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The objective of this letter is to propose a novel computational method to learn the state of an appliance (ON / OFF) given the aggregate power consumption recorded by the smart-meter. We formulate a multi-label classification problem where the classes correspond to the appliances. The proposed approach is based on our recently introduced framework of convolutional transform learning. We propose a deep supervised version of it relying on an original multi-label cost. Comparisons with state-of-the-art techniques show that our proposed method improves over the benchmarks on popular non-intrusive load monitoring datasets.

INTRODUCTION

In a recent study we introduced multi-label consistent convolutional transform learning [START_REF] Singh | Multi-Label Consistent Convolutional Transform Learning: Application to Non-Intrusive Load Monitoring[END_REF]. This shallow technique showed promising results in non-intrusive load monitoring (NILM). This letter proposes two major improvements over the former [START_REF] Singh | Multi-Label Consistent Convolutional Transform Learning: Application to Non-Intrusive Load Monitoring[END_REF]. First, we introduce a deeper version of the representation learning model, called multi-label deep convolutional transform learning. Second, our approach can operate in both classification and regression scenarios. In classification, it detects the state of appliances (ON / OFF) while, in regression, it estimates the power consumption of individual appliances. In contrast, the former shallow formulation [START_REF] Singh | Multi-Label Consistent Convolutional Transform Learning: Application to Non-Intrusive Load Monitoring[END_REF] was limited to classification, i.e. it could detect the states of appliances but could not estimate their energy consumptions. Lately, similar convolutional transform learning based frameworks have been used for unsupervised [START_REF] Gupta | ConFuse: Convolutional Transform Learning Fusion Framework For Multi-Channel Data Analysis[END_REF][START_REF] Gupta | DeConFuse: a deep convolutional transform-based unsupervised fusion framework[END_REF] and supervised feature extraction [START_REF] Gupta | SuperDeConFuse: A supervised deep convolutional transform based fusion framework for financial trading systems[END_REF]. In future, we would like to extend the proposed work for clustering as done in a previous transform learning based paper [START_REF] Maggu | Deeply Transformed Subspace Clustering[END_REF].

NILM techniques can be broadly segregated into two categories: (i) techniques that estimate the power consumption of appliances, and (ii) techniques that detect the states of appliances. Traditionally, NILM was addressed by the first class of techniques, using methods based on factorial hidden Markov model (FHMM) [START_REF] Kolter | Approximate inference in additive factorial hmms with application to energy disaggregation[END_REF], sparse coding (SC) [START_REF] Zico Kolter | Energy disaggregation via discriminative sparse coding[END_REF] and combinatorial optimization [START_REF] Zulfiquar | Load disaggregation based on aided linear integer programming[END_REF], to estimate the power consumptions of individual appliances. The second category tackles NILM as a multi-label classification problem. A review of traditional methods can be found in [START_REF] Seyed | Toward non-intrusive load monitoring via multi-label classification[END_REF]. More recently, off-the-shelf deep learning methods like autoencoders and long short-term memory (LSTM) networks [START_REF] Kelly | Neural nilm: Deep neural networks applied to energy disaggregation[END_REF], deep learning architectures based on dictionary and transform learning [START_REF] Singhal | Simultaneous detection of multiple appliances from smart-meter measurements via multi-label consistent deep dictionary learning and deep transform learning[END_REF], random forests [START_REF] Wu | Multi-label classification based on random forest algorithm for non-intrusive load monitoring system[END_REF] or convolutional neural network (CNN) architecture [START_REF] Yang | Semi-Supervised Multi-Label Deep Learning based Non-intrusive Load Monitoring in Smart Grids[END_REF] were also proposed for detecting the states of appliances. Up to our knowledge, most of the studies deploy some off-the-shelf algorithm with slight modifications for the multi-label setting to address NILM. In this paper, our contribution lies in proposing a method able to tackle both regression and classification problems arising in NILM, by relying on a novel representation learning paradigm. In a prior study, we introduced the framework of unsupervised convolutional transform learning [START_REF] Maggu | Convolutional transform learning[END_REF]. In [START_REF] Singh | Multi-Label Consistent Convolutional Transform Learning: Application to Non-Intrusive Load Monitoring[END_REF], we show how to integrate a multi-label cost in it so as to make the method supervised. This present work lies on a deeper version of the former model. However, unlike in [START_REF] Singh | Multi-Label Consistent Convolutional Transform Learning: Application to Non-Intrusive Load Monitoring[END_REF], which could only classify, and hence detect the states of the appliances, we the proposed solution here can estimate the energy consumptions as well.

BACKGROUND

In this section, we introduce the basis for convolutional transform learning [START_REF] Singh | Multi-Label Consistent Convolutional Transform Learning: Application to Non-Intrusive Load Monitoring[END_REF] and multi-label convolutional transform learning. These will be required for understanding our proposed multi-label deep convolutional transform learning.

Convolutional Transform Learning

Convolutional transform learning analyses some data 𝑠 (𝑘) (𝑘 = 1, . . . , 𝐾) using a set of learnt filters 𝑡 (𝑚) (𝑚 = 1, . . . , 𝑀) to extract a set of features 𝑥 (𝑘) 𝑚 . The representation model reads:

𝑡 𝑚 * 𝑠 (𝑘) = 𝑥 (𝑘)
𝑚 , for all 𝑚 ∈ {1, . . . , 𝑀 } and 𝑘 ∈ {1, . . . , 𝐾 },

with * a given discrete convolution operation with suitable dimension (typically, 1D or 2D) and padding (typically, zero). In the training stage, the convolutional filters and the associated coefficients are learnt from the data by solving the optimization problem, minimize

(𝑡 𝑚 ) 𝑚 ,(𝑥 (𝑘 ) 𝑚 ) 𝑚,𝑘 1 2 𝐾 𝑘=1 𝑀 𝑚=1 𝑡 𝑚 * 𝑠 (𝑘) -𝑥 (𝑘) 𝑚 2 2 + 𝜓 𝑥 (𝑘) 𝑚 + 𝜇 ∥𝑇 ∥ 2 𝐹 -𝜆 log det (𝑇 ) . (2) 
The term 𝜓 is a suitable penalization on the features, whereas the hybrid term 𝜇 ∥𝑇 ∥ 2 𝐹 -𝜆 log det (𝑇 ) enforces the uniqueness of the learnt filters for some positive weights (𝜇, 𝜆). This is one major difference with CNN, where such constraint would be difficult to impose during the training phase. In matrix notation, (2) can be expressed as minimize

𝑇 ,𝑋 𝐹 (𝑇 , 𝑋 ) = 1 2 ∥𝑇 ★ 𝑆 -𝑋 ∥ 2 𝐹 + Ψ(𝑋 ) + 𝜇 ∥𝑇 ∥ 2 𝐹 -𝜆 log det (𝑇 ) , (3) 
where 𝑇 = 𝑡 1 . . . 𝑡 𝑀 , 𝑆 = 𝑠 (1) . . . 𝑠 (𝐾) ⊤ , 𝑋 = 𝑥 (𝑘)

1 . . . 𝑥 (𝑘) 𝑀 1≤𝑘 ≤𝐾 , 𝑇 ★ 𝑆 =       
𝑡 1 * 𝑠 (1) . . . 𝑡 𝑀 * 𝑠 (1) . . . . . . . . .

𝑡 1 * 𝑠 (𝐾) . . . 𝑡 𝑀 * 𝑠 (𝐾)        , (4) 
and Ψ amounts to applying the penalty term 𝜓 column-wise on 𝑋 and summing. The problem (3) can be solved using the alternating proximal algorithm [START_REF] Chouzenoux | A block coordinate variable metric forwardbackward algorithm[END_REF]. 

Multi-label Convolutional Transform Learning

The idea of label consistency was initially introduced for dictionary learning [START_REF] Jiang | Label consistent K-SVD: Learning a discriminative dictionary for recognition[END_REF]. Later it was incorporated within the transform learning framework [START_REF] Maggu | Label-consistent transform learning for hyperspectral image classification[END_REF]. The label consistency cost was incorporated into the convolutional transform learning framework in [START_REF] Singh | Multi-Label Consistent Convolutional Transform Learning: Application to Non-Intrusive Load Monitoring[END_REF]. Following the recent success of the label consistency term, we propose to employ it to devise a supervised version of our convolutional transform learning method. This amounts to adding the extra label consistency term in (3), leading to the resolution of: minimize 𝑇 ,𝑋 ,𝑀

1 2 ∥𝑇 ★ 𝑆 -𝑋 ∥ 2 𝐹 + Ψ(𝑋 ) + 𝜇 ∥𝑇 ∥ 2 𝐹 -𝜆 log det (𝑇 ) + 𝜂 ∥𝑄 -𝑀𝑋 ∥ 2 𝐹 . (5) 
Here the term ∥𝑄 -𝑀𝑋 ∥ 2 𝐹 , associated to the positive weight 𝜂, corresponds to label consistency. As in [START_REF] Singh | Multi-Label Consistent Convolutional Transform Learning: Application to Non-Intrusive Load Monitoring[END_REF], matrix 𝑄 gathers the one hot encoded class labels, and 𝑀 is a mapping from the learnt representation to the labels. To solve [START_REF] Gomes | PB-NILM: Pinball guided deep non-intrusive load monitoring[END_REF], one could adopt the alternating proximal algorithm [START_REF] Chouzenoux | A block coordinate variable metric forwardbackward algorithm[END_REF].

PROPOSED MULTI-LABEL DEEP CONVOLUTIONAL TRANSFORM LEARNING

We propose a deeper extension of multi-label convolutional transform learning with a changed cost for the multi-label consistency term. Our justification for a deep architecture relies on the key property that the solution 𝑋 to (3), assuming fixed filters 𝑇 , can be reformulated as the simple application of an element-wise activation function. That is:

argmin 𝑋 𝐹 (𝑇 , 𝑋 ) = Φ 𝑇 ★ 𝑆 , (6) 
with Φ being the proximity operator of Ψ [START_REF] Combettes | Deep Neural Network Structures Solving Variational Inequalities[END_REF]. It is interesting to remark that, if Ψ is the indicator function of the positive orthant, then Φ identifies with the famous rectified linear unit (ReLU) activation function. Many other examples of mapping between proximity operators and activation functions are provided in [START_REF] Combettes | Deep Neural Network Structures Solving Variational Inequalities[END_REF]. Consequently, we propose to compute deep features by stacking several such layers, leading to 𝑋 ℓ = Φ ℓ (𝑇 ℓ ★ 𝑋 ℓ-1 ) with ℓ = 1, . . . , 𝐿 -1 and 𝑋 0 = 𝑆. For both classification and regression tasks, the input remains the same, namely the power consumption over a period of time. For classification task, the labels associated to the data 𝑆 are gathered into a matrix 𝐿, where each column is a binary vector with the 𝑛-th element being 0 if the 𝑛-th appliance is off and 1 if the 𝑛-th appliance in on. Owing to such binary nature, it is more appropriate to use a binary cross entropy loss for label consistency, leading to: minimize

𝑇 ,𝑋 ,𝑊 1 2 ∥𝑇 2 ★ Φ(𝑇 1 ★ 𝑆) -𝑋 ∥ 2 𝐹 + Ψ(𝑋 ) + 2 ℓ=1 𝜇 ∥𝑇 ℓ ∥ 2 𝐹 -𝜆 log det (𝑇 ℓ ) +𝜂 𝐽 𝐵𝐶𝐸 (𝜎 (𝑊 𝑋 ), 𝐿), ( 7 
)
where 𝜎 is the sigmoid function, and 𝐽 𝐵𝐶𝐸 is the binary cross-entropy loss. Instead of predicting the state of the appliance, if we want to predict the power consumption, the labels in the matrix 𝐿 will consist of appliance-wise power consumption. Since the labels will be real values, we use the Euclidean cost, which yields:

minimize 𝑇 ,𝑋 ,𝑊 1 2 ∥𝑇 2 ★ Φ(𝑇 1 ★ 𝑆) -𝑋 ∥ 2 𝐹 + Ψ(𝑋 ) + 2 ℓ=1 𝜇 ∥𝑇 ℓ ∥ 2 𝐹 -𝜆 log det (𝑇 ℓ ) + 𝜂 ∥𝑊 𝑋 -𝐿∥ 2 𝐹 . (8) 
Hereabove, we show the formulations for two layers of convolutional transforms (𝑇 1 and 𝑇 2 ), but it can be extended to more in a straightforward way. We finally propose to solve both problems ( 7) and ( 8) using backpropagation with accelerated gradient descent [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. Fig. 1 shows the schematic diagram of our proposed method. While it appears to be similar to that of a convolutional neural network (CNN), the key difference of our proposed approach lies in the way the convolutional filters are learnt. Here, we guarantee uniqueness of the learnt filters, while CNN does not. The later start with random initialization of each filter and 'hopes' that the filters will be unique.

EXPERIMENTAL EVALUATION

We have experimented on two popular NILM datasets -REDD and Pecan Street. Both are available in NILM Tool Kit. Owing to limitations in space, we cannot describe the datasets in detail. For both datasets, high frequency data is available. To emulate real-world conditions, we have aggregated and sub-sampled the data to one sample per minute. For both datasets, 60 % of the houses have been used for training and the rest for of testing.

Classification

In the multi-label classification scenario, we have compared with two state-of-the-art techniques, namely deep learning based NILM with pinball loss (PB-NILM) [START_REF] Gomes | PB-NILM: Pinball guided deep non-intrusive load monitoring[END_REF] and multi-label deep transform learning (MLDTL) [START_REF] Singhal | Simultaneous detection of multiple appliances from smart-meter measurements via multi-label consistent deep dictionary learning and deep transform learning[END_REF]. For our proposed technique the parameters were determined using k-fold cross validation on the training data. The retained parameters were 𝛽 = 1, 𝜇 = 3, 𝜆 = 1 and 𝜂 = 1.

The 𝐹 1 𝑚𝑎𝑐𝑟𝑜 , the 𝐹 1 𝑚𝑖𝑐𝑟𝑜 and the average energy error (AEE), that are standard measures for multi-label classification based NILM [START_REF] Seyed | Toward non-intrusive load monitoring via multi-label classification[END_REF], are presented in Tab. I and Tab. II. For both the datasets, we see that our proposed algorithm with two layers performs the best. Adding further layers on these small datasets results in overfitting. We find that PB-NILM works better for Pecan Street (larger dataset) compared to REDD which may owe to the fact that the technique is over-fitting for the smaller data.

Regression

In this scenario, our objective is to predict the energy consumed by different appliances. We have compared against deep latent generative model (DLGM) [START_REF] Bejarano | Deep Latent Generative Models for Energy Disaggregation[END_REF] and semi-binary non-negative matrix factorization (SMNNMF) [START_REF] He | A generic optimisation-based approach for improving non-intrusive load monitoring[END_REF]. The parameters for the existing benchmarks have been obtained from the papers. The parametric values for our model remain the same as before. For comparing the accuracies, we compute the normalized energy errors of common appliances for the two different datasets. The results are shown in Tables III and IV. Here we are showing the best results from our two layer architecture. 

CONCLUSION

This work proposes a new supervised deep learning framework. It is based on the concept of convolutional transform learning. We specified this framework to the task of non-intrusive load monitoring. It can tackle both to classification problem for identifying the states of the appliances and to the regression problem for estimating their energy consumptions. Comparisons with stateof-the-art techniques show that our proposed method improves over the rest. We expect that the results can be further improved by adopting post-processing approaches such as [START_REF] He | A generic optimisation-based approach for improving non-intrusive load monitoring[END_REF].

Fig. 1 .

 1 Fig. 1. Multi-label Deep Convolutional Transform Learning Architecture.

Table 1 .

 1 Classification Results on REDD

	Method	Macro F1 Micro F1	Average
		Measure Measure Energy Error
	PB-NILM	0.5515	0.5576	0.3903
	ML-DTL	0.5693	0.5642	0.3537
	Proposed 1 layer	0.5687	0.5682	0.2926
	Proposed 2 layer	0.6018	0.6026	0.2558
	Proposed 3 layer	0.5425	0.5419	0.3282

Table 2 .

 2 Classification Results on Pecan Street

	Method	Macro F1 Micro F1	Average
		Measure Measure Energy Error
	PB-NILM	0.6231	0.6207	0.2582
	ML-DTL	0.5552	0.5552	0.4048
	Proposed 1 layer	0.6121	0.6119	0.2723
	Proposed 2 layer	0.6381	0.6378	0.2316
	Proposed 3 layer	0.5983	0.5963	0.2902
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