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A Numerical Study of the Transitions of Laminar Natural Flows 

in a Square Cavity

Nouri Sabrina1, *, Abderrahmane Ghezal1, Said Abboudi2 and Pierre Spiteri3

Abstract: This paper deals with the numerical study of heat and mass transfer occurring 

in a cavity filled with a low Prandtl number liquid. The model includes the momentum, 

energy and mass balance equations. These equations are discretized by a finite volume 

technique and solved in the framework of a custom SIMPLER method developed in 

FORTRAN. The effect of the problem characteristic parameters, namely the Lewis and 

Prandtl numbers, on the instability of the flow and related solute distribution is studied for 

positive and negative thermal and solutal buoyancy forces ratio. Nusselt and Sherwood 

numbers are derived for values of the Prandtl number ranging between 10-2 and 101 with

the Lewis number spanning the interval 1-104. The results show unicellular and multi-

cellular flows featured by solute and kinematic boundary layers with thickness depending 

on the Prandtl number.

Keywords: Natural convection, low Prandtl number, heat and mass transfer, finite volume 

method, manuscript, preparation, typeset, format.

Nomenclature

Ar aspect ratio 

C   dimensionless concentration

D    solutal diffusion

G gravitational acceleration m/s2

Nu  Nusselt number 

Nu average Nusselt number 

P dimensionless pressure

Pr      Prandtl number 

Le Lewis number

Ra Rayleigh number    

Sh Sherwood number

Sh average Sherwood number

y dimensionless vertical coordinate

z dimensionless axial coordinate

ρ   density kg/m3

α   thermal diffusivity m2/s

βT coefficient of thermal expansion1/K

βs    coefficient of solutal expansion 1/K

υ kinematic viscosity m2/s

ε    relative error

χ    stream function

Φ   global function

Subscripts  

1 Lmfta, the Department of Physics, usth, Bab Ezzouar, Algiers, Algeria. 
2 Utbm, Belfort-Montbéliard, France.

3 Enseeiht-Toulouse, France.

* Corresponding Author: Nouri Sabrina. Email: Sabrina.nouri@gmail.com.



T   dimensionless temperature

ΔT differenceof temperature°K  

T dimensionless time

u dimensionless axial velocity

v  dimensionless vertical velocity

x dimensionless axial coordinate 

c cold wall

H     hot wall

Ref  reference

* dimensional form

1 Introduction

Natural convection of low-Prandtl-number fluids such as liquid metals is an important 

phenomenon often present in the production of industrial materials. For example, 

Bridgman crystal growth, floating zone and Heat exchanger methods. In these practical 

systems, inertial natural convection is dominant owing to low Prandtl number Pr 0.01»

[Gelfgat (2001); Uspenskii and Favier (1994); Chiechun and Brown (1983)].

Many studies on crystal growth have been undertaken in the field of materials science 

[Yoshio, Akira, Yutaka et al (2009); Kawaji, Gamache, Hwang et al. (2003); Lee and 

Chun (1999); de Vahl Davis (1983)]. Müller, Neumann and Weber et al. (1984) have 

studied experimentally and theoretically the naturalconvection in closed vertical cylinder 

heated from below. For various aspect ratios, they have investigated two different types of 

melts, H2O (Pr=6.7), Ga and GaSb melts ( )2Pr 2 10-» ´ . They have focused on the

temperature profiles during growth. They showed clearly that the manifestation of doping 

striations in the GaSb crystals can be very well correlated with the unsteady flow regimes. 

Gelfgat and Bar-Yoseph [Gelfgat and Bar-Yoseph (2002)] have studied numerically the 

three-dimensional axisymmetry-breaking instability of convective flow during crystal 

growth from bulk. They considered a representative model of convection in a vertical 

cylinder with a parabolic temperature profile on the side wall. 

Their main objective was the calculation of critical parameters corresponding to a transition 

from the steady axisymmetric to the three-dimensional non-axisymmetric oscillatory flow 

pattern. They showed the strong dependence of the critical Grashof number and the azimuthal 

periodicity on the resulting three-dimensional flow. Their results indicate the importance of 

a comprehensive parametric stability analysis in different crystal growth configurations. 

They suggest that a good understanding of oscillatory convection in liquid metals requires 

separate study in a more simplified geometrical system with a single body force. For this 

reason, we have turned to the classical Rayleigh-Bernard problem for low Prandtl numbers 

as described in the present paper. 

Rayleigh-Bernard natural convection has been studied extensively but not for low Prandtl 

numbers. The oscillatory convection of molten semi-conducting materials has been known 

and considered as to be responsible for the undesirable strain in crystal rods. Fundamental 

studies on oscillatory convection are expected to clarify the general mechanism of 

oscillatory convection and suggest effective ways for its control. Some of the recent works 

on applications for material processing have been described by Lappa [Lappa (2007)]. Low 

Prandtl oscillatory natural convection numbers of fluids heated from a vertical side wall 



[Pesso and Piva (2009)] or from below [Nakano and Ozoe (1998)] have also been studied. 

For example, Achoubir et al. [Achoubir, Bennacer, Cheddadi et al. (2008)] studied the 

effect of governing parameters, namely the Rayleigh number, the Lewis number and 

thermal to solutal ratio on the transition to oscillatory modes for thermal and solutal 

buoyancy forces. These forces oppose each other.

In the present study, we focus on the natural convection in a rectangular cavity filled with 

a metallic alloy characterized by a low Prandtl number. The results in terms of streamlines, 

isotherms, solute distribution, average Nusselt and Sherwood numbers are presented for a 

wide range of Lewis and Prandtl numbers.

Authors are encouraged to use the template for Microsoft Word, to prepare the final version 

of their manuscripts and facilitate typesetting. Authors may elect to submit two versions of 

their manuscript, one for the printed version of the journal, and the other for the on-line 

version of the journal. Illustrations in color are allowed only in the on-line version of the 

journal.

2 Physical problem and mathematical formulation

The physical model consists of two-dimensional rectangular enclosure heated from the left 

side and cooled from the right one. The temperatures hT and Tc are maintained constant. 

The concentrations hC at the left and the right walls are also considered constant. The 

cavity is filled with a fluid with Prandtl number ( )210 Pr 10- £ £ . Fig. 1 depicts the system. 

The fluid in the cavity is considered incompressible and Newtonian with negligible viscous 

dissipation. Furthermore, all thermos-physical properties of the fluid are constant except 

for the density variation in the buoyancy term. The density reads:

Figure 1: Physical system model and boundary conditions

( ) ( )* *
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(1)

The dimensionless variables are:
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The two-dimensional continuity and momentum equations coupled with the energy and 

solute transport equations under the Boussinesq approximation, may be now written in 

dimensionless form as follows:
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The problem is governed by four dimensionless numbers: the thermal Rayleigh number

( ) 3

T H CRa g T T H /= b - na , the Prandtl number Pr /=n a , the Lewis number Le / D=a

and the buoyancy ratio number ( ) ( )s H C T H CN C C / T T=b - b - .

The boundary conditions correspond to various physical situations:

No-slip boundary conditions are specified at all walls. The temperature and concentration 

on the boundaries are given by:

for [ ]y 0,1Î :

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

h h

c c

T 0, y T 0.5, C 0, y C 0.5, u 0, y v 0, y 0

T 1, y T 0.5, C 1, y C 0.5, u 1, y v 1, y 0

= = = = = =

= = - = = - = =

for [ ]x 0,1Î

( ) ( ) ( ) ( ) ( ) ( )
T x,0 C x,0 T x,1 C x,1

0 , 0, u x,0 v x,0 0
y y y y

¶ ¶ ¶ ¶
= = = = = =

¶ ¶ ¶ ¶
(7)

The Nusselt and Sherwood numbers characterizing, respectively, the dimensionless heat 

and mass transfer are defined by:
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The stream functiony is expressed by the following expressions:

u , v
y x

¶y ¶y
= =-
¶ ¶

(10)

3 Numerical method

Finite volume method has been used for spatial discretization. Note that the power-law 

scheme was adopted for the discretization of the convection-diffusion term. The temporal 

discretization is achieved using the explicit Euler time marching scheme with a time step 
tD equal to 10-4.The SIMPLER algorithm is used to solve the velocity-pressure coupling 

by Patankar [Patankar (1980)]. Thereafter, a line by line method is applied to solve the 

resulting system of linear algebraic equations. For all dependent variables u, v, T and C, 

the convergence criterion was set at a maximum relative error to be less than 10-4; this 

statement corresponds to the relation:

n 1 n
4

n
Max 10

+
-f -f

e = £
f

(11)

The mesh is constituted by an irregular sinusoidal distribution of nodes. A global mesh 

refinement was carried out. It consists on choosing between 40×40 to 120×120 grid points. 

Such choice of values of the discretization parameters allows an accurate description of the 

thermosolutal convection phenomena within the cavity for 
5Ra 10510

4 Validation

The convergence of the numerical schema has been assumed through validation procedure

against the results provided by Lage et al. [Lage and Bejan (1991); Erbay, Altaç and Sûlûs

(2003); de Vahl Davis (1983); Morega and Nishimura (1998); Oueslati, BenBeya and Lili

(2014)]. These results have been derived under the Boussinesq assumption. The 

comparison is summarized in Tab. 1. For 2Pr 10-210- , a very good agreement between the 

present predictions and those provided by Lage et al. [Lage and Bejan (1991)] and Erbay 

et al. [Erbay, Altaç and Sûlûs (2003)] can be observed. For Pr = 0.71, Ra=103 and Ra=106

the present predictions are in a very good agreement with the data provided by de Vahl 

Davis [de Vahl Davis (1983)].

In the case of the natural double diffusive convection, the numerical code was validated 

with two cases of aspect and buoyancy ratio; the results are compared with those obtained 

by Morega et al. [Morega and Nishimura (1998); Oueslati, BenBeya and Lili (2014);

Teamah (2008)] when Pr=1, Le=2 and Ra=103. Tab. 2 lists the average Nusselt and 

Sherwood numbers. Good agreements between the present computation and those of

Morega et al. [Morega and Nishimura (1998); Oueslati, BenBeya and Lili (2014)] and 

Teamah [Teamah (2008)] are observed.



Table 1: The summary of the present and Benchmark results for steady-state Nusselt 

values

Pr Ra Lage and Bejan 

(1991)

Erbay, Altaç and 

Sûlûs (2003)

Grid Present 

results

10-2

102 1.00 1.004 40×40 1.001

103 1.05 1.080 40×40 1.08

104 1.50 1.593 40×40 1.593

105 2.77 2.778 40×40 2.772

1

105 4.9 4.674 90×90 4.612

106 9.2 9.194 100×100 8.975

107 17.9 17.897 100×100 16.942

Table 2: Average Nusselt number compares with those of de Vahl Davis [de Vahl Davis 

(1983)] for Pr 0.71, Ar 1= =

Ra Lage and Bejan (1991) Present work Mean deviation (%)

103 1.174 1.119 4.9

106 8.800 8.910 1.2

Table 3: Average Nusselt and Sherwood numbers compared with results found in Nishimura 

et al. [Nishimura, Wakamatsu and Morega (1998); Oueslati, BenBeya and Lili (2014)]

Present

work

Nishimura,

Wakamatsu and

Morega (1998)

Mean

deviation 

(%)

Oueslati,

BenBeya and

Lili (2014)

Mean 

deviation

(%)

Nu 3.0222 3.0100 0.40 3.0138 0.28

Sh 3.8336 3.82 0.36 3.8275 0.18

Table 4: Average Nusselt and Sherwood numbers compared with those of Oueslati et al. 

[Oueslati, BenBeya and Lili (2014)] and Teamah [Teamah (2008)] for
5Pr 1, Le 2, Ra 10 , N 0.8, Ar 2= = = =- =

Present

work

Oueslati,

BenBeya and Lili

(2014)

Mean deviation 

(%)

Teamah 

(2008)

Mean deviation 

(%)

Nu 3.4178 3.3952 0.66 3.4613 1.2

Sh 4.3993 4.39170 0.17 4.37677 0.51



5 Results and discussion

In order to investigate the influence of the Prandtl and Lewis numbers on the flow and 

solute distribution, further computations have been carried out for different values of 

dimensionless parameters. The results of numerical simulations are summarized below:

a. The mesh refinement effect

Different mesh sizes were tested for 2 4Pr 10 ,Le 10 , N 5-= = = and 5Ra 10= with the

number of nodes ranging from 60 60´ to 120 120´ . This allows determining the available

grid size and shows the extensive grid independence of the numerical results for the

considered problem. The corresponding results are given in Tab. 5. It is found that as soon

as the grid gets finer than 100 100´ , the flow intensity, represented by the stream function

maxy and
miny and Nusselt number remains unaltered.

Table 5: Mesh indepence study for:
2 4 4 5Pr 10 ,Le 10 , N 5, Ra 5 10 , Ar 1, t 1, t 10- -= = = = ´ = = D =

Fig. 2 shows that the mesh refinement has a large effect on the development of the boundary 

layer flow and on the solute boundary layer except for the temperature profile represented by 

isotherms which remains the same. Results presented in Tab. 5 show that the grid 100 100´ ,

or other finer alternatives, is sufficiently sharp to ensure a good development of the flow and 

solute boundary layers. In this case, the grid 100 100´ ensures the mesh independent solution. 

Such grid size is sufficient to perform all subsequent computations and can be utilized in the 

numerical treatment of the current analysis.

Streamlines

mesh 60 60´ 80 80´ 100 100´ 120 120´

miny 0.183 0.213 0.219 0.220

maxy -5.366 -5.632 -5.835 -5.895

Nu 2.403 2.431 2.457 2.457

Sh 55.570 71.023 83.470 83.610



Isotherms

Iso-concentration lines

40 40´ 80 80´ 100 100´ 120 120´

Figure 2: Effect of mesh on streamline patterns, isotherms and solute distribution for:
2 4 4 5Pr 10 ,Le 10 , N 5, Ra 5 10 , Ar 1, t 10- -= = = = ´ = D =

b. Numerical stability criterion independence testing

Numerical stability criteria have been considered. They consist on reaching stable values for 

the velocity, temperature and concentration. Tab. 6 depicts the flow intensity represented by 

the maximum and minimum stream function, the average Nusselt and Sherwood numbers 

calculated for various values of numerical the stability criterion. The effect of the stability 

criterion e on the appearance of small cells at the vertical sides of the cavity appears clearly 

on Fig. 3 for 510-e £ when the solute boundary layer is well developed. 

Tab. 7 shows that results in terms of stream function, average Nusselt and Sherwood 

numbers are not influenced by the time step values.

However, the Fig. 4 demonstrates that the evolution of the average Nusselt number 

throughout the time is well done for tD equals to 510- . At the beginning of the period, the 

rate of heat transfer corresponding to 2t 10-D = is higher than for those of 2t 10-D 2t 1t 1t 1t 1t 10- and this 

remains during all the time. In this case, the average Nusselt number has a constant value 

of 2.4. So the transition period is not visualized for 2t 10-D = and only the steady state can

be noticed.

For 5t 10-D = , the line graph starts from zero where no heat transfer rateat the hot wall of 

the cavity in the beginning of the period. Over time, the average Nusselt number increases

significantly reaching the value of the steady state and remains constant.  The transition

period is well developed for 5t 10-D £ . In the following calculations, the stability criterion 

e of 510- and the time step 5t 10-D = are considered.



Figure 3: Effect of convergence criterion on the flow structure and solute distribution for:
2 4 4 5Pr 10 ,Le 10 , N 5, Ra 5 10 , Ar 1, t 10- -= = = = ´ = D =

Table 6: Convergence criterion independence study

n 1 n

n
Max

+f -f
e =

f
10-2 10-3 10-4 10-5 10-6

miny -9.11 -5.805 -5.835 -5.835 -5.835

maxy 0 0.063 0.221 0.221 0.221

Nu 3.828 2.554 2.457 2.457 2.457

Sh 88.64 79.62 83.347 83.348 83.348

Table 7: Effect of time step study for: 2 4 4Pr 10 ,Le 10 , N 5, Ra 5 10 , Ar 1-= = = = ´ =

TIME STEP tD 10-2 10-3 10-4 10-5

maxy 0.143 0.143 0.143 0.143

miny -5.125 -5.125 -5.125 -5.125

Nu 2.401 2.401 2.401 2.401

Sh 42.130 42.130 42.130 42.130

Streamlines

Isoconcentration lines
210-e = 410-e = 610-e =
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Figure 4: Average Nusselt evolutions for different values of time step

c. Effect of Lewis number

A computational analysis has been performed to investigate the effects of Lewis number on 

natural convection at low Prandtl number Pr 0.01= . Fig. 5 shows the effect of Lewis number 

on streamline patterns, isotherms and iso-concentrations. Many multi cellular flow 

distributions are observed inside the cavity according to the Lewis number. In the case of 

stream lines for low Lewis number, the number of circular cells trends to increase [Mahfooz

and Hossain (2012)]. As to the temperature distribution, convective distortion of isotherms 

occurs throughout the cavity due to the strong influence of the convective current in the cavity. 

It is obvious that flow increases with Lewis number; alike for iso-concentration distribution. 

Fig. 6 illustrates that the Nusselt number declines over the increasing of the Lewis number, 

whereas the Sherwood number remains fixed. At low Lewis number value around 1, the 

Nusselt and Sherwood numbers are equal and their graph lines start from the same value.

It can be noticed that the Nusselt number increases at large values of Lewis number, while 

the Sherwood number remains fixed. Therefore, the Lewis number has generally no 

inhibiting effect on the Sherwood number.

Streamlines 



Isotherms 

Isoconcentration lines

2Pr 10-= 1Pr 10-= Pr 1= Pr 10= Pr 100=

Figure 5: Effect of Lewis number on the flow structure, isotherms and solute distribution 

for: 2 4 5Pr 10 , N 5, Ra 5 10 , Ar 1, t 10- -= = = ´ = D =
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Figure 6: Effect of Lewis number on the average Nusselt and Sherwood numbers for: 
2 4 5Pr 10 , N 5, Ra 5 10 , Ar 1, t 10- -= = = ´ = D =

d. Effect of Prandtl number

Fig. 7 shows the isotherms, the iso-concentration and the streamlines of the roll cells 

circulation in the enclosure. The flow patterns and solute distributions are quite similar 

when Pr 10³ . At low Prandtl number, the convective motion inside the enclosure

becomes more active and produces secondary vortices at each corner of the enclosure. On 

the other hand, in the case of high Prandtl numbers, the flow around the body is quite 

stratified and contacts the top and bottom walls much more widely. 



Fig. 8 shows the effect of Prandtl number on the average Nusselt and Sherwood numbers. 

The numerical results in the Fig. 8(a) indicate that the variation of the Nusselt number is 

very important for the Prandlt number between 0.01 and 20. For a Prandtl number greater 

than 25, the average Nusselt number does no longer depend on the Prandtl number and 

becomes constant. The Fig. 7(b) shows that the dependency of the mass transfer rate on the 

Prandtl number is important when the later is lower than 10. Otherwise Sherwood number 

remains constant.

Streamlines

Isotherms

Isoconcentration lines
2Pr 10-= 1Pr 10-= Pr 1= Pr 10= Pr 100=

Figure 7: Effect of Prandtl number on the flow structure, isotherms and solute distribution 

for:
4 4 5Le 10 , N 5, Ra 5 10 , Ar 1, t 10-= = = ´ = D =
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Figure 8: Effect of Prandtl number, (a) the average Nusselt, (b) Sherwood numbers
4 4Le 10 , N 5, Ra 5 10 , Ar 1= =- = ´ =

6 Conclusions

The problem of natural convection, heat and mass transfer transitions in a rectangular 

enclosure has been studied numerically. Various Prandtl and Lewis numbers have been 

considered for the streamlines, the temperature field, the solute distribution and for Nusselt 

and Sherwood numbers. Rayleigh and buoyancy ratio numbers are kept constant.

The analysis of the numerical results leads to the following conclusions:

In steady state and for moderate Rayleigh number Ra values, the flow structure, the thermal 

field and the solute distribution depend strongly on the Prandtl and Lewis numbers.

The Nusselt and Sherwood numbers are in strong dependence on the low Prandtl number 

values 2 110 Pr 10- £ £

(a)

(b)



The Nusselt and Sherwood numbers for a high Prandtl number are larger than in cases of 

low Prandtl numbers,

The boundary layers in the flow field and solute distribution appear for the Prandlt number 

lower than 10-1.

The effect of Lewis number on the flow, thermal field and solute distribution is also 

investigated. It is observed that the mass transfer rate increases with the Lewis number and 

that the multi-cell state to mono-cell state transition of the flow structures is obtained far 

from the vertical sides.
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