force Directed 

Placement” (FFDP). 

The algorithm itself is similar to the standard FDP but 

with stronger attraction and repulsion forces. These 

forces, combined to form one function called “FForce”, 

are applied to the node positions in order to find 

equilibrium positions where the nodes are brought closer 

to each other compared with the positions generated by 

the standard FDP. This approach provides more drawing 

space and thereby the ability to draw more nodes. 

III.1. Attraction

This function represents the attraction force applied on 

the links represented as coil springs. 

It was first expressed as: 

(8) 

 is the Euclidian distance between two nodes. 

 is the gap between the current position and the 

equilibrium position. 

such as  is the equilibrium length of the 

spring. It allows adapting the graph drawing to the 

screen’s size. It depends on the screen’s size as well as 

on the graph’s density.  

It is important to mention that  represents the links' 

hardness. This makes it an essential factor for good graph 

visibility by having a direct relationship with the number 

of links. In other words, the more the number of the links 

increases, the more the graph will have a tendency to 

   

compact. Therefore, we need to release it. 

Example: Imagine we have a graph with 4 nodes that 

are all connected. We will eventually have 6 links and a 

full graph matrix. 

In this case, in order to have a clear visualization, we 

need to release the nodes, thereby increasing the value of 

. Moreover, our  also needs to depend on the number 

of the graph’s links. 

Let us now improve our example and suppose that our 

links do not have the same weight. It is very common to 

have links weighed 1, and others weighed 10 or even 

100. 

In this case, the difference between the links’ weights 

will certainly influence the positioning of the connected 

nodes and consequently the graph’s visualization. To 

remedy this situation, our  also needs to depend on the 

links’ weights. 

To sum up, the greater the number of the links is and 

the stronger they are, the more the graph tends to 

compact and to bring itself to the screen’s center. 

Therefore, what we need is a coefficient  that is able to 

remedy these excesses of number and weights of links. 

An expression of the value of  was proposed, such 

as: 

(9) 

with  being the number of the links and  their 

average weight. 

The square root will avoid an overflow of the value of 

 when the number of links increases. 

The chart in Figure 2 shows the evolution of 

according to the number of links. 

Fig. 2. The evolution of α according to the number of links 

The cube term  stands for the spring’s 

elasticity. In the same hardness, the spring becomes loose 

when its length reaches ; then, it becomes harder in 

further values. In other words, the more we pull on the 

spring, the harder it comes back. 

The chart in Figure 3 shows the evolution of the cube 

term  according to the spring’s length. 

The chart in Figure 3 has a null derivative at one 

point, in the vicinity of our spring’s equilibrium length, 

in this case, . This would have been entirely 

correct if we had a perfectly soft spring, which is not the 



case since we have a coil spring. 

The solution would be to add a linear term to our 

attraction function. This term will allow the attraction 

function to continue to act even if the spring’s length 

approximates the equilibrium length. 

Thus, the expression of the attraction function 

becomes: 

(10) 

Fig. 3. The evolution of the cube term  according to  

the spring’s length 

The chart in Figure 4 describes the evolution of the 

proposed expression of the attraction function according 

to the spring’s length. 

Fig. 4. The evolution of the proposed expression of the attraction 

function according to the spring’s length 

In Figure 4, we can see in the chart that we have, on 

the extremities, a stronger influence of the cube term of 

the function (in red). This term acts as a restoring 

function that brings the nodes back when the spring 

reaches a certain length. Whereas on the vicinity of the 

spring’s equilibrium length, the linear term (in blue) 

prevents the nodes from colliding. 

The overall evolution of the attraction force (in green), 

therefore, demonstrates more acceptable behavior. 

However, mathematically speaking, it is still incorrect. 

The problem comes from the cube term that is 

symmetrical and could also, eventually, reach the value 0 

or even exceed it. For lengths approximating 0, the 

spring would eventually break. 

 

What we need is a term that would look similar to the 

cube term and yet have a vertical asymptote that would 

prevent our spring from breaking and making it act like a 

real coil spring that touches, stretches, and then stops 

pulling at a certain point. 

A proposed expression to answer these specifications 

is the following: 

(11) 

The chart in Figure 5 models the evolution of the 

corrected expression of the attraction function according 

to the spring’s length. 

Fig. 5. The evolution of the corrected expression of the attraction 

function according to the spring’s length 

This chart displays a much more correct evolution of 

the attraction function, so that the expression to adopt is 

the one described in the equation (11). 

III.2. Repulsion

It represents the repulsion force exercised by each 

node on all of the others forcing them and, subsequently, 

to repel each other. 

It is a negative force that depends on a limit distance 

beyond which it becomes null. This means that at a 

certain point when the distance between two nodes 

becomes significant enough, the repulsion force becomes 

so small that it would be useless to calculate it. 

Therefore, we can assume that the repulsion force is 

inversely proportionate to the distance and should not 

exceed a limit distance beyond which the repulsion force 

is considered null. The threshold distance chosen is equal 

to half the screen so that the nodes that have already 

reached the monitor's border would not be able to repel 

each other and would remain on the screen. 

The repulsion force is expressed by the function: 

(12) 

However, there is something to pay attention to. This 

term is only correct in a 2D space. 

If our graph were represented in a 3D or 4D space, the 

expressions of the repulsion force would become 



respectively, « » and « ». Why?

The reason is simple; let’s take two nodes A and B. 

If we double the distance between these nodes, the 

repulsion force exerted by the node A to the node B, for 

example, would reduce to half if the nodes were in a 2D 

space, whereas in 3D, it would shrink to the third, then to 

the eighth in 4D. 

This is essentially due to the force field that spreads 

throughout the space as the distance increases. In 2D, the 

force field spreads throughout a surface while in 3D, is 

spreads throughout a cone and in 4D, throughout a cube. 

Thus, the repulsion function would be correct 

becoming: 

(13) 

with  being the number the dimensions of the space 

within which our graph is represented. 

The chart in Figure 6 models the evolution of the 

repulsion force according to the distance in 2D (in blue), 

3D (in red), then 4D (in green). 

Fig. 6. The evolution of the repulsion force according to the distance 

III.3. FForce Function

By combining the attractive and repulsive forces 

described earlier, we propose a function that represents 

the overall forces applied by each node of our graph on 

the other. We chose to call this function “FForce”. 

It is expressed as follows: 

(14) 

or in other terms: 

(15) 

« » is the FForce applied between the nodes «  » 

and « ».

« » is the Euclidian distance between the nodes «  » 

and « ».

«  » is the spring’s rest length.

«  », and «  » are coefficients that were given the

following values: 

, 

The term « » expresses the repulsive force.

The terms « » and

« » represent the linear and

non-linear effects of the attraction on the edge, 

respectively. 

III.4. FFDP Algorithm

Applying the “FForce” on a graph’s nodes will be 

done using an algorithm we named “Forced Force 

Directed Placement” or (FFDP). This algorithm, as 

outlined in the pseudo-code (Algorithm 1), is inspired 

from the FDP algorithm as described in the pseudo-code 

by Hu and Shi [2]. 

The « » term expresses the node’s displacement 

increment. The objective of the FFDP algorithm is to 

find better equilibrium positions for the graph’s nodes 

while gaining more space on the screen. It is important to 

mention that applying the FFDP algorithm gave us a 

rendering that is close to the FDP but with better control 

over the smaller subgraphs that tend to leave the screen 

in the standard FDP and, therefore, we could keep 

valuable information from being lost. 

Algorithm 1 FForce Algorithm(G, x, tol, K) 

input: graph, initial positions , tolerance , and 

nominal edge length K 

set 

repeat 

For( ) { 

// f is a 2-D or 3-D vector 

// Equation (15) 

} 

until ( ) 

The algorithm’s complexity is O(n4). It is true that it 

will be time-consuming when the numbers of nodes and 

links get higher, but this problem is easily overcome 

since the algorithm is supposed to run in a parallelized 

environment. 

The results of running the FDP coupled with FForce 

will be described in the following section. 

IV. Testing and Results

To test the visualizations produced by FFDP, we put it 

in comparison with the standard FDP, then with the T-

FDP used in VisuGraph [13] and ForceAtlas2 used in 



Gephi [12]. The first testing sample is a simple graph 

containing two nodes with a 1-D coordinate each: 

and , connected with one edge. Figure 7 displays 

the evolution of the nodes’ positions during the 

application of three algorithms (Standard FDP, FFDP, 

and ForceAtlas2). 

Figure 7 made it clear that the FFDP, compared to the 

two other algorithms, could bring the nodes closer to 

each other before settling into an equilibrium position. 

This will help us gain more display space for larger 

graphs. 

Fig. 7. Evolution of Nodes Coordinates after applying FDP, FFDP, 

and ForceAtlas2 

The second testing sample is composed of 3 graphs 

with different sizes: the first graph, called “Small World” 

describes a small network gathering 20 persons 

represented as nodes connected with 40 links. The 

second graph, called “Facebook Ego 0” represents a 

Facebook network connecting 333 individuals 

represented by nodes with a total of 2,519 friendship 

relations represented by the links. The third graph, called 

“Marvel Superheroes”, connects all the characters from 

the comic books by Marvel. They are represented with 

104,690 nodes and 178,115 links. 

Those graphs can be found among Gephi’s test dataset 

that is available in the following link: 

https://github.com/medialab/benchmarkForceAtlas2/bl 
ob/master/dataset.zip (last checked 3/17/2017). 

The objective of this test is to display the ability of the 

FFDP to draw large graphs in a 2D space. The 

visualizations produced by FFDP are compared with 

those generated by the other two previously mentioned 

algorithms (Standard FDP and ForceAtlas2). Another 

algorithm, called “Temporal” Force Directed Placement 

(T-FDP), was also introduced to this test. It is the 

algorithm developed by our team in IRIT and 

implemented in the tool VisuGraph [13]. 

All these algorithms were implemented in Java and 

were tested in a computer with a standard configuration 

  

(Intel i3 processor and 4Gb RAM). 

The next Tables I, II, and III show the results of the 

comparison that we proposed. 

In the “Small World” graph, the best node positioning 

was provided by FFDP, closely seconded by 

ForceAtlas2. On the other hand, the visualizations 

provided by both the standard FDP and T-FDP were way 

too far from the expected result. 

In the “Facebook Ego 0” graph, the displays provided 

by the standard FDP and T-FDP were practically similar. 

ForceAtlas2 was able to assemble the nodes in two 

groupings, but, on the other hand, it lost the smaller 

subgraphs that were not connected to the main one. 

FFDP was able to bring out a third less pronounced 

grouping in the main subgraph while keeping the three 

independent subgraphs close to the main one. 

TABLE I 

THE RESULTS OF RUNNING VARIOUS LAYOUT ALGORITHMS ON THE 

GRAPH “SMALL WORLD” (20 NODES, 40 LINKS) 

FFDP ForceAtlas2 

T-FDP Standard FDP 

TABLE II 

THE RESULTS OF RUNNING VARIOUS LAYOUT ALGORITHMS ON THE 

GRAPH “FACEBOOK EGO 0” (333 NODES, 2519 LINKS) 

FFDP ForceAtlas2 

T-FDP Standard FDP 

https://github.com/medialab/benchmarkForceAtlas2/blob/master/dataset.zip
https://github.com/medialab/benchmarkForceAtlas2/blob/master/dataset.zip


TABLE III  

THE RESULTS OF RUNNING VARIOUS LAYOUT ALGORITHMS ON THE 

GRAPH “MARVEL SUPERHEROES” (104690 NODES, 178115 LINKS) 

FFDP ForceAtlas2 

T-FDP Standard FDP 

In the “Marvel Superheroes” graph, the standard FDP 

and T-FDP can barely be seen with a few nodes popping 

out of the cloud, but it is not enough to have a proper 

view of the graph. ForceAtlas2 was able to highlight two 

groupings of nodes and, yet again, lost the independent 

subgraphs. FFDP, on the other hand, managed to 

highlight more groupings while keeping the separate 

subgraphs in the screen. 

It is important to mention that even though FFDP was 

able to draw larger graphs by bringing nodes closer to 

each other and gaining more space, this particular point 

can affect the quality of the drawing after a certain 

threshold. Indeed, in the “Marvel Superheroes” graph, it 

was nice to have the smaller subgraphs visible and close 

to the larger one. However, the nodes could have been 

less close to each other than how they actually were. This 

can be achieved by adding a limitation term to the 

attraction force. 

V. Conclusion

This paper presented the “Forced Force Directed 

Placement” (FFDP) algorithm, as an improvement to the 

classical Force Directed Placement algorithm. FFDP 

allowed us to refine the nodes final positions and provide 

better equilibrium positions while bringing the nodes 

closer to each other. We were able to gain more 

visualization space to draw more nodes and provide 

larger graphs as a result. Moreover, thanks to the 

dimension depending repulsion term, were also able to 

keep the disconnected smaller subgraphs close to each 

other as well as to the larger ones, while in other 

algorithms they tend to push themselves further away 

and eventually leave the visualization space (screen). 

 

FFDP’s rendering results were compared to those of the 

standard FDP algorithm along with two other versions, 

wherein the first one is used in the open source graph 

visualization tool Gephi [12], while the other one is used 

in a tool developed by previous members of our team, 

VisuGraph [13]. 

The FFDP algorithm will be integrated into 

XEWGraph [26], the large graph visualization service of 

the Competitive Intelligence tool Xplor EveryWhere 

[27]. The out of the box clustering and categorization 

provided by XEWGraph’s hypergraph approach will give 

us two advantages. The first one is to be able to draw 

lighter, web destined graphs with a general view and then 

have a deeper view of more specific details according to 

the decision maker’s needs. The second advantage is the 

ability to display these graphs on smaller screens such as 

smartphones. 

FFDP’s dimension depending repulsion term will 

open up the possibility to draw graphs on 3D or 4D 

spaces while guaranteeing a better convergence of the 

algorithm. This urges us to propose an expansion to the 

XEWGraph tool that will provide such visualizations. 
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