
HAL Id: hal-03463375
https://hal.science/hal-03463375v1

Preprint submitted on 9 Dec 2021 (v1), last revised 15 Nov 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local Limit Theorem for Complex Valued Sequences
Lucas Coeuret

To cite this version:

Lucas Coeuret. Local Limit Theorem for Complex Valued Sequences. 2021. �hal-03463375v1�

https://hal.science/hal-03463375v1
https://hal.archives-ouvertes.fr


Local Limit Theorem for Complex Valued Sequences

Lucas Coeuret1

Abstract

In this article, we study the pointwise asymptotic behavior of iterated convolutions on Z. We generalize the
so-called local limit theorem in probability theory to complex valued sequences. A sharp rate of convergence is
proved together with a generalized Gaussian bound for the first corrector.

AMS classification: 42A85, 35K25, 60F99, 65M12.
Keywords: convolution, local limit theorem, difference approximation, stability.

For 1 ≤ q < +∞, we let `q(Z) denote the Banach space of complex valued sequences indexed by Z and such
that the norm:

‖u‖`q :=

∑
j∈Z
|uj |q

 1
q

is finite. We also let `∞(Z) denote the Banach space of bounded complex valued sequences indexed by Z
equipped with the norm

‖u‖`∞ := sup
j∈Z
|uj |.

Throughout this article, we define the following sets:

U := {z ∈ C, |z| > 1} , D := {z ∈ C, |z| < 1} , S1 := {z ∈ C, |z| = 1} ,

U := S1 ∪ U , D := S1 ∪ D.

For z ∈ C and r > 0, we let Br(z) denote the open ball in C centered at z with radius r.
For E a Banach space, we denote L(E) the space of bounded operators acting on E and ‖·‖L(E) the operator

norm. For T in L(E), the notation σ(T ) stands for the spectrum of the operator T and ρ(T ) denotes the spectral
radius of T .

Lastly, we let Mn(C) denote the space of complex valued square matrices of size n and for an element M
ofMn(C), the notation MT stands for the transpose of M .

We use the notation . to express an inequality up to a multiplicative constant. Eventually, we let C (resp.
c) denote some large (resp. small) positive constants that may vary throughout the text (sometimes within the
same line).

1 Introduction and main result

1.1 Context
We define the convolution a ∗ b of two elements a and b of `1(Z) by

∀j ∈ Z, (a ∗ b)j :=
∑
l∈Z

albj−l.

When equipped with this product, `1(Z) is a Banach algebra. For a ∈ `1(Z), we define the Laurent operator
La associated with a which acts on `p(Z) as

∀u ∈ `p(Z), Lau := a ∗ u ∈ `p(Z).

1Institut de Mathématiques de Toulouse ; UMR5219 ; Université de Toulouse ; CNRS ; UPS, 118 route de Narbonne, F-31062
Toulouse Cedex 9, France. Research of the author was supported by the Agence Nationale de la Recherche projects Nabuco
(ANR-17-CE40-0025) and Indyana (ANR-21-CE40-0008-01), as well as by the Labex Centre International de Mathématiques et
Informatique de Toulouse under grant agreement ANR-11-LABX-0040. E-mail: lucas.coeuret@math-univ.toulouse.fr
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Young’s inequality implies that those operators are well defined and are bounded for all p ∈ [1,+∞]. Further-
more, we have that La∗b = La ◦ Lb for a, b ∈ `1(Z). Finally, Wiener’s theorem [10] characterizes the invertible
elements of `1(Z) and thus allows us to describe the spectrum of La via the Fourier series F associated with a:

σ(La) =

{
F (t) :=

∑
k∈Z

ake
itk, t ∈ R

}
.

We observe that the spectrum is independent of p and that F is continuous since a belongs to `1(Z).
If we suppose that the sequence a has real non negative coefficients and

∑
k∈Z ak = 1, then the sequence

an = a ∗ . . . ∗ a is the probability distribution of the sum of n independent random variables supported on Z
each with the probability distribution2 a. A lot is known on the pointwise asymptotic behavior of the sequence
an in this case. In particular, the local limit theorem states, under suitable hypotheses on a, that

anj −
1√

2πσ2n
exp

(
−|j − nα|

2

2nσ2

)
=

n→+∞
o

(
1√
n

)
, (1)

where α =
∑
k∈Z kak and σ2 =

∑
k∈Z k

2ak−α2 are respectively the mean and the variance of a random variable
with probability distribution a and where the error term is uniform on Z (see [11, Chapter VII] for more details).
This gives a precise description of the asymptotic behavior of anj in the range |j − nα| .

√
n and implies that

the convolution powers of a are attracted towards the heat kernel.
Following, among other works, [6, 12, 3], we are interested in generalizing the local limit theorem to the case

where a is complex valued. Extending the works of Schoenberg [15], Greville [8] and Diaconis and Saloff-Coste
[6, Theorem 2.6], the article [12] of Randles and Saloff-Coste already provides a generalization of the local limit
theorem for a large class of complex valued finitely supported elements of `1(Z). By doing so, the authors of
[12] describe an asymptotic expansion similar to (1) with an explicit expression of the attractors. Our goal in
this paper is to obtain a more precise description of the asymptotic result proved in [12] by proving a sharp
rate of convergence together with a generalized Gaussian bound for the remainder (see Theorem 1 below). In
the case where a is the probability distribution of a random variable, as above, our theorem would translate
in saying that, under suitable assumptions on a (namely that a is finitely supported with at least two nonzero
elements), there exist two constants C, c > 0 such that

∀n ∈ N∗,∀j ∈ Z,
∣∣∣∣anj − 1√

2πσ2n
exp

(
−|j − nα|

2

2nσ2

)∣∣∣∣ ≤ C

n
exp

(
−c |j − nα|

2

n

)
.

Using this result, we are able to prove the well-known Berry-Essen inequality (see [1, 7]) which states that there
exists a constant C > 0 such that

∀n ∈ N∗,∀J ∈ Z,

∣∣∣∣∣∣
∑
j≤J

anj −
∑
j≤J

1√
2πσ2n

exp

(
−|j − nα|

2

2nσ2

)∣∣∣∣∣∣ ≤ C√
n
.

However, we will need stronger hypotheses on the elements of `1(Z) than the conditions imposed in [12].
We will consider here elements a of `1(Z) which are finitely supported and such that the sequence (an)n∈N is
bounded in `1(Z). The fundamental contribution [18] by Thomée completely characterizes such elements and
is an important starting point for our work.

In the articles [6] and [12], the proofs mainly rely on the use of Fourier analysis to express the elements anj
via the Fourier series associated with a. In this paper, we will rather follow an approach usually referred to in
partial differential equations as "spatial dynamics". It aims at using the functional calculus (see [2, Chapter
VII]) to express the temporal Green’s function (here the coefficients anj ) with the resolvent of the operator La
via the spatial Green’s function which is the unique solution of

(zId− La)u = δ, z ∈ C\σ(La),

where δ is the discrete Dirac mass δ = (δj,0)j∈Z. This approach has already been used in [3] to extend the result
of [6, Theorem 1.1] and obtain a uniform generalized Gaussian bound for the elements anj . It has also been used
in [4] to prove similar results on finite rank perturbations of Toeplitz operators (convolution operators on `p(N)
rather than on `p(Z)). The present paper is very much inspired by [3, 4] and we will use notations and proofs
similar to those articles. We will now present in more details the hypotheses we need on the elements a ∈ `1(Z)
that we shall consider and we shall then our main theorem.

2We say that a sequence a is the probability distribution of a random variable X with values in Z when P(X = j) = aj for all
j ∈ Z.
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1.2 Hypotheses and theorem
We consider a given sequence a ∈ `1(Z). We let La be the bounded operator acting on `p(Z) defined as

∀u ∈ `p(Z), Lau :=

(∑
l∈Z

aluj+l

)
j∈Z

.

This operator is obviously linked to Laurent operators and could be written as one of them (La = Lb for
b = (a−j)j∈Z). Our goal will be to study the powers L n

a for n large. This problem arises as the large time
behavior of finite difference approximations of partial differential equations. We also define the symbol F
associated with a as

∀κ ∈ S1, F (κ) :=
∑
j∈Z

ajκ
j . (2)

The Wiener theorem [10] implies that
σ(La) = F (S1).

We are now going to introduce some hypotheses that are necessary for the rest of the paper.

Hypothesis 1. The sequence a is finitely supported and has at least two nonzero coefficients.

This hypothesis implies that we can extend the definition (2) of F on C\ {0} and F becomes a holomorphic
function on this domain. We introduce the two following elements

km := min {k ∈ Z, ak 6= 0} , kM := max {k ∈ Z, ak 6= 0} .

Observing that Hypothesis 1 implies km < kM , we then distinguish three different possibilities:

• We have kM ≤ −1. Then, we define r := −km and p := 0.

• We have km ≤ 0 ≤ kM . Then, we define r := −km and p := kM .

• We have 1 ≤ km. Then, we define r := 0 and p := kM .

In every case, we have r, p ∈ N and −r > p. Also, we have that

∀u ∈ `p(Z),∀j ∈ Z, (Lau)j =

p∑
k=−r

akuj+k.

The natural integers r and p we just introduced define the common stencil of the operators L and Id and they
will be useful to study the so-called resolvent equation (13). We now introduce an assumption on F which is
based on [18]. Just like in [6, 12, 3], we normalize a so that the maximum of F on S1 is 1.

Hypothesis 2. There exists a finite set of distinct points {κ1, . . . , κK}, K ≥ 1, in S1 such that for all k ∈
{1, . . . ,K}, zk := F (κk) belongs to S1 and

∀z ∈ S1\ {κ1, . . . , κK} , |F (z)| < 1.

Moreover, we suppose that for each k ∈ {1, . . . ,K}, there exist a nonzero real number αk, an integer µk ≥ 1
and a complex number βk with positive real part such that

F (κke
iξ) =

ξ→0
zk exp(−iαkξ − βkξ2µk +O(|ξ|2µk+1)). (3)

Graphically, this means that the spectrum σ(La) is contained in the disk D and intersects S1 at a finite
number of points (see Figure 1 for an example with K = 2, z1 = 1, z2 = −1) and that F has a specific
asymptotic expansion at those intersection points. The condition (3) has been studied closely because of its
link with the stability properties of finite difference approximations for PDEs (see [18]). We can observe that,
under hypotheses 1 and 2, there holds

∀n ∈ N∗, ‖L n
a ‖L(`2(Z)) = ‖Fn‖L∞(S1) = 1.

3



O

exp(−η)S1

S1

σ(La)

•z1•z2

Figure 1: An example of spectrum σ(La). The spectrum σ(La) (in red) is inside the closed disk D̄ and touches
the boundary S1 in finitely many points. In gray, we have O the intersection of the unbounded connected
component of C\σ(La) and

{
z ∈ C, |z| > exp(−η)

}
.

It assures the `2-stability, or strong stability (see [16], [17]), of the numerical scheme defined as{
un+1 = Lau

n, n ≥ 0,
u0 ∈ `2(Z).

(4)

However, it has much further consequences, as the asymptotic expansion (3) assures the `p-stability of the
scheme (4) for every p in [1,+∞] (see [18, Theorem 1] which focuses on the `∞-stability but also studies the `p-
stability as a consequence). From a more general point of view, it is proved in [18, Theorem 1] that Hypothesis
2 is one of two conditions to characterize the elements a of `1(Z) such that the family (an)n∈N is bounded in
`1(Z).

For the rest of the paper, it will be useful to observe that the asymptotic expansion (3) implies that

∀k ∈ {1, . . . ,K} , αk = −F ′(κk)
κk
zk
∈ R∗. (5)

Finally, we have the following lemma.

Lemma 1. For a ∈ `1(Z) which verifies hypotheses 1 and 2, we have that a−r and ap belong to D.

Proof We introduce the polynomial function g defined by

∀κ ∈ C, g(κ) :=

p∑
l=−r

alκ
l+r.

For all κ ∈ S1, Hypothesis 2 implies that

|g(κ)| = |κrF (κ)| = |F (κ)| ≤ 1.

Observing that g is not a constant function, the maximum principle for holomorphic functions [14] allows us to
conclude that

|a−r| = |g(0)| < 1.

The same kind of argument allows us to conclude for the coefficient ap. �

We now introduce yet another hypothesis.

Hypothesis 3. For all k ∈ {1, . . . ,K}, we have that the set

Ik := {ν ∈ {1, . . . ,K} , zν = zk}

has either one or two elements. Moreover, if there are two distinct elements νk,1 and νk,2 in it, then ανk,1ανk,2 <
0.
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Hypothesis 3 combined with the fact that the αk are nonzero real numbers (see Hypothesis 2) implies that,
for k ∈ {1, . . . ,K}, we have three different possibilities:

• Case I: Ik is the singleton {k} and αk > 0,

• Case II: Ik is the singleton {k} and αk < 0,

• Case III: Ik has two distinct elements νk,1 and νk,2 such that ανk,1 > 0 and ανk,2 < 0.

Distinguishing those three cases will be useful later on. We define for z ∈ C and j ∈ {−r, . . . , p}

Aj(z) := zδj,0 − aj . (6)

The definition of r and p implies that A−r and Ap can vanish at most on one point which are respectively
a−r and ap. Lemma 1 allows us to find η > 0 such that A−r and Ap do not vanish on

{
z ∈ C, |z| > exp(−η)

}
.

We can therefore define for all z ∈ C such that |z| > exp(−η) the matrix

M(z) :=


−Ap−1(z)

Ap(z) . . . . . . −A−r(z)
Ap(z)

1 0 . . . 0

0
. . . . . .

...
0 0 1 0

 ∈Mp+r(C).

The application which associates z with M(z) is holomorphic. Moreover, since A−r(z) 6= 0, the upper right
coefficient of M(z) is always nonzero and M(z) is invertible for all z ∈ C such that |z| > exp(−η).

The three hypotheses we presented above will be crucial in the rest of the paper. Some of them could maybe
be less restrictive, but this would be consideration for future works.

Finally, by defining the discrete Dirac mass δ = (δj,0)j∈Z, we introduce the so-called temporal Green’s
function defined by

∀n ∈ N∗,∀j ∈ Z, G n
j := (L n

a δ)j .

Our main goal is to determine the asymptotic behavior of G n
j when n grows and to determine a speed of

convergence with a uniform estimate of the remainder for j ∈ Z. As discussed in the previous section, the
asymptotic behavior is already known and justified in [12]. For µ ∈ N∗ and β ∈ C with positive real part, we
let Hβ

2µ : R→ C be the function defined as

∀x ∈ R, Hβ
2µ(x) :=

1

2π

∫
R
e−ixue−βu

2µ

du.

The following lemma gives sharp estimates on the function Hβ
2µ.

Lemma 2. For µ ∈ N∗ and β ∈ C with positive real part, there exist two constants C, c > 0 such that

∀x ∈ R,


∣∣∣Hβ

2µ(x)
∣∣∣ ≤ C exp

(
−c|x|

2µ
2µ−1

)
,∣∣∣∣(Hβ

2µ

)′
(x)

∣∣∣∣ ≤ C exp
(
−c|x|

2µ
2µ−1

)
.

This lemma is proved in [13, Proposition 5.3]. For the sake of completeness, we give a complete proof of it
in the appendix (Section 5). We can now define the so-called "attractors":

∀k ∈ {1, . . . ,K} ,∀n ∈ N∗,∀j ∈ Z, H n
k,j :=

zk
nκk

j

n
1

2µk

Hβk
2µk

(
j − nαk
n

1
2µk

)
.

In [12, Theorem 1.2], it is proved that if we introduce µ = maxk∈{1,...,K} µk andKµ = {k ∈ {1, . . . ,K} , µk = µ},
then

G n
j −

∑
k∈Kµ

H n
k,j =

n→+∞
o

(
1

n
1
2µ

)
(7)

where the error term is uniform on Z. This result is obviously a generalization of (1) to complex valued
sequences. Using Lemma 2 for the estimate on H n

k,j and [3, Theorem 1] for the estimate on G n
j , we can prove

that there exist two constants C, c > 0 such that

∀n ∈ N∗,∀j ∈ Z,
∣∣G n
j

∣∣ ≤ C K∑
k=1

1

n
1

2µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 ,
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and

∀k ∈ {1, . . . ,K} ,∀n ∈ N∗,∀j ∈ Z, ,
∣∣H n

k,j

∣∣ ≤ C

n
1

2µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

Thus, the result of Randles and Saloff-Coste gives a precise description of the behavior of G n
j for j such that

|j − nαk| . n
1
2µ , (8)

where k ∈ Kµ. Our main result is this next theorem.

Theorem 1. If we consider a ∈ `1(Z) which verifies hypotheses 1, 2 and 3, we can find two constants C, c > 0
such that

∀n ∈ N∗,∀j ∈ Z,

∣∣∣∣∣G n
j −

K∑
k=1

H n
k,j

∣∣∣∣∣ ≤ C
K∑
k=1

1

n
1
µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

In particular, this implies that there exists a constant C̃ > 0 such that if we define µ = maxk∈{1,...,K} µk, then

∀n ∈ N∗,∀J ∈ Z,

∣∣∣∣∣∣
∑
j≤J

G n
j −

K∑
k=1

∑
j≤J

H n
k,j

∣∣∣∣∣∣ ≤ C̃

n
1
2µ

.

Our result gives a sharp estimate on the remainder for any j ∈ Z and allows to extend the result of Randles
and Saloff-Coste by describing the asymptotic behavior G n

j for every j in Z with a more precise speed of
convergence, in particular for j that verifies (8) where k ∈ {1, . . . ,K}.

However, Theorem 1 has some limits. A complete generalization of the local limit theorem would treat the
case were a and F satisfy wider hypotheses. For example, [12, Theorem 1.2] also treats the case where the
asymptotic expansion (3) has the form

F (κke
iξ) =

ξ→0
zk exp(−iαkξ + iγkξ

2µk+1 +O(|ξ|2µk+2)),

where γk is a real number. A generalization of Theorem 1 in this difficult case has not yet been found.
Theorem 1 is also constrained by Hypothesis 2 which imposes that αk is nonzero. The result [12, Theorem

1.2] of Randles and Saloff-Coste does not have this kind of restriction. The hypothesis αk 6= 0 is essential in the
proof of Theorem 1 below but it seems like the theorem should also be proved when αk can be equal to zero.
We therefore introduce a relaxed version of Hypothesis 2.

Hypothesis 4 (Hypothesis 2 bis). The sequence a verifies Hypothesis 2 but with the possibility that some αk
are equal to 0.

We now consider a finitely supported sequence a ∈ `1(Z) which verifies Hypothesis 4 and let J ∈ Z. Then,
if we define the sequence b = (aj+J)j∈Z and F̃ the symbol associated with b, we have that b satisfies Hypothesis
4 since

∀κ ∈ S1, F̃ (κ) = κ−JF (κ),

and therefore
∀κ ∈ S1,

∣∣∣F̃ (κ)
∣∣∣ = |F (κ)| .

Also, we have for k ∈ {1, . . . ,K}

F̃ (κke
iξ) =

ξ→0
κ−Jk zk exp(−i(αk + J)ξ − βkξ2µk + o(|ξ|2µk)). (9)

Considering this new sequence b allows us to "shift" the elements αk. In particular, if we choose J large enough,
then b satisfies Hypothesis 2. We can also define the attractors associated to the sequence b thanks to the
asymptotic expansion (9). We can then prove the following corollary of Theorem 1 which generalizes Theorem
1 in the case where αk can be equal to 0.

Corollary 1. We consider a ∈ `1(Z) which verifies hypotheses 1 and 4. If there exists some integer J ∈ Z such
that the sequence (aj+J)j∈Z verifies hypotheses 2 and 3, then we can find two constants C, c > 0 such that

∀n ∈ N∗,∀j ∈ Z,

∣∣∣∣∣G n
j −

K∑
k=1

H n
k,j

∣∣∣∣∣ ≤ C
K∑
k=1

1

n
1
µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .
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Before we start the proofs, we will see in the next subsection that the estimate of Theorem 1 is sharp with
some examples and numerical applications. Then, we start with the proof of Theorem 1. To do so, in Section
2, we will introduce the spatial Green’s function on which Coulombel and Faye proved holomorphic extension
properties and sharp bounds in [3, Section 2]. Our goal in Section 2 is to improve the analysis of [3] and to
obtain the precise behavior of the spatial Green’s function for z close to zk and to prove sharp bounds on the
remainder. In Section 3, we will express the elements G n

j with the spatial Green’s function using the functional
calculus. The results of Section 2 will then allow us to conclude the proof of Theorem 1. The last Section 4 is
dedicated to the proof of Corollary 1.

1.3 Examples and numerical results
We consider some examples of elements a ∈ `1(Z) which satisfy the conditions of Theorem 1 and see how sharp
the estimations we found are.

1.3.1 Probability distribution : real non negative sequences

First, we consider the case where a has real non negative coefficients. If we introduce the sequence b = (a−j)j∈Z,
then b is the probability distribution of some random variable X supported on Z. We observe that Lb = La,
so, recalling that bn = b ∗ . . . ∗ b, we have

∀n ∈ N∗,∀j ∈ Z, bnj = G n
j .

We will settle on a ∈ `1(Z) such that aj = 0 for j 6= −1, 0, 1 and

a−1 = 2/3, a0 = 1/6, a1 = 1/6.

This sequence verifies Hypothesis 1. In this case, we have r = p = 1. Also, F (1) = 1 and

∀κ ∈ S1\ {1} , |F (κ)| < 1.

The function F satisfies that
F (eiξ) =

ξ→0
exp(−iαξ − βξ2 + o(ξ2))

where α = E(X) = 0.5 and β = V (X)
2 = 7

24 . It also directly satisfies Hypothesis 3 since K = 1. We can then
define the attractors

∀n ∈ N∗,∀j ∈ Z, H n
j =

1√
n
Hβ

2

(
j − nα√

n

)
=

1√
4πβn

exp

(
−|j − nα|

2

4βn

)
.

Theorem 1 states that there exists two constants C, c > 0 such that

∀n ∈ N∗,∀j ∈ Z,
∣∣bnj −H n

j

∣∣ =
∣∣G n
j −H n

j

∣∣ ≤ C

n
exp

(
−c
(
|j − nα|2

n

))
. (10)

This behavior is represented on Figure 2. The local limit theorem3 actually states for sequences b with finite
third moment (see [11, Section VII, Theorem 13]) that

G n
j −H n

j = bnj −H n
j =

n→+∞

1

n
√

2β
q1

(
j − nα√

2βn

)
+ o

(
1

n

)
, (11)

where the error term is uniform on Z and

∀x ∈ R, q1(x) :=
E((X − E(X))3)√

2π(V (X))
3
2

(x3 − 3x)e−
x2

2 .

Knowing that there exist two constants C, c > 0 such that the function q1 verifies

∀x ∈ R, |q1(x)| ≤ C exp
(
−cx2

)
,

we conclude that the inequality (10) is sharp, meaning that the factor 1
n cannot be improved.

3We refer to [11, Section VII] for a complete asymptotic expansion of bnj involving Hermite polynomials.
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Figure 2: On the left : A representation of nmaxj∈{−nr,...,np} |G n
j −H n

j | depending on n. As expected knowing
that −r < α < p, we see that the function is bounded and even seems to converge. On the right : We fixed
n = 200 and represented t 7→ q1

(
t−nα√
n

)
and j ∈ Z 7→

√
2βn

(
G n
j −H n

j

)
. We find the behavior we expected

from equation (11).

1.3.2 The O3 scheme for the transport equation

We will now consider an example linked to finite difference schemes. We consider the transport equation

∂tu+ a∂xu = 0, (t, x) ∈ R+ × R

with Cauchy data at t = 0. The O3 scheme is an explicit third order accurate finite difference approximation
of the previous transport equation. We refer to [5] for a detailed analysis of this scheme. It corresponds to the
numerical scheme (4) for a ∈ `1(Z) such that aj = 0 for j /∈ {−2,−1, 0, 1} and

a−2 = −λa(1− (λa)2)

6
, a−1 =

λa(1 + λa)(2− λa)

2
, a0 =

(1− (λa)2)(2− λa)

2
, a1 = −λa(1− λa)(2− λa)

6
,

with λ = ∆t
∆x > 0. The parameter λa is the Courant number. We have in this case that r = 2 and p = 1. For

λa ∈]− 1, 1[\ {0}, we have that F (1) = 1 and

∀κ ∈ S1\ {1} , |F (κ)| < 1.

Also, there exists β ∈ R∗+ such that

F (eiξ) =
ξ→0

exp(−iλaξ − βξ4 + o(ξ4)).

We have µ = 2 in this case and Hypothesis 2 is satisfied with K = 1, κ1 = 1 and z1 = 1. The sequence a verifies
hypotheses 1, 2 and 3, so we can apply Theorem 1. We introduce the attractors

∀n ∈ N∗,∀j ∈ Z, H n
j =

1

n
1
4

Hβ
4

(
j − nα
n

1
4

)
.

Theorem 1 then states that there exists two constants C, c > 0 such that

∀n ∈ N∗,∀j ∈ Z,
∣∣G n
j −H n

j

∣∣ ≤ C√
n

exp

(
−c
(
|j − nα|
n

1
4

) 4
3

)
. (12)

This behavior is represented on Figure 3 where we even see that the remainder
√
n(G n

j −H n
j ) seems to

scale like f
(
j−nα√

n

)
like in (11) for the case of probability distribution. Hence, the 1√

n
pre-factor in (12) seems

to be sharp. We now turn to the proof of Theorem 1.
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Figure 3: For these figures, we chose λa = 1/2. On the left : A representation of
√
nmaxj∈{−nr,...,np} |G n

j −H n
j |

depending on n. As expected, the function seems to be bounded. On the right : We fixed n = 100 and
represented j ∈ Z 7→

√
n
(
G n
j −H n

j

)
. We observe the exponential decay in j. Also, we can see a particular

shape of curve that arises. It might be possible to go even further in the asymptotic expansion of G n
j and find

a result similar to (11), but this would be consideration for other papers.

2 Spatial Green’s function
From now on, we consider a sequence a that satisfies the hypotheses 1, 2 and 3. In this section, we are going
to introduce the spatial Green’s function and prove some estimates. We start by defining the open set O which
corresponds to the intersection of the unbounded connected component of C\F (S1) and

{
z ∈ C, |z| > exp(−η)

}
(see Figure 1). The Hypothesis 2 implies that U\ {z1, . . . , zK} is contained within O. By recalling that σ(La) =
F (S1), when we consider that La acts on `2(Z), we have for every z ∈ O of a unique G(z) ∈ `2(Z) such that

(zI −La)G(z) = δ, (13)

where δ still denotes the discrete Dirac mass. The sequence G(z) is the so-called spatial Green’s function. In [3,
Lemma 2, 3 and 4], there are already sharp bounds on this sequence G(z) that have been proved. Our goal is to
get a more precise description of the behavior of the sequence G(z), at least for z close to zk. The description
of G(z) in [3] far from the points zk will be sufficient for our purpose. This section will thus on many aspects
closely look like [3, Section 2] and we will specify where our study of the sequence G(z) will differ.

Using the functions Al which are defined by (6), the equation (13) can be rewritten as

∀j ∈ Z,
p∑

l=−r

Al(z)Gj+l(z) = δj,0.

We introduce the vectors

∀j ∈ Z, Wj(z) :=

Gj+p−1(z)
...

Gj−r(z)

 ∈ Cp+r, e :=


1
0
...
0

 ∈ Cp+r.

We then have
∀z ∈ O,∀j ∈ Z, Wj+1(z)−M(z)Wj(z) = − δj,0

Ap(z)
e. (14)

The study of the recurrence relation (14) relies on the following lemma introduced in [9] that studies the
eigenvalues of M(z) for z ∈ O and z ∈ {zk, 1 ≤ k ≤ K}. We recall that we defined cases I, II and III according
to the cardinality of Ik and the sign of αk right after Hypothesis 3. We also recall that we consider that a
verifies Hypotheses 1, 2 and 3.
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Lemma 3 (Spectral Splitting). Let z ∈ O. Then the matrix M(z) has

• no eigenvalue on S1,

• r eigenvalues in D\ {0} (that we call stable eigenvalues),

• p eigenvalues in U (that we call unstable eigenvalues).

We now consider k ∈ {1, . . . ,K}. The eigenvalues of the matrix M(zk) are described by the following
possibilities depending on k.

• In case I, M(zk) has κk ∈ S1 as a simple eigenvalue, r − 1 eigenvalues in D and p eigenvalues in U .

• In case II, M(zk) has κk ∈ S1 as a simple eigenvalue, r eigenvalues in D and p− 1 eigenvalues in U .

• In case III, if we denote νk,1 and νk,2 the two distinct elements of Ik, then M(zk) has κνk,1 ∈ S1 and
κνk,2 ∈ S1 as simple eigenvalues, r − 1 eigenvalues in D and p− 1 eigenvalues in U .

Lemma 3 is proved in [3, Lemma 1] and is the key to study the recurrence relation (14). We now want to
prove some estimates on the spatial Green’s function G(z). We begin with the following lemma.

Lemma 4 (Bounds far from the tangency points [3]). For all z ∈ O, there exist a radius δ > 0 and constants
C, c > 0 such that for all j ∈ Z, z 7→ Gj(z) is holomorphic on Bδ(z) and satisfies

∀z ∈ Bδ(z),∀j ∈ Z, |Gj(z)| ≤ C exp(−c|j|).

Lemma 4 is proved in [3, Lemma 2] and allows us to study the spatial Green’s function far from the points
zk, where the spectrum of La intersects the unit circle S1. We will now have to study the spatial Green’s
function G(z) near those points zk while still remembering that Gj(z) and Wj(z) are only defined on O in the
neighborhood of zk. We are going to extend holomorphically Gj(z) in a whole neighborhood of zk, and thus
pass through the spectrum σ(La).

Lemma 5 (Bounds close to the tangency points : cases I and II). Let k ∈ {1, . . . ,K} so that we are either
in case I or II. Then, there exist a radius ε > 0, some constants C, c > 0 and some holomorphic functions
κk, fk : Bε(zk)→ C such that for all z ∈ Bε(zk), κk(z) is a simple eigenvalue of M(z) with κk(zk) = κk, for all
j ∈ Z, the function z ∈ Bε(zk) ∩ O 7→ Gj(z) can be holomorphically extended on Bε(zk) and

Case I: (αk > 0)

∀z ∈ Bε(zk),∀j ≥ 1, |Gj(z)− fk(z)κk(z)j | ≤ C exp(−cj). (15)
∀z ∈ Bε(zk),∀j ≤ 0, |Gj(z)| ≤ C exp(−c|j|). (16)

Case II: (αk < 0)

∀z ∈ Bε(zk),∀j ≥ 1, |Gj(z)| ≤ C exp(−cj). (17)

∀z ∈ Bε(zk),∀j ≤ 0, |Gj(z)− fk(z)κk(z)j | ≤ C exp(−c|j|). (18)

Furthermore, we have in both cases that

fk(zk) =
1

|αk|zk
. (19)

Lemma 6 (Bounds close to the tangency points : case III). Let k ∈ {1, . . . ,K} so that we are in case III.
The set Ik has two elements νk,1 and νk,2 so that ανk,1 > 0 and ανk,2 < 0. Then, there exist a radius ε > 0,
some constants C, c > 0 and some holomorphic functions κνk,1 , κνk,2 , fνk,1 , fνk,2 : Bε(zk) → C such that for all
z ∈ Bε(zk), κνk,1(z) and κνk,2(z) are simple eigenvalues of M(z) with κνk,1(zk) = κνk,1 and κνk,2(zk) = κνk,1 ,
for all j ∈ Z, the function z ∈ Bε(zk) ∩ O 7→ Gj(z) can be holomorphically extended on Bε(zk) and

∀z ∈ Bε(zk),∀j ≥ 1, |Gj(z)− fνk,1(z)κνk,1(z)j | ≤ C exp(−cj). (20)

∀z ∈ Bε(zk),∀j ≤ 0, |Gj(z)− fνk,2(z)κνk,2(z)j | ≤ C exp(−c|j|). (21)

Furthermore, knowing that zk = zνk,1 = zνk,2 , we have that

fνk,1(zk) =
1

|ανk,1 |zk
, fνk,2(zk) =

1

|ανk,2 |zk
. (22)
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Lemmas 5 and 6 are similar to [3, Lemmas 3 and 4] but instead of proving sharp bounds on the spatial
Green’s function, we express its precise behavior near the points zk. This is the crucial point that will allow us
to not just bound the elements G n

j but find their asymptotic behavior and prove a bound for the remainder.
Proof of Lemma 5 Our proof will be mostly similar to the proof of [3, Lemmas 3, 4]. First, we observe that
case II would be dealt similarly as case I and that case III is a mixture of both cases I and II. Therefore, we
will only detail the proof in case I. We therefore consider k ∈ {1, . . . ,K} so that we are in case I. Lemma 3
implies that κk is a simple eigenvalue of M(zk). Thus, we can find a holomorphic function κk defined on a
neighborhood Bε(zk) of zk such that for all z ∈ Bε(zk), κk(z) is a simple eigenvalue of M(z) and κk(zk) = κk.
We also know that for all z ∈ Bε(zk), the vector

Rk(z) :=


κk(z)p+r−1

...
κk(z)

1


is an eigenvector of M(z) associated with κk(z). Because of Lemma 3, even if we have to take a smaller radius
ε, we can assume that for all z ∈ Bε(zk), M(z) has κk(z) as a simple eigenvalue, r−1 eigenvalues different from
κk(z) in D and p eigenvalues different from κk(z) in U . We define Es(z) (resp. Eu(z)) the strictly stable (resp.
strictly unstable) subspace of M(z) which corresponds to the subspace spanned by the generalized eigenvectors
of M(z) associated to eigenvalues different from κk(z) in D (resp. U). We therefore know that Es(z) (resp.
Eu(z)) has dimension r − 1 (resp. p) thanks to Lemma 3 and we have the decomposition

Cp+r = Es(z)⊕ Eu(z)⊕ Span Rk(z).

The associated projectors are denoted πs(z), πu(z) and πk(z). Those linear maps commute with M(z) and
depend holomorphically on z ∈ Bε(zk).

For all z ∈ Bε(zk) ∩ O and j ∈ Z, Gj(z) and Wj(z) are well defined. Also, by Lemma 3, we have that
|κk(z)| < 1 for all z ∈ Bε(zk) ∩ O. By reasoning in the same manner as in the proof of [3, Lemma 3], we have
for all z ∈ Bε(zk) ∩ O and j ∈ Z

πu(z)Wj(z) =
1j∈]−∞,0]

Ap(z)
M(z)j−1πu(z)e, (23)

πs(z)Wj(z) = −
1j∈[1,+∞[

Ap(z)
M(z)j−1πs(z)e, (24)

πk(z)Wj(z) = −
1j∈[1,+∞[

Ap(z)
M(z)j−1πk(z)e = −

1j∈[1,+∞[

Ap(z)
κk(z)j−1πk(z)e. (25)

We observe that the right hand side in the equations (23), (24) and (25) can be holomorphically extended
on Bε(zk). Therefore, we can extend holomorphically the applications which associates z to πs(z)Wj(z),
πu(z)Wj(z) and πk(z)Wj(z) on the whole open ball Bε(zk) and this allows us to extend Wj(z) on Bε(zk).
Since Gj(z) is a coordinate of the vector Wj(z), the holomorphic extension property is proved.

By reasoning in the same manner as in the proof of the inequality [3, (23)], we prove that there exist two
constants C, c > 0 such that

∀z ∈ Bε(zk),∀j ∈ Z, ‖πs(z)Wj(z) + πu(z)Wj(z)‖ ≤ C exp(−c|j|).

This implies that
∀z ∈ Bε(zk),∀j ∈ Z, ‖Wj(z)− πk(z)Wj(z)‖ ≤ C exp(−c|j|).

This is were our proof will now differ from the proof of [3, Lemmas 3, 4]. In [3], the authors find bounds on
πk(z)Wj(z) to be able to find estimates on Gj(z). In our case, we have a stronger hypothesis (Hypothesis 1)
that allows us to have a much simpler expression (25) of πk(z)Wj(z) and this will enable us to find the precise
behavior of Gj(z).

For j ≤ 0, we observe that πk(z)Wj(z) = 0 and that Gj(z) is a component of Wj(z). We therefore get the
inequality (16).

We now consider the case j ≥ 1. We have that Gj(z) = (Wj(z))p for all z ∈ Bε(zk) where (X)p refers to
the p-th coordinate of a vector X ∈ Cp+r. Then,

∀z ∈ Bε(zk), |Gj(z)− (πk(z)Wj(z))p| ≤ C exp(−c|j|).
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We then define the holomorphic function

fk : Bε(zk) → C
z 7→ − 1

Ap(z)κk(z) (πk(z)e)p
.

By observing that (πk(z)Wj(z))p = fk(z)κk(z)j , we get the inequality (15) and it now remains to obtain the
expression (19). We have that

fk(zk) = − 1

Ap(zk)κk
(πk(zk)e)p, e =


1
0
...
0

 .

We first need to determine the spectral projector πk(zk). We recall that κk ∈ S1 is a simple eigenvalue of M(zk)
and the vector

Rk =


κp+r−1
k
...
κk
1

 ∈ Cp+r

is an eigenvector of M(zk) associated with κk. We also know that there exists a unique eigenvector Lk =
(lj)j∈{1,...,p+r} ∈ Cp+r of M(zk)T associated with the eigenvalue κk such that

Lk ·Rk = 1

where the symmetric bilinear form · on Cp+r is defined as

∀X,Y ∈ Cp+r, X · Y :=

p+r∑
l=1

XiYi.

Then, we have that
∀Y ∈ Cp+r, πk(zk)Y = (Lk · Y )Rk.

Thus, applying it for Y = e implies that

fk(zk) = −
l1κ

r−1
k

Ap(zk)
.

We thus need to find the value of the coefficient l1. Since Lk is an eigenvalue of M(zk)T for the eigenvalue
κk, we get

∀j ∈ {1, . . . , p+ r} , lj =

(
p−j∑
l=−r

Al(zk)

κp−j+1−l
k

)
l1

Ap(zk)
.

We now have an expression of each lj depending on l1. To determine the value of l1, we have to use the
normalization choice that we have made between Lk and Rk. We have

1 = Lk ·Rk =

p+r∑
j=1

κp+r−jk lj =

p+r∑
j=1

p−j∑
l=−r

Al(zk)κl+r−1
k

 l1
Ap(zk)

.

By the expression of Al(zk), this implies that

1 =

(
p∑

l=−r

(p− l)Al(zk)κl+r−1
k

)
l1

Ap(zk)
=

(
pκr−1

k zk −
p∑

l=−r

(p− l)alκl+r−1
k

)
l1

Ap(zk)

=
(
pκr−1

k (zk − F (κk)) + κrkF
′(κk)

) l1
Ap(zk)

= κrkF
′(κk)

l1
Ap(zk)

.

Using the relation (5), we finally get the equation (19). �
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j

n

δ1

α1

δ1

δ2 α2 δ2

δ3

α3

δ3

D1

D2

D3

Figure 4: An illustration of the sectors Dk. Here, we have α1 = −2, α2 = 0.5 and α3 = 4. The rays labeled αk
(resp. δk, δk) correspond to the ray j = nαk (resp. j = nδk, j = nδk). We observe that, because δk, αk and
δk have the same sign, j and αk have the same sign for (n, j) ∈ Dk. Also, the sectors Dk do not intersect each
other.

3 Temporal Green’s function
We are now ready to start proving Theorem 1. In a first step, we will prove the results of the Theorem far
from the axes j = nαk. In this regime, the proof will not rely on the previous section. Then, we will see the
link between the spatial Green’s function G(z) and the temporal Green’s function (here the elements G n

j ) using
functional calculus (see [2, Chapter VII]) and use the estimates we proved in the Section 2 to determine the
estimates on G n

j near the axes j = nαk.
Before we start, we are going to make two hypotheses to simplify the proof. The first one is that −1 /∈

{z1, . . . , zK}. This hypothesis is actually not restrictive. If it were not verified, we would just have to multiply
the sequence a by some well chosen element of S1 to find a new sequence b that will verify this hypothesis and
prove the theorem for this new sequence. The theorem for our previous sequence a would directly follow.

The second hypothesis we make is that all αk are distinct from one another. This hypothesis has a real
impact on the proof, symplifying greatly some parts of the calculations. We will come back at the end (Section
3.5) on the case where the elements αk are not distinct and explain what elements of the proof would change.

3.1 Estimates far from the axes j = nαk

As we said in the previous section, we suppose that all αk are distinct from one another. Without loss of
generality, we suppose that

α1 < . . . < αk < . . . < αK .

For all k ∈ {1, . . . ,K}, we define two elements δk, δk ∈ R∗ such that δk, δk and αk have the same sign and

δ1 < α1 < δ1 < . . . < δk < αk < δk < . . . < δK < αK < δK .

We are now defining for every k ∈ {1, . . . ,K} the sectors

Dk :=
{

(n, j) ∈ N∗ × Z, nδk ≤ j ≤ nδk
}
.

We observe that the sectors Dk do not intersect each other. We also introduce

D :=

K⋃
k=1

Dk.

We represent the sectors Dk on the Figure 4. In this section, we are going to prove the following two lemmas,
which gives estimates on the elements G n

j and H n
k,j outside the sectors Dk.

Lemma 7. There exist two constants C, c > 0 such that

∀(n, j) ∈ (N∗ × Z)\D,
∣∣G n
j

∣∣ ≤ C K∑
k=1

1

n
1
µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .
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Lemma 8. For all k ∈ {1, . . . ,K}, there exist two constants C, c > 0 such that

∀(n, j) ∈ (N∗ × Z)\Dk,
∣∣H n

k,j

∣∣ ≤ C 1

n
1
µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

Both lemmas are proved in the same way. We will detail the proof of the first lemma and give some
indications for the second afterwards.
Proof of Lemma 7 The result [3, Theorem 1] gives us the existence of two constants C, c > 0 such that

∀n ∈ N∗,∀j ∈ Z, |G n
j | ≤ C

K∑
k=1

1

n
1

2µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

For a sufficiently small c̃ > 0, we have that

∀k ∈ {1, . . . ,K} ,∀(n, j) ∈ (N∗ × Z)\D, c

2

(
|j − nαk|
n

1
2µk

) 2µk
2µk−1

≥ c̃n.

Also, we can find a constant C̃ > 0 such that

∀k ∈ {1, . . . ,K} ,∀n ∈ N∗, exp(−c̃n) ≤ C̃

n
1

2µk

.

Therefore, we get the expected result. �

We could even have proved for those j and n a stronger estimate of the form∣∣G n
j

∣∣ ≤ Ce−c(n+|j|)

but the limiting estimate will occur in D so we can avoid being sharp here.
For the proof of Lemma 8, we use the first inequality of Lemma 2 (estimate on Hβ

2µ), which implies the
existence of two constants C, c > 0 such that

∀k ∈ {1, . . . ,K} ,∀n ∈ N∗,∀j ∈ Z, |H n
k,j | ≤ C

1

n
1

2µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

The rest of the proof is close to what we did for Lemma 7. The two Lemmas 7 and 8 imply that we have
two constants C, c > 0 such that

∀(n, j) ∈ (N∗ × Z)\D,

∣∣∣∣∣G n
j −

K∑
k=1

H n
k,j

∣∣∣∣∣ ≤ C
K∑
k=1

1

n
1
µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 (26)

and, since the sectors Dk do not intersect each other, there also exists two constants C, c > 0 such that

∀k0 ∈ {1, . . . ,K} ,∀(n, j) ∈ Dk0 ,

∣∣∣∣∣G n
j −

K∑
k=1

H n
k,j

∣∣∣∣∣ ≤ |G n
j −H n

k0,j |+C

K∑
k=1
k 6=k0

1

n
1
µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

(27)

3.2 Link between the spatial and temporal Green’s functions
Our goal will now be to prove the following proposition.

Proposition 1. For any k ∈ {1, . . . ,K}, there exist two constants C, c > 0 such that

∀(n, j) ∈ Dk,
∣∣G n
j −H n

k,j

∣∣ ≤ C

n
1
µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .
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Because of the inequalities (26) and (27), if we prove Proposition 1, we will have proved Theorem 1. The
estimates on the spatial Green’s function that we introduced in the previous Section 2 will become one of the
main elements of the proof of Proposition 1. We will prove this proposition in Section 3.4. But first, we will
need to study the elements G n

j more closely.
To prove the Proposition 1, the first step will be to express the elements G n

j via the spatial Green’s function
Gj(z) using functional calculus. The equation (13) implies by using the inverse Laplace transform that if we
define a path which surrounds σ(La) = F (S1), like for example Γ̃ρ = exp(ρ)S1 for 0 < ρ ≤ π, then

∀n ∈ N∗,∀j ∈ Z, G n
j =

1

2iπ

∫
Γ̃ρ

znGj(z)dz.

We fix this choice of path for now but we are going to modify it in what follows. The idea will be to deform
the path on which we integrate so that we can best use the estimates on Gj(z) proved in Section 2. We start
with a change of variable z = exp(τ) in the previous equality. Therefore, if we define Γρ := {ρ+ il, l ∈ [−π, π]}
and Gj(τ) = eτGj(e

τ ), then

∀n ∈ N∗,∀j ∈ Z, G n
j =

1

2iπ

∫
Γρ

enτGj(τ)dτ. (28)

We will therefore need a lemma that allows us to get from estimates on Gj(z) to estimates on Gj(τ). First,
recalling that zk 6= −1, we define for all k ∈ {1, . . . ,K} the unique element τk := iθk of i]− π, π[ such that

zk = exp(τk) = exp(iθk).

We also introduce for all k ∈ {1, . . . ,K} the unique θ̃k ∈]− π, π] such that

κk = eiθ̃k .

We now introduce a lemma to pass from estimates on Gj(z) to estimates on Gj(τ).

Lemma 9. There exists a radius ε? > 0 and for all k ∈ {1, . . . ,K} two holomorphic functions $k : Bε?(τk)→ C
and gk : Bε?(τk) → C such that for all ε ∈]0, ε?[, there exist a width ηε > 0 and two constants C, c > 0 such
that if we define

Uε := {τ ∈ C,<(τ) ∈]− ηε, π],=(τ) ∈ [−π, π]} and Ωε := Uε\
K⋃
k=1

Bε(τk),

then for all j ∈ Z, the application τ 7→ Gj(τ) can be holomorphically extended on Uε ∪
⋃K
k=1Bε(τk) and we

have that
∀τ ∈ Ωε,∀j ∈ Z, |Gj(τ)| ≤ Ce−c|j|. (29)

Also, for all k ∈ {1, . . . ,K}, depending on the case, we have that
Case I:

∀τ ∈ Bε(τk),∀j ≥ 1, |Gj(τ)− eτgk(τ)ej$k(τ)| ≤ Ce−c|j|, (30)

∀τ ∈ Bε(τk),∀j ≤ 0, |Gj(τ)| ≤ Ce−c|j|, (31)

Case II:

∀τ ∈ Bε(τk),∀j ≥ 1, |Gj(τ)| ≤ Ce−c|j|, (32)

∀τ ∈ Bε(τk),∀j ≤ 0, |Gj(τ)− eτgk(τ)ej$k(τ)| ≤ Ce−c|j|, (33)

Case III:

∀τ ∈ Bε(τk),∀j ≥ 1, |Gj(τ)− eτgνk,1(τ)ej$νk,1 (τ)| ≤ Ce−c|j|, (34)

∀τ ∈ Bε(τk),∀j ≤ 0, |Gj(τ)− eτgνk,2(τ)ej$νk,2 (τ)| ≤ Ce−c|j|, (35)

where we have Ik = {νk,1, νk,2}, ανk,1 > 0 and ανk,2 < 0.
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For all k ∈ {1, . . . ,K}, we define ϕk(τ) := − (τ−τk)
αk

+ (−1)µk+1 βk
αk

2µk+1 (τ − τk)2µk for τ ∈ C. Then, there
exists a holomorphic function ξk : Bε?(τk)→ C such that

∀τ ∈ Bε?(τk), $k(τ) = iθ̃k + ϕk(τ) + (τ − τk)2µk+1ξk(τ). (36)

Finally, there exist two constants AR, AI > 0 such that for all k ∈ {1, . . . ,K},

∀τ ∈ Bε?(τk), αk
(
<($k(τ)) + |<(ξk(τ)(τ − τk)2µk+1)|

)
≤ −<(τ − τk) +AR<(τ − τk)2µk −AI=(τ − τk)2µk , (37)

∀τ ∈ C, αk<(ϕk(τ)) ≤ −<(τ − τk) +AR<(τ − τk)2µk −AI=(τ − τk)2µk . (38)

Proof Using the Lemmas 5 and 6 and writing κk(z) = exp(ωk(z)) for z near zk with ωk(zk) = iθ̃k, we can
define for a choice of ε? small enough two holomorphic functions $k and gk such that

∀τ ∈ Bε?(τk), $k(τ) = ωk(eτ ), gk(τ) = fk(eτ ).

Lemmas 5 and 6 directly imply the inequalities (30), (31), (32), (33), (34) and (35) on the open balls Bε?(τk)
and the fact that the functions τ 7→ Gj(τ) are holomorphic on Bε?(τk). We now consider ε ∈]0, ε?[. The
inequalities we just proved remain true on Bε(τk). Using a compactness argument and Lemma 4, we also get
the existence of ηε and the inequality (29).

We observe that the asymptotic expansion (3) implies that

τ − τk =
τ→τk

−αk($k(τ)− iθ̃k) + (−1)µk+1βk($k(τ)− iθ̃k)2µk +O

(∣∣∣$k(τ)− iθ̃k
∣∣∣2µk+1

)
.

We then deduce the existence of ξk and the equation (36).
There only remains to prove the existence of AR and AI to verify the equations (37) and (38).
We are going to prove (38) first. Because of Young’s inequality, we have that for l ∈ {1, . . . , 2µk − 1}, for

all δ > 0, there exists Cδ > 0 such that for all τ ∈ C

|<(τ)|l|=(τ)|2µk−l ≤ δ=(τ)2µk + Cδ<(τ)2µk .

Furthermore, we have that

αk<(ϕk(τ)) = −<(τ − τk) + (−1)µk+1

(
<(βk)

α2µk
k

<((τ − τk)2µk)− =(βk)

α2µk
k

=((τ − τk)2µk)

)
.

Then, for δ > 0, there exists Cδ > 0 such that

αk<(ϕk(τ)) ≤ −<(τ − τk) + <(τ − τk)2µk

(
<(βk)

α2µk
k

+ Cδ

)
+ =(τ − τk)2µk

(
−<(βk)

α2µk
k

+ δ

)
.

Therefore, by taking δ small enough, we can end the proof of inequality (38). The proof of inequality (37)
is similar. We have for τ ∈ Bε?(τk)

αk
(
<($k(τ)) + |<(ξk(τ)(τ − τk)2µk+1)|

)
≤ −<(τ − τk) + 2|αk||ξk(τ)||τ − τk|2µk+1

+ (−1)µk+1

(
<(βk)

α2µk
k

<((τ − τk)2µk)− =(βk)

α2µk
k

=((τ − τk)2µk)

)
.

We know there exists c1, c2 > 0 such that

∀k ∈ {1, . . . ,K} ,∀τ ∈ C, |τ |2µk ≤ c1<(τ)2µk + c2=(τ)2µk .

Since ξk can be bounded by some constant C̃ > 0 on Bε?(τk), using the same reasoning as previously gives
us

αk
(
<($k(τ)) + |<(ξk(τ)(τ − τk)2µk+1)|

)
≤ −<(τ − τk) + 2C̃|αk|ε?(c1<(τ − τk)2µk + c2=(τ − τk)2µk)

+ <(τ − τk)2µk

(
<(βk)

α2µk
k

+ Cδ

)
+ =(τ − τk)2µk

(
−<(βk)

α2µk
k

+ δ

)
.

Taking δ and ε? small enough allows us to prove (37).
�
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Remark 1. We observe that the constants in the inequalities (30), (31), (32), (33), (34) and (35) could be chosen
uniformly for all ε ∈]0, ε?[. However, it is not the case for the constants in inequality (29).

Lemma 9 leads us to introduce the elements

∀k ∈ {1, . . . ,K} ,∀n ∈ N∗,∀j ∈ Z, Fn
k,j :=

zkgk(τk)κk
j

2iπ

∫
Γ0

exp(nτ + jϕk(τ))dτ

where Γ0 := {it, t ∈ [−π, π]}. Because of the equalities (19) and (22) on fk(zk) = gk(τk), we get with an affine
change of variables that

Fn
k,j =

zk
nκk

j

2π
sgn(αk)

∫ π−θk
αk

−π−θk
αk

exp

(
is(nαk − j)−

j

αk
βks

2µk

)
ds.

We aim at proving the following proposition.

Proposition 2. For any k ∈ {1, . . . ,K}, there exist two constants C, c > 0 such that

∀(n, j) ∈ Dk,
∣∣G n
j −Fn

k,j

∣∣ ≤ C

n
1
µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

Proving this proposition is an important step in proving Theorem 1. In Section 3.4, we will just have to
estimate the elements Fn

k,j −H n
k,j to prove Proposition 1 and thus Theorem 1.

3.3 Proof of Proposition 2
From now on, we fix a k ∈ {1, . . . ,K} and our goal is to prove the claim of Proposition 2 for this k. We will
suppose that αk > 0. The major consequence is that for (n, j) ∈ Dk, we have j ≥ 1. This implies that we
will use the inequalities (30), (32) and (34). The case where αk < 0 would need some little modifications, in
particular we will have that j ≤ 0 for (n, j) ∈ Dk and we would use the inequalities (31), (33) and (35).

Before we begin with the proof, we will need to introduce some lemmas and define some elements. First, we
can easily prove the following lemma which allows us to pass from bounds that are exponentially decaying in n
to the generalized gaussian bounds expected in Proposition 2.

Lemma 10. We consider C, c > 0. Then, there exist C̃, c̃ > 0 such that

∀(n, j) ∈ Dk, C exp(−cn) ≤ C̃

n
1
µk

exp

−c̃( |j − αkn|
n

1
2µk

) 2µk
2µk−1

 .

We now apply Lemma 9 and consider ε ∈]0, ε?[ small enough so that

∀i, j ∈ {1, . . . ,K} , zi 6= zj ⇒ Bε(τ i) ∩Bε(τ j) = ∅

and
∀l ∈ {1, . . . ,K} , Bε(τ l) ⊂ {τ ∈ C, =(τ) ∈ [−π, π]} .

This can be done because we supposed that τ l /∈ {−iπ, iπ} for all l. We also define a constant η ∈]0, ηε[.
We will now follow a strategy developed in [19], which has also been used in [3] and [4], and introduce a

family of parameterized curves. For τp ∈ R, we introduce

Ψk(τp) = τp −ARτp2µk .

The function Ψk is continuous and strictly increasing on
]
−∞,

(
1

2µkAR

) 1
2µk−1

[
. We choose ε small enough so

that it is strictly increasing on ]−∞, ε]. We can therefore introduce for τp ∈ [−η, ε]

Γk,p =
{
τ ∈ C,−η ≤ <(τ) ≤ τp, <(τ − τk)−AR<(τ − τk)2µk +AI=(τ − τk)2µk = Ψk(τp)

}
.
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<(τ)

=(τ)

•
iπ

•−iπ

•
−η

×
Bε(0)

•
τp

>

Γk,out >

Γk,res
Γk,p

Figure 5: A representation of the path Γk for τk = 0. It is composed of Γk,out (in red), Γk,res (in green) and
Γk,p (in blue). The section of Γk which lies inside the ball Bε(τk) (i.e. the reunion of Γk,res and Γk,p) is notated
Γk,in.

It is a symmetric curve with respect to the axis R + τk which intersects this axis on the point τp + τk. If we

introduce `k,p =
(

Ψk(τp)−Ψk(−η)
AI

) 1
2µk , then −η + i(θk + `k,p) and −η + i(θk − `k,p) are the end points of Γk,p.

We can also introduce a parametrization of this curve by defining γk,p : [−`k,p, `k,p]→ C such that

∀τp ∈ [−η, ε] ,∀t ∈ [−`k,p, `k,p], =(γk,p(t)) = t+ θk, <(γk,p(t)) = hk,p(t) := Ψ−1
k

(
Ψk(τp)−AIt2µk

)
. (39)

The above parametrization immediately yields that there exists a constant M > 0 such that

∀τp ∈ [−η, ε],∀t ∈ [−`k,p, `k,p], |h′k,p(t)| ≤M. (40)

Also, there exists a constant c? > 0 such that

∀τp ∈ [−η, ε],∀τ ∈ Γk,p, <(τ − τk)− τp ≤ −c?=(τ − τk)2µk . (41)

Even if we have to consider a smaller η, we can define a 0 < εk,0 < ε such that the curve Γk,p associated to
τp = εk,0 intersects the axis −η + iR within Bε(τk).

For τp ∈
[
−η2 , εk,0

]
, we want to define the path Γk defined on the Figure 5. As we can see, it follows the ray

−η + i[−π, π] and is deformed inside Bε(τk) into the path Γk,p. We define

Γk,res := {−η + it, t ∈ [−π, π]\[θk − `k,p, θk + `k,p]} ∩Bε(τk),

Γk,out := {−η + it, t ∈ [−π, π]} ∩Bε(τk)c,

Γk,in :=Γk,p ∪ Γk,res,

Γk :=Γk,in ∪ Γk,out.

We still have to define the choice of τp depending on n, j and k. We let

ζk =
j − nαk

2µkn
, γk =

ARj

n
, ρk

(
ζk
γk

)
= sgn(ζk)

(
|ζk|
γk

) 1
2µk−1

.

Our limiting estimates will come from the case where ζk is close to 0. We observe that the condition
(n, j) ∈ Dk implies

ARδk ≤ γk ≤ ARδk. (42)
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Moreover, we have that ρk
(
ζk
γk

)
is the unique real root of the polynomial

γkx
2µk−1 = ζk.

Then, we take

τp :=


εk,0, if ρk

(
ζk
γk

)
> εk,0, (Case A)

ρk

(
ζk
γk

)
, if ρk

(
ζk
γk

)
∈ [−η2 , εk,0], (Case B)

−η2 , if ρk
(
ζk
γk

)
< −η2 . (Case C)

We define for (n, j) ∈ Dk

F̃n
k,j :=

zkgk(τk)κk
j

2iπ

∫
Γk

exp(nτ + jϕk(τ))dτ.

We have the following lemma.

Lemma 11. There exist constants C, c > 0 such that

∀(n, j) ∈ Dk,
∣∣∣Fn

k,j − F̃n
k,j

∣∣∣ ≤ C

n
1
µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

Proof We define the paths Γcomp,+ := {t+ iπ, t ∈ [−η, 0]} and Γcomp,− := {t− iπ, t ∈ [−η, 0]}. The triangle
inequality and Cauchy’s formula gives us

2π

|gk(τk)|
|F̃n

k,j −Fn
k,j | ≤

∣∣∣∣∣
∫

Γcomp,+

exp(nτ + jϕk(τ))dτ

∣∣∣∣∣+

∣∣∣∣∣
∫

Γcomp,−

exp(nτ + jϕk(τ))dτ

∣∣∣∣∣ .
We need estimations on both terms. We allow ourselves to only present the first estimation. We have∣∣∣∣∣

∫
Γcomp,+

exp(nτ + jϕk(τ))dτ

∣∣∣∣∣ ≤
∫ 0

−η
exp(nt+ j<(ϕk(t+ iπ)))dt.

Because of the inequality (38) and knowing that j ≥ nδk with δk > 0, we have for t ∈ [−η, 0]

nt+ j<(ϕk(t+ iπ)) ≤ − j

αk

(
−η −ARη2µk +AI |π − θk|2µk

)
.

Therefore, because θk /∈ {−π, π}, if we take η small enough, we have a constant c > 0 independent from n
and j such that ∣∣∣∣∣

∫
Γcomp,+

exp(nτ + jϕk(τ))dτ

∣∣∣∣∣ ≤ ηe−cn.
Because of the Lemma 10, there exist C, c > 0 independent from j and n such that∣∣∣∣∣

∫
Γcomp,+

exp(nτ + jϕk(τ))dτ

∣∣∣∣∣ ≤ C

n
1
µk

exp

−c( |j − αkn|
n

1
2µk

) 2µk
2µk−1

 .

�

Using Cauchy’s formula and taking into account the "2iπ-periodicity" of Gj(τ), we also have that for all
n ∈ N∗ and j ∈ Z

G n
j =

1

2iπ

∫
Γρ

enτGj(τ)dτ =
1

2iπ

∫
Γk

enτGj(τ)dτ. (43)

To prove Proposition 2, Lemma 11 implies that we need to prove the following lemma.
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Lemma 12. For every k ∈ {1, . . . ,K}, there exist two constants C, c > 0 such that

∀(n, j) ∈ Dk,
∣∣∣G n
j − F̃n

k,j

∣∣∣ ≤ C

n
1
µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

The main part of this paper will now be to prove this lemma. Both elements can be expressed has integrals
along the path Γk. By using the triangle inequality, we have that

2π
∣∣∣G n
j − F̃n

k,j

∣∣∣ ≤ ∣∣∣∣∣
∫

Γk,in

enτGj(τ)− zkκ
j
kgk(τk) exp(nτ + jϕk(τ))dτ

∣∣∣∣∣+

∣∣∣∣∣
∫

Γk,out

enτGj(τ)dτ

∣∣∣∣∣
+

∣∣∣∣∣
∫

Γk,out

zkκ
j
kgk(τk) exp(nτ + jϕk(τ))dτ

∣∣∣∣∣ .
Furthermore, we have using the triangle inequality∣∣∣∣∣

∫
Γk,in

enτGj(τ)− zkκ
j
kgk(τk) exp(nτ + jϕk(τ))dτ

∣∣∣∣∣
≤

∣∣∣∣∣
∫

Γk,in

enτ (Gj(τ)− eτgk(τ) exp(j$k(τ))) dτ

∣∣∣∣∣+

∣∣∣∣∣
∫

Γk,in

enτ+j$k(τ) (eτgk(τ)− zkgk(τk)) dτ

∣∣∣∣∣
+

∣∣∣∣∣
∫

Γk,in

enτzkgk(τk)
(
ej$k(τ) − κjke

jϕk(τ)
)
dτ

∣∣∣∣∣ .
Thus, using the triangle inequality and decomposing some of the integrals along Γk,in in integrals along Γk,p

and Γk,res, we have ∣∣∣G n
j − F̃n

k,j

∣∣∣ ≤ 1

2π
(E1 + E2 + E3 + E4 + E5 + E6 + E7) , (44)

where

E1 =

∣∣∣∣∣
∫

Γk,out

zkκ
j
kgk(τk) exp(nτ + jϕk(τ))dτ

∣∣∣∣∣ , E2 =

∣∣∣∣∣
∫

Γk,in

enτ (Gj(τ)− eτgk(τ) exp(j$k(τ))) dτ

∣∣∣∣∣ ,
E3 =

∣∣∣∣∣
∫

Γk,p

enτ+j$k(τ) (eτgk(τ)− zkgk(τk)) dτ

∣∣∣∣∣ , E4 =

∣∣∣∣∣
∫

Γk,res

enτ+j$k(τ) (eτgk(τ)− zkgk(τk)) dτ

∣∣∣∣∣ ,
E5 =

∣∣∣∣∣
∫

Γk,p

enτzkgk(τk)
(
ej$k(τ) − κjke

jϕk(τ)
)
dτ

∣∣∣∣∣ , E6 =

∣∣∣∣∣
∫

Γk,res

enτzkgk(τk)
(
ej$k(τ) − κjke

jϕk(τ)
)
dτ

∣∣∣∣∣ ,
E7 =

∣∣∣∣∣
∫

Γk,out

enτGj(τ)dτ

∣∣∣∣∣ .
We will now have to determine estimates on all these terms depending on k (case I, II and III) and also on

τp and Γk,p:

• Case A: ρk
(
ζk
γk

)
∈
[
−η2 , εk,0

]
,

• Case B: ρk
(
ζk
γk

)
> εk,0,

• Case C: ρk
(
ζk
γk

)
< −η2 .

The main contribution will come from the terms E3 and E5. We will prove much sharper estimates for the
other terms.
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3.3.1 Preliminary lemmas

Before we start to determine the estimates on the different terms, we are going to introduce some lemmas to
simplify the redaction. Those lemmas assemble inequalities in the different cases (A, B and C) for which the
proofs are similar with variations depending on the case we are in. They mainly rely on the inequalities (37)
and (38). The proofs of those lemmas can be found in the appendix.

We start with a lemma which will be useful to study the terms E5 and E6.

Lemma 13 (An inequality in Bε(τk)). There exists C > 0 such that for all τ ∈ Bε(τk) and (n, j) ∈ Dk, we
have∣∣∣enτ (ej$k(τ) − κjke

jϕk(τ)
)∣∣∣ ≤ Cn|τ − τk|2µk+1 exp(n<(τ − τk) + j(<($k(τ)) + |<(ξk(τ)(τ − τk)2µ+1)|)).

This next lemma will be useful for terms where the integral is defined along the path Γk,p (terms E3 and
E5).

Lemma 14 (Inequalities on Γk,p). For (n, j) ∈ N∗ × N∗ and τ ∈ Γk,p, we have
• Case A: ρk

(
ζk
γk

)
∈
[
−η2 , εk,0

]
n<(τ − τk) + j(<($k(τ)) +

∣∣< (ξk(τ)(τ − τk)2µk+1
)∣∣) ≤ −nc?=(τ − τk)2µk − n

αk
(2µk − 1)γk

(
|ζk|
γk

) 2µk
2µk−1

,

(45)

n<(τ − τk) + j<($k(τ)) ≤ −nc?=(τ − τk)2µk − n

αk
(2µk − 1)γk

(
|ζk|
γk

) 2µk
2µk−1

.

(46)

• Case B: ρk
(
ζk
γk

)
> εk,0

n<(τ − τk) + j(<($k(τ)) +
∣∣< (ξk(τ)(τ − τk)2µk+1

)∣∣) ≤ − n

αk
(2µk − 1)ARδkε

2µk
k,0 , (47)

n<(τ − τk) + j<($k(τ)) ≤ − n

αk
(2µk − 1)ARδkε

2µk
k,0 . (48)

• Case C: ρk
(
ζk
γk

)
< −η2

n<(τ − τk) + j(<($k(τ)) +
∣∣< (ξk(τ)(τ − τk)2µk+1

)∣∣) ≤ − n

αk
(2µk − 1)ARδk

(η
2

)2µk
, (49)

n<(τ − τk) + j<($k(τ)) ≤ − n

αk
(2µk − 1)ARδk

(η
2

)2µk
. (50)

We introduce in the next lemma some inequalities that will help us for the terms with integrals defined on
Γk,res (terms E4 and E6).

Lemma 15 (Inequalities on Γk,res). For (n, j) ∈ N∗ × N∗ and τ ∈ Γk,res, we have in all cases

n<(τ − τk) + j(<($k(τ)) +
∣∣< (ξk(τ)(τ − τk)2µk+1

)∣∣) ≤ −nη
2
, (51)

n<(τ − τk) + j(<($k(τ)) ≤ −nη
2
. (52)

Finally, we need a lemma for the term where the integral is defined along the path Γk,out (term E1).

Lemma 16 (An inequality on Γk,out). For (n, j) ∈ N∗ × N∗ and τ ∈ Γk,out, we have in all cases

n<(τ − τk) + j<(ϕk(τ)) ≤ −nη
2
. (53)

Remark 2. Those lemmas could be generalized in the case where αk < 0 but there would be some changes. For
example, we would have to prove the Lemmas 14, 15 and 16 for (n, j) ∈ N× Z with j ≤ 0. The main element
to use for those generalization would be to see that j

αk
≥ 0.
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3.3.2 Estimates of a part of the terms

We are going to first prove estimates for the terms where the proof will not depend on the case A, B or C in
which we are.
• Estimate for E1:
If we use the inequality (53), we have∣∣∣∣∣

∫
Γk,out

zkκ
j
kgk(τk) exp(nτ + jϕk(τ))dτ

∣∣∣∣∣ .
∫

Γk,out

exp(n<(τ) + j<(ϕk(τ)))|dτ | . e−n
η
2 .

• Estimate for E2:
We introduce the path Γη,k defined as

Γη,k := {−η + it, t ∈ [−π, π]} ∩Bε(τk).

Using Cauchy’s formula, we have that∫
Γk,in

enτ (Gj(τ)− eτgk(τ) exp(j$k(τ))) dτ =

∫
Γη,k

enτ (Gj(τ)− eτgk(τ) exp(j$k(τ))) dτ.

Because αk > 0, depending on whether we are in case I or III, the previous equality and the inequalities (30)
and (34) imply ∣∣∣∣∣

∫
Γk,in

enτ (Gj(τ)− eτgk(τ) exp(j$k(τ))) dτ

∣∣∣∣∣ . e−nη−cj .
• Estimate for E4:
We can suppose that the functions τ ∈ Bε(τk) 7→ eτgk(τ) have bounded derivatives on Bε(τk). Therefore,

the mean value inequality and the inequality (52) imply∣∣∣∣∣
∫

Γk,res

enτ+j$k(τ) (eτgk(τ)− zkgk(τk)) dτ

∣∣∣∣∣ .
∫

Γk,res

|τ − τk| exp (n<(τ) + j<($k(τ))) |dτ | . e−n
η
2 .

• Estimate for E6:
If we use the Lemma 13, we have∣∣∣∣∣
∫

Γk,res

enτzkgk(τk)
(
ej$k(τ) − κjke

jϕk(τ)
)
dτ

∣∣∣∣∣ .
∫

Γk,res

exp(n<(τ−τk)+j(<($k(τ))+|<(ξk(τ)(τ−τk)2µk+1)|))

n|τ − τk|2µk+1|dτ |.

Therefore, the inequality (51) implies∣∣∣∣∣
∫

Γk,res

enτzkgk(τk)
(
ej$k(τ) − κjke

jϕk(τ)
)
dτ

∣∣∣∣∣ . ne−n η2 . e−n η4 .
It remains to study the terms E3, E5 and E7.

3.3.3 The terms E3 and E5, Case A : ρk
(
ζk
γk

)
∈
[
−η2 , εk,0

]
This part of the proof is the most important because those terms will create the limiting estimates.
• Estimate for E3:
Because of the mean value inequality, we have

E3 =

∣∣∣∣∣
∫

Γk,p

(eτgk(τ)− zkgk(τk)) enτ+j$k(τ)dτ

∣∣∣∣∣ .
∫

Γk,p

|τ − τk| exp (n<(τ) + j<($k(τ))) |dτ |.

The inequality (46) implies

E3 .
∫

Γk,p

|τ − τk|e−nc?=(τ−τk)2µk |dτ | exp

− n

αk
(2µk − 1)γk

(
|ζk|
γk

) 2µk
2µk−1

 .
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But, the inequality (42) and the fact that ρk
(
ζk
γk

)
= τp imply

n

αk
(2µk − 1)γk

(
|ζk|
γk

) 2µk
2µk−1

≥ 2µk − 1

αk
ARδkn|τp|2µk .

If we introduce c > 0 small enough, then

E3 .
∫

Γk,p

|τ − τk|e−nc?=(τ−τk)2µk |dτ | exp
(
−cn|τp|2µk

)
.

Using the parametrization (39) and the inequality (40), we have∫
Γk,p

|τ − τk|e−nc?=(τ−τk)2µk |dτ | .
∫ `k,p

−`k,p
(|τp|+ |t|)e−nc∗t

2µk
dt.

The change of variables s = n
1

2µk t and the fact that the function x ≥ 0 7→ x exp
(
− c

2
x2µk

)
is bounded imply

∫ `k,p

−`k,p
|t|e−nc∗t

2µk
dt .

1

n
1
µk

,∫ `k,p

−`k,p
|τp|e−nc∗t

2µk
dt .

1

n
1
µk

exp
( c

2
n|τp|2µk

)
.

Thus,

E3 .
1

n
1
µk

exp
(
− c

2
n|τp|2µk

)
.

Lastly, the inequality (42) implies that we have a constant c̃ > 0 independent from j and n such that

c

2
n|τp|2µk ≥ c̃

(
|j − nαk|
n

1
2µk

) 2µk
2µk−1

so,

E3 .
1

n
1
µk

exp

−c̃( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

• Estimate for E5:
Using the Lemma 13 and the inequality (45), we have

E5 =

∣∣∣∣∣
∫

Γk,p

enτzkgk(τk)
(
ej$k(τ) − κjke

jϕk(τ)
)
dτ

∣∣∣∣∣
.
∫

Γk,p

n|τ − τk|2µk+1 exp(n<(τ − τk) + j(<($k(τ)) + |<(ξk(τ)(τ − τk)2µk+1)|))|dτ |

. exp

− n

αk
(2µk − 1)γk

(
|ζk|
γk

) 2µk
2µk−1

n

∫
Γk,p

|τ − τk|2µk+1 exp(−nc?=(τ − τk)2µk)|dτ |.

Just like in the estimation of the previous term, because of the inequality (42), if we introduce c > 0 small
enough, we have

E5 . n exp
(
−cn|τp|2µk

) ∫
Γk,p

|τ − τk|2µk+1 exp(−nc?=(τ − τk)2µk)|dτ |.

The same reasoning as for the estimate of E3 implies that

n

∫
Γk,p

|τ − τk|2µk+1 exp(−nc?=(τ − τk)2µk)|dτ | . n
∫ `k,p

−`k,p
|t|2µk+1e−nc∗t

2µk
dt+ n

∫ `k,p

−`k,p
|τp|2µk+1e−nc∗t

2µk
dt.
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The change of variables s = n
1

2µk t and the fact that the function x ≥ 0 7→ x2µk+1 exp
(
− c

2
x2µk

)
is bounded

imply 
n

∫ `k,p

−`k,p
|t|2µk+1e−nc∗t

2µk
dt .

1

n
1
µk

,

n

∫ `k,p

−`k,p
|τp|2µk+1e−nc∗t

2µk
dt .

1

n
1
µk

exp
( c

2
n|τp|2µk

)
.

Thus,

E5 .
1

n
1
µk

exp
(
− c

2
n|τp|2µk

)
.

Lastly, the inequality on γk (42) implies that we have a constant c̃ > 0 independent from j and n such that

c

2
n|τp|2µk ≥ c̃

(
|j − nαk|
n

1
2µk

) 2µk
2µk−1

so,

E5 .
1

n
1
µk

exp

−c̃( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

3.3.4 The terms E3 and E5, Case B and C:

We now consider that we are either in case B or case C (i.e. ρk( ζkγk ) /∈
[
−η2 , εk,0

]
).

• Estimate for E3:
Because of the mean value inequality, we have

E3 =

∣∣∣∣∣
∫

Γk,p

enτ+j$k(τ) (eτgk(τ)− zkgk(τk)) dτ

∣∣∣∣∣ .
∫

Γk,p

|τ − τk| exp (n<(τ) + j<($k(τ))) |dτ |.

Using the inequality (48) or (50) whether we are in case B or C, they imply that there exists c > 0 independent
from j and n such that

E3 . e
−cn.

• Estimate for E5:
Using the Lemma 13, we have

E5 =

∣∣∣∣∣
∫

Γk,p

enτzkgk(τk)
(
ej$k(τ) − κjke

jϕk(τ)
)
dτ

∣∣∣∣∣
.
∫

Γk,p

n|τ − τk|2µk+1 exp(n<(τ − τk) + j(<($k(τ)) + |<(ξk(τ)(τ − τk)2µk+1)|))|dτ |.

Using the inequality (47) or (49) whether we are in case B or C, they imply that there exists c > 0 independent
from j and n such that

E5 . ne
−cn . e−

c
2n.

3.3.5 Estimate of the term E7

We recall that

E7 =

∣∣∣∣∣
∫

Γk,out

enτGj(τ)dτ

∣∣∣∣∣ .
For τ ∈ Γk,out, we have different estimates depending on whether we are inside a Bε(τ l) or not. Therefore,

we introduce the set of distinct points

{τ̂1, . . . , τ̂R} = {τ l, l ∈ {1, . . . ,K}} \ {τk} .

It allows us to decompose the path Γk,out as

Γk,out :=

R⋃
l=0

Γ̂l,
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<(τ)

=(τ)

•
iπ

•−iπ

•
−η

×
Bε(τk)

×
Bε(τ̂l)

>
>Γ̂0

>

Γk,in

Γ̂l

Figure 6: This is a representation of Γk were we decompose Γk,out. The red path corresponds to Γ̂0 the part of
Γk,out which lies outside the balls Bε(τ̂l). The green path corresponds to Γ̂l the part of Γk,out which lies inside
the ball Bε(τ̂l). The dashed green path corresponds to the deformation we use in the proof of the estimate for
E7.

where for all l ∈ {1, . . . , R}
Γ̂l := Γk,out ∩Bε(τ̂l)

and

Γ̂0 := Γk,out\
R⋃
l=1

Γ̂l.

This decomposition of Γk,out is represented on the Figure 6. The inequality (29) gives us that∣∣∣∣∫
Γ̂0

enτGj(τ)dτ

∣∣∣∣ . e−nη−c|j|.
We now consider l ∈ {1, . . . , R}. There are two possibilities because of Hypothesis 3:
• The set {i ∈ {1, . . . , R} , τ i = τ̂l} is the singleton {i} with αi < 0 (i.e. we are in case II). Then, knowing

that for (n, j) ∈ Dk we have j ≥ 1, because of the inequality (32), we have∣∣∣∣∫
Γ̂l

enτGj(τ)dτ

∣∣∣∣ . e−nη−c|j|.
• The set {i ∈ {1, . . . , R} , τ i = τ̂l} is the singleton {i} with αi > 0 (i.e. we are in case I) or it has two

distinct elements {i, j} with αi > 0 and αj < 0 (i.e. we are in case III). Either way, the inequalities (30) and
(34) imply that ∣∣∣∣∫

Γ̂l

enτGj(τ)dτ

∣∣∣∣ ≤ 2πCe−nη−c|j| +

∣∣∣∣∫
Γ̂l

exp(nτ + j$i(τ))eτgi(τ)dτ

∣∣∣∣ .
Just like we defined the path Γk,p, Γk,res and Γk,in := Γk,p t Γk,res, we can define a path Γi,p, Γi,res and

Γi,in := Γi,p t Γi,res. The path Γi,in is represented with a dashed green line on the Figure 6. Using Cauchy’s
formula, we then have∫

Γ̂l

exp(nτ + j$i(τ))eτgi(τ)dτ =

∫
Γi,in

exp(nτ + j$i(τ))eτgi(τ)dτ

The function τ 7→ eτgi(τ) can be bounded so we just have to bound
∫

Γi,in

exp(n<(τ − τ i) + j<($i(τ)))d|τ |.

We observe that the proofs of the Lemmas 14 and 15 are also true for Γi,p and Γi,res because αk and αi have
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the same sign. Using the inequality (52) for the integral along the path Γi,res, we prove that there exists a
constant c > 0 independent from n and j so that∫

Γi,res

exp(n<(τ − τ i) + j<($i(τ)))d|τ | . e−cn.

It remains to bound the integral along the path Γi,p. In the case A (i.e. ρi( ζiγi ) ∈ [−η2 , εi,0]), we observe that
for (n, j) ∈ Dk, γi is bounded between two positive constants and

|ζi| ≥
1

2µi
min(|αi − δk|, |αi − δk|).

Therefore, using the inequality (46) and the previous observation in case A and using the inequalities (48) and
(50) in cases B and C, we prove that there exists a constant c > 0 independent from n and j so that∫

Γi,p

exp(n<(τ − τ i) + j<($i(τ)))d|τ | . e−cn.

Therefore, there exists a constant c > 0 such that

∀(n, j) ∈ Dk,
∣∣∣∣∫

Γ̂l

enτGj(τ)dτ

∣∣∣∣ . e−cn.
This gives a sharp estimate of E7.

If we recapitulate the estimates we found, we can define two constants C, c > 0 such that

∀(n, j) ∈ Dk,∀l ∈ {1, 2, 4, 6, 7} , El ≤ Ce−cn,

and

∀(n, j) ∈ Dk,∀l ∈ {3, 5} , El ≤
C

n
1
µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

The estimates we proved on all the terms and the Lemma 10 allow us to conclude the proof of Lemma 12
and therefore of Proposition 2.

3.4 End of the proofs of Proposition 1 and Theorem 1
We recall that the inequalities (26) and (27) implied that to prove Theorem 1 we only had to prove Proposition
1 which announces generalized Gaussian bounds on G n

j −H n
k,j for (n, j) ∈ Dk. Proving Proposition 1 will be

the goal of this section. Proposition 2 implies that there exist two constants C, c > 0 such that

∀k ∈ {1, . . . ,K} ,∀(n, j) ∈ Dk, |G n
j −Fn

k,j | ≤
C

n
1
µk

exp

−c( |j − αkn|
n

1
2µk

) 2µk
2µk−1

 . (54)

To prove Proposition 1, we understand that we just need to prove similar generalized Gaussian bounds for
Fn
k,j −H n

k,j . To do so, we introduce the following elements

∀k ∈ {1, . . . ,K} ,∀(n, j) ∈ Dk, H̃ n
k,j :=

zk
nκk

j(
j
αk

) 1
2µk

Hβk
2µk

 j − nαk(
j
αk

) 1
2µk

 .

For (n, j) ∈ Dk, j
αk

is positive so those elements are well defined. Also, j
αk

is close to n so it would seem
obvious that H̃ n

k,j is close to H n
k,j . Furthermore, with an affine change of variables, we have that

∀k ∈ {1, . . . ,K} ,∀(n, j) ∈ Dk, H̃ n
j :=

zk
nκk

j

2π

∫ +∞

−∞
exp

(
it(nαk − j)−

j

αk
βkt

2µk

)
dt.

Therefore, H̃ n
k,j should also be close to Fn

k,j . We introduce the two following lemmas.
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Lemma 17. There exist C, c > 0 such that

∀k ∈ {1, . . . ,K} ,∀(n, j) ∈ Dk,
∣∣∣Fn

k,j − H̃ n
k,j

∣∣∣ ≤ C

n
1
µk

exp

−c( |j − αkn|
n

1
2µk

) 2µk
2µk−1

 .

Lemma 18. There exist C, c > 0 such that

∀k ∈ {1, . . . ,K} ,∀(n, j) ∈ Dk,
∣∣∣H n

k,j − H̃ n
k,j

∣∣∣ ≤ C

n
1
µk

exp

−c( |j − αkn|
n

1
2µk

) 2µk
2µk−1

 .

If we prove those two lemmas, then we will have proved that there exists two constants C, c > 0 such that

∀k ∈ {1, . . . ,K} ,∀(n, j) ∈ Dk,
∣∣Fn

k,j −H n
k,j

∣∣ ≤ C

n
1
µk

exp

−c( |j − αkn|
n

1
2µk

) 2µk
2µk−1

 .

This inequality and the inequality (54) will end the proof of Proposition 1 and therefore the proof of Theorem
1.

We consider k ∈ {1, . . . ,K} and we will now prove Lemmas 17 and 18 for this k. We will suppose that
αk > 0 and observe that the proof in the case where αk < 0 would be done in a similar way.

3.4.1 Proof of Lemma 17

We start with the proof of Lemma 17. We have

∀(n, j) ∈ Dk,


Fn
k,j :=

zk
nκk

j

2π

∫ π−θk
αk

−π−θk
αk

exp

(
it(nαk − j)−

j

αk
βkt

2µk

)
dt,

H̃ n
k,j :=

zk
nκk

j

2π

∫ +∞

−∞
exp

(
it(nαk − j)−

j

αk
βkt

2µk

)
dt.

We then need estimates on
∫ −π+θk

αk

−∞
e
it(nαk−j)− j

αk
βkt

2µk

dt and
∫ +∞

π−θk
αk

e
it(nαk−j)− j

αk
βkt

2µk

dt. We will present

the proof for the second term. Integrating by parts and recalling that θk ∈]− π, π[, we have∣∣∣∣∣
∫ +∞

π−θk
αk

e
it(nαk−j)− j

αk
βkt

2µk

dt

∣∣∣∣∣ ≤
∫ +∞

π−θk
αk

e
− j
αk
<(βk)t2µk

dt

≤ 1

<(βk)2µk
j
αk

(
π−θk
αk

)2µk−1 e
−
(
π−θk
αk

)2µk<(βk) j
αk −

∫ +∞

π−θk
αk

(2µk − 1)

2µk<(βk) j
αk
t2µk

e
−<(βk) j

αk
t2µk

dt.

The second term is non positive. Knowing that j ≥ nδk ≥ δk, we have a constant c > 0 independent from j
and n such that ∣∣∣∣∣

∫ +∞

π−θk
αk

e
it(nαk−j)− j

αk
βkt

2µk

dt

∣∣∣∣∣ . e−cn.
Lemma 10 allows us to conclude.

3.4.2 Proof of Lemma 18

We now prove Lemma 18. We have for (n, j) ∈ Dk

2π|H̃ n
k,j−H n

k,j | ≤
(
αk
j

) 1
2µk

∣∣∣∣∣∣∣Hβk
2µk

(
nαk − j
n

1
2µk

)
−Hβk

2µk

 nαk − j(
j
αk

) 1
2µk


∣∣∣∣∣∣∣+
∣∣∣∣Hβk

2µk

(
nαk − j
n

1
2µk

)∣∣∣∣
∣∣∣∣∣∣∣

1

n
1

2µk

− 1(
j
αk

) 1
2µk

∣∣∣∣∣∣∣ .
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We will have to use the Lemma 2 that we introduced earlier. It directly implies that there exist two constant
C, c > 0 such that

∀x ∈ R,

 |Hβk
2µk

(x)| ≤ C exp
(
−c|x|

2µk
2µk−1

)
,

|Hβk
2µk

′
(x)| ≤ C exp

(
−c|x|

2µk
2µk−1

)
.

Those inequalities will allow us to determine estimates for both terms of the sum. We start with the second
term. The mean value inequality implies that

∣∣∣∣Hβk
2µk

(
nαk − j
n

1
2µk

)∣∣∣∣
∣∣∣∣∣∣∣

1

n
1

2µk

− 1(
j
αk

) 1
2µk

∣∣∣∣∣∣∣ . exp

−c( |nαk − j|
n

1
2µk

) 2µk
2µk−1

 |nαk − j| sup
t∈[n, jαk

]

∣∣∣∣ 1

t
1+ 1

2µk

∣∣∣∣
.
|nαk − j|
n

1+ 1
2µk

exp

−c( |nαk − j|
n

1
2µk

) 2µk
2µk−1

 .

The function x ∈ R→ x exp
(
− c

2 |x|
2µk

2µk−1

)
is bounded so

∣∣∣∣Hβk
2µk

(
nαk − j
n

1
2µk

)∣∣∣∣
∣∣∣∣∣∣∣

1

n
1

2µk

− 1(
j
αk

) 1
2µk

∣∣∣∣∣∣∣ .
1

n
exp

− c
2

(
|nαk − j|
n

1
2µk

) 2µk
2µk−1

 .

There only remains to prove the estimation for the first term of the sum. Because of the mean value
inequality and knowing that (n, j) ∈ Dk, we have

(
αk
j

) 1
2µk

∣∣∣∣∣∣∣Hβk
2µk

(
nαk − j
n

1
2µk

)
−Hβk

2µk

 nαk − j(
j
αk

) 1
2µk


∣∣∣∣∣∣∣

≤
(
αk
δk

) 1
2µk |nαk − j|

n
1

2µk

∣∣∣∣∣∣∣
1

n
1

2µk

− 1(
j
αk

) 1
2µk

∣∣∣∣∣∣∣ sup

t∈

nαk−j
n

1
2µk

,
nαk−j(
j
αk

) 1
2µk


∣∣∣Hβk

2µk

′
(t)
∣∣∣ .

Using a similar proof as previously to estimate

∣∣∣∣∣ 1

n
1

2µk

− 1(
j
αk

) 1
2µk

∣∣∣∣∣ and using the inequality on Hβk
2µk

′
, we

have

(
αk
j

) 1
2µk

∣∣∣∣∣∣∣Hβk
2µk

(
nαk − j
n

1
2µk

)
−Hβk

2µk

 nαk − j(
j
αk

) 1
2µk


∣∣∣∣∣∣∣ .

1

n

(
|nαk − j|
n

1
2µk

)2

exp

−c( |nαk − j|
n

1
2µk

) 2µk
2µk−1

 .

The function x ∈ R→ x2 exp
(
− c

2 |x|
2µk

2µk−1

)
is bounded so

(
αk
j

) 1
2µk

∣∣∣∣∣∣∣Hβk
2µk

(
nαk − j
n

1
2µk

)
−Hβk

2µk

 nαk − j(
j
αk

) 1
2µk


∣∣∣∣∣∣∣ .

1

n
exp

− c
2

(
|nαk − j|
n

1
2µk

) 2µk
2µk−1

 .

This concludes the proof of Proposition 1 and Theorem 1.

3.5 Coming back to the hypothesis on the coefficients αk

As we said in the beginning on Section 3, we supposed in the proof that the elements αk were distinct from
one another. In the case where the αk can be equal, there are some changes that need to be done but the
calculations remain similar.
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First, just as in Section 3.1, we would define δk, δk and Dk in the same manner but with the added condition
that if αk = αl, then δk = δl and δk = δl.

If we consider k0 ∈ {1, . . . ,K}, we define

Jk0 := {k ∈ {1, . . . ,K} , αk = αk0} .

We observe that for k ∈ Jk0 , we have Dk = Dk0 because of our new condition.
The estimate we found on G n

j and H n
k,j far from the axis j = nαk (Lemmas 7 and 8) will remain true. Thus,

the inequality (26) would also remain true but the inequality (27) would become

∀k0 ∈ {1, . . . ,K} ,∀(n, j) ∈ Dk0 ,

∣∣∣∣∣G n
j −

K∑
k=1

H n
k,j

∣∣∣∣∣ ≤ C ∑
k∈{1,...,K}\Jk0

1

n
1
µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1


+

∣∣∣∣∣∣G n
j −

∑
k∈Jk0

H n
k,j

∣∣∣∣∣∣ .
Therefore, we now need estimates on

∣∣∣G n
j −

∑
k∈Jk0

H n
k,j

∣∣∣ for (n, j) ∈ Dk0 . We would still introduce for

k ∈ Jk0 the paths Γk and the elements Fn
k,j , F̃n

k,j and H̃ n
k,j with the same definition as in the previous proof.

Knowing that the Lemmas 11, 17 and 18 would still be true without any changes to the proofs, we would just
need to prove the following lemma, which is a modification of Lemma 12, to prove the Theorem 1.

Lemma 19. For every k0 ∈ {1, . . . ,K}, there exist two constants C, c > 0 such that

∀(n, j) ∈ Dk0 ,

∣∣∣∣∣∣G n
j −

∑
k∈Jk0

F̃n
k,j

∣∣∣∣∣∣ ≤
∑
k∈Jk0

C

n
1
µk

exp

−c( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

We recall that in the case where the elements αk were distinct from one another, we found an expression of
the elements G n

j as an integral along the path Γk and used the triangular inequality to find the inequality (44).
We then bounded all the terms Ci to find an estimate on G n

j − F̃n
k,j . We will do the same thing in the case

where the elements αk can be equal but with a better suited choice of path to express the elements G n
j . We

fix k0 ∈ {1, . . . ,K} and introduce the path Γ̃k0 which is the ray {−η + it, t ∈ [−π, π]} deformed into the path
Γk,in inside the balls Bε(τk) for k ∈ Jk0 (see Figure 7). Using Cauchy’s formula and taking into account the
"2iπ-periodicity" of Gj(τ), we have that

∀n ∈ N∗,∀j ∈ Z, G n
j =

1

2iπ

∫
Γ̃k0

enτGj(τ)dτ.

Using a similar proof as in the Section 3.3, we end up with an inequality similar to (44)∣∣∣∣∣∣G n
j −

∑
k∈Jk0

F̃n
k,j

∣∣∣∣∣∣ ≤ 1

2π

Eout +
∑
k∈Jk0

(E1,k + E2,k + E3,k + E4,k + E5,k + E6,k)

 ,

where Ei,k has the same definition as Ei in (44) but depends on the k ∈ Jk0 we consider. The term Eout is
similar to E7 in (44) and is equal to

Eout =

∣∣∣∣∣
∫

Γ̃k0,out

enτGj(τ)dτ

∣∣∣∣∣ ,
where Γ̃k0,out corresponds to the part of Γ̃k0 outside the balls Bε(τk) for k ∈ Jk0 (see the red path on Figure
7). Reasoning in the same manner as in the case where the elements αk are different from one another, we get
estimates on the different terms. The minor modifications are left to the reader. This concludes the proof of
Theorem 1. There only remains to prove Corollary 1.
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<(τ)

=(τ)

•
iπ

•−iπ

×
Bε(τk1)

×
Bε(τ l)

×
Bε(τk2)

Γk2,in

Γk1,in

Γ̃k0,out

Figure 7: A representation of the path Γ̃k0 . Inside the balls Bε(τk) where k belongs to Jk0 , it follows the path
Γk,in composed of Γk,res and Γk,p. For l ∈ {1, . . . ,K}, if there is no k ∈ Jk0 such that τk = τ l, then the path
Γ̃k0 inside Bε(τ l) just corresponds to the ray {−η + it, t ∈ [−π, π]}.

4 Proof of Corollary 1
We are now going to prove Corollary 1. We consider that a satisfies the hypotheses of Corollary 1, i.e. a satisfies
hypotheses 1 and 4 and we have an integer J ∈ Z such that the sequence b = (aj+J)j∈Z satisfies hypotheses 2
and 3. As we said just before we introduced the corollary, we observe that if we define F̃ the symbol associated
with b, then we have that

∀κ ∈ S1, F̃ (κ) = κ−JF (κ).

and we have for k ∈ {1, . . . ,K}

F̃ (κke
iξ) =

ξ→0
κ−Jk zk exp(−i(αk + J)ξ − βkξ2µk + o(|ξ|2µk)). (55)

We can also define the attractors associated to the sequence thanks to the asymptotic expansion (55). Applying
Theorem 1 for the sequence b, there exists two constants C, c > 0 such that

∀n ∈ N∗,∀j ∈ Z,

∣∣∣∣∣(L n
b δ)j −

K∑
k=1

(κ−Jk zk)nκk
j

n
1

2µk

Hβk
2µk

(
j − n(αk + J)

n
1

2µk

)∣∣∣∣∣
≤ C

K∑
k=1

1

n
1
µk

exp

−c( |j − n(αk + J)|
n

1
2µk

) 2µk
2µk−1

 .

By observing that
∀n ∈ N∗,∀j ∈ Z, (L n

b δ)j = (L n
a δ)j−nJ = G n

j−nJ ,

we conclude the proof of Corollary 1.

5 Appendix

Proof of the Lemma 2
We recall here the statement of Lemma 2.
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Figure 8: Integrating path for the proof of Lemma 2.

Lemma 20. For all µ ∈ N∗ and β ∈ C with a positive real part, there exist two constants C, c > 0 such that

∀x ∈ R,

 |Hβ
2µ(x)| ≤ C exp

(
−c|x|

2µ
2µ−1

)
,

|Hβ
2µ

′
(x)| ≤ C exp

(
−c|x|

2µ
2µ−1

)
.

Proof We will prove here the first inequality, the second one being proved in a similar way. We fix η ∈ R that
we will choose more precisely later. Integrating the function z 7→ exp(−izx − βz2µ) on the rectangle depicted
in the Figure 8 using the Cauchy formula and passing to the limit R→ +∞, we obtain

∀η ∈ R, Hβ
2µ(x) =

1

2π

∫
R
e−i(t+iη)xe−β(t+iη)2µdt.

Thus, ∣∣∣Hβ
2µ(x)

∣∣∣ ≤ eηx

2π

∫
R

exp
(
−<

(
β(t+ iη)2µ

))
dt.

Using Young’s inequality, we can show that there exists a constant c > 0 such that

∀t ∈ R, <
(
β(t+ iη)2µ

)
≥ <(β)

2
t2µ − cη2µ.

and thus there exists C > 0 such that ∣∣∣Hβ
2µ(x)

∣∣∣ ≤ Ceηx+cη2µ .

Optimizing with respect to η yields the desired result.
�

Proof of the Lemma 13
We recall here the statement of the Lemma 13.

Lemma 21. There exists C > 0 such that τ ∈ Bε(τk) and (n, j) ∈ Dk, we have∣∣∣enτ (ej$k(τ) − κjke
jϕk(τ)

)∣∣∣ ≤ Cn|τ − τk|2µk+1 exp(n<(τ − τk) + j(<($k(τ)) + |<(ξk(τ)(τ − τk)2µ+1)|)).

Proof We define the holomorphic function S such that

∀z ∈ C, S(z) =

{
1 if z = 0,

sinh(z)
z else.

We consider (n, j) ∈ Dk and τ ∈ Bε(τk). We have because j ≥ nδk ≥ 0,

∣∣∣enτ (ej$k(τ) − κjke
jϕk(τ)

)∣∣∣ = j|ξk(τ)||τ − τk|2µk+1

∣∣∣∣S (j ξk(τ)(τ − τk)2µk+1

2

)∣∣∣∣
exp

(
n<(τ) + j

(
<($k(τ))−<

(
ξk(τ)(τ − τk)2µk+1

2

)))
.
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We observe that the function z ∈ C 7→ |S(z)| exp(−|<(z)|) is bounded. Therefore, because the function ξk
can be bounded on Bε(τk), j ≤ nδk and <(τ) = <(τ − τk),∣∣∣enτ (ej$k(τ) − κjke

jϕk(τ)
)∣∣∣ . n|τ − τk|2µk+1 exp

(
n<(τ − τk) + j

(
<($k(τ)) +

∣∣< (ξk(τ)(τ − τk)2µk+1
)∣∣)) .

�

Proof of the Lemma 14
We recall here the statement of the Lemma 14.

Lemma 22. For (n, j) ∈ N∗ × N∗ and τ ∈ Γk,p, we have
• Case A: ρk

(
ζk
γk

)
∈
[
−η2 , εk,0

]
n<(τ − τk) + j(<($k(τ)) +

∣∣< (ξk(τ)(τ − τk)2µk+1
)∣∣) ≤ −nc?=(τ − τk)2µk − n

αk
(2µk − 1)γk

(
|ζk|
γk

) 2µk
2µk−1

,

n<(τ − τk) + j<($k(τ)) ≤ −nc?=(τ − τk)2µk − n

αk
(2µk − 1)γk

(
|ζk|
γk

) 2µk
2µk−1

.

• Case B: ρk
(
ζk
γk

)
> εk,0

n<(τ − τk) + j(<($k(τ)) +
∣∣< (ξk(τ)(τ − τk)2µk+1

)∣∣) ≤ − n

αk
(2µk − 1)ARδkε

2µk
k,0 ,

n<(τ − τk) + j<($k(τ)) ≤ − n

αk
(2µk − 1)ARδkε

2µk
k,0 .

• Case C: ρk
(
ζk
γk

)
< −η2

n<(τ − τk) + j(<($k(τ)) +
∣∣< (ξk(τ)(τ − τk)2µk+1

)∣∣) ≤ − n

αk
(2µk − 1)ARδk

(η
2

)2µk
,

n<(τ − τk) + j<($k(τ)) ≤ − n

αk
(2µk − 1)ARδk

(η
2

)2µk
.

Proof We consider (n, j) ∈ N∗ × N∗ and τ ∈ Γk,p. Using first the inequality (37), the fact that τ ∈ Γk,p and
finally the inequality (41), we have

n<(τ − τk) + j(<($k(τ)) + |<(ξk(τ)(τ − τk)2µk+1)|) ≤ n<(τ − τk)− j

αk
Ψk(τp)

≤ −nc?=(τ − τk)2µk +
n

αk

(
γkτ

2µk
p − 2µkζkτp

)
.

• First, we consider the case A. Then, we have τp = ρk

(
ζk
γk

)
. Therefore,

γkτ
2µk
p − 2µkζkτp = −(2µk − 1)γk

(
|ζk|
γk

) 2µk
2µk−1

≤ 0. (56)

We deduce (45). The inequality (46) is a direct consequence of (45).
• We consider the case B. Because τp = εk,0, we have

n<(τ − τk) + j(<($k(τ)) + |<(ξk(τ)(τ − τk)2µk+1)|) ≤ n

αk

(
γkε

2µk
k,0 − 2µkζkεk,0

)
.

We recall that ρk
(
ζk
γk

)
> εk,0 and that ρk

(
ζk
γk

)
is the only real root of −ζk + γkx

2µk−1 = 0. Therefore,

−ζk ≤ −γkε2µk−1
k,0 and

γkτ
2µk
p − 2µkζkτp ≤ −(2µk − 1)γkε

2µk
k,0 ≤ 0. (57)
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Using (42) to bound γk, we deduce the inequality (47). The inequality (48) is a direct consequence of (47).
• Finally, we place ourselves in case C. We have that τp = −η2 , so

n<(τ − τk) + j(<($k(τ)) + |<(ξk(τ)(τ − τk)2µk+1)|) ≤ n

αk

(
γk

(η
2

)2µk
+ 2µkζk

η

2

)
.

We recall that ρk
(
ζk
γk

)
< −η2 and that ρk

(
ζk
γk

)
is the only real root of −ζk + γkx

2µk−1 = 0. Then,

ζk ≤ −γk
(
η
2

)2µk−1 and

γkτ
2µk
p − 2µkζkτp ≤ −(2µk − 1)γk

(η
2

)2µk
≤ 0. (58)

Using (42) to bound γk, we deduce the inequality (49). The inequality (50) is a direct consequence of (49).
�

Proof of the Lemma 15
We recall here the statement of the Lemma 15.

Lemma 23. For (n, j) ∈ N∗ × N∗ and τ ∈ Γk,res, we have in all cases

n<(τ − τk) + j(<($k(τ)) +
∣∣< (ξk(τ)(τ − τk)2µk+1

)∣∣) ≤ −nη
2
,

n<(τ − τk) + j(<($k(τ)) ≤ −nη
2
.

Proof We consider (n, j) ∈ N∗×N∗ and τ ∈ Γk,res. Using the inequality (37) and the facts that =(τ−τk)2µk ≥
`2µkk,p and −η + i`k,p + τk ∈ Γk,p, we have

n<(τ − τk) + j(<($k(τ)) +
∣∣< (ξk(τ)(τ − τk)2µk+1

)∣∣) ≤ −nη − j

αk

(
−η −ARη2µk +AI=(τ − τk)2µk

)
≤ −nη − j

αk
Ψk(τp).

We know that η + τp ≥ η
2 , so

−nη − j

αk
(τp −ARτ2µk

p ) = −n(η + τp) +
n

αk

(
γkτ

2µk
p − 2µkζkτp

)
≤ −nη

2
+

n

αk

(
γkτ

2µk
p − 2µkζkτp

)
.

We proved at the end of the proof of Lemma 14 that, in the three cases A, B and C, γkτ2µk
p − 2µkζkτp are

non positive (see (56), (57) and (58)). This concludes the proof. �

Proof of the Lemma 16
We recall here the statement of the Lemma 16.

Lemma 24. For (n, j) ∈ N∗ × N∗ and τ ∈ Γk,out, we have in all cases

n<(τ − τk) + j<(ϕk(τ)) ≤ −nη
2
.

Proof We consider (n, j) ∈ N∗ × N∗ and τ ∈ Γk,out. Just as in the proof of Lemma 15, using the inequality
(38) and using the fact that =(τ − τk)2µk ≥ `2µkk,p and −η + i`k,p + τk ∈ Γk,p, we have

n<(τ − τk) + j<(ϕk(τ)) ≤ −nη − j

αk
Ψk(τp).

We end the proof in the same way as for Lemma 15. �
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