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This paper deals with the numerical study of heat and mass transfer occurring in a cavity filled with a low Prandtl number liquid. The model includes the momentum, energy and mass balance equations. These equations are discretized by a finite volume technique and solved in the framework of a custom SIMPLER method developed in FORTRAN. The effect of the problem characteristic parameters, namely the Lewis and Prandtl numbers, on the instability of the flow and related solute distribution is studied for positive and negative thermal and solutal buoyancy forces ratio. Nusselt and Sherwood numbers are derived for values of the Prandtl number ranging between 10 -2 and 10 1 with the Lewis number spanning the interval 1-10 4 . The results show unicellular and multicellular flows featured by solute and kinematic boundary layers with thickness depending on the Prandtl number.

Introduction

Natural convection of low-Prandtl-number fluids such as liquid metals is an important phenomenon often present in the production of industrial materials. For example, Bridgman crystal growth, floating zone and Heat exchanger methods. In these practical systems, inertial natural convection is dominant owing to low Prandtl number Pr 0.01 » [START_REF] Gelfgat | Effect of axial magnetic field on three-dimensional instability of natural convection in a vertical Bridgman growth configuration[END_REF]; [START_REF] Uspenskii | High frequency vibration and natural convection in Bridgman-scheme crystal growth[END_REF]; Chiechun and Brown (1983)]. Many studies on crystal growth have been undertaken in the field of materials science [START_REF] Yoshio | Numerical simulation of natural convection heat transfer in a ZnO single Crystal Growth hydrothermal autoclave-Effects of fluid properties[END_REF]; [START_REF] Kawaji | Investigation of Marangoni and natural convection during protein crystal growth[END_REF]; [START_REF] Lee | Transition from regular to irregular thermal wave by coupling of natural convection with rotating flow in Czochralski[END_REF]; [START_REF] De Vahl Davis | Natural convection of air in a square cavity: A benchmark numerical solution[END_REF]]. [START_REF] Müller | Natural convection in vertical Bridgman configurations[END_REF] have studied experimentally and theoretically the naturalconvection in closed vertical cylinder heated from below. For various aspect ratios, they have investigated two different types of melts, H2O (Pr=6.7), Ga and GaSb melts ( )
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Pr 2 10 - » ´. They have focused on the temperature profiles during growth. They showed clearly that the manifestation of doping striations in the GaSb crystals can be very well correlated with the unsteady flow regimes.

Gelfgat and Bar-Yoseph [START_REF] Gelfgat | Axisymmetry breaking instabilities of natural convection in a vertical Bridgman growth configuration[END_REF]] have studied numerically the three-dimensional axisymmetry-breaking instability of convective flow during crystal growth from bulk. They considered a representative model of convection in a vertical cylinder with a parabolic temperature profile on the side wall.

Their main objective was the calculation of critical parameters corresponding to a transition from the steady axisymmetric to the three-dimensional non-axisymmetric oscillatory flow pattern. They showed the strong dependence of the critical Grashof number and the azimuthal periodicity on the resulting three-dimensional flow. Their results indicate the importance of a comprehensive parametric stability analysis in different crystal growth configurations. They suggest that a good understanding of oscillatory convection in liquid metals requires separate study in a more simplified geometrical system with a single body force. For this reason, we have turned to the classical Rayleigh-Bernard problem for low Prandtl numbers as described in the present paper.

Rayleigh-Bernard natural convection has been studied extensively but not for low Prandtl numbers. The oscillatory convection of molten semi-conducting materials has been known and considered as to be responsible for the undesirable strain in crystal rods. Fundamental studies on oscillatory convection are expected to clarify the general mechanism of oscillatory convection and suggest effective ways for its control. Some of the recent works on applications for material processing have been described by [START_REF] Lappa | Secondary and oscillatory gravitational instabilities in canonical threedimensional models of crystal growth from the melt. Part 1: Rayleigh-Bénard systems[END_REF]]. Low Prandtl oscillatory natural convection numbers of fluids heated from a vertical side wall [START_REF] Pesso | Laminar natural convection in a square cavity: Low Prandtl numbers and large density differences[END_REF]] or from below [START_REF] Nakano | Numerical computation of natural convection for a low-Prandtl-number fluid in a shallow rectangular region heated from below[END_REF]] have also been studied. For example, Achoubir et al. [START_REF] Achoubir | Numerical study of thermosolutal convection in enclosures used for directional solidification (Bridgman cavity)[END_REF]] studied the effect of governing parameters, namely the Rayleigh number, the Lewis number and thermal to solutal ratio on the transition to oscillatory modes for thermal and solutal buoyancy forces. These forces oppose each other.

In the present study, we focus on the natural convection in a rectangular cavity filled with a metallic alloy characterized by a low Prandtl number. ) ( )
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The dimensionless variables are:
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The two-dimensional continuity and momentum equations coupled with the energy and solute transport equations under the Boussinesq approximation, may be now written in dimensionless form as follows:
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The problem is governed by four dimensionless numbers: the thermal Rayleigh number 
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The boundary conditions correspond to various physical situations: No-slip boundary conditions are specified at all walls. The temperature and concentration on the boundaries are given by:

for
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The Nusselt and Sherwood numbers characterizing, respectively, the dimensionless heat and mass transfer are defined by:
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The stream function y is expressed by the following expressions: u , v y
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3 Numerical method Finite volume method has been used for spatial discretization. Note that the power-law scheme was adopted for the discretization of the convection-diffusion term. The temporal discretization is achieved using the explicit Euler time marching scheme with a time step t D equal to 10 -4 .The SIMPLER algorithm is used to solve the velocity-pressure coupling by [START_REF] Patankar | Numerical Heat Transfer and Fluid Flow[END_REF]]. Thereafter, a line by line method is applied to solve the resulting system of linear algebraic equations. For all dependent variables u, v, T and C, the convergence criterion was set at a maximum relative error to be less than 10 -4 ; this statement corresponds to the relation:
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The mesh is constituted by an irregular sinusoidal distribution of nodes. A global mesh refinement was carried out. It consists on choosing between 40×40 to 120×120 grid points. Such choice of values of the discretization parameters allows an accurate description of the thermosolutal convection phenomena within the cavity for 10 -, a very good agreement between the present predictions and those provided by Lage et al. [START_REF] Lage | The Ra-Pr domain of laminar convection in an enclosure heated from the side[END_REF]] and Erbay et al. [START_REF] Erbay | An Analysis of the entropy generation in a square enclosure[END_REF]] can be observed. For Pr = 0.71, Ra=10 3 and Ra=10 6 the present predictions are in a very good agreement with the data provided by [START_REF] De Vahl Davis | Natural convection of air in a square cavity: A benchmark numerical solution[END_REF]].

In the case of the natural double diffusive convection, the numerical code was validated with two cases of aspect and buoyancy ratio; the results are compared with those obtained by Morega et al. ´. This allows determining the available grid size and shows the extensive grid independence of the numerical results for the considered problem. The corresponding results are given in Tab. 5. It is found that as soon as the grid gets finer than 100 100

´, the flow intensity, represented by the stream function max y and min y and Nusselt number remains unaltered.

Table 5: Mesh indepence study for: ´, or other finer alternatives, is sufficiently sharp to ensure a good development of the flow and solute boundary layers. In this case, the grid 100 ´ensures the mesh independent solution. Such grid size is sufficient to perform all subsequent computations and can be utilized in the numerical treatment of the current analysis. . Fig. 5 shows the effect of Lewis number on streamline patterns, isotherms and iso-concentrations. Many multi cellular flow distributions are observed inside the cavity according to the Lewis number. In the case of stream lines for low Lewis number, the number of circular cells trends to increase [START_REF] Mahfooz | Conduction-radiation effect on transient natural convection with Thermophoresis[END_REF]]. As to the temperature distribution, convective distortion of isotherms occurs throughout the cavity due to the strong influence of the convective current in the cavity. It is obvious that flow increases with Lewis number; alike for iso-concentration distribution. Fig. 6 illustrates that the Nusselt number declines over the increasing of the Lewis number, whereas the Sherwood number remains fixed. At low Lewis number value around 1, the Nusselt and Sherwood numbers are equal and their graph lines start from the same value. It can be noticed that the Nusselt number increases at large values of Lewis number, while the Sherwood number remains fixed. Therefore, the Lewis number has generally no inhibiting effect on the Sherwood number. The Nusselt and Sherwood numbers for a high Prandtl number are larger than in cases of low Prandtl numbers, The boundary layers in the flow field and solute distribution appear for the Prandlt number lower than 10 -1 . The effect of Lewis number on the flow, thermal field and solute distribution is also investigated. It is observed that the mass transfer rate increases with the Lewis number and that the multi-cell state to mono-cell state transition of the flow structures is obtained far from the vertical sides.
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  Physical problem and mathematical formulationThe physical model consists of two-dimensional rectangular enclosure heated from the left side and cooled from the right one. The temperatures h T and Tc are maintained constant. The concentrations h C at the left and the right walls are also considered constant. The cavity is filled with a fluid with Prandtl number ( ) the system.The fluid in the cavity is considered incompressible and Newtonian with negligible viscous dissipation. Furthermore, all thermos-physical properties of the fluid are constant except for the density variation in the buoyancy term. The density reads:

Figure 1 :

 1 Figure 1: Physical system model and boundary conditions

(

  

  the numerical schema has been assumed through validation procedure against the results provided by Lage et al. [Lage and Bejan (1991); Erbay, Altaç and Sûlûs (2003); de Vahl Davis (1983); Morega and Nishimura (1998); Oueslati, BenBeya and Lili (2014)]. These results have been derived under the Boussinesq assumption. The comparison is summarized in Tab. 1

  [START_REF] Nishimura | Oscillatory double-diffusive convection in a rectangular enclosure with combined horizontal temperature and concentration gradients[END_REF];[START_REF] Oueslati | Numerical investigation of thermosolutal natural convection in a rectangular enclosure of an aspect ratio four with heat and solute sources[END_REF];[START_REF] Teamah | Numerical simulation of double diffusive natural convection in rectangular enclosure in the presences of magnetic field and heat source[END_REF]] when Pr=1, Le=2 and Ra=10 3 . Tab. 2 lists the average Nusselt and Sherwood numbers. Good agreements between the present computation and those of[START_REF] Nishimura | Oscillatory double-diffusive convection in a rectangular enclosure with combined horizontal temperature and concentration gradients[END_REF];[START_REF] Oueslati | Numerical investigation of thermosolutal natural convection in a rectangular enclosure of an aspect ratio four with heat and solute sources[END_REF]] and[START_REF] Teamah | Numerical simulation of double diffusive natural convection in rectangular enclosure in the presences of magnetic field and heat source[END_REF]] are observed.

  Fig. 2 shows that the mesh refinement has a large effect on the development of the boundary layer flow and on the solute boundary layer except for the temperature profile represented by isotherms which remains the same. Results presented in Tab. 5 show that the grid 100 100
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 2 Effect of mesh on streamline patterns, isotherms and solute distribution for: stability criterion independence testing Numerical stability criteria have been considered. They consist on reaching stable values for the velocity, temperature and concentration. Tab. 6 depicts the flow intensity represented by the maximum and minimum stream function, the average Nusselt and Sherwood numbers calculated for various values of numerical the stability criterion. The effect of the stability criterion e on the appearance of small cells at the vertical sides of the cavity appears clearly on Figboundary layer is well developed.Tab. 7 shows that results in terms of stream function, average Nusselt and Sherwood numbers are not influenced by the time step values. However, the Fig.4demonstrates that the evolution of the average Nusselt number throughout the time is well done for t D equals to 5 10 -. At the beginning of the period, the rate of heat transfer corresponding to and this remains during all the time. In this case, the average Nusselt number has a constant value of 2.4. So the transition period is not visualized graph starts from zero where no heat transfer rateat the hot wall of the cavity in the beginning of the period. Over time, the average Nusselt number increases significantly reaching the value of the steady state and remains constant. The transition period is

Figure 3 :

 3 Figure 3: Effect of convergence criterion on the flow structure and solute distribution for: 2 4 4 5 Pr 10 ,Le 10 , N 5, Ra 5 10 , Ar 1, t 10 --= = = = ´= D =

Figure 4 :

 4 Figure 4: Average Nusselt evolutions for different values of time step c. Effect of Lewis number A computational analysis has been performed to investigate the effects of Lewis number on natural convection at low Prandtl number Pr 0.01 =

Figure 5 :Figure 6 :

 56 Figure 5: Effect of Lewis number on the flow structure, isotherms and solute distribution for: 2 4 5 Pr 10 , N 5, Ra 5 10 , Ar 1, t 10 --= = = ´= D =

Fig. 8 Figure 7 :Figure 8 :

 878 Fig. 8 shows the effect of Prandtl number on the average Nusselt and Sherwood numbers. The numerical results in the Fig. 8(a) indicate that the variation of the Nusselt number is very important for the Prandlt number between 0.01 and 20. For a Prandtl number greater than 25, the average Nusselt number does no longer depend on the Prandtl number and becomes constant. The Fig. 7(b) shows that the dependency of the mass transfer rate on the Prandtl number is important when the later is lower than 10. Otherwise Sherwood number remains constant.

  The results in terms of streamlines, isotherms, solute distribution, average Nusselt and Sherwood numbers are presented for a wide range of Lewis and Prandtl numbers. Authors are encouraged to use the template for Microsoft Word, to prepare the final version of their manuscripts and facilitate typesetting. Authors may elect to submit two versions of their manuscript, one for the printed version of the journal, and the other for the on-line version of the journal. Illustrations in color are allowed only in the on-line version of the journal.

Table 1 :

 1 The summary of the present and Benchmark results for steady-state Nusselt values

	Pr	Ra	Lage and Bejan	Erbay, Altaç and	Grid	Present
			(1991)	Sûlûs (2003)		results
		10 2	1.00	1.004	40×40	1.001
	10 -2	10 3	1.05	1.080	40×40	1.08
		10 4	1.50	1.593	40×40	1.593
		10 5	2.77	2.778	40×40	2.772
		10 5	4.9	4.674	90×90	4.612
	1	10 6	9.2	9.194	100×100	8.975
		10 7	17.9	17.897	100×100	16.942

Table 2 :

 2 Average Nusselt number compares with those of[START_REF] De Vahl Davis | Natural convection of air in a square cavity: A benchmark numerical solution[END_REF]] for Pr 0.71, Ar 1

	=	=		
	Ra	Lage and Bejan (1991) Present work	Mean deviation (%)
	10 3	1.174	1.119	4.9
	10 6	8.800	8.910	1.2

Table 3 :

 3 Average

		Present	Nishimura,	Mean	Oueslati,	Mean
		work	Wakamatsu and Morega (1998)	deviation (%)	BenBeya and Lili (2014)	deviation (%)
	Nu	3.0222	3.0100	0.40	3.0138	0.28
	Sh	3.8336	3.82	0.36	3.8275	0.18

Nusselt and Sherwood numbers compared with results found in Nishimura et al.

[START_REF] Nishimura | Oscillatory double-diffusive convection in a rectangular enclosure with combined horizontal temperature and concentration gradients[END_REF]

;

[START_REF] Oueslati | Numerical investigation of thermosolutal natural convection in a rectangular enclosure of an aspect ratio four with heat and solute sources[END_REF] 

Table 4 :

 4 Average Nusselt and Sherwood numbers compared with those ofOueslati et al. 

	[Oueslati, BenBeya and Lili (2014)] and Teamah [Teamah (2008)] for
	5 Pr 1, Le 2, Ra 10 , N = = =	= -	0.8, Ar 2 =
		Present	Oueslati,	Mean deviation	Teamah	Mean deviation
		work	BenBeya and Lili (2014)	(%)	(2008)	(%)
	Nu	3.4178 3.3952		0.66	3.4613	1.2
	Sh	4.3993 4.39170		0.17	4.37677	0.51

Table 6 :

 6 Convergence criterion independence study

	e =	Max	n 1 + f -f n f	n	10 -2	10 -3	10 -4	10 -5	10 -6
	y	min			-9.11	-5.805	-5.835	-5.835	-5.835
	y	max			0		0.063	0.221	0.221	0.221
	Nu			3.828	2.554	2.457	2.457	2.457
	Sh			88.64	79.62	83.347	83.348	83.348

Table 7 :

 7 Effect of time step study for:

					2 Pr 10 ,Le 10 , N 5, Ra 5 10 , Ar 1 4 4 -= = = = ´=
	TIME STEP t D	10 -2	10 -3	10 -4	10 -5
	y	max	0.143	0.143	0.143	0.143
	y	min	-5.125	-5.125	-5.125	-5.125
	Nu	2.401	2.401	2.401	2.401
	Sh	42.130	42.130	42.130	42.130
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