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ANGSHUL MAJUMDAR, Indraprastha Institute of Information Technology, India

The objective of this letter is to propose a novel computational method to learn the state of an appliance
(ON / OFF) given the aggregate power consumption recorded by the smart-meter. We formulate a multi-label
classification problem where the classes correspond to the appliances. The proposed approach is based on our
recently introduced framework of convolutional transform learning. We propose a deep supervised version of
it relying on an original multi-label cost. Comparisons with state-of-the-art techniques show that our proposed
method improves over the benchmarks on popular non-intrusive load monitoring datasets.
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monitoring.
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1 INTRODUCTION
In a recent study we introduced multi-label consistent convolutional transform learning [18]. This
shallow technique showed promising results in non-intrusive load monitoring (NILM). This letter
proposes two major improvements over the former [18]. First, we introduce a deeper version of the
representation learning model, called multi-label deep convolutional transform learning. Second,
our approach can operate in both classification and regression scenarios. In classification, it detects
the state of appliances (ON / OFF) while, in regression, it estimates the power consumption of
individual appliances. In contrast, the former shallow formulation [18] was limited to classification,
i.e. it could detect the states of appliances but could not estimate their energy consumptions. Lately,
similar convolutional transform learning based frameworks have been used for unsupervised [6, 7]
and supervised feature extraction [8]. In future, we would like to extend the proposed work for
clustering as done in a previous transform learning based paper [17].
NILM techniques can be broadly segregated into two categories: (i) techniques that estimate

the power consumption of appliances, and (ii) techniques that detect the states of appliances.
Traditionally, NILM was addressed by the first class of techniques, using methods based on factorial
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hidden Markov model (FHMM) [14], sparse coding (SC) [13] and combinatorial optimization [2], to
estimate the power consumptions of individual appliances. The second category tackles NILM as
a multi-label classification problem. A review of traditional methods can be found in [20]. More
recently, off-the-shelf deep learning methods like autoencoders and long short-term memory
(LSTM) networks [11], deep learning architectures based on dictionary and transform learning [19],
random forests [21] or convolutional neural network (CNN) architecture [22] were also proposed
for detecting the states of appliances. Up to our knowledge, most of the studies deploy some
off-the-shelf algorithm with slight modifications for the multi-label setting to address NILM. In this
paper, our contribution lies in proposing a method able to tackle both regression and classification
problems arising in NILM, by relying on a novel representation learning paradigm. In a prior study,
we introduced the framework of unsupervised convolutional transform learning [16]. In [18], we
show how to integrate a multi-label cost in it so as to make the method supervised. This present
work lies on a deeper version of the former model. However, unlike in [18], which could only
classify, and hence detect the states of the appliances, we the proposed solution here can estimate
the energy consumptions as well.

2 BACKGROUND
In this section, we introduce the basis for convolutional transform learning [18] and multi-label
convolutional transform learning. These will be required for understanding our proposedmulti-label
deep convolutional transform learning.

2.1 Convolutional Transform Learning
Convolutional transform learning analyses some data 𝑠 (𝑘) (𝑘 = 1, . . . , 𝐾) using a set of learnt filters
𝑡 (𝑚) (𝑚 = 1, . . . , 𝑀) to extract a set of features 𝑥 (𝑘)

𝑚 . The representation model reads:

𝑡𝑚 ∗ 𝑠 (𝑘) = 𝑥 (𝑘)
𝑚 , for all𝑚 ∈ {1, . . . , 𝑀} and 𝑘 ∈ {1, . . . , 𝐾}, (1)

with ∗ a given discrete convolution operation with suitable dimension (typically, 1D or 2D) and
padding (typically, zero). In the training stage, the convolutional filters and the associated coefficients
are learnt from the data by solving the optimization problem,

minimize
(𝑡𝑚)𝑚,(𝑥 (𝑘 )

𝑚 )𝑚,𝑘

1
2

𝐾∑
𝑘=1

𝑀∑
𝑚=1

(


𝑡𝑚 ∗ 𝑠 (𝑘) − 𝑥 (𝑘)
𝑚




2
2
+𝜓

(
𝑥
(𝑘)
𝑚

) )
+ 𝜇 ∥𝑇 ∥2𝐹 − 𝜆 log det (𝑇 ) . (2)

The term𝜓 is a suitable penalization on the features, whereas the hybrid term 𝜇 ∥𝑇 ∥2𝐹 −𝜆 log det (𝑇 )
enforces the uniqueness of the learnt filters for some positive weights (𝜇, 𝜆). This is one major
difference with CNN, where such constraint would be difficult to impose during the training phase.
In matrix notation, (2) can be expressed as

minimize
𝑇,𝑋

𝐹 (𝑇,𝑋 ) = 1
2
∥𝑇 ★ 𝑆 − 𝑋 ∥2𝐹 + Ψ(𝑋 ) + 𝜇 ∥𝑇 ∥2𝐹 − 𝜆 log det (𝑇 ) , (3)

where 𝑇 =
[
𝑡1 . . . 𝑡𝑀

]
, 𝑆 =

[
𝑠 (1) . . . 𝑠 (𝐾)

]⊤, 𝑋 =

[
𝑥
(𝑘)
1 . . . 𝑥

(𝑘)
𝑀

]
1≤𝑘≤𝐾

,

𝑇 ★ 𝑆 =


𝑡1 ∗ 𝑠 (1) . . . 𝑡𝑀 ∗ 𝑠 (1)

...
. . .

...

𝑡1 ∗ 𝑠 (𝐾) . . . 𝑡𝑀 ∗ 𝑠 (𝐾)

 , (4)

and Ψ amounts to applying the penalty term𝜓 column-wise on 𝑋 and summing. The problem (3)
can be solved using the alternating proximal algorithm [3].
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Fig. 1. Multi-label Deep Convolutional Transform Learning Architecture.

2.2 Multi-label Convolutional Transform Learning
The idea of label consistency was initially introduced for dictionary learning [10]. Later it was
incorporated within the transform learning framework [15]. The label consistency cost was in-
corporated into the convolutional transform learning framework in [18]. Following the recent
success of the label consistency term, we propose to employ it to devise a supervised version of our
convolutional transform learning method. This amounts to adding the extra label consistency term
in (3), leading to the resolution of:

minimize
𝑇,𝑋,𝑀

1
2
∥𝑇 ★ 𝑆 − 𝑋 ∥2𝐹 + Ψ(𝑋 ) + 𝜇 ∥𝑇 ∥2𝐹 − 𝜆 log det (𝑇 ) + 𝜂∥𝑄 −𝑀𝑋 ∥2𝐹 . (5)

Here the term ∥𝑄 −𝑀𝑋 ∥2𝐹 , associated to the positive weight 𝜂, corresponds to label consistency.
As in [18], matrix 𝑄 gathers the one hot encoded class labels, and𝑀 is a mapping from the learnt
representation to the labels. To solve (5), one could adopt the alternating proximal algorithm [3].

3 PROPOSED MULTI-LABEL DEEP CONVOLUTIONAL TRANSFORM LEARNING
We propose a deeper extension of multi-label convolutional transform learning with a changed
cost for the multi-label consistency term. Our justification for a deep architecture relies on the
key property that the solution 𝑋 to (3), assuming fixed filters 𝑇 , can be reformulated as the simple
application of an element-wise activation function. That is:

argmin𝑋 𝐹 (𝑇,𝑋 ) = Φ
(
𝑇 ★ 𝑆

)
, (6)

with Φ being the proximity operator of Ψ [4]. It is interesting to remark that, if Ψ is the indicator
function of the positive orthant, then Φ identifies with the famous rectified linear unit (ReLU)
activation function. Many other examples of mapping between proximity operators and activation
functions are provided in [4]. Consequently, we propose to compute deep features by stacking
several such layers, leading to 𝑋ℓ = Φℓ (𝑇ℓ ★𝑋ℓ−1) with ℓ = 1, . . . , 𝐿 − 1 and 𝑋0 = 𝑆 .
For both classification and regression tasks, the input remains the same, namely the power

consumption over a period of time. For classification task, the labels associated to the data 𝑆 are
gathered into a matrix 𝐿, where each column is a binary vector with the 𝑛-th element being 0 if
the 𝑛-th appliance is off and 1 if the 𝑛-th appliance in on. Owing to such binary nature, it is more
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appropriate to use a binary cross entropy loss for label consistency, leading to:

minimize
𝑇,𝑋,𝑊

1
2
∥𝑇2 ★Φ(𝑇1 ★ 𝑆) − 𝑋 ∥2𝐹 +Ψ(𝑋 ) +

2∑
ℓ=1

(
𝜇 ∥𝑇ℓ ∥2𝐹 − 𝜆 log det (𝑇ℓ )

)
+𝜂𝐽𝐵𝐶𝐸 (𝜎 (𝑊𝑋 ), 𝐿), (7)

where 𝜎 is the sigmoid function, and 𝐽𝐵𝐶𝐸 is the binary cross-entropy loss. Instead of predicting
the state of the appliance, if we want to predict the power consumption, the labels in the matrix 𝐿
will consist of appliance-wise power consumption. Since the labels will be real values, we use the
Euclidean cost, which yields:

minimize
𝑇,𝑋,𝑊

1
2
∥𝑇2 ★Φ(𝑇1 ★ 𝑆) − 𝑋 ∥2𝐹 + Ψ(𝑋 ) +

2∑
ℓ=1

(
𝜇 ∥𝑇ℓ ∥2𝐹 − 𝜆 log det (𝑇ℓ )

)
+ 𝜂∥𝑊𝑋 − 𝐿∥2𝐹 . (8)

Hereabove, we show the formulations for two layers of convolutional transforms (𝑇1 and 𝑇2), but it
can be extended to more in a straightforward way. We finally propose to solve both problems (7)
and (8) using backpropagation with accelerated gradient descent [12]. Fig. 1 shows the schematic
diagram of our proposed method. While it appears to be similar to that of a convolutional neural
network (CNN), the key difference of our proposed approach lies in the way the convolutional
filters are learnt. Here, we guarantee uniqueness of the learnt filters, while CNN does not. The later
start with random initialization of each filter and ‘hopes’ that the filters will be unique.

4 EXPERIMENTAL EVALUATION
We have experimented on two popular NILM datasets – REDD and Pecan Street. Both are available
in NILM Tool Kit. Owing to limitations in space, we cannot describe the datasets in detail. For both
datasets, high frequency data is available. To emulate real-world conditions, we have aggregated
and sub-sampled the data to one sample per minute. For both datasets, 60 % of the houses have
been used for training and the rest for of testing.

4.1 Classification
In the multi-label classification scenario, we have compared with two state-of-the-art techniques,
namely deep learning based NILM with pinball loss (PB-NILM) [5] and multi-label deep transform
learning (MLDTL) [19]. For our proposed technique the parameters were determined using k-fold
cross validation on the training data. The retained parameters were 𝛽 = 1, 𝜇 = 3, 𝜆 = 1 and 𝜂 = 1.
The 𝐹1𝑚𝑎𝑐𝑟𝑜 , the 𝐹1𝑚𝑖𝑐𝑟𝑜 and the average energy error (AEE), that are standard measures for
multi-label classification based NILM [20], are presented in Tab. I and Tab. II.
For both the datasets, we see that our proposed algorithm with two layers performs the best.

Adding further layers on these small datasets results in overfitting. We find that PB-NILM works
better for Pecan Street (larger dataset) compared to REDD which may owe to the fact that the
technique is over-fitting for the smaller data.

4.2 Regression
In this scenario, our objective is to predict the energy consumed by different appliances. We have
compared against deep latent generative model (DLGM) [1] and semi-binary non-negative matrix
factorization (SMNNMF) [9]. The parameters for the existing benchmarks have been obtained from
the papers. The parametric values for our model remain the same as before. For comparing the
accuracies, we compute the normalized energy errors of common appliances for the two different
datasets. The results are shown in Tables III and IV. Here we are showing the best results from our
two layer architecture.
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Table 1. Classification Results on REDD

Method Macro F1 Micro F1 Average
Measure Measure Energy Error

PB-NILM 0.5515 0.5576 0.3903
ML-DTL 0.5693 0.5642 0.3537

Proposed 1 layer 0.5687 0.5682 0.2926
Proposed 2 layer 0.6018 0.6026 0.2558
Proposed 3 layer 0.5425 0.5419 0.3282

Table 2. Classification Results on Pecan Street

Method Macro F1 Micro F1 Average
Measure Measure Energy Error

PB-NILM 0.6231 0.6207 0.2582
ML-DTL 0.5552 0.5552 0.4048

Proposed 1 layer 0.6121 0.6119 0.2723
Proposed 2 layer 0.6381 0.6378 0.2316
Proposed 3 layer 0.5983 0.5963 0.2902

5 CONCLUSION
This work proposes a new supervised deep learning framework. It is based on the concept of
convolutional transform learning. We specified this framework to the task of non-intrusive load
monitoring. It can tackle both to classification problem for identifying the states of the appliances
and to the regression problem for estimating their energy consumptions. Comparisons with state-
of-the-art techniques show that our proposed method improves over the rest. We expect that the
results can be further improved by adopting post-processing approaches such as [9].
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