
HAL Id: hal-03463338
https://hal.science/hal-03463338v2

Preprint submitted on 22 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Linear Invariant Generation with Farkas’
Lemma

Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, Guoqiang Li

To cite this version:
Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, Guoqiang Li. Scalable Linear Invariant Gener-
ation with Farkas’ Lemma. 2022. �hal-03463338v2�

https://hal.science/hal-03463338v2
https://hal.archives-ouvertes.fr

Scalable Linear Invariant Generation with Farkas’ Lemma

HONGMING LIU, Shanghai Jiao Tong University, China

HONGFEI FU, Shanghai Jiao Tong University, China

ZHIYONG YU, Shanghai Jiao Tong University, China

JIAXIN SONG, Shanghai Jiao Tong University, China

GUOQIANG LI, Shanghai Jiao Tong University, China

Invariant generation is the classical problem to automatically generate invariants to aid the formal analysis of

programs. In this work, we consider the linear-invariant-generation problem over affine programs (i.e., pro-

grams with affine guards and updates). In the literature, the only known sound and complete characterization to

solve this problem is via Farkas’ Lemma (FL), and has been implemented through either quantifier elimination

or reasonable heuristics. Although FL-based approaches can generate highly accurate linear invariants from

the completeness of FL, the main bottleneck to apply these approaches is the scalability issue caused by either

non-linear constraints or combinatorial explosion. It has long been an unresolved problem to improve the

scalability of FL-based approaches. In this work, we address this issue with novel algorithmic improvements.

In detail, we base our approach on the only practical FL-based approach [Sankaranarayanan et al., SAS 2004]
that applies FL with reasonable heuristics, and develop two novel and independent improvements to leverage

the scalability. The first improvement is the novel idea to generate invariants at only one program location

in a single invariant-generation process, so that the invariants for each location are generated separately

rather than together in a single computation. This idea naturally leads to a parallel processing that divides the

invariant-generation task for all program locations by assigning the locations separately to mulitple processors.

Moreover, the idea enables us to develop detailed technical improvements to further reduce the combinatorial

explosion in the original work [Sankaranarayanan et al., SAS 2004]. The second improvement is a segmented

subsumption testing in the CNF-to-DNF expansion that allows to discover more local subsumptions in advance.

We formally prove that our approach has the same accuracy as the original work, thus does not incur accuracy

loss on the generated invariants. Moreover, experimental results on representative benchmarks involving

non-trivial linear invariants demonstrate that our approach improves the runtime of the original work by

several orders of magnitude, even if in the non-parallel scenario that sums up the execution time for all

program locations. Thus, our approach constitutes the first significant improvement in FL-based approaches

for linear invariant generation after almost two decades.

1 INTRODUCTION

Invariants. An assertion at a program location is called an invariant if it is always satisfied by the

values taken by the program variables whenever the location is reached in the execution of the

program. Invariants play a fundamental role in program analysis and verification as they provide

over-approximation for reachable program states. Therefore, they are widely used in proving

basic properties such as safety [3, 51, 56], reachability [4, 6, 10, 17, 19, 26, 57] and time-complexity

analysis [13], etc. The quality of the generated invariants is measured by their accuracy, i.e., the

amount of over-approximation against the actual set of reachable program states. The accuracy

of the invariants is an important factor as inaccurate invariants can lead to loose results or even

failure to get meaningful results for program analysis and verification.

Invariant Generation. Invariant generation is the classical problem that asks to automatically

generate invariants for an input program, and has been studied for decades. Various approaches

have been proposed to solve the problem, such as abstract interpretation [21, 23], constraint

Authors’ addresses: Hongming Liu, Shanghai Jiao Tong University, Shanghai, China, hm-liu@sjtu.edu.cn; Hongfei Fu,

Shanghai Jiao Tong University, Shanghai, China, fuhf@cs.sjtu.edu.cn; Zhiyong Yu, Shanghai Jiao Tong University, Shanghai,

China, yuzhiyong18@sjtu.edu.cn; Jiaxin Song, Shanghai Jiao Tong University, Shanghai, China, sjtu_xiaosong@sjtu.edu.cn;

Guoqiang Li, Shanghai Jiao Tong University, Shanghai, China, li.g@sjtu.edu.cn.

, Vol. 1, No. 1, Article . Publication date: March 2022.

2 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

solving [14, 18, 45], recurrence analysis [31, 44, 47, 48], logical inference [29, 34, 35, 38, 52, 66],

machine learning [36, 41, 77], dynamic analysis [25, 54, 68], etc.

To infer invariants at program locations directly is often infeasible, and most existing approaches

generate invariants by considering a strengthened notion called inductive invariants. An inductive

invariant at a program location is an assertion that holds for the first visit to the location and is

preserved under every cyclic execution path to and from the location. Inductive invariants are

guaranteed to be invariants, and the well-established method to prove that an assertion is an

invariant is to find an inductive invariant that strengthens it [18, 51].

Numerical Inductive Invariants. An important category of inductive invariants is that of numer-
ical inductive invariants that captures the relationship between the numerical values taken by the

program variables. Numerical values are a basic aspect of programs, and many common failures of

programs (such as array out-of-bound, division by zero, etc.) are closely related to numerical values.

Thus, numerical inductive invariants are essential in proving numeric-critical properties. In this

work, we consider automated generation of numerical inductive invariants. To be more precise, we

consider algorithmic approaches for generating linear inductive invariants below.
A notable subclass of numerical inductive invariants is the class of linear inductive invariants.

Informally, a numerical inductive invariant is linear if the invariant takes the form of a system of

linear inequalities over the program variables. Linear inductive invariants are the most basic form

of numerical invariant invariants, hence is important both for the academic and practical purpose.

To resolve the automated generation of linear inductive invariants, we consider the method of

constraint solving, as follows.

The Method of Constraint Solving. To solve the invariant-generation problem, constraint-solving

based approaches usually consider the following paradigm: first establish a template with unknown

parameters for the target invariant, then collect constraints from the inductive condition for

invariants, and finally solve the unknown parameters in the template to get the desired invariants.

Constraint-solving based approaches for numerical invariant generation can roughly be classified

by linear and polynomial invariant generation. For linear invariant generation, Farkas’ Lemma

provides a complete characterization of the inductive condition and has been studied in [18,

63], which was further solved by quantifier elimination [18] and several heuristics [63]. The

STING invariant generator [71] implements the approach in [63], and the INVGEN invariant

generator [39] integrates abstraction interpretation and the approach in [63]. Besides, an approach

based on eigenvectors for a restricted class of invariants is proposed in [28]. Recently, probabilistic

linear invariants have also been considered in probabilistic programs through Farkas’ Lemma and

Motzkin’s Transposition theorem [15, 46].

For polynomial invariant generation, a variety of approaches were proposed in the literature.

Complete approaches (that typically have high runtime complexity) were proposed through quanti-

fier elimination [45] and other computer-algebra based techniques [76]. Semi-complete approaches

(that have lower runtime complexity but retain completeness in restricted situations as compared

with complete approaches) through Positivstellensätze have been proposed in [14]. The special

case of polynomial-equality invariants was solved completely by Zariski-closure [42] and Gröbner

basis [60]. Heuristics for polynomial invariant generation have also been extensively studied, such

as semidefinite programming with relaxation [1, 20, 50], Lagrange interpolation [16], reduction

to linear algebra [27], Hypergeometric sequences [43] and Gröbner basis [62]. Recently, an ap-

proach based on Stengle’s Postivstellensatz for generating probabilistic polynomial invariants in

probabilistic programs is proposed in [32].

Compared with other methods (such as abstract interpretation, machine learning, etc.), constraint

solving has the advantage of a theoretical guarantee on the accuracy of the generated invariants

, Vol. 1, No. 1, Article . Publication date: March 2022.

Scalable Linear Invariant Generation with Farkas’ Lemma 3

based on the considered numerical form of the invariants and the accuracy loss caused by the

heuristics (if any), but typically require higher runtime complexity.

Our Contribution.We follow the constraint-solving method and consider automated generation of

linear inductive invariants over affine programs. An affine program is an imperative program where

every assignment is an affine expression over program variables and every guard condition (in e.g.

conditional branches, while loops, etc.) is a propositional combination of comparison between affine

expressions over program variables. Our work is based on the previous work [63] that implements

FL with reasonable heuristics and is the only FL-based approach that achieves practical performance

over realistic programs.

We propose two novel improvements to leverage the scalability of applying FL to linear invariant

generation, leading to a novel approach that significantly improves the scalability of [63]. In [63],

the scalability issue arises from two sources of combinatorial explosion: a CNF-to-DNF expansion

and also a polyhedral-cone generator computation. Our first improvement is the novel idea that

instead of solving the invariants at all program locations in one invariant-generation process

when applying FL, our approach solves the invariants at each location separately, i.e., solving the

invariants location-by-location. The idea directly leads to the potential to speed up the invariant-

generation process at the target location since one does not need to generate the invariants at other

locations, and naturally enables further speed up through parallel processing (that computes the

invariants for every location separately over multiple processors). Moreover, the idea enables us to

develop the following technical improvements to further mitigate the combinatorial explosion in

the approach [63]: (i) in the CNF-to-DNF expansion, we reorder the expansion so that the target

location (over which the invariants are to be generated) comes first to detect subsumptions earlier;

(ii) in the polyhedral-cone generator computation, we eliminate variables unrelated to the target

location in advance to speed up the generator computation. Our second improvement is the extra

segmented subsumptiong testing that serves as a pre-processing for the CNF-to-DNF expansion

and could detect local subsumption in advance.

We develop our approach on the abstract model of linear transitions systems [63] that capture

general affine updates (with affine guards) between program locations, so that our approach is

applicable to general affine programs. To complement the generality of our approach, we implement

a prototype transformation from C program codes into linear transition systems to showcase the

practical connectionwith concrete programs.We show that our approach generates exactly the same

linear invariants as the approach [63] does, thus inherits the merit of high accuracy from constraint

solving. Moreover, experimental results on typical benchmarks which involves non-trivial linear

invariants reveal that our approach can indeed substantially improves the scalability against the

state-of-the-art approach [63]. For example, for several large-scale benchmarks our approach is able

to attain up to thousands of orders of magnitude speed-up when compared with [63]. As a result,

our approach constitutes to our best knowledge the first significant improvement in Farkas’-Lemma

based methods after almost two decades (since [63]).

2 LINEAR TRANSITION SYSTEMS AND INVARIANTS
We consider linear transition systems (LinTS’s) [63] as the underlyingmodel for invariant generation.

A LinTS is composed of locations and linear transitions between locations, thus is suitable for

modelling the executions of an affine program, for which a location in a LinTS corresponds

to a program location (a.k.a program counter) of an affine program, and the linear transitions

corresponds to the affine updates (arising from assignment statements) and guards (from if-branches

and while-loops) in the program.

, Vol. 1, No. 1, Article . Publication date: March 2022.

4 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

To present the definitions for LinTS’s, we first define the basic notions of linear (in)equalities and

assertions. For linear inequalities, we only consider the non-strict comparison operator ≥. Note
that although an equality 𝛼 = 𝛽 can be equivalently expressed by two inequalities 𝛼 ≤ 𝛽 and 𝛼 ≥ 𝛽 ,

the equalities in a LinTS are tackled directly as various optimizations could be applied to equalities.

Also note that inequalities of the form 𝛼 ≤ 𝛽 could be equivalently tranformed into −𝛼 ≥ −𝛽 .
Linear (In)equalities and Assertions. A linear equality over a set 𝑉 = {𝑥1, . . . , 𝑥𝑛} of real-valued
variables is of the form 𝑎1𝑥1 + · · · +𝑎𝑛𝑥𝑛 +𝑏 = 0, where 𝑎𝑖 ’s and 𝑏 are real coefficients. Analogously,

a linear inequality over 𝑉 is of the form 𝑎1𝑥1 + · · · + 𝑎𝑛𝑥𝑛 + 𝑏 ≥ 0. A linear assertion over 𝑉 is a

conjunction of linear equalities and inequalities over 𝑉 .

Then we present the abstract model of linear transition systems.

Linear Transition Systems. A linear transition system (LinTS) is a tuple ⟨𝑋,𝑋 ′, 𝐿, T, ℓ∗, \⟩ where:
• 𝑋 is a finite set of real-valued variables such that each variable 𝑥 ∈ 𝑋 represents the current

value of the variable, while 𝑋 ′ = {𝑥 ′ | 𝑥 ∈ 𝑋 } is the corresponding set of primed variables
such that each primed variable 𝑥 ′ ∈ 𝑋 ′ represents the value of the unprimed counterpart

𝑥 ∈ 𝑋 in the next step of the system;

• 𝐿 is a finite set of locations and ℓ∗ ∈ 𝐿 is the initial location;

• T is a finite set of transitions where each transition 𝜏 is a triple ⟨ℓ, ℓ ′, 𝜌⟩ that specifies the
jump from the current location ℓ to the next location ℓ ′ with the guard condition 𝜌 as a linear

assertion over 𝑋 ∪ 𝑋 ′;
• \ is a linear assertion over the variables 𝑋 that specifies the initial condition at the initial

location ℓ∗.

To describe the behaviour of a LinTS, we further define the notions of valuations, configurations

and their associated satisfaction relation as follows.

Valuations and Configurations. A valuation over a variable set 𝑉 is a function 𝜎 : 𝑉 → R that

assigns to each variable 𝑥 ∈ 𝑉 a real value 𝜎 (𝑥) that corresponds to the current value held by 𝑥 . In

this work, we mainly consider valuations over the variable set 𝑋 of a LinTS and simply abbreviate

“valuation over 𝑋 ” as “valuation” (i.e., omitting 𝑋). Given a LinTS, a configuration is a pair (ℓ, 𝜎)
such that ℓ ∈ 𝐿 is a location and 𝜎 is a valuation (over 𝑋), with the intuition that ℓ is the current

location and 𝜎 specifies the current values for the variables in the LinTS.

The Satisfaction Relation. Given a linear assertion 𝜑 over 𝑋 and a valuation 𝜎 , we write 𝜎 |= 𝜑

to mean that 𝜎 satisfies 𝜑 , i.e., 𝜑 is true when one substitutes the corresponding values 𝜎 (𝑥) in 𝜎 to

all the variables 𝑥 in 𝜑 . Analogously, given two valuations 𝜎, 𝜎 ′ (over 𝑋) and a linear assertion 𝜑

over 𝑋 ∪ 𝑋 ′, we write 𝜎, 𝜎 ′ |= 𝜑 to mean that 𝜑 is true when one substitutes every variable 𝑥 ∈ 𝑋
by 𝜎 (𝑥) and every variable 𝑥 ′ ∈ 𝑋 ′ by 𝜎 ′(𝑥) in 𝜑 . Moreover, given two linear assertions 𝜑,𝜓 over

𝑋 , we write 𝜑 |= 𝜓 to mean that it is always the case that 𝜑 implies𝜓 , i.e., for every valuation 𝜎 we

have that 𝜎 |= 𝜑 implies 𝜎 |= 𝜓 .

Now we describe the semantics of a LinTS.

The Semantics of LinTS’s. Informally, a LinTS starts at its initial location ℓ∗ with an arbitrary

initial valuation 𝜎∗ such that 𝜎∗ |= \ , constituting an initial configuration (ℓ0, 𝜎0) = (ℓ∗, 𝜎∗); then
at each step 𝑛 (𝑛 ≥ 0), given the current configuration (ℓ𝑛, 𝜎𝑛), the LinTS determines the next

configuration (ℓ𝑛+1, 𝜎𝑛+1) by first selecting a transition 𝜏 = ⟨ℓ, ℓ ′, 𝜌⟩ such that ℓ = ℓ𝑛 and then

choosing (ℓ𝑛+1, 𝜎𝑛+1) to be any configuration that satisfies ℓ𝑛+1 = ℓ ′ and 𝜎𝑛, 𝜎𝑛+1 |= 𝜌 . Formally,

the semantics of an LinTS is specified by the notion of paths. A path 𝜋 is a finite sequence of

configurations (ℓ0, 𝜎0) . . . (ℓ𝑛, 𝜎𝑛) such that

• (Initialization) ℓ0 = ℓ∗ and 𝜎0 |= \ , and

, Vol. 1, No. 1, Article . Publication date: March 2022.

Scalable Linear Invariant Generation with Farkas’ Lemma 5

𝑋 = {𝑥,𝑦, 𝑡}, 𝐿 = {ℓ0, ℓ1}, T = {𝜏1, 𝜏2}, 𝜏1 : ⟨ℓ0, ℓ1, 𝜌1⟩, 𝜏2 : ⟨ℓ1, ℓ0, 𝜌2⟩, \ : 𝑥 = 0 ∧ 𝑦 = 0 ∧ 𝑡 = 0,

𝜌1 :

𝑡 ′ − 𝑡 ≤ 𝑥 ′ − 𝑥 ≤ 2(𝑡 ′ − 𝑡)∧
𝑡 ′ − 𝑡 ≤ 𝑦 ′ − 𝑦 ≤ 2(𝑡 ′ − 𝑡)∧

1 ≤ 𝑡 ′ − 𝑡 ≤ 2

 , 𝜌2 :

𝑡 ′ − 𝑡 ≤ 𝑥 ′ − 𝑥 ≤ 2(𝑡 ′ − 𝑡)∧
−(𝑡 ′ − 𝑡) ≤ 𝑦 ′ − 𝑦 ≤ −2(𝑡 ′ − 𝑡)∧

1 ≤ 𝑡 ′ − 𝑡 ≤ 2

Fig. 1. The LinTS for a Vagrant Robot

• (Consecution) for every 0 ≤ 𝑘 ≤ 𝑛−1, there exists a transition 𝜏 = ⟨ℓ, ℓ ′, 𝜌⟩ satisfying ℓ = ℓ𝑘 ,

ℓ ′ = ℓ𝑘+1 and 𝜎𝑘 , 𝜎𝑘+1 |= 𝜌 .

Intuitively, a path starts with some legitimate initial configuration (as specified by Initialization)

and evolves by repeatedly applying the transitions to the current configuration (as described in

Consecution). Thus, any path 𝜋 = (ℓ0, 𝜎0) . . . (ℓ𝑛, 𝜎𝑛) corresponds to a possible evolution of the

underlying LinTS.

Example 1. Consider a scenario of a vagrant robot from [18]. The control of the robot works in two
alternating modes modelled as two locations ℓ0, ℓ1. Each mode takes a time between 1 and 2 seconds to
complete its task. In mode ℓ0, the robot moves in the positive direction of both 𝑥 and 𝑦, and in mode
ℓ1, it moves in the positive direction of 𝑥 and the negative direction of 𝑦. Figure 1 shows the LinTS of
a vagrant robot that consists of three variables 𝑥,𝑦, 𝑡 and the two locations ℓ0, ℓ1. The variable pair
(𝑥,𝑦) corresponds to the current position of the robot on the two-dimensional plane, while the variable
𝑡 records the amount of the elapsed time. From the LinTS, we have the following:

• At the start, the robot is at its initial position (0, 0) (i.e., 𝑥 = 0 and 𝑦 = 0) at time 𝑡 = 0 in the
initial mode ℓ0.
• At the location ℓ0, the robot takes the transition 𝜏1. During the transition, the robot first moves for
a time period Δ𝑡 = 𝑡 ′−𝑡 between 1 to 2 seconds (as indicated by the linear assertion 1 ≤ 𝑡 ′−𝑡 ≤ 2

in 𝜌1), for which the movement is in the positive direction of both the 𝑥- and 𝑦-axis, each with a
nondeterministic distance that falls in the interval [Δ𝑡, 2Δ𝑡] (as specified by the linear assertions
Δ𝑡 ≤ 𝑥 ′ − 𝑥 ≤ 2Δ𝑡 and Δ𝑡 ≤ 𝑦 ′ − 𝑦 ≤ 2Δ𝑡 in 𝜌1); then the robot changes its mode to ℓ1.
• At the location ℓ1, the robot takes the transition 𝜏2 and changes its mode to ℓ0. The movement
of the robot is specified by 𝜌2 and similar to the situation at ℓ0. The only difference is that the
robot now moves in the positive direction along the 𝑥-axis and in the negative direction along
the 𝑦-axis.
• The robot switches between ℓ0 and ℓ1 by alternately taking the transitions 𝜏1 and 𝜏2.

A path under this LinTS is (ℓ0, (𝑥,𝑦, 𝑡) = (0, 0, 0)), (ℓ1, (𝑥,𝑦, 𝑡) = (2, 2, 1)), (ℓ0, (𝑥,𝑦, 𝑡) = (3, 1, 2)). □

In this work, we consider algorithms for linear invariant generation that work on LinTS’s (as the

abstract model). Informally, an invariant at a location is a logical formula that is always satisfied by

the values of the variables whenever the location is entered by some path. An invariant is linear if

it is a linear assertion. The formal definition is as follows.

(Linear) Invariants. An invariant at a location ℓ of a LinTS is a logical formula 𝜑 such that for

every path under the LinTS 𝜋 = (ℓ0, 𝜎0) . . . (ℓ𝑛, 𝜎𝑛) and 0 ≤ 𝑘 ≤ 𝑛, it holds that ℓ𝑘 = ℓ implies

𝜎𝑘 |= 𝜑 . Furthermore, an invariant 𝜑 is linear if 𝜑 is a linear assertion over the variable set 𝑋 .

To automatically generate invariants, one often investigates a strengthened notion called inductive
invariants. Since we only consider linear invariants, we directly present the definition of inductive

linear invariants, and in the form of inductive linear assertion maps.

, Vol. 1, No. 1, Article . Publication date: March 2022.

6 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

(Inductive) Linear Assertion Maps. A linear assertion map over an LinTS is a function [that

maps every location ℓ to a linear assertion [(ℓ) over the variables 𝑋 . A linear assertion map [is

inductive if the following conditions hold:

• (Initialization) \ |= [(ℓ∗);
• (Consecution) For every transition 𝜏 = ⟨ℓ, ℓ ′, 𝜌⟩, we have that [(ℓ) ∧ 𝜌 |= [(ℓ ′) ′, where
[(ℓ ′) ′ is the linear assertion obtained by replacing every variable 𝑥 ∈ 𝑋 in [(ℓ ′) with its

next-value counterpart 𝑥 ′ ∈ 𝑋 ′.
Informally, a linear assertion map is inductive if it is (i) implied by the initial condition given by

\ at the initial location ℓ∗ (i.e., Initialization) and (ii) preserved under the application of every

transition (i.e., Consecution). By a straightfoward induction on the length of a path under a LinTS,

one could verify that the linear assertion at every location in an inductive linear assertion map is

guaranteed to be a linear invariant. In the rest of the work, we focus on the automated synthesis of

inductive linear assertion maps.

3 AN OVERVIEW OF OUR APPROACH
In this section, we first review the original approaches in [18, 63] that generate linear invariants

through Farkas’ Lemma and point out the weakness of each approach, and then sketch our key

improvements to these approaches.

3.1 The Original Approaches [18, 63]
In [18, 63], a sound and complete constraint-solving framework for linear invariant generation is

proposed via Farkas’ Lemma [30]. The use of Farkas’ Lemma transforms the inductive condition for

linear invariants equivalently into a system of quadratic constraints, by solving which one could

obtain concrete linear invariants. The key merit of the use of Farkas’ Lemma is that it simplifies the

constraints from the inductive condition to quadratic constraints. In [18], the quadratic constraints

obtained after applying Farkas’ Lemma were solved exactly through quantifier elimination. While

in [63], these constraints were solved instead through polyhedra manipulation by applying several

reasonable heuristics to avoid the high runtime complexity caused by quantifier elimination.

To review these two approaches, we first recall Farkas’ Lemma. Farkas’ Lemma is a fundamental

theorem that characterizes basic relationships between linear inequalities. Below we present the

version of Farkas’ Lemma that charactertizes the entailment from a linear assertion to a linear

inequality. We follow the presentation form of Farkas’ Lemma in [18].

Theorem 3.1 (Farkas’ Lemma). Consider a linear assertion 𝜑 over a set 𝑉 = {𝑥1, . . . , 𝑥𝑛} of
real-valued variables in the form of a conjunction of the following linear inequalities:

𝜑 :

𝑎11 · 𝑥1 + · · · + 𝑎1𝑛 · 𝑥𝑛 + 𝑏1 ≥ 0

...
...

...

𝑎𝑚1 · 𝑥1 + · · · + 𝑎𝑚𝑛 · 𝑥𝑛 + 𝑏𝑚 ≥ 0

When 𝜑 is satisfiable (i.e., there is a valuation over 𝑉 that satisfies 𝜑), it implies a linear inequality𝜓

𝜓 : 𝑐1 · 𝑥1 + · · · + 𝑐𝑛 · 𝑥𝑛 + 𝑑 ≥ 0

(i.e., 𝜑 |= 𝜓) if and only if there exist non-negative real numbers _0, _1, . . . , _𝑚 such that (i) 𝑐 𝑗 =∑𝑚
𝑖=1 _𝑖 · 𝑎𝑖 𝑗 for all 1 ≤ 𝑗 ≤ 𝑛, and (ii) 𝑑 = _0 +

∑𝑚
𝑖=1 _𝑖 · 𝑏𝑖 . Moreover, 𝜑 is unsatisfiable if and only if

the inequality −1 ≥ 0 (as𝜓) can be derived from above.

, Vol. 1, No. 1, Article . Publication date: March 2022.

Scalable Linear Invariant Generation with Farkas’ Lemma 7

Table 1. The Tabular Form for Farkas’ Lemma

_0 1 ≥ 0

_1 𝑎11 · 𝑥1 + · · · + 𝑎1𝑛 · 𝑥𝑛 + 𝑏1 Z1 0

...
...

...
...

_𝑚 𝑎𝑚1 · 𝑥1 + · · · + 𝑎𝑚𝑛 · 𝑥𝑛 + 𝑏𝑚 Z𝑚 0

𝑐1 · 𝑥1 + · · · + 𝑐𝑛 · 𝑥𝑛 + 𝑑 ≥ 0

−1 ≥ 0

 𝜑

← 𝜓

← false

One direction of Farkas’ Lemma is straightforward, as one easily sees that if we have a non-

negative linear combination of the inequalities in 𝜑 that can derive𝜓 , then it is guaranteed that𝜓

holds whenever 𝜑 is true. Farkas’ Lemma further establishes that the other direction is also valid.

Remark 1. In the statement of Farkas’ Lemma above, if we change a linear inequality 𝑎 𝑗1𝑥1 + · · · +
𝑎 𝑗𝑛𝑥𝑛 + 𝑏 𝑗 ≥ 0 in 𝜑 to equality (i.e., 𝑎 𝑗1𝑥1 + · · · + 𝑎 𝑗𝑛𝑥𝑛 + 𝑏 𝑗 = 0), then the theorem holds with the
relaxation that we do not require _ 𝑗 ≥ 0. This could be easily observed by first replacing the equality
equivalent with both 𝑎 𝑗1𝑥1 + · · · + 𝑎 𝑗𝑛𝑥𝑛 +𝑏 𝑗 ≥ 0 and 𝑎 𝑗1𝑥1 + · · · + 𝑎 𝑗𝑛𝑥𝑛 +𝑏 𝑗 ≤ 0, and then applying
Farkas’ Lemma. By similar arguments, the theorem statement holds upon changing multiple linear
inequalities into equalities with the relaxation of non-negativity for their corresponding _ 𝑗 ’s.

The application of Farkas’ Lemma can be visualized by the tabular form in Table 1, where

Z1, . . . ,Z𝑚∈ {=, ≥} and we mulitply _0, _1, . . . , _𝑚 with their inequalities in 𝜑 and sum up them

together to get𝜓 . For 1 ≤ 𝑗 ≤ 𝑚, if Z𝑗 is ≥, we require _ 𝑗 ≥ 0, otherwise (i.e., Z𝑗 is =) we do not

impose restriction on _ 𝑗 . We then recall several concepts from polyhedra theory.

Polyhedra and polyhedral cones. A subset 𝑃 of R𝑛 is a polyhedron if 𝑃 = {x ∈ R𝑛 | A · x ≤ b} for
some real matrix 𝐴 ∈ R𝑚×𝑛 and real vector b ∈ R𝑚 , where x is treated as a column vector and the

comparison A · x ≤ b is defined in the coordinate-wise fashion. A polyhedron 𝑃 is a polyhedral
cone if 𝑃 = {x ∈ R𝑛 | A · x ≤ 0} for some real matrix 𝐴 ∈ R𝑚×𝑛 , where 0 is the𝑚-dimensional

zero column vector. It is well-known from Farkas-Minkowski-Weyl Theorem [64, Corollary 7.1a]

that any polyhedral cone 𝑃 can be represented as 𝑃 = {∑𝑘
𝑖=1 _𝑖 · g𝑖 | _𝑖 ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑘} for

some real vectors g1, . . . , g𝑘 , where such real vectors g𝑖 ’s are called a collection of generators for
the polyhedral cone 𝑃 .

Polyhedron projection. For a polyhedron 𝑃 = {(xT, uT)T ∈ R𝑝+𝑞 | A · x + B · u ≤ c} where
A ∈ R𝑚×𝑝 ,B ∈ R𝑚×𝑞 are real matrices and 𝑐 ∈ R𝑚 is a real vector, the projection of 𝑃 onto the

dimensions x (i.e., the first 𝑝 dimensions) is defined as the polyhedron 𝑃 [x] := {x ∈ R𝑝 | ∃u ∈
R𝑞 .(xT, uT)T ∈ 𝑃}. It is guaranteed by e.g. Fourier-Motzkin Elimination [64, Chapter 12.2] that

𝑃 [x] will always be a polyhedron.
Now we review the approaches in [18, 63].

The invariant-generation workflow. Based on Farkas’ Lemma, the approaches in [18, 63] generate

linear invariants over a LinTS by the following steps (Steps A1 – A3). Below we fix an input LinTS

with variables 𝑋 = {𝑥1, . . . , 𝑥𝑛}.
Step A1 In the first step, both the approaches establish a template for an inductive linear assertion

maps. A template [involves a linear inequality [(ℓ) = 𝑐ℓ,1 ·𝑥1 + · · · +𝑐ℓ,𝑛 ·𝑥𝑛 +𝑑 ≥ 0 at each location

ℓ of the LinTS, such that the coefficients 𝑐ℓ,1, . . . , 𝑐ℓ,𝑛, 𝑑 are unknown and to be resolved.

Step A2 In the second step, both the approaches establish constraints from the initialization and

the consecution conditions for invariants. The initialization condition specifies that the linear

, Vol. 1, No. 1, Article . Publication date: March 2022.

8 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

inequality [(ℓ∗) at the initial location ℓ∗ should be implied by the initial condition \ , i.e., \ |= [(ℓ∗).
The consecution condition specifies that every transition preserves the linear assertion map [, i.e.,

for every transition ⟨ℓ, ℓ ′, 𝜌⟩ we have that [(ℓ) ∧ 𝜌 |= [(ℓ ′) ′.
Step A3 In the third step, both the approaches apply Farkas’ Lemma to the constraints collected

from the initialization condition \ |= [(ℓ∗) and the consecution conditions [(ℓ) ∧ 𝜌 |= [(ℓ ′) ′ for
each transition ⟨ℓ, ℓ ′, 𝜌⟩. For intialization, we apply the tabular form (Table 1) to obtain

_0 1 ≥ 0

_1 𝑎11𝑥1 + · · · + 𝑎1𝑛𝑥𝑛 + 𝑏1 Z1 0

...
...

...
...

_𝑚 𝑎𝑚1𝑥1 + · · · + 𝑎𝑚𝑛𝑥𝑛 + 𝑏𝑚 Z𝑚 0

𝑐ℓ∗,1𝑥1 + · · · + 𝑐ℓ∗,𝑛𝑥𝑛 + 𝑑ℓ∗ ≥ 0

−1 ≥ 0

 \

← [(ℓ∗)
← false

which results in a linear assertion over the unknown coefficients 𝑐ℓ∗,1, . . . , 𝑐ℓ∗,𝑛, 𝑑 and the fresh

variables _0, _1, . . . , _𝑚 . Similarly, the tabular form for the consecution condition of a transition

⟨ℓ, ℓ ′, 𝜌⟩ gives
` 𝑐ℓ,1𝑥1+· · ·+ 𝑐ℓ,𝑛𝑥𝑛 + 𝑑ℓ ≥ 0

_0 1 ≥ 0

_1 𝑎11𝑥1+· · ·+ 𝑎1𝑛𝑥𝑛 + 𝑎′
11
𝑥 ′
1
+· · ·+ 𝑎′

1𝑛
𝑥 ′𝑛 + 𝑏1 Z1 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

_𝑚 𝑎𝑚1𝑥1+· · ·+𝑎𝑚𝑛𝑥𝑛 +𝑎′𝑚1
𝑥 ′
1
+· · ·+𝑎′𝑚𝑛𝑥

′
𝑛 +𝑏𝑚Z𝑚 0

𝑐ℓ′,1𝑥
′
1
+· · ·+𝑐ℓ′,𝑛𝑥 ′𝑛 + 𝑑ℓ′ ≥ 0

−1 ≥ 0

← [(ℓ)

 𝜌

←[(ℓ ′)′
← false

where in addition to _ 𝑗 , 𝑐ℓ, 𝑗 , 𝑑ℓ , 𝑐ℓ′, 𝑗 , 𝑑ℓ′ we have a fresh variable ` as the non-negative muliplier for

[(ℓ). Note that for the consecution condition, the constraint obtained is no longer linear since the

fresh variable ` is multiplied to [(ℓ) in the tabular above.

Step A4 In the last step, the (non-linear) constraints collected in the previous step are solved

to obtain the concrete values for the unknown coefficients in [, so that a concrete inductive

linear assertion map would be obtained. In [18], these constraints were solved through quantifier

elimination, while in [63] the constraints were solved through (i) several reasonable heuristics

to guess possible values for the key parameter ` so as to remove the non-linearity and (ii) the

generator computation of a polyhedral cone originally represented in its linear inequalities. A

major heuristics adopted in [63] to guess possible values for ` is based on some practical rules such

as factorization and setting ` manually to 0, 1 (where 0 means an invariant local to the guard of the

transition and 1 means an invariant incremental to the previous step).

Below we focus on the workflow of [63], since it is the most related work to our result. Since the

approach of [63] resolves the mulipliers ` for consecution by guessing their concrete values, the

guessed values for the consecution condition of every transition in a LinTS result in a disjunction

of linear assertions over the unknown coefficients in the template [, where each guessed value for

the parameter ` corresponds to one linear assertion in the disjunction. By combining conjunctively

the constraints obtained from the consecution condition (for every tranisition) and those from the

initial condition, we obtain a propositional formula in conjunctive normal form (CNF) where each

atomic proposition is a linear assertion over the unknown coefficients of [. More specifically, each

atomic proposition is in the form A · c ≤ 0 where c is the vector of unknown coefficients in the

template, hence is a polyhedral cone. Having obtained the CNF formula, the approach expands the

formula (through the distributive law between conjunction and disjunction) equivalently into a

DNF (disjunctive normal form) formula where each disjunctive clause is a conjunction of certain

, Vol. 1, No. 1, Article . Publication date: March 2022.

Scalable Linear Invariant Generation with Farkas’ Lemma 9

atomic propositions in the original CNF formula (therefore being still a polyhedral cone), and then

computes through the double description method [8] and Parma Polyhedra library (PPL) [8, 58]

the generators of each disjunctive clause (in the form of a polyhedral cone) once a disjunctive

clause is expanded. By instantiating the computed generators back to the unknown coefficients in

the template, the approach obtains the solved concrete linear invariants, for which one generator

corresponds to one inductive linear asertion map.

A key improvement to reduce the runtime arising from the expansion from CNF to DNF in [63] is

the subsumption testing that checks whether the current conjunction of atomic propositions during

the expansion is already subsumed by (i.e., implies) the invariants obtained from the previously-

expanded disjunctive clauses; once the subsumption is successful, one knows that the current

conjunction will not produce more meaningful invariants, hence the computation for the current

conjunction halts and the expansion proceeds by switching to other branches.

Below we present an example to illustrate the workflow of [63].

Example 2. Consider the LinTS in Example 1. The approach in [63] first establishes a template [by
setting [(ℓ𝑖) := 𝑐ℓ𝑖 ,1𝑥 + 𝑐ℓ𝑖 ,2𝑦 + 𝑐ℓ𝑖 ,3𝑡 + 𝑑ℓ𝑖 ≥ 0 for 𝑖 ∈ {0, 1}. Then the approach encodes initialization
and consecution by the tabular form in Table 1. For the initialization, we have

_0 1 ≥ 0

_1 𝑥 = 0

_2 𝑦 = 0

_3 𝑡 = 0

𝑐ℓ0,1𝑥 + 𝑐ℓ0,2𝑦 + 𝑐ℓ0,3𝑡 + 𝑑ℓ0 ≥ 0

 \

← [(ℓ0)

that results in the constraints
[
𝑐ℓ0,1 = _1, 𝑐ℓ0,2 = _2, 𝑐ℓ0,3 = _3, 𝑑ℓ0 ≥ 0

]
. After projecting away the fresh

variables _ 𝑗 ’s, we obtain [𝑑ℓ0 ≥ 0] for the initialization. For the consecution conditions, we present the
tabular form for the transition 𝜏1:

` 𝑐ℓ0,1𝑥 +𝑐ℓ0,2𝑦 +𝑐ℓ0,3𝑡 +𝑑ℓ0 ≥0
_0 1 ≥0
_1 −𝑥 + 𝑡 + 𝑥 ′ − 𝑡 ′ ≥0
_2 𝑥 − 2𝑡− 𝑥 ′ + 2𝑡 ′ ≥0
_3 −𝑦− 2𝑡 + 𝑦′+ 2𝑡 ′ ≥0
_4 𝑦 + 𝑡 − 𝑦′− 𝑡 ′ ≥0
_5 − 𝑡 𝑡 ′− 1 ≥0
_6 𝑡 − 𝑡 ′+ 2 ≥0

𝑐ℓ1,1𝑥
′+𝑐ℓ1,2𝑦′+𝑐ℓ1,3𝑡 ′+𝑑ℓ1 ≥0

← [(ℓ0)
𝜌1

←[(ℓ1)′

where the fresh variables _ 𝑗 ’s are local to the tabular above and does not overlap with the tabulars for
other transitions. The _ 𝑗 ’s are again eliminated by polyhedron projection, while the fresh variable ` is
eliminated by heuristically guessing its values. The transition 𝜏2 is treated in the similar way.
After guessing the values for ` with several heuristics, the resultant constraint is a CNF formula

where each atomic proposition is a polyhedral cone over the unknown coefficients. The approach further
expands the CNF equivalently into a DNF formula (which we omit here due to its vast amount of
technicality). For this example, one disjunctive clause from the DNF formula is as follows (where we
abbreviate 𝑐ℓ𝑖 , 𝑗 as 𝑐𝑖 𝑗 , 𝑑ℓ𝑖 as 𝑑𝑖):

, Vol. 1, No. 1, Article . Publication date: March 2022.

10 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

𝑐01=𝑐11, 𝑐02=𝑐12, 𝑐03=𝑐13, 𝑑0 ≥ 0,
2𝑐01−𝑑0+𝑐12+𝑐13+𝑑1 ≥ 0, 2𝑐01−𝑑0+2𝑐12+𝑐13+𝑑1 ≥ 0,

4𝑐01−𝑑0+4𝑐12+2𝑐13+𝑑1 ≥ 0, 𝑐01−𝑑0+𝑐12+𝑐13+𝑑1 ≥ 0,
𝑐01−𝑑0+2𝑐12+𝑐13+𝑑1 ≥ 0,2𝑐01−𝑑0+4𝑐12+2𝑐13+𝑑1 ≥ 0,

2𝑐01+𝑑0−4𝑐12+2𝑐13−𝑑1 ≥ 0,4𝑐01+𝑑0−4𝑐12+2𝑐13−𝑑1 ≥ 0,
𝑐01+𝑑0−2𝑐12+𝑐13−𝑑1 ≥ 0, 2𝑐01+𝑑0−2𝑐12+𝑐13−𝑑1 ≥ 0,
𝑐01+𝑑0−𝑐12+𝑐13−𝑑1 ≥ 0, 2𝑐01+𝑑0−𝑐12+𝑐13−𝑑1 ≥ 0

(1)

By computing the generators of the polyhedral cone above, we obtain the following generators and
their corresponding invariants in Table 2, where in the left part each row specifies a generator (over
the unknown coefficients 𝑐𝑖 𝑗 , 𝑑𝑖 ’s) and in the right part we instantiate the generator to the unknown
coefficients in the template [to obtain the invariants at locations ℓ0 and ℓ1.

Table 2. Generators (left) and Their Invariants (right) for (1)

𝑐01 𝑐02 𝑐03 𝑑0 𝑐11 𝑐12 𝑐13 𝑑1 [(ℓ0) [(ℓ1)
0 0 0 1 0 0 0 1 1 ≥ 0 1 ≥ 0

0 0 0 0 0 0 0 0 0 ≥ 0 0 ≥ 0

−1 0 2 0 −1 0 2 0 −𝑥 + 2𝑡 ≥ 0 −𝑥 + 2𝑡 ≥ 0

0 −1 1 0 0 −1 1 2 −𝑦 + 𝑡 ≥ 0 −𝑦 + 𝑡 + 2 ≥ 0

0 −1 2 0 0 −1 2 0 −𝑦 + 2𝑡 ≥ 0 −𝑦 + 2𝑡 ≥ 0

0 0 1 0 0 0 1 1 𝑡 ≥ 0 𝑡 + 1 ≥ 0

0 1 2 0 0 1 2 0 𝑦 + 2𝑡 ≥ 0 𝑦 + 2𝑡 ≥ 0

0 1 1 0 0 1 1 −2 𝑦 + 𝑡 ≥ 0 𝑦 + 𝑡 − 2 ≥ 0

1 0 −1 0 1 0 −1 0 𝑥 − 𝑡 ≥ 0 𝑥 − 𝑡 ≥ 0

0 0 1 0 0 0 1 −1 𝑡 ≥ 0 𝑡 − 1 ≥ 0

The obtained invariants are further minimized, so that the final invariants obtained at [(ℓ0) are[
−𝑥 + 2𝑡 ≥ 0 − 𝑦 + 𝑡 ≥ 0 𝑥 − 𝑡 ≥ 0 𝑦 + 𝑡 ≥ 0

]
and for [(ℓ1) the invariants are[

−𝑥 + 2𝑡 ≥ 0 −𝑦 + 𝑡 + 2 ≥ 0 −𝑦 + 2𝑡 ≥ 0

𝑡 − 1 ≥ 0 𝑦 + 𝑡 − 2 ≥ 0 𝑥 − 𝑡 ≥ 0

]
.

It happens that the invariants from the whole DNF formula coincide with those computed from (1). □

Weakness of [18, 63]. Although the approaches [18, 63] provides the first and only invariant

generation approaches via Farkas’ Lemma, they have the following weakness. The approach [18]

generates the invariants by quantifier elimination, thus is impractical [78]. The approach [63]

avoids the high runtime complexity from quantifier elimination by several reasonable heuristics in

the application of Farkas’ Lemma, solves the invariants by generator computation, and performs

subsumption testing to reduce the combinatorial explosion from the CNF-to-DNF expansion;

however, the CNF-to-DNF expansion with subsumption testing still leads to a large amount of

combinatorial explosion, and the generator computation also causes a considerable amount of

combinatorial explosion.

In order to further reduce combinatorial explosion in [63], we complement the approach [63]

with (i) a location-by-location idea that generates the invariants one program location at a time

and (ii) a segmented subsumption testing that is independent of the original subsumption testing

in [63]. The following subsections illustrate the main idea of our improvements.

, Vol. 1, No. 1, Article . Publication date: March 2022.

Scalable Linear Invariant Generation with Farkas’ Lemma 11

3.2 Location-by-Location Linear Invariant Generation
A drawback of the approach [63] is that in its last step (Step A4 in the previous subsection), the

invariants are obtained as the generators of a whole polyhedral cone that involves the unknown

coefficients at all locations. This leads to two obstacles that may largely increase the runtime. The

first is that in the subsumption testing, there is only a small chance that a whole polyhedral cone

with all the unknown coefficients be subsumed by the invariants already generated. The second is

that the generator computation of a polyhedral cone is an expensive operation since it may cause

exponential blowup in the number of its variables, thus to compute the generators of a whole

polyhedral cone that involves all the unknown coefficients may induce a large amount of runtime.

To address the two obstacles, we propose the novel idea of generating the invariants one location

at a time (i.e., location-by-location). With this idea, the chance of successful subsumption in [63]

is increased since now the subsumption testing involves only one location. Moreover, this idea

directly leads to a parallel processing that breaks down the whole invariant generation task at

all locations into multiple processors for which each processor only handles a small number of

program locations. Note that although the idea seems simple, it can directly lead to improvement

on the runtime, and enables further technical improvements.

Below we present an example to illustrate our idea.

Example 3. Consider Example 2 again. We run Steps A1–A3 of the approach [63] and the part
of Step A4 that computes a CNF from the previous steps. Recall that originally in Step A4, the
approach [63] expands the CNF into its equivalent DNF, and computes the generators for each atomic
proposition (polyhedral cone) of the DNF. Our location-by-location idea distinguish itself by focusing
on one target location in the whole invariant generation process and generate only the invariants at the
target location accordingly, and a simple way to implement this idea is to project the polyhedral cones
in the DNF onto the unknown coefficients related to the target location. For example, suppose that we
focus on the target location ℓ0. Then a simple way to implement our idea is to project the polyhedral
cones in the DNF onto the unknown coefficients related to ℓ0. For instance, for the polyhedral cone
in 1, we project the polyhedral cone onto the dimensions specified by the unknown coefficients 𝑐0𝑗 ’s
(1 ≤ 𝑗 ≤ 3) and 𝑑0 that are related to the location ℓ0, to obtain the following polyhedral cone[

𝑑0 ≥ 0 𝑐01 − 𝑐02 + 𝑐03 ≥ 0 𝑐01 + 𝑐02 + 𝑐03 ≥ 0

2𝑐01 − 𝑐02 + 𝑐03 ≥ 0 2𝑐01 + 𝑐02 + 𝑐03 ≥ 0

]
.

The generators of this projected polyhedral cone gives the following linear invariants at the location ℓ0:

𝑐01 𝑐02 𝑐03 𝑑0 [(ℓ0)
0 0 0 1 1 ≥ 0

0 0 0 0 0 ≥ 0

1 0 −1 0 𝑥 − 𝑡 ≥ 0

0 1 1 0 𝑦 + 𝑡 ≥ 0

−1 0 2 0 −𝑥 + 2𝑡 ≥ 0

0 −1 1 0 −𝑦 + 𝑡 ≥ 0

After minimization, the invariants added for the location ℓ0 from the polyhedral cone (1) include[
−𝑥 + 2𝑡 ≥ 0 − 𝑦 + 𝑡 ≥ 0 𝑥 − 𝑡 ≥ 0 𝑦 + 𝑡 ≥ 0

]
.

which happen to include all the linear inductive invariants at ℓ0. Note that under our idea, we only
generate the invariants at ℓ0 in one invariant-generation process, and keep the invariants at other

, Vol. 1, No. 1, Article . Publication date: March 2022.

12 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

locations (i.e., ℓ1) to be true. By another invariant-generation process for the location ℓ1, we get the
invariants at the location ℓ1 as follows:[

−𝑥 + 2𝑡 ≥ 0−𝑦 + 𝑡 + 2 ≥ 0−𝑦 + 2𝑡 ≥ 0

𝑡 − 1 ≥ 0 𝑦 + 𝑡 − 2 ≥ 0 𝑥 − 𝑡 ≥ 0

]
.

The invariants obtained coincide with the approach in [63]. □

3.3 Segmented Subsumption Testing
Wealso propose a novel subsumption testing on the CNF-to-DNF expansion in StepA4 of Section 3.1.

The main idea is that the subsumption testing divides the CNF formula into several segments and

perform local subsumption testing in each segment. Our subsumption testing is independent of

the original one in [63] since we focus on local subsumption in each segment, while the original

one [63] focuses however on global subsumption testing on the whole CNF formula. Thus, our

subsumption testing is able to find local subsumptions in advance so that the original CNF formula

can be simplified before it is used to generate invariants.

Below we present a scenario to illustrate this idea.

Example 4. Consider the scenario that the CNF formula to be expanded in Step A4 is Φ = 𝐶1 ∧
𝐶2 ∧𝐶3 ∧𝐶4 where each 𝐶𝑖 is a disjunction of polyhedral cones. The idea of segmented subsumption
divides the CNF into two segments 𝐶1 ∧𝐶2 and 𝐶3 ∧𝐶4, and perform local subsumption testing in
each segment. For the segment 𝐶1 ∧𝐶2 (as a sub-CNF formula), we expand it into a (sub-)DNF and
remove redundant disjunctive clauses by subsumption testing, to obtain a DNF formula Θ1. We also
perform the same operation to 𝐶3 ∧𝐶4 and obtain a DNF Θ2. Finally, we apply our improvements in
the previous subsection to the CNF Θ1 ∧ Θ2 (which is equivalent to Φ) to generate the invariants. □

4 LOCATION-BY-LOCATION LINEAR INVARIANT GENERATION
In this section, we formally demonstrate our idea of generating the linear invariants at only one

target program location in each invariant generation process, thus generating the linear invariants

location-by-location. The idea could be easily implemented by projecting the generated invariants

onto the (related coefficents at) the target location in Step A4 of Section 3.1, and leads directly

to a parallel processing that assigns the invariant generation task at every program location

separately onto different processors. Based on the idea, in the following we present two technical

improvements that further reinforce the idea by reducing more combinatorial explosion in the

original approach [63]. The first improvement is a reordering of the expansion from the CNF into its

equivalent DNF at Step A4 (Section 3.1) so that the transitions associated with the target program

location are expanded first to detect possible subsumptions earlier. The second improvement is a

technique to compute the generators (as the generated invariants, see Step A4 of Section 3.1) at

the target location via the projection onto the location. Below we fix a LinTS and a target location

ℓ★ on which invariant generation is considered.

4.1 Reordered CNF-to-DNF Expansion
Recall that in Step A4, we obtain a CNF formula and expand the CNF into its equivalent DNF

from which we generate invariants. Since the transformation from CNF into its DNF causes

combinatorial explosion, the original approach [63] adopts a subsumption testing that detects

redundant disjunctive clauses in the DNF. Here, since we focus only on the target location ℓ★, we

can reorder the expansion for the CNF formula by expanding the transitions mostly related to the

target location first so that subsumptions could be detected much earlier than the original approach.

The technical details is as follows.

, Vol. 1, No. 1, Article . Publication date: March 2022.

Scalable Linear Invariant Generation with Farkas’ Lemma 13

Reordering of the CNF-to-DNF Expansion.We reorder the expansion from the CNF to its DNF so

that the transitions of the LinTS associated with ℓ★ are expanded first, and the other transitions are

expanded last. The reason to expand the transitions with the target location ℓ★ first is as follows:

since we focus on the invariant generation at ℓ★, successful subsumptions would be detected

earlier if we check transitions that involve the target location ℓ★ first; in contrast, if one chooses

an arbitary order for the expansion, then from our idea the expansion at locations other than

ℓ★ cannot lead to successful subsumptions, as the subsumption testing is operated by checking

the polyhedral inclusion that only involves the unknown coefficients at ℓ★ (i.e., not involving the

unknown coefficients at other locations). We further refine the epansion order by having that the

intra-transitions in the LinTS that involves only the location ℓ★ (i.e., the transitions from ℓ★ to itself)

are expanded first, those that involves ℓ★ and other locations (i.e., the inter-transitions from ℓ★ to

other locations or from other locations to ℓ★) are expanded second, those that does not involve

location ℓ★ are expanded last; the heuristics behind the refined reordering is that they are ordered

by the descending order of relevance to the target location ℓ★.

The pseudo-code for the invariant-generation algorithm that adopts the location-by-location

idea and integrates the reordered expansion is given in Algorithm 1. In the pseudo-code, the

algorithm first reorders the CNF formula

∧
𝑖 𝐶𝑖 obtained from Step A4 in Section 3.1 as stated in

the previous paragraph (line 1). The reordered CNF is

∧
𝑖 𝐶
′
𝑖 . Then the algorithm initializes the

values for inv(ℓ★), 𝑖 and all 𝑛𝑖 ’s (lines 2–4): the variable inv(ℓ★) is a set variable used to collect linear
invariants generated in the algorithm and initialized to be ∅; since we implement expansion from

the reordered CNF to its DNF through backtracking, we use the variable 𝑖 to represent that the

algorithm is currently traversing the atomic propositions in 𝐶 ′𝑖 , and the variable 𝑛𝑖 to represent

that the current atomic proposition being traversed in 𝐶 ′𝑖 is the 𝑛𝑖-th atomic proposition. Next,

the algorithm follows the backtracking process that iteratively selects one atomic proposition 𝑑𝑖
from each 𝐶 ′𝑖 (line 7) following the increasing order of 𝑖 , aggressively checks whether the current

exploration has already been subsumed by the current invariant inv(ℓ★) (line 9), and updates the

current invariant set by adding the invariants that can be derived from the conjunction

∧𝑚
𝑠=1 𝑑𝑠 (as

a polyhedral cone) and only involve the unknown coefficients at the target location ℓ★, which is

done through the Gen procedure if all the preceding subsumption testings have been unsuccessful.

Note that in the subsumption testing, the condition

∧𝑖
𝑠=1 𝑑𝑠 ⊈ inv(ℓ★) means that the polyhedral

cone defined by the linear assertion

∧𝑖
𝑠=1 𝑑𝑠 is not a subset of the counterpart generated by the

linear invariants (as generators extended to full dimension) in inv(ℓ★). The return value is the final

set value of inv(ℓ★) after the whole backtracking process, which collects all the linear invariants

that are generators of the polyhedral cones having passed the subsumption testing.

A missing part in the pseudo-code is the details for the procedure Gen, whose counterpart in the

original work [63] is the generator computation of the polyhedral cone that involves the unknown

coefficients at all program locations. In the next part, we instantiate the procedure by our second

improvement related to location-by-location linear invariant generation that proposes various

procedures to compute the generators that only involve the dimensions at the target location.

4.2 Projection-Based Generator Computation
In the original work [63], the final invariants are generated by computing the generators of the

polyhedral cones (i.e., poly at line 11 in Algorithm 1) obtained from the transformed DNF. As

stated previously, the polyhedral cones involve the unknown coefficients at all program locations,

thus the generation computation over these polyhedral cones may cause combinatorial explosion.

From our idea of generating the invariants only at the target location, one only needs to compute

the generators that involve the dimensions at the target location. This allows further technical

, Vol. 1, No. 1, Article . Publication date: March 2022.

14 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

Algorithm 1 Linear Invariant Generation at Location ℓ★

Input: ℓ★ : target location;∧𝑚
𝑖=1𝐶𝑖 : the CNF formula obtained from Step A4 (Section 3.1) in the approach [18] where

each 𝐶𝑖 is the 𝑖-th conjunctive clause and is a disjunction of polyhedra over the unknown

coefficients in the template;

Reordering(∧𝑖 𝐶𝑖) : a procedure that reorders all 𝐶𝑖 ’s into
∧

𝑖 𝐶
′
𝑖 w.r.t whether each 𝐶𝑖

corresponds to an intra- or an inter-transition as stated previously; we write 𝐶 ′𝑖 =
∨𝑁𝑖

𝑗=1
𝑐 ′𝑖, 𝑗

where each 𝑐 ′𝑖, 𝑗 is an atomic proposition in the form of a polyhedron over the unknown

coefficients;

Gen(ℓ, poly) : a procedure that generates the invariants at a location ℓ given a polyhedron

poly over the unknown coefficients

Output: a collection inv(ℓ★) of linear invariants at ℓ★;
1:

∧𝑚
𝑖=1𝐶

′
𝑖 ← Reordering(

∧𝑚
𝑖=1𝐶𝑖); //𝐶

′
𝑖 =

∨𝑁𝑖

𝑗=1
𝑐 ′𝑖, 𝑗

2: 𝑖𝑛𝑣 (ℓ★) ← ∅;
3: 𝑖 ← 1;

4: 𝑛𝑖 ← 1 (for 1 ≤ 𝑖 ≤ 𝑚);

5: while 𝑖 > 0 do

6: if 𝑛𝑖 ≤ 𝑁𝑖 then

7: 𝑑𝑖 ← 𝑐 ′𝑖,𝑛𝑖 ; //select one atomic proposition

8: 𝑛𝑖 ← 𝑛𝑖 + 1;
9: if

∧𝑖
𝑠=1 𝑑𝑠 ⊈ 𝑖𝑛𝑣 (ℓ★) then //subsumption

10: if 𝑖 =𝑚 then

11: 𝑖𝑛𝑣 (ℓ★) ← 𝑖𝑛𝑣 (ℓ★) ∪ Gen(ℓ★,
∧𝑚

𝑠=1 𝑑𝑠);
12: else

13: 𝑖 ← 𝑖 + 1;
14: end if

15: end if

16: else

17: 𝑛𝑖 ← 1; //backtracking

18: 𝑖 ← 𝑖 − 1;
19: end if

20: end while;

21: return inv(ℓ★);

improvements that can reduce the combinatorial explosion from the generator computation. Below

we propose several solutions that compute generators only at the dimensions of the target location.

These solutions are to be substituted into the procedure Gen in the pseudo-code of Algorithm 1 to

complete our invariant-generation procedure for location-by-location linear invariant generation.

Generator Computation at Target LocationWe propose four solutions to compute the invariants

at the dimensions of the target location, namely generator projection, Fourier-Motzkin Elimination

(FME), Block Elimination and our improvement on Block Elimination. Below we fix a polyhedral

cone 𝑃 = {(xT, uT)T ∈ R𝑝+𝑞 | Ax + Bu ≤ c} and consider to compute the generators only over the

dimensions x that correspond to the dimensions of unknown coefficients at our target location ℓ★.

Generator Projection. Our first solution is still to compute the generators directly for the polyhe-

dral cones that involves all program locations by standard methods (e.g., the double-description

method [33]), but to project the computed generators onto the unknown coefficients at the target

, Vol. 1, No. 1, Article . Publication date: March 2022.

Scalable Linear Invariant Generation with Farkas’ Lemma 15

location ℓ★. Thus in detail, the first solution computes the generators of the polyhedral cone 𝑃 and

project the generators to the dimensions x.
Fourier-Motzkin Elimination.Our second solution is to apply the classical method of Fourier-Motzkin

Elimination (FME) [64, Chapter 12.2] that first projects away the extra dimensions other than the

unknown coefficients at the target location ℓ★ and then computes the generators. In detail, the

solution through FME first eliminates the variables u one by one in 𝑃 to get the projected polyhedral

cone 𝑃 [x] on the dimensions x, then compute the generators of 𝑃 [x] by standard methods.

Block Elimination. We consider applying Block Elimination (see e.g. [73]) as our third solution,

which is an alternative approach that eliminate unrelated variables through the computation of

the generators of the projection cone of a polyhedron. The motivation is to address the issue of

generating possibly many redundant inequalities in the application of FME. The details of Block

Elimination is as follows. To illustrate this method, we first present a variant form of Farkas’

Lemma [64, Corollary 7.1e].

Theorem 4.1. Let A be a real matrix and b be a real vector. The polyhedron 𝑃 = {x | Ax ≤ b} is
non-empty if and only if there is no vector y satisfying y ≥ 0, yTA = 0 and yTb < 0.

The polyhedral cone {y | y ≥ 0 ∧ yTA = 0} derived from the polyhedron 𝑃 = {x | Ax ≤ b}
in the statement of Theorem 4.1 is usually called the projection cone of 𝑃 , which we denoted by

proj(A) since it is only related to the matrix A (that help defines 𝑃).

Block Elimination utilizes projection cones to reduce the amount of redundant inequalities

that may arise in FME. Consider the polyhedron 𝑃 = {(xT, uT)T ∈ R𝑝+𝑞 | Ax + Bu ≤ c} and the

projection of 𝑃 onto x. The method treats 𝑃 as a polyhedron 𝑄 (x) with the parameter x such that

𝑄 (x) := {u ∈ R𝑞 | Bu ≤ c − Ax} and computes the generators of the projection cone proj(B). By
Theorem 4.1, to ensure that 𝑄 (x) is non-empty, it suffices to guarantee that gT (c − Ax) ≥ 0 for

all the generators g of proj(𝑄 (x)). Hence, after the generators g1, . . . , g𝑘 of the projection cone

proj(𝑄 (x)) are computed, the method outputs the projected polyhedron 𝑃 [x] as defined by the

linear inequalities gT𝑗 (c − Ax) ≥ 0 for 1 ≤ 𝑗 ≤ 𝑘 . The remaining task is again to compute the

generators of the projected polyhedral cone 𝑃 [x].
Our improvement on Block Elimination. Recall that our task is to compute the projected generators

of a polyhedral cone Ac ≤ 0 onto the unknown coefficients at ℓ★ (here c is the vector of all unknown
coefficients in the template), where the polyhedral cone Ac ≤ 0 is a disjunctive clause from the

DNF obtained in Step A4. Following Block Elimination, we still project the polyhedral cone Ac ≤ 0
onto the unknown coefficients at ℓ★, but have further improvements as follows.

Below we describe our improvements in detail. Let c★ be the vector of unknown coefficients at ℓ★
and c∗ be the vector of unknown coefficients at other locations. Then Ac ≤ 0 can be decomposed as

Ac = ©«
F 0
G G′

0 H

ª®¬ ·
(
c∗
c★

)
≤ 0

where Fc∗ ≤ 0 include the inequalities that involve only variables in c∗, Gc∗ +G′c★ ≤ 0 include the
inequalities that involve both c∗ and c★, and Hc★ ≤ 0 include the inequalities that involve only

variables in c★. Since Hc★ ≤ 0 is not related to c∗, our first (slight) improvement is to consider only

Bc∗ ≤ b with B :=

(
F
G

)
and b :=

(
0

−G′ · c★

)
(2)

in the projection onto c★. Furthermore, in the projection cone proj(B):(
y∗
y★

)
≥ 0,

(
yT∗ , yT★

)
·
(
F
G

)
= 0, (3)

, Vol. 1, No. 1, Article . Publication date: March 2022.

16 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

we only need to consider the generators for (yT∗ , yT★)T projected onto the dimensions y★ that

correspond to the rows of G since the vector b in (2) has all zero at the dimensions y∗. Thus, our
second (major) improvement is to project the projection cone proj(B) onto y★, and then compute the

generators of the projected cone on the dimensions y★ instead of on the full dimension (yT∗ , yT★)T.

4.3 Correctness and Accuracy
We show that the improvements through our location-by-location idea have the same accuracy as

compared with the original work [63], thus generate correct linear invariants. This can be easily

observed as follows. Suppose that the CNF formula obtained from Step A4 is Φ =
∧

𝑖

∨𝑁𝑖

𝑗=1
𝑐𝑖, 𝑗 and

we denote by ⟦Φ⟧ the set of all real vectors (as valuations over all unknown coefficients in the

template) that satisfy Φ. The approach [63] computes a set G of generators by first expanding the

CNF Φ into DNF and then collecting the generators of every unsubsumped disjunctive clause of

the DNF. Hence, from [63] we have that the convex cone generated by G is equal to that of ⟦Φ⟧.
In our improvements, we have that (i) the expansion reordering does not lose accuracy since the

reordered CNF Φ′ is logically equivalent to Φ, and (ii) the projection based generator computation

preserves accuracy since always the same generators will be produced by either (i) first computing

the generators then performing the projection onto the target location or (ii) first performing

the projection then computing the generators. Hence the convex cone generated by the set of

generators computed by our improvements is equal to that by ⟦Φ⟧ projected to the target location.

5 SEGMENTED SUBSUMPTION TESTING
In this part, we propose an independent improvement on the CNF-to-DNF expansion in Step A4 of

Section 3.1. Recall that in Section 4.1, we have already proposed an improvement on the CNF-to-DNF

by reordering of the expansion order to detect possible subsumptions earlier. The improvement

proposed in this part, called segmented subsumption, follows a different idea: we consider to detect

local subsumptions in a segment of the whole CNF, so that such local subsumptions can be detected

in advance before taking the improvements described in Section 4.

To illustrate our improvement, we depict the general CNF-to-DNF expansion in Figure 2. In the

figure, we represent the original CNF formula as

∧𝑚
𝑖=1𝐶𝑖 where we have that each 𝐶𝑖 =

∨𝑁𝑖

𝑗=1
𝑐𝑖, 𝑗 ,

with each 𝑐𝑖, 𝑗 being a polyhedral cone; we render the conjunctive clauses𝐶1, . . . ,𝐶𝑚 in the row-wise

fashion, for which the vertical order from 𝐶1 to 𝐶𝑚 is the order in the CNF-to-DNF expansion and

the arrows represent the directions of the expansion in one step. We also define the notion of paths

based on Figure 2. A path 𝜋 in Figure 2 is of the form

𝑐𝑝,𝑘𝑝 → · · · → 𝑐𝑖,𝑘𝑖 → · · · → 𝑐𝑞,𝑘𝑞

where 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑚 and 1 ≤ 𝑘𝑖 ≤ 𝑁𝑖 for all 𝑝 ≤ 𝑖 ≤ 𝑞. In other words, a path reflects a partial

expansion from 𝐶𝑝 to 𝐶𝑞 where the literals chosen in the expansion are 𝑐𝑝,𝑘𝑝 , . . . , 𝑐𝑖,𝑘𝑖 , . . . , 𝑐𝑞,𝑘𝑞 .

Note that if 𝑝 = 1 and 𝑞 =𝑚, then we call the path 𝜋 complete and it corresponds to a disjunctive

clause ∧𝑞
𝑖=𝑝

𝑐𝑖,𝑘𝑖 in the transformed DNF, otherwise it is incomplete.
Below we describe the main idea of our segmented subsumption by an illustrative example.

Example 5. Consider a specific scenario of Figure 2 that 𝑚 = 4 and 𝑘𝑖 = 2 for all 1 ≤ 𝑖 ≤ 4.
This scenario is depicted in Figure 3. In this scenario, we consider the situation that the complete path
𝜋 = 𝑐1,1 → 𝑐2,1 → 𝑐3,1 → 𝑐4,1 subsumes all other complete paths in the expansion, i.e.,

∧
𝑖 𝑐𝑖,𝑘𝑖 ⊆

∧
𝑖 𝑐𝑖,1

for all the choices of 𝑘𝑖 ’s. In the original subsumption testing from [63], the other complete paths are
expanded and are checked subsumption with the first complete path 𝜋 in the expansion; thus, there could
be 15 subsumptions detected by the subsumption testing. Note the reordering in Section 4.1 is irrelevant
here as we can assume that the order 𝐶1 to 𝐶4 in Figure 3 is already reordered. Although the original

, Vol. 1, No. 1, Article . Publication date: March 2022.

Scalable Linear Invariant Generation with Farkas’ Lemma 17

approach in [63] successfully detected all the subsumptions, it would still perform 15 subsumption
testings, which would be time-consuming when there is a large amount of such subsumptions.

In order to further reduce the number of subsumption testing as shown above, we consider to detect
local subsumptions in advance. In detail, for the scenario of Figure 3, our local subsumption testing is as
follows. We first divide 𝐶1,𝐶2,𝐶3,𝐶4 into two segmments, 𝐶1 ∧𝐶2 and 𝐶3 ∧𝐶4. Then in each segment,
we perform local subsumption testing. For example, for the segment {𝐶1,𝐶2}, the local subsumption
testing first expand 𝑐1,1 ∧ 𝑐2,1 and then checks whether

∧
2

𝑖=1 𝑐𝑖,𝑘𝑖 ⊆ 𝑐1,1 ∧ 𝑐2,1 for other choices of 𝑘𝑖 ’s; if
indeed

∧
2

𝑖=1 𝑐𝑖,𝑘𝑖 ⊆ 𝑐1,1∧𝑐2,1 for other choices of 𝑘𝑖 ’s, then only 3 subsumption testing is performed and
we only keep the incomplete path 𝑐1,1 → 𝑐2,1. Likewise, for the segment {𝐶3,𝐶4}, the local subsumption
testing may also detect that

∧
4

𝑖=3 𝑐𝑖,𝑘𝑖 ⊆ 𝑐3,1∧𝑐4,1 by 3 subsumption testing, so that only the incomplete
path 𝑐3,1 → 𝑐4,1 is kept. Thus in this scenario, local subsumtion testing with two segments (𝐶1 ∧𝐶2 and
𝐶3 ∧𝐶4) may perform only 6 subsumption testing instead of 15 subsumption testing, hence has the
potential to reduce the amount of runtime by reducing the number of possible subsumption testing. □

In summary, we divide the whole conjunctive clauses 𝐶1, . . . ,𝐶𝑚 into a number of segments,

and perform local subsumption testing to detect subsumption within each segment in advance,

so that the overall number of subsumption testing may be improved. Note that different from the

original subsumption testing in [63] that converts a polyhedral cone 𝑃 =
∧

𝑖 𝑐𝑖,𝑘𝑖 into the generated

invariants 𝐼 by taking the convex closure of 𝑃 and 𝐼 during the CNF-to-DNF expansion, the local

subsumption testing in each segment cannot take the covex closure as it may cause inaccurate

over-approximation to the original CNF. Thus, to keep the accuracy, in local subsumption testing

we only have pairwise subsumption testing between different conjunctions expanded from the

local segment (e.g., in the scenario of Figure 3 we have pairwise subsumption testing between

𝑐1,1 ∧ 𝑐2,1, 𝑐1,1 ∧ 𝑐2,2, 𝑐1,2 ∧ 𝑐2,1, 𝑐1,2 ∧ 𝑐2,2 within the segment 𝐶1 ∧𝐶2). In practice, we keep the size

of each segment small to avoid the combinatorial explosion from the expansion of each segment.

Fig. 2. CNF-to-DNF Expansion Fig. 3. Example of Expansion

Below we present the technical details of our improvement of segmented subsumption. The

improvement comprises three steps (Step B1 – Step B3) as follows.

Step B1 In the first step, we first reorder the CNF formula resulting from Step A4 as in Section 3.1

and denote the reordered CNF as Φ =
∧𝑚

𝑖=1𝐶𝑖 . We then divide the CNF formula Φ to be expanded

into DNF into a number of segments. Our implementation divides the conjunctive clauses𝐶1, . . . ,𝐶𝑚

into ⌈𝑚/𝑘⌉ segments 𝐶1 ∧ · · · ∧𝐶𝑘 , . . . , 𝐶𝑖 ·𝑘+1 ∧ · · · ∧𝐶𝑖 ·𝑘+𝑘 , . . . , 𝐶 (⌈𝑚/𝑘 ⌉−1) ·𝑘+1 ∧ · · · ∧𝐶𝑚 , each

with 𝑘 ≥ 2 conjunctive clauses except for the last segment. For example, when𝑚 = 2 · 𝑛, we may

choose 𝑘 = 2 and divide

∧𝑚
𝑖=1𝐶𝑖 into 𝑛 segments𝐶1 ∧𝐶2, . . . , 𝐶2𝑛−1 ∧𝐶2𝑛 Note that the conjunctive

, Vol. 1, No. 1, Article . Publication date: March 2022.

18 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

clauses could also be segmented with different sizes, but for simplicity we choose a equal size

(except for the last segment).

Step B2 In the second step, we perform local subsumption testing at every segment. Given a

segment𝐶𝑝 ∧ · · · ∧𝐶𝑞 with𝐶𝑖 = 𝑐𝑖,1 ∨ · · · ∨ 𝑐𝑖,𝑁𝑖
for each 𝑝 ≤ 𝑖 ≤ 𝑞, the detailed local subsumption

testing on this segment is as follows. We first expand the segment fully into its equivalent DNF∨
1≤𝑘𝑝 ≤𝑁𝑝 , · · · ,1≤𝑘𝑞 ≤𝑁𝑞

𝑄𝑘𝑝 ,...,𝑘𝑞 where 𝑄𝑘𝑝 ,...,𝑘𝑞 :=

𝑞∧
𝑖=𝑝

𝑐𝑖,𝑘𝑖 . (4)

Then for each pair of𝑄𝑘𝑝 ,...,𝑘𝑞 and𝑄𝑘′𝑝 ,...,𝑘
′
𝑞
, we check whether one of them (e.g.𝑄𝑘𝑝 ,...,𝑘𝑞) is subsumed

by the other (e.g. 𝑄𝑘′𝑝 ,...,𝑘
′
𝑞
); if the subsumption test is successful (e.g., 𝑄𝑘𝑝 ,...,𝑘𝑞 ⊆ 𝑄𝑘′𝑝 ,...,𝑘

′
𝑞
), then we

remove the subsumed one (e.g., 𝑄𝑘𝑝 ,...,𝑘𝑞) from the DNF. After this step, we get a DNF obtained

from (4) by removing the subsumed 𝑄𝑘𝑝 ,...,𝑘𝑞 ’s.

Step B3 In the last step, we group the DNFs obtained from Step B2 for all segments conjunctively

together to form a new CNF Φ′. (Note that this new CNF Φ′ is logically equivalent to the original

CNF Φ in Step B1.) We then run our invariant-generation procedure from the previous section

(Section 4.2) (that incorporates various improvements related to the idea of generating the invariants

one program location at a time) over the input Φ′ to derive the invariants. Since Φ is logically

equivalent to Φ′, the obtained invariants are guaranteed to be correct.

The integration of the subsumption testing with our location-by-location idea is to first perform

the reordered expansion in Section 4.1, then segmented subsumption testing, and finally apply the

CNF-to-DNF expansion with projection-based generator computation from Section 4.2 to the CNF

formula after segmented subsumption. The pseudo-code for our segmented subsumption testing is

given in Algorithm 2 of Appendix A.

6 EXPERIMENTAL RESULTS

Implementation. We implemented our algorithms as an extension of StInG [71] in C++, and used

PPL 1.2 [8] for polyhedra manipulation (e.g., projection, generation computation, etc.), and our

algorithms work on the original input format of StInG [71]. To have a prototype implementation that

synthesizes linear invariants directly over programs, we wrote most of the benchmark examples in

C programming language by having statements that specify the change of values on each transitions,

and implemented the transformation from these examples into the format in StInG [71] via Sparse

0.6.4 [70] (a C language semantic parser). An example input for one of our benchmarks (Scheduler)

written in C is given in Appendix C. All experimental results were obtained on an Intel Core i7-7700

(3.6 GHz) machine with 15.5 GiB of memory, running Ubuntu 20.04.2 LTS.

Benchmarks. We consider benchmarks from a variety of application domains [5, 49, 63, 71, 72]:

Scheduler. The invariant analysis for cooperative multitasking (task scheduling) activated by

interrupts and pre-emptive programming (in e.g. Arduino [5]) can be used to ensure the liveness of

scheduling. We consider related benchmarks taken from [40, 63]. The benchmarks here are divided

into two categories, namely "Scheduler’" and "Scheduler". The category "Scheduler’" contains

original benchmarks from [63] (with original input format to StInG) that follow a non-standard

setting to assign an initial condition to every location in the LinTS in order to model the scenario

that the initial location is nondeterministic. The category "Scheduler" considers these benchmarks

from StInG under the standard setting of a fixed initial location, corrects several places in the

benchmarks that deviate from the original description in [40], and writes them in C.

Fischer. The Fischer mutual exclusion protocol [49] is a timing-based algorithm that implements

mutual exclusion for a distributed systemwith skewed clocks, and the invariant analysis can be used

, Vol. 1, No. 1, Article . Publication date: March 2022.

Scalable Linear Invariant Generation with Farkas’ Lemma 19

Table 3. Experimental Results for the Reordered CNF-to-DNF Expansion (†)

Benchmarks

StInG

Our Approach

Name Loc Dim Line

Reordered-Expansion†: Gen-Proj
Time (Banged) Time (Banged) Speedup

Scheduler’

2p 2 16 - 0.01 (26) 0.01 (34) 1.00X

3p 3 33 - 0.17 (380) 0.10 (245) 1.70X

4p 4 56 - 60.81 (26,629) 1.38 (1,508) 44.06X

5p 5 85 - 7,436.34 (2,548,704) 26.52 (25,996) 280.40X

6p 6 120 - time out 892.75 (66,905) >40.32X

7p 7 161 - time out time out -

Scheduler

3p 3 33 336 0.17 (279) 0.10 (261) 1.70X

4p 4 56 609 4.16 (2,895) 0.98 (1,474) 4.24X

5p 5 85 1017 135.80 (39,150) 13.97 (8,570) 9.72X

6p 6 120 1587 7,541.53 (906,454) 277.96 (63,070) 27.13X

7p 7 161 2352 time out time out -

Fischer

6p 7 63 710 9.18 (8,423) 3.07 (4,217) 2.99X

7p 8 80 987 59.16 (32,668) 13.60 (12,566) 4.35X

8p 9 99 1327 373.62 (127,918) 70.42 (43,191) 5.30X

9p 10 120 1736 2,345.96 (503,369) 398.26 (163,623) 5.89X

10p 11 143 2218 14,664.68 (1,985,857) 2,361.87 (649,409) 6.20X

11p 12 168 2780 time out 14,307.40 (2,620,864) >2.51X

12p 13 195 3453 time out time out -

Cars

2p 3 27 216 0.01 (28) 0.01 (63) 1.00X

3p 5 60 616 560.70 (788,508) 1.21 (2,299) 463.38X

4p 7 105 1283 time out 86.83 (37,567) >414.60X

5p 9 162 2339 out of memory out of memory -

to adjust some parameters to ensure critical reachability properties. We take related benchmarks

from the PAT toolkit [72] and rewrite them in C.

Cars. A scenario of car systems is illustrated as a dynamic decision problem [63] in which

invariant analysis can be used to ensure the safety of autopilot. A car system has 𝑛 cars on a straight

road and their acceleration and velocity are determining by their controllers. The lead car starts

at an arbitary acceleration with initial velocity 0. The controllers of other cars detect whether

the distance between the front car and itself is too close or too far, and adjust their acceleration

accordingly. We take the benchmarks from [63], modify themmore naturally as LinTS with multiple

locations (that distinguish different status on the distance between adjacent cars), and write them

in C. We name the category of these benchmarks as "Cars".

For each benchmark above, we consider a variety on the number 𝑟 of processes denoted by “𝑟 -p”

(e.g. “2p” stands for two processes) in the benchmark. For all the benchmarks, we compare the

running time between our algorithms and the original algorithm in StInG.

Experimental Results. Our experimental results are summarized in Table 3 – Table 6. Due to the

limit of space, we only present the most representative experimental results and relegate others in

Appendix B. Below we first describe the tables, then discuss the experimental results in detail.

Table Description. The detailed description of the tables is as follows. In all the tables, for the time

consumption and the various size quantities of each benchmark, we have that "Loc" means the

number of locations, "Dim" means the number of total dimensions (i.e., the number of all unknown

coefficients at all locations), "Line" means the number of lines of the code representation in C,

"Time" is the total amount of runtime (by summing up the time consumption at all locations)

measured in seconds, "Banged" means the number of successful subsumptions (in the CNF-to-DNF

expansion), "Our Approach" means the experimental results by our approach, "StInG" means the

experimental results by StInG (which we adapt to PPL 1.2 [8]), the symbol "-" means not applicable

due to either the absence of code representation or time-out or out-of-memory, and "Speedup" in

each table shows the ratio of the amount of runtime consumed by StInG against our corresponding

approach specified in the table. We set a time bound of 10 hours for time-out in all the tables.

, Vol. 1, No. 1, Article . Publication date: March 2022.

20 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

Table 4. Experimental Results for Projection-Based Generator Computation

Benchmarks Our Approach

Name Loc Dim Line

Reordered-Expansion†: Gen-Proj Reordered-Expansion†: FME Reordered-Expansion†: Block Reordered-Expansion†: Block+
Time (Gen-Time) Speedup Time (Gen-Time) Speedup Time (Gen-Time) Speedup Time (Gen-Time) Speedup

Scheduler’

2p 2 16 - 0.01 (0.01) 1.00X 0.01 (0.01) 1.00X 0.03 (0.02) 0.33X 0.02 (0.02) 0.50X

3p 3 33 - 0.10 (0.06) 1.70X 0.14 (0.08) 1.21X 0.31 (0.27) 0.55X 0.14 (0.08) 1.21X

4p 4 56 - 1.38 (0.24) 44.07X 1.60 (0.52) 38.01X 2.41 (1.42) 25.23X 1.50 (0.46) 40.54X

5p 5 85 - 26.52 (0.38) 280.40X 27.11 (1.32) 274.30X 30.49 (4.03) 243.89X 27.27 (1.07) 272.69X

6p 6 120 - 892.75 (38.59) >40.32X 906.27 (48.88) >39.72X 887.27 (28.01) >40.57X 868.52 (11.20) >41.45X

7p 7 161 - time out (61,366.73) - time out (66,745.07) - 35,017.19 (209.25) >1.03X 34,960.08 (140.49) >1.03X

8p 8 208 - time out - time out - time out - time out -

Scheduler

3p 3 33 336 0.10 (0.01) 1.70X 0.13 (0.05) 1.31X 0.26 (0.19) 0.65X 0.14 (0.07) 1.21X

4p 4 56 609 0.98 (0.17) 4.24X 1.18 (0.39) 3.53X 1.96 (1.14) 2.12X 1.30 (0.37) 3.20X

5p 5 85 1017 13.97 (1.22) 9.72X 14.58 (1.94) 9.31X 17.55 (4.91) 7.74X 18.68 (1.71) 7.27X

6p 6 120 1587 277.96 (35.26) 27.13X 285.30 (45.20) 26.43X 262.31 (21.79) 28.75X 240.50 (6.60) 31.36X

7p 7 161 2352 time out (61,660.65) - time out (66,808.22) - 4,759.24 (142.23) >7.56X 4,698.29 (77.68) >7.66X

8p 8 208 3351 time out - time out - time out - time out -

Fischer

6p 7 63 710 3.07 (0.09) 2.99X 3.21 (0.40) 2.86X 3.44 (0.59) 2.67X 3.15 (0.21) 2.91X

7p 8 80 987 13.60 (0.20) 4.35X 14.18 (0.69) 4.17X 14.73 (1.25) 4.02X 14.91 (0.74) 3.97X

8p 9 99 1327 70.42 (0.35) 5.31X 71.97 (1.47) 5.19X 73.52 (2.66) 5.08X 71.15 (1.26) 5.25X

9p 10 120 1736 398.26 (0.70) 5.89X 408.79 (2.69) 5.74X 413.76 (4.92) 5.67X 414.08 (2.59) 5.67X

10p 11 143 2218 2,361.87 (1.34) 6.21X 2,429.26 (5.03) 6.04X 2,401.19 (8.75) 6.11X 2,398.38 (4.54) 6.11X

11p 12 168 2780 14,307.40 (2.25) >2.52X 14,469.76 (8.58) >2.49X 14,483.90 (15.02) >2.49X 14,318.84 (7.96) >2.51X

12p 13 195 3453 time out - time out - time out - time out -

Cars

2p 3 27 216 0.01 (0) 1.00X 0.02 (0) 0.50X 0.02 (0) 0.50X 0.01 (0) 1.00X

3p 5 60 616 1.21 (0.02) 463.39X 1.25 (0.01) 448.56X 1.55 (0.09) 361.74X 1.21 (0.04) 463.39X

4p 7 105 1283 86.83 (0.11) >414.60X 86.43 (0.58) >416.52X 87.20 (1.29) >412.84X 84.49 (0.56) >426.09X

5p 9 162 2339 out of memory - out of memory - out of memory - out of memory -

Table 5. Experimental Results for Segmented Subsumption

Benchmarks Our Approach(Reordered-Expansion†: Block+)

Name Loc Dim Line

none Two Three Four

Time (Banged) Speedup Time (Banged) Speedup Time (Banged) Speedup Time (Banged) Speedup

Scheduler’

2p 2 16 - 0.02 (34) 0.50X 0.03 (26) 0.33X 0.02 (38) 0.50X 0.02 (73) 0.50X

3p 3 33 - 0.14 (245) 1.21X 0.20 (207) 0.85X 0.24 (195) 0.71X 0.23 (256) 0.74X

4p 4 56 - 1.50 (1,508) 40.54X 1.84 (1,348) 33.05X 2.02 (1,301) 30.10X 2.69 (1,310) 22.61X

5p 5 85 - 27.27 (25,996) 272.69X 20.86 (15,172) 356.49X 18.69 (9,991) 397.88X 24.35 (9,488) 305.39X

6p 6 120 - 868.52 (66,905) >41.45X 720.78 (54,862) >49.95X 648.79 (46,226) >55.49X 2,470.41 (39,207) >14.57X

7p 7 161 - 34,960.08 (629,977) >1.03X 19,721.28 (437,681) >1.83X 26,420.75 (449,445) >1.36X time out -

8p 8 208 - time out - time out - time out - time out -

Scheduler

3p 3 33 336 0.14 (261) 1.21X 0.19 (234) 0.89X 0.20 (212) 0.85X 0.21 (261) 0.81X

4p 4 56 609 1.30 (1,474) 3.20X 1.78 (1,318) 2.34X 2.04 (1,270) 2.04X 3.59 (1,315) 1.16X

5p 5 85 1017 18.68 (8,570) 7.27X 15.21 (6,728) 8.93X 37.73 (6,307) 3.60X 72.60 (6,065) 1.87X

6p 6 120 1587 240.50 (63,070) 31.36X 201.53 (51,342) 37.42X 209.50 (42,837) 36.00X 596.82 (36,737) 12.64X

7p 7 161 2352 4,698.29 (492,751) >7.66X 2,752.66 (299,471) >13.08X 3,760.55 (314,398) >9.57X 8,986.91 (263,933) >4.01X

8p 8 208 3351 time out - time out - time out - time out -

Fischer

6p 7 63 710 3.15 (4,217) 2.91X 3.19 (2,808) 2.88X 3.40 (2,336) 2.70X 4.40 (2,280) 2.09X

7p 8 80 987 14.91 (12,566) 3.97X 9.45 (6,188) 6.26X 8.78 (4,407) 6.74X 10.87 (4,270) 5.44X

8p 9 99 1327 71.15 (43,191) 5.25X 28.29 (14,231) 13.21X 25.39 (10,383) 14.72X 28.19 (8,690) 13.25X

9p 10 120 1736 414.08 (163,623) 5.67X 91.96 (34,033) 25.51X 72.05 (22,273) 32.56X 75.95 (18,629) 30.89X

10p 11 143 2218 2,398.38 (649,409) 6.11X 335.47 (90,362) 43.71X 185.65 (42,349) 78.99X 190.35 (36,250) 77.04X

11p 12 168 2780 14,318.84 (2,620,864) >2.51X 1,280.06 (235,812) >28.12X 765.02 (129,144) >47.06X 583.50 (81,593) >61.70X

12p 13 195 3453 time out - 5,521.77 (681,865) >6.52X 2,689.64 (296,297) >13.38X 1,976.83 (190,150) >18.21X

13p 14 224 4397 time out - 23,812.01 (1,835,173) >1.51X 8,430.01 (588,289) >4.27X 8,239.66 (501,438) >4.37X

14p 15 255 5039 time out - time out - time out - time out -

Cars

2p 3 27 216 0.01 (63) 1.00X 0.04 (61) 0.25X 0.04 (62) 0.25X 0.05 (65) 0.20X

3p 5 60 616 1.21 (2,299) 463.39X 2.01 (2,279) 278.96X 1.63 (1,592) 343.99X 2.04 (1,612) 274.85X

4p 7 105 1283 84.49 (37,567) >426.09X 100.35 (37,525) >358.74X 89.78 (25,423) >400.98X 103.59 (25,771) >347.52X

5p 9 162 2339 out of memory - out of memory - out of memory - out of memory -

Table 3 presents the experimental results on our reordered CNF-to-DNF expansion (Section 4.1).

We evaluate the expansion order (†) that expands (i) intra-transitions from the target location to

itself first, then (ii) inter-transitions that involve the target location and one non-target location

second, next (iii) the inter-transitions between different non-target locations third, and finally (iv)

the intra-transitions over each individual non-target locations last. The expansion order follows

the heuristics that the intra-transitions over the target location are the most relevant, and the

counterpart over non-target locations are the least relevant. For the projection needed to produce

the generators at the target location, we choose the basic method "Gen-Proj" that corresponds to

the paragraph Generator Projection in Section 4.2.

Table 4 presents the experimental results on projection-based generator computation (Section 4.2)

for which we use the expansion order in Table 3. Furthermore, the tags "Gen-Proj", "FME", "Block",

"Block+" correspond to the methods from the paragraphs Generator Projection, Fourier-Motzkin

, Vol. 1, No. 1, Article . Publication date: March 2022.

Scalable Linear Invariant Generation with Farkas’ Lemma 21

Table 6. Experimental Results for Parallel Computation

Benchmarks Our Approach (Reordered-Expansion†: Block+)

Name Loc Dim Line

none Two

Max Speedup(original) Speedup Max Speedup(original) Speedup

Scheduler’

2p 2 16 - 0.01 0.50X 1.00X 0.02 0.33X 0.50X

3p 3 33 - 0.05 1.21X 3.40X 0.08 0.85X 2.13X

4p 4 56 - 0.47 40.54X 129.38X 0.56 33.05X 108.59X

5p 5 85 - 7.52 272.69X 988.87X 7.33 356.49X 1,014.51X

6p 6 120 - 308.48 >41.45X >116.70X 302.22 >49.95X >119.12X

7p 7 161 - 11,134.30 >1.03X >3.23X 5,944.38 >1.83X >6.06X

Scheduler

3p 3 33 336 0.04 1.21X 4.25X 0.07 0.89X 2.43X

4p 4 56 609 0.39 3.20X 10.66X 0.49 2.34X 8.49X

5p 5 85 1017 4.90 7.27X 27.71X 4.42 8.93X 30.72X

6p 6 120 1587 72.07 31.36X 104.64X 70.04 37.42X 107.67X

7p 7 161 2352 1,336.13 >7.66X >26.94X 750.41 >13.08X >47.97X

Fischer

6p 7 63 710 1.22 2.91X 7.52X 0.79 2.88X 11.62X

7p 8 80 987 7.75 3.97X 7.63X 2.85 6.26X 20.76X

8p 9 99 1327 45.41 5.25X 8.22X 11.14 13.21X 33.54X

9p 10 120 1736 283.95 5.67X 8.26X 43.96 25.51X 53.37X

10p 11 143 2218 1,700.51 6.11X 8.62X 187.85 43.71X 78.07X

11p 12 168 2780 10,230.51 >2.51X >3.51X 768.56 >28.12X >46.84X

12p 13 195 3453 time out - - 3,437.67 >6.52X >10.47X

13p 14 224 4397 time out - - 14,885.30 >1.51X >2.42X

Cars

2p 3 27 216 0.01 1.00X 1.00X 0.02 0.25X 0.50X

3p 5 60 616 0.83 463.39X 675.54X 1.04 278.96X 539.13X

4p 7 105 1283 75.83 >426.09X >474.74X 84.46 >358.74X >426.24X

Elimination, Block Elimination and Our improvment on Block Elimination in Section 4.2, respectively.

The tag "Gen-Time" records the amount of time (in seconds) consumed on generator computation.

Table 5 presents the experimental results on segmented subsumption testing (Section 5) with our

reordered expansion in Table 3 and "Block+" in Table 4. In the table, we use the tag "none" to indicate
the absence of segmented subsumption, and the tags "Two" (resp. "Three", "Four") to indicate that

the size of each segment is two (resp. three, four) except for the last segment, respectively.

Table 6 presents experimental results on parallel computation bestowed from our location-by-

location idea. For the parallel computation, we assume the scenario that every location is assigned

a distinct processor to generate the invariants at the location, so that the overall runtime here is

the maximal runtime among all locations. In the table, we evaluate our approach with reordered

expansion from Table 3 and "Block+" from Table 4, under the setting of both without (indicated by

"none") and with the segmented subsumption testing of segment size two (indicated by "Two"); the

column "Max" records the maximal runtime among all locations, the "Speedup" column shows the

ratio of the amount of runtime by StInG against the "Max" column, and the "Speedup(original)"

column records the ratio of the amount of runtime by StInG against the summation of runtime at

at all locations (i.e., without parallelism).

Discussion. In all the benchmarks, the generated invariants by our approach (in each table) are

exactly the same as from StInG, thus we focus on the comparison in runtime.

Table 3 compares the runtime under our reordered CNF-to-DNF expansion with the most basic

projection method of "Gen-Proj" and without segmented subsumption testing. From the table,

one can observe that our reordered expansion improves the performance of StInG up to orders of

magnitude. (Note that the speedup value with >means that StInG times out on the benchmark). This

demonstrates that our reordered expansion can indeed improve the scalability. The improvement can

also be observed by the fact that the expansion reordering induces a smaller number of successful

subsumptions, which means that these subsumptions are detected earlier by the reordering.

, Vol. 1, No. 1, Article . Publication date: March 2022.

22 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

Based on our reordered CNF-to-DNF expansion, Table 4 further compares the runtime from

various projection-based generator-computation methods. From the table, one can observe that

the simplest way "Gen-Proj" suffices to have comparable speedup against other methods when the

dimension is moderate. However, for several high dimensional examples (such as Scheduler-7p

and Scheduler-7p’), "Block" and "Block+" are the only methods that help complete the invariant

generation in tractable time. Moreover, when comparing "Block" and "Block+", one observes that
"Block+" consistently improves "Block" in the runtime for generator computation. This shows that

our "Block+" improvement can further leverage the scalability for high dimensional examples in

addition to reordered expansion.

Table 5 shows that in addition to our reordered CNF-to-DNF expansion (†) and "Block+", seg-
mented subsumption testing is effective in high dimensional examples, such as Scheduler-7p,

Scheduler’-7p and from Fischer-8p to Fischer-13p, especially for the Fischer benchmarks where

a large amount of local subsumption exists, segmented subsumption testing makes it possible to

scale the invariant generation to Fischer-12p and Fischer-13p. However, incorporating segmented

subsumption is not always better since itself incurs extra runtime at local subsumption testing.

Finally, Table 6 checks the advantage of parallel processing endowed by our location-by-location

idea implemented with our reordered CNF-to-DNF expansion (†) and "Block+". Under the setting of
with and without segmented subsumption. From the experimental data, one observes that parallel

processing further increases the scalability by a factor between 2 and 3.

Note that our approach cannot scale beyond Cars-4p sincewe encounter out-of-memory, although

the runtime for Cars-2p, Cars-3p and Cars-4p is relatively low. Since our implementation is an

extension of StInG, we believe that by improving the memory management in StInG, our approach

could handle larger examples from this class of benchmarks.

Remark 2. Here we compare our experiment results with abstract interpretation and recurrence
analysis. On one hand, in [63], abstract interpretation with standard polyhedral abstract domain [7, 23]
has been compared with the approach [63] that implements Farkas’ Lemma with several reasonale
heuristics; the comparison was that the approach [63] (with heuristics that incurs accuracy loss) often
generates much more accurate invariants than abstract interpretation and can handle examples where
abstract interpretation seemingly diverges. Note that recent advances [69] in polyhedral abstract
domain explores possible speed up through the separation of independent variables (which is not the
case in our benchmarks since all variables in our benchmarks are correlated) , but do not improve the
accuracy [69]. On the other hand, the state of the art recurrence solver OCRS [55] can only generate
invariants that relates the value of a program variable and the loop counter, thus cannot be applied to
our benchmarks. □

Remark 3. We remark that popular software verification frameworks such as CPAchecker [24],
SeaHorn [65] and Ultimate Automizer [74] only consider to check the validity of a given assertion at
a program location, thus invariant generation in these frameworks requires an additional assertion
as the post-condition and only aims at generating enough invariants to prove/disprove the assertion.
In contrast, we follow the setting in [18, 23, 40, 63] that does not require post-condition and aims at
generating as much invariants as possible. Thus, these frameworks do not apply to our case. Nevertheless,
our improvements can still be applied to the case with assertions, as one can focus on the target program
location where the assertion lies, and perform segmented subsumption to simplify the CNF formula. □

7 RELATEDWORKS
Below we compare our approach with most related approaches on numerical invariant generation.

We present the comparison classifying the related approaches into different categories of methods.

, Vol. 1, No. 1, Article . Publication date: March 2022.

Scalable Linear Invariant Generation with Farkas’ Lemma 23

Constraint Solving. Our approach falls in this category. Since we focus on linear invariant

generation, our approach is incomparable with those for polynomial invariant generation [1, 14,

16, 20, 27, 42, 43, 45, 50, 60, 62, 76]. Below we compare our approach with the approaches for linear

invariant generation in constraint solving [18, 28, 39, 63]. The approach [18] first establishes the

framework of linear invariant generation through Farkas’ Lemma and solves the invariant through

the complete method of quantifier elimination. Quantifier elimination usually has high runtime

complexity and is impractical even for programs in moderate size [78]. Thus, our approach has

much better runtime performance by developing various techniques to improve scalability.

The approach [63] considers several heuristics to solve the non-linear constraints from the

application of Farkas’ Lemma, hence is more scalable than [18]. A main disadvantage of [63] is

that it solves the invariants at all program locations in a single invariant-generation process, thus

causing a potentially large amount of combinatorial explosion. Our approach is based on [63]

and further incoporates (i) the novel idea of handling the program locations one by one with

reinforcing technical improvements and (ii) the segmented subsumption testing to further discover

subsumption in the CNF-to-DNF expansion, thus can substantially mitigate the combinatorial

explosion from [63] and achieve much better scalability.

The approach [28] uses eigenvectors to handle several restricted classes of linear invariants. Our

approach tackles the general class of affine programs and invariants through completely different

techniques, thus focuses on a completely different aspect. The tool INVGEN [39] focuses on how

one integrates abstract interpretation and constraint solving, while our approach aims at improving

scalability of constraint solving. Thus the focuses of our approach and INVGEN are orthogonal.

Abstract Interpretation. The most classical method to find inductive invariants is abstract interpre-
tation [2, 9, 12, 22, 53, 59, 61]. An abstraction-interpretation based approach follows the paradigm

of first having an abstract domain for the desired invariants, and then perform forward propagation

with widening to reach a fixed point. Compared with constraint solving, abstract interpretation does

not provide guarantee on the accuracy of the generated invaraints, except for some rare cases [37].

This point is experimental observed in [63], where the method of constraint solving (even with

some reasonable heuristics that cause accuracy loss) can produce much tighter invariants than an

abstract interpretation through polyhedral abstract domain. We prove that our approach generates

the same invariants as [63], hence inherits the advantage of high accuracy from constraint solving.

Recurrence Analysis. Recurrence analysis [11, 31, 44, 47, 48] first transforms the invariant-

generation problem into a recurrence relation, and then solves the invariants through the analysis

of the recurrence relation. Compared with constraint solving, recurrence-based approaches are only

applicable to the situations where the underlying recurrence relation has a closed form solution,

while constraint solving can be applied when a closed form solution does not exist.

OtherMethods. Invariant could also be generated through logical inference [29, 34, 35, 38, 52, 66, 75],
machine learning [36, 41, 77] and dynamic analysis [25, 54, 68]. Since these methods either utilize

specilized inference rules, or depend on a potentially big dataset, or require a possible large amount

of program executions, they could not ensure any accuracy guarantee on the generated invariants.

8 CONCLUSION AND FUTUREWORK
We proposed two improvements to the previous approach [63] that solves the invariant generation

problem with Farkas’ Lemma and several reasonable heuristics. The first is a novel idea that

generates the linear invariants for each program location separately. The idea enables one to speed

up the invariant-generation process by parallel processing, and we reinforce the idea with two

technical improvments that further reduce the combinatorial explosion from [63]: (i) in the CNF-to-

DNF expansion, we reordered the expansion so that the target location (over which the invariants

, Vol. 1, No. 1, Article . Publication date: March 2022.

24 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

are to be generated) comes first to detect subsumptions earlier; (ii) in the generator computation,

we proposed various methods that calculate the generators projected onto the target location,

including a novel method that improves Block Elimination. The second is a segmented subsumption

testing in addition to the subsumption testing in [63] that could detect subsumptions at local

conjunctive clauses. Experimental results show that our improvements can improve the scalability

of the approach [63], the only known practical algorithm that is based on Farkas’ Lemma, by

orders of magnitude. A future direction would be to investigate new approaches to further improve

scalability. Another future direction would be to extend our improvements to polynomial invariant

generation [14]. A further direction is to integrate the approach in [67] to handle disjunctive

invariants.

, Vol. 1, No. 1, Article . Publication date: March 2022.

Scalable Linear Invariant Generation with Farkas’ Lemma 25

REFERENCES
[1] Assalé Adjé, Pierre-Loïc Garoche, and Victor Magron. 2015. Property-based Polynomial Invariant Generation Using

Sums-of-Squares Optimization. In SAS (LNCS, Vol. 9291). Springer, 235–251.
[2] Assalé Adjé, Stéphane Gaubert, and Eric Goubault. 2012. Coupling policy iteration with semi-definite relaxation to

compute accurate numerical invariants in static analysis. Log. Methods Comput. Sci. 8, 1 (2012). https://doi.org/10.

2168/LMCS-8(1:1)2012

[3] Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. 2012. Ufo: A Framework for Abstraction- and

Interpolation-Based Software Verification. In CAV (LNCS, Vol. 7358). Springer, 672–678. https://doi.org/10.1007/978-3-

642-31424-7_48

[4] Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. 2010. Multi-dimensional Rankings, Program

Termination, and Complexity Bounds of Flowchart Programs. In SAS (LNCS, Vol. 6337). Springer, 117–133. https:

//doi.org/10.1007/978-3-642-15769-1_8

[5] Arduino [n.d.]. Arduino: An open-source electronics platform based on easy-to-use hardware and software. https:

//github.com/arkhipenko/TaskScheduler.

[6] Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi. 2021. Polynomial

reachability witnesses via Stellensätze. In PLDI. ACM, 772–787. https://doi.org/10.1145/3453483.3454076

[7] Roberto Bagnara, Patricia M. Hill, Elisa Ricci, and Enea Zaffanella. 2003. Precise Widening Operators for Convex

Polyhedra. In Static Analysis, 10th International Symposium, SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings
(Lecture Notes in Computer Science, Vol. 2694), Radhia Cousot (Ed.). Springer, 337–354. https://doi.org/10.1007/3-540-

44898-5_19

[8] Roberto Bagnara, Elisa Ricci, Enea Zaffanella, and Patricia M. Hill. 2002. Possibly Not Closed Convex Polyhedra

and the Parma Polyhedra Library. In SAS (Lecture Notes in Computer Science, Vol. 2477). Springer, 213–229. https:

//doi.org/10.1007/3-540-45789-5_17

[9] Roberto Bagnara, Enric Rodríguez-Carbonell, and Enea Zaffanella. 2005. Generation of Basic Semi-algebraic Invariants

Using Convex Polyhedra. In SAS (LNCS, Vol. 3672). Springer, 19–34. https://doi.org/10.1007/11547662_4

[10] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2005. Linear Ranking with Reachability. In CAV (LNCS, Vol. 3576).
Springer, 491–504. https://doi.org/10.1007/11513988_48

[11] Jason Breck, John Cyphert, Zachary Kincaid, and Thomas W. Reps. 2020. Templates and recurrences: better together.

In PLDI. ACM, 688–702. https://doi.org/10.1145/3385412.3386035

[12] Aleksandar Chakarov and Sriram Sankaranarayanan. 2014. Expectation Invariants for Probabilistic Program Loops

as Fixed Points. In SAS (LNCS, Vol. 8723), Markus Müller-Olm and Helmut Seidl (Eds.). Springer, 85–100. https:

//doi.org/10.1007/978-3-319-10936-7_6

[13] Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. 2019. Non-polynomial Worst-Case Analysis of

Recursive Programs. ACM Trans. Program. Lang. Syst. 41, 4 (2019), 20:1–20:52. https://doi.org/10.1145/3339984

[14] Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Ehsan Kafshdar Goharshady. 2020. Polynomial

invariant generation for non-deterministic recursive programs. In PLDI. ACM, 672–687. https://doi.org/10.1145/

3385412.3385969

[15] Krishnendu Chatterjee, Petr Novotný, and Dorde Zikelic. 2017. Stochastic invariants for probabilistic termination. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017. ACM, 145–160. https://doi.org/10.1145/3009837.3009873

[16] Yu-Fang Chen, Chih-Duo Hong, Bow-Yaw Wang, and Lijun Zhang. 2015. Counterexample-Guided Polynomial Loop

Invariant Generation by Lagrange Interpolation. In CAV (LNCS, Vol. 9206). Springer, 658–674. https://doi.org/10.1007/

978-3-319-21690-4_44

[17] Yinghua Chen, Bican Xia, Lu Yang, Naijun Zhan, and Chaochen Zhou. 2007. Discovering Non-linear Ranking Functions

by Solving Semi-algebraic Systems. In ICTAC (LNCS, Vol. 4711). Springer, 34–49. https://doi.org/10.1007/978-3-540-

75292-9_3

[18] Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. 2003. Linear Invariant Generation Using Non-linear

Constraint Solving. In CAV (LNCS, Vol. 2725). Springer, 420–432. https://doi.org/10.1007/978-3-540-45069-6_39

[19] Michael Colón and Henny Sipma. 2001. Synthesis of Linear Ranking Functions. In TACAS (LNCS, Vol. 2031). Springer,
67–81. https://doi.org/10.1007/3-540-45319-9_6

[20] Patrick Cousot. 2005. Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation

and Semidefinite Programming. In VMCAI (LNCS, Vol. 3385). Springer, 1–24. https://doi.org/10.1007/978-3-540-30579-

8_1

[21] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: AUnified LatticeModel for Static Analysis of Programs

by Construction or Approximation of Fixpoints. In POPL. ACM, 238–252. https://doi.org/10.1145/512950.512973

[22] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival.

2005. The ASTREÉ Analyzer. In ESOP (LNCS, Vol. 3444). Springer, 21–30. https://doi.org/10.1007/978-3-540-31987-0_3

, Vol. 1, No. 1, Article . Publication date: March 2022.

https://doi.org/10.2168/LMCS-8(1:1)2012
https://doi.org/10.2168/LMCS-8(1:1)2012
https://doi.org/10.1007/978-3-642-31424-7_48
https://doi.org/10.1007/978-3-642-31424-7_48
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.1007/978-3-642-15769-1_8
https://github.com/arkhipenko/TaskScheduler
https://github.com/arkhipenko/TaskScheduler
https://doi.org/10.1145/3453483.3454076
https://doi.org/10.1007/3-540-44898-5_19
https://doi.org/10.1007/3-540-44898-5_19
https://doi.org/10.1007/3-540-45789-5_17
https://doi.org/10.1007/3-540-45789-5_17
https://doi.org/10.1007/11547662_4
https://doi.org/10.1007/11513988_48
https://doi.org/10.1145/3385412.3386035
https://doi.org/10.1007/978-3-319-10936-7_6
https://doi.org/10.1007/978-3-319-10936-7_6
https://doi.org/10.1145/3339984
https://doi.org/10.1145/3385412.3385969
https://doi.org/10.1145/3385412.3385969
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1007/978-3-319-21690-4_44
https://doi.org/10.1007/978-3-319-21690-4_44
https://doi.org/10.1007/978-3-540-75292-9_3
https://doi.org/10.1007/978-3-540-75292-9_3
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/3-540-45319-9_6
https://doi.org/10.1007/978-3-540-30579-8_1
https://doi.org/10.1007/978-3-540-30579-8_1
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-540-31987-0_3

26 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

[23] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery of Linear Restraints Among Variables of a Program.

In POPL. ACM Press, 84–96. https://doi.org/10.1145/512760.512770

[24] CPAchecker [n.d.]. CPAchecker: The Configurable Software-Verification Platform. https://cpachecker.sosy-lab.org.

[25] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. 2008. DySy: dynamic symbolic execution for invariant

inference. In ICSE. ACM, 281–290. https://doi.org/10.1145/1368088.1368127

[26] Cristina David, Pascal Kesseli, Daniel Kroening, and Matt Lewis. 2016. Danger Invariants. In FM (LNCS, Vol. 9995).
182–198. https://doi.org/10.1007/978-3-319-48989-6_12

[27] Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. 2016. Polynomial Invariants by Linear Algebra. In ATVA
(LNCS, Vol. 9938). 479–494. https://doi.org/10.1007/978-3-319-46520-3_30

[28] Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. 2017. Synthesizing Invariants by Solving Solvable Loops.

In ATVA (LNCS, Vol. 10482). Springer, 327–343. https://doi.org/10.1007/978-3-319-68167-2_22

[29] Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan. 2013. Inductive invariant generation via abductive

inference. In OOPSLA. ACM, 443–456. https://doi.org/10.1145/2509136.2509511

[30] J. Farkas. 1894. A Fourier-féle mechanikai elv alkalmazásai (Hungarian). Mathematikaiés Természettudományi Értesitö
12 (1894), 457–472.

[31] Azadeh Farzan and Zachary Kincaid. 2015. Compositional Recurrence Analysis. In FMCAD. IEEE, 57–64.
[32] Yijun Feng, Lijun Zhang, David N. Jansen, Naijun Zhan, and Bican Xia. 2017. Finding Polynomial Loop Invariants for

Probabilistic Programs. In ATVA (LNCS, Vol. 10482). Springer, 400–416. https://doi.org/10.1007/978-3-319-68167-2_26

[33] Komei Fukuda and Alain Prodon. 1995. Double Description Method Revisited. In Combinatorics and Computer Science,
8th Franco-Japanese and 4th Franco-Chinese Conference, Brest, France, July 3-5, 1995, Selected Papers (Lecture Notes
in Computer Science, Vol. 1120), Michel Deza, Reinhardt Euler, and Yannis Manoussakis (Eds.). Springer, 91–111.

https://doi.org/10.1007/3-540-61576-8_77

[34] Ting Gan, Bican Xia, Bai Xue, Naijun Zhan, and Liyun Dai. 2020. Nonlinear Craig Interpolant Generation. In CAV
(LNCS, Vol. 12224). Springer, 415–438. https://doi.org/10.1007/978-3-030-53288-8_20

[35] Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. 2014. ICE: A Robust Framework for Learning

Invariants. In CAV (LNCS, Vol. 8559). Springer, 69–87. https://doi.org/10.1007/978-3-319-08867-9_5

[36] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016. Learning invariants using decision trees and

implication counterexamples. In POPL. ACM, 499–512. https://doi.org/10.1145/2837614.2837664

[37] Roberto Giacobazzi and Francesco Ranzato. 1997. Completeness in Abstract Interpretation: A Domain Perspective. In

AMAST (LNCS, Vol. 1349). Springer, 231–245. https://doi.org/10.1007/BFb0000474

[38] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. 2009. Constraint-Based Invariant Inference over

Predicate Abstraction. In VMCAI (LNCS, Vol. 5403). Springer, 120–135. https://doi.org/10.1007/978-3-540-93900-9_13

[39] Ashutosh Gupta and Andrey Rybalchenko. 2009. InvGen: An Efficient Invariant Generator. In CAV (LNCS, Vol. 5643).
Springer, 634–640. https://doi.org/10.1007/978-3-642-02658-4_48

[40] Nicolas Halbwachs, Yann-Erick Proy, and Patrick Roumanoff. 1997. Verification of Real-Time Systems using Linear

Relation Analysis. Formal Methods Syst. Des. 11, 2 (1997), 157–185. https://doi.org/10.1023/A:1008678014487

[41] Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2020. Learning fast and precise numerical

analysis. In PLDI. ACM, 1112–1127. https://doi.org/10.1145/3385412.3386016

[42] Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. 2018. Polynomial Invariants for Affine Programs.

In LICS. ACM, 530–539. https://doi.org/10.1145/3209108.3209142

[43] Andreas Humenberger, Maximilian Jaroschek, and Laura Kovács. 2017. Automated Generation of Non-Linear Loop

Invariants Utilizing Hypergeometric Sequences. In ISSAC. ACM, 221–228. https://doi.org/10.1145/3087604.3087623

[44] Andreas Humenberger and Laura Kovács. 2021. Algebra-Based Synthesis of Loops and Their Invariants (Invited Paper).

In VMCAI (LNCS, Vol. 12597). Springer, 17–28. https://doi.org/10.1007/978-3-030-67067-2_2

[45] Deepak Kapur. 2005. Automatically Generating Loop Invariants Using Quantifier Elimination. In Deduction and
Applications (Dagstuhl Seminar Proceedings, Vol. 05431). Internationales Begegnungs- und Forschungszentrum für

Informatik (IBFI), Schloss Dagstuhl, Germany. http://drops.dagstuhl.de/opus/volltexte/2006/511

[46] Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Carroll C. Morgan. 2010. Linear-Invariant Generation

for Probabilistic Programs: - Automated Support for Proof-Based Methods. In SAS (LNCS, Vol. 6337). Springer, 390–406.
https://doi.org/10.1007/978-3-642-15769-1_24

[47] Zachary Kincaid, Jason Breck, Ashkan Forouhi Boroujeni, and Thomas W. Reps. 2017. Compositional recurrence

analysis revisited. In PLDI. ACM, 248–262. https://doi.org/10.1145/3062341.3062373

[48] Zachary Kincaid, John Cyphert, Jason Breck, and Thomas W. Reps. 2018. Non-linear reasoning for invariant synthesis.

Proc. ACM Program. Lang. 2, POPL (2018), 54:1–54:33. https://doi.org/10.1145/3158142

[49] Leslie Lamport. 1987. A Fast Mutual Exclusion Algorithm. ACM Trans. Comput. Syst. 5, 1 (1987), 1–11. https:

//doi.org/10.1145/7351.7352

, Vol. 1, No. 1, Article . Publication date: March 2022.

https://doi.org/10.1145/512760.512770
https://cpachecker.sosy-lab.org
https://doi.org/10.1145/1368088.1368127
https://doi.org/10.1007/978-3-319-48989-6_12
https://doi.org/10.1007/978-3-319-46520-3_30
https://doi.org/10.1007/978-3-319-68167-2_22
https://doi.org/10.1145/2509136.2509511
https://doi.org/10.1007/978-3-319-68167-2_26
https://doi.org/10.1007/3-540-61576-8_77
https://doi.org/10.1007/978-3-030-53288-8_20
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1145/2837614.2837664
https://doi.org/10.1007/BFb0000474
https://doi.org/10.1007/978-3-540-93900-9_13
https://doi.org/10.1007/978-3-642-02658-4_48
https://doi.org/10.1023/A:1008678014487
https://doi.org/10.1145/3385412.3386016
https://doi.org/10.1145/3209108.3209142
https://doi.org/10.1145/3087604.3087623
https://doi.org/10.1007/978-3-030-67067-2_2
http://drops.dagstuhl.de/opus/volltexte/2006/511
https://doi.org/10.1007/978-3-642-15769-1_24
https://doi.org/10.1145/3062341.3062373
https://doi.org/10.1145/3158142
https://doi.org/10.1145/7351.7352
https://doi.org/10.1145/7351.7352

Scalable Linear Invariant Generation with Farkas’ Lemma 27

[50] Wang Lin, MinWu, Zhengfeng Yang, and Zhenbing Zeng. 2014. Proving total correctness and generating preconditions

for loop programs via symbolic-numeric computation methods. Frontiers Comput. Sci. 8, 2 (2014), 192–202.
[51] Zohar Manna and Amir Pnueli. 1995. Temporal verification of reactive systems - safety. Springer.
[52] Kenneth L. McMillan. 2008. Quantified Invariant Generation Using an Interpolating Saturation Prover. In TACAS (LNCS,

Vol. 4963), C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, 413–427. https://doi.org/10.1007/978-3-540-78800-3_31

[53] Markus Müller-Olm and Helmut Seidl. 2004. Computing polynomial program invariants. Inf. Process. Lett. 91, 5 (2004),
233–244. https://doi.org/10.1016/j.ipl.2004.05.004

[54] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2012. Using dynamic analysis to discover

polynomial and array invariants. In ICSE. IEEE Computer Society, 683–693. https://doi.org/10.1109/ICSE.2012.6227149

[55] OCRS [n.d.]. OCRS: Operational calculus recurrence solver. https://github.com/cyphertjohn/OCRS.

[56] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by

interactive generalization. In PLDI. ACM, 614–630. https://doi.org/10.1145/2908080.2908118

[57] Andreas Podelski and Andrey Rybalchenko. 2004. A Complete Method for the Synthesis of Linear Ranking Functions.

In VMCAI (LNCS, Vol. 2937). Springer, 239–251. https://doi.org/10.1007/978-3-540-24622-0_20

[58] PPL 2021. Parma Polyhedra Library, PPL 1.2. https://www.bugseng.com/parma-polyhedra-library.

[59] Enric Rodríguez-Carbonell and Deepak Kapur. 2004. An Abstract Interpretation Approach for Automatic Generation

of Polynomial Invariants. In SAS (LNCS, Vol. 3148). Springer, 280–295. https://doi.org/10.1007/978-3-540-27864-1_21

[60] Enric Rodríguez-Carbonell and Deepak Kapur. 2004. Automatic Generation of Polynomial Loop Invariants: Algebraic

Foundations. In ISSAC. ACM, 266–273. https://doi.org/10.1145/1005285.1005324

[61] Enric Rodríguez-Carbonell and Deepak Kapur. 2007. Automatic generation of polynomial invariants of bounded degree

using abstract interpretation. Sci. Comput. Program. 64, 1 (2007), 54–75. https://doi.org/10.1016/j.scico.2006.03.003

[62] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. 2004. Non-linear loop invariant generation using Gröbner

bases. In POPL. ACM, 318–329. https://doi.org/10.1145/964001.964028

[63] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. 2004. Constraint-Based Linear-Relations Analysis. In

SAS (LNCS, Vol. 3148). Springer, 53–68. https://doi.org/10.1007/978-3-540-27864-1_7

[64] Alexander Schrijver. 1999. Theory of linear and integer programming. Wiley.

[65] SeaHorn [n.d.]. SeaHorn: A fully automated analysis framework for LLVM-based languages. http://seahorn.github.io.

[66] Rahul Sharma and Alex Aiken. 2016. From invariant checking to invariant inference using randomized search. Formal
Methods Syst. Des. 48, 3 (2016), 235–256. https://doi.org/10.1007/s10703-016-0248-5

[67] Rahul Sharma, Isil Dillig, Thomas Dillig, and Alex Aiken. 2011. Simplifying Loop Invariant Generation Using Splitter

Predicates. In Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings (Lecture Notes in Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer,

703–719. https://doi.org/10.1007/978-3-642-22110-1_57

[68] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and Aditya V. Nori. 2013. A Data Driven

Approach for Algebraic Loop Invariants. In ESOP (LNCS, Vol. 7792). Springer, 574–592. https://doi.org/10.1007/978-3-

642-37036-6_31

[69] Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2017. Fast polyhedra abstract domain. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017,
Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 46–59.

[70] Sparse [n.d.]. Sparse: C language semantic parser. https://lwn.net/Articles/689907/.

[71] StInG [n.d.]. StInG: Stanford Invariant Generator. http://theory.stanford.edu/~srirams/Software/sting.html.

[72] Jun Sun, Yang Liu, Jin Song Dong, and Xian Zhang. 2009. Verifying Stateful Timed CSP Using Implicit Clocks and Zone

Abstraction. In Formal Methods and Software Engineering, 11th International Conference on Formal Engineering Methods,
ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5885),
Karin K. Breitman and Ana Cavalcanti (Eds.). Springer, 581–600. https://doi.org/10.1007/978-3-642-10373-5_30

[73] Delaram Talaashrafi. 2018. Complexity Results for Fourier-Motzkin Elimination (Thesis format: Monograph). Ph.D.

Dissertation. The University of Western Ontario London.

[74] UltimateAutomizer [n.d.]. UltimateAutomizer: A Software Model Checker. https://monteverdi.informatik.uni-freiburg.

de/tomcat/Website/?ui=tool&tool=automizer.

[75] Rongchen Xu, Fei He, and Bow-Yaw Wang. 2020. Interval counterexamples for loop invariant learning. In ESEC/FSE.
ACM, 111–122. https://doi.org/10.1145/3368089.3409752

[76] Lu Yang, Chaochen Zhou, Naijun Zhan, and Bican Xia. 2010. Recent advances in program verification through computer

algebra. Frontiers Comput. Sci. China 4, 1 (2010), 1–16. https://doi.org/10.1007/s11704-009-0074-7

[77] Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui Gu. 2020. Learning nonlinear loop invariants with

gated continuous logic networks. In PLDI. ACM, 106–120. https://doi.org/10.1145/3385412.3385986

[78] Hengjun Zhao, Naijun Zhan, Deepak Kapur, and Kim G. Larsen. 2012. A "Hybrid" Approach for Synthesizing Optimal

Controllers of Hybrid Systems: A Case Study of the Oil Pump Industrial Example. In FM 2012: Formal Methods - 18th

, Vol. 1, No. 1, Article . Publication date: March 2022.

https://doi.org/10.1007/978-3-540-78800-3_31
https://doi.org/10.1016/j.ipl.2004.05.004
https://doi.org/10.1109/ICSE.2012.6227149
https://github.com/cyphertjohn/OCRS
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-27864-1_21
https://doi.org/10.1145/1005285.1005324
https://doi.org/10.1016/j.scico.2006.03.003
https://doi.org/10.1145/964001.964028
https://doi.org/10.1007/978-3-540-27864-1_7
http://seahorn.github.io
https://doi.org/10.1007/s10703-016-0248-5
https://doi.org/10.1007/978-3-642-22110-1_57
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-37036-6_31
https://lwn.net/Articles/689907/
http://theory.stanford.edu/~srirams/Software/sting.html
https://doi.org/10.1007/978-3-642-10373-5_30
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=tool&tool=automizer
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=tool&tool=automizer
https://doi.org/10.1145/3368089.3409752
https://doi.org/10.1007/s11704-009-0074-7
https://doi.org/10.1145/3385412.3385986

28 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

International Symposium, Paris, France, August 27-31, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7436),
Dimitra Giannakopoulou and Dominique Méry (Eds.). Springer, 471–485.

, Vol. 1, No. 1, Article . Publication date: March 2022.

Scalable Linear Invariant Generation with Farkas’ Lemma 29

A PSEUDO-CODE FOR SEGMENTED SUBSUMPTION TESTING

Algorithm 2 Segmented Subsumption Testing

Input:

∧𝑚
𝑖=1𝐶𝑖 : the CNF formula obtained from Step A4 (Section 3.1) in the approach [Colón et al.

2003] where each 𝐶𝑖 =
∨𝑁𝑖

𝑗=1
𝑐𝑖, 𝑗 is the 𝑖-th conjunctive clause and is a disjunction of polyhedra

over the unknown coefficients in the template;

𝑘 : the size of segments (the size could be different but for simplicity we choose a equal size

except for the last segment)

Output: Φ′ : the segmented CNF formula

1: {𝜙0, · · · , 𝜙 (⌈𝑚/𝑘 ⌉−1) } ← divide

∧𝑚
𝑖=1𝐶𝑖 into ⌈𝑚/𝑘⌉ segments;

//𝜙𝑖 = 𝐶𝑝 ∧ · · · ∧𝐶𝑞 where 𝑝 = 𝑖 · 𝑘 + 1 and 𝑞 = 𝑖 · 𝑘 + 𝑘 (except 𝑞 =𝑚 if 𝑖 = ⌈𝑚/𝑘⌉ − 1)
2: Φ𝑖 ← ∅ (for 0 ≤ 𝑖 ≤ ⌈𝑚/𝑘⌉ − 1);
3: for 𝑖 = 0 to ⌈𝑚/𝑘⌉ − 1 do
4:

∨
𝑄𝑘𝑝 ,...,𝑘𝑞 ← expand 𝜙𝑖 fully into its equivalent DNF;

//𝑄𝑘𝑝 ,...,𝑘𝑞 =
∧𝑞

𝑖=𝑝
𝑐𝑖,𝑘𝑖 where 1 ≤ 𝑘𝑝 ≤ 𝑛𝑝 , · · · , 1 ≤ 𝑘𝑞 ≤ 𝑛𝑞

5: for each 𝑄𝑘𝑝 ,...,𝑘𝑞 and 𝑄𝑘′𝑝 ,...,𝑘
′
𝑞
such that 𝑄𝑘𝑝 ,...,𝑘𝑞 ≠ 𝑄𝑘′𝑝 ,...,𝑘

′
𝑞
do

//1 ≤ 𝑘𝑖 , 𝑘
′
𝑖 ≤ 𝑁𝑖 where 𝑝 ≤ 𝑖 ≤ 𝑞

6: if 𝑄𝑘𝑝 ,...,𝑘𝑞 ⊆ 𝑄𝑘′𝑝 ,...,𝑘
′
𝑞
then

7: remove subsumed 𝑄𝑘𝑝 ,...,𝑘𝑞 from

∨
𝑄𝑘𝑝 ,...,𝑘𝑞 ;

8: end if

9: end for

10: Φ𝑖 ←
∨
𝑄𝑘𝑝 ,...,𝑘𝑞 ;

11: end for

12: Φ′← Φ0

∧ · · ·∧Φ(⌈𝑚/𝑘 ⌉−1) ;
13: return Φ′;

, Vol. 1, No. 1, Article . Publication date: March 2022.

30 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

B DETAILED EXPERIMENTAL RESULTS

Table 7. Experimental Results for Parallel Computation (Reordered-Expansion: Gen-Proj)

Benchmarks Time (Reordered-Expansion: Gen-Proj)

Name Loc Dim Line 1 2 3 4 5 6 7 8 9 10 11 12 Max Speedup(original) Speedup

Scheduler’

2p 2 16 - 0.01 0 - - - - - - - - - - 0.01 1.00X 1.00X

3p 3 33 - 0.04 0.03 0.03 - - - - - - - - - 0.04 1.70X 4.25X

4p 4 56 - 0.40 0.45 0.32 0.21 - - - - - - - - 0.45 44.06X 135.13X

5p 5 85 - 6.93 5.81 7.36 4.54 1.88 - - - - - - - 7.36 280.40X 1010.37X

6p 6 120 - 42.30 178.32 310.36 216.76 114.69 30.32 - - - - - - 310.36 >40.32X >115.99X

7p 7 161 - - - - - - - - - - - - - - - -

Scheduler

3p 3 33 336 0.03 0.04 0.03 - - - - - - - - - 0.04 1.70X 4.25X

4p 4 56 609 0.23 0.27 0.26 0.22 - - - - - - - - 0.27 4.24X 15.40X

5p 5 85 1017 2.40 3.29 4.16 2.83 1.29 - - - - - - - 4.16 9.72X 32.64X

6p 6 120 1587 27.75 47.90 80.32 55.99 44.81 21.19 - - - - - - 80.32 27.13X 93.89X

7p 7 161 2352 - - - - - - - - - - - - - - -

Fischer

6p 7 63 710 0.40 0.19 0.20 0.26 0.47 1.21 0.34 - - - - - 1.21 2.99X 7.58X

7p 8 80 987 0.90 0.44 0.45 0.53 0.85 2.17 7.40 0.86 - - - - 7.40 4.35X 7.99X

8p 9 99 1327 1.78 0.94 0.98 1.12 1.67 3.89 12.34 45.49 2.21 - - - 45.49 5.30X 8.21X

9p 10 120 1736 3.31 1.89 1.95 2.22 3.33 7.15 21.29 74.17 277.24 5.71 - - 277.24 5.89X 8.46X

10p 11 143 2218 5.97 3.66 3.82 4.38 6.45 13.68 38.88 128.98 456.91 1,684.68 14.46 - 1,684.68 6.20X 8.70X

11p 12 168 2780 10.42 6.96 7.25 8.55 12.97 27.77 76.58 240.98 813.28 2,841.46 10,224.63 36.55 10,224.63 >2.51X >3.52X

Cars

2p 3 27 216 0.01 <0.01 <0.01 - - - - - - - - - 0.01 1.00X 1.00X

3p 5 60 616 0.84 0.08 0.09 0.10 0.10 - - - - - - - 0.84 463.38X 667.50X

4p 7 105 1283 76.99 1.55 1.48 1.69 1.67 1.72 1.73 - - - - - 76.99 >414.60X >467.59X

Table 8. Experimental Results for Parallel Computation (Reordered-Expansion: FME)

Benchmarks Time (Reordered-Expansion: FME)

Name Loc Dim Line 1 2 3 4 5 6 7 8 9 10 11 12 Max Speedup(original) Speedup

Scheduler’

2p 2 16 - 0.01 <0.01 - - - - - - - - - - 0.01 1.00X 1.00X

3p 3 33 - 0.05 0.04 0.05 - - - - - - - - - 0.05 1.21X 3.40X

4p 4 56 - 0.48 0.50 0.36 0.26 - - - - - - - - 0.50 38.00X 121.62X

5p 5 85 - 7.04 5.93 7.46 4.66 2.02 - - - - - - - 7.46 274.30X 996.82X

6p 6 120 - 42.26 181.22 313.45 220.01 116.21 33.12 - - - - - - 313.45 >39.72X >114.85X

7p 7 161 - - - - - - - - - - - - - - - -

Scheduler

3p 3 33 336 0.04 0.05 0.04 - - - - - - - - - 0.05 1.30X 3.40X

4p 4 56 609 0.29 0.32 0.30 0.27 - - - - - - - - 0.32 3.52X 13.00X

5p 5 85 1017 2.51 3.44 4.30 2.91 1.42 - - - - - - - 4.30 9.31X 31.58X

6p 6 120 1587 28.43 51.57 80.06 58.66 43.09 23.49 - - - - - - 80.06 26.43X 94.19X

7p 7 161 2352 - - - - - - - - - - - - - - -

Fischer

6p 7 63 710 0.41 0.23 0.23 0.28 0.46 1.25 0.35 - - - - - 1.25 2.85X 7.34X

7p 8 80 987 0.91 0.51 0.52 0.60 0.93 2.23 7.54 0.94 - - - - 7.54 4.17X 7.84X

8p 9 99 1327 1.83 1.06 1.09 1.23 1.80 4.03 12.48 46.06 2.39 - - - 46.06 5.19X 8.11X

9p 10 120 1736 3.55 2.11 2.18 2.46 3.51 7.36 21.81 75.38 284.34 6.09 - - 284.34 5.73X 8.25X

10p 11 143 2218 6.43 4.03 4.22 4.81 7.05 14.18 40.05 131.75 465.63 1,736.17 14.94 - 1,736.17 6.03X 8.44X

11p 12 168 2780 10.96 7.47 7.83 9.11 13.64 28.67 78.04 244.84 822.43 2,869.50 10,339.85 37.42 10,339.85 >2.48X >3.48X

Cars

2p 3 27 216 0.01 0.01 <0.01 - - - - - - - - - 0.01 0.50X 1.00X

3p 5 60 616 0.85 0.09 0.09 0.11 0.11 - - - - - - - 0.85 448.56X 659.64X

4p 7 105 1283 77.60 1.36 1.32 1.52 1.52 1.56 1.55 - - - - - 77.60 >416.52X >463.91X

Table 9. Experimental Results for Parallel Computation (Reordered-Expansion: Block)

Benchmarks Time (Reordered-Expansion: Block)

Name Loc Dim Line 1 2 3 4 5 6 7 8 9 10 11 12 Max Speedup(original) Speedup

Scheduler’

2p 2 16 - 0.01 0.02 - - - - - - - - - - 0.02 0.33X 0.50X

3p 3 33 - 0.11 0.10 0.10 - - - - - - - - - 0.11 0.54X 1.54X

4p 4 56 - 0.65 0.69 0.59 0.48 - - - - - - - - 0.69 25.23X 88.13X

5p 5 85 - 7.68 6.62 8.21 5.34 2.64 - - - - - - - 8.21 243.89X 905.76X

6p 6 120 - 44.24 177.94 313.50 220.60 112.74 18.25 - - - - - - 313.50 >40.57X >114.83X

7p 7 161 - 940.00 5,756.17 11,109.94 9,211.10 5,232.45 2,660.25 107.28 - - - - - 11,109.94 >1.03X >3.24X

Scheduler

3p 3 33 336 0.08 0.09 0.09 - - - - - - - - - 0.09 0.65X 1.88X

4p 4 56 609 0.46 0.52 0.49 0.49 - - - - - - - - 0.52 2.12X 8.00X

5p 5 85 1017 3.11 4.07 4.87 3.50 2.00 - - - - - - - 4.87 7.73X 27.88X

6p 6 120 1587 30.10 47.30 75.93 59.12 41.39 8.47 - - - - - - 75.93 28.75X 99.32X

7p 7 161 2352 452.42 778.46 1,340.36 893.81 746.18 506.50 41.51 - - - - - 1,340.36 >7.56X >26.86X

Fischer

6p 7 63 710 0.43 0.25 0.27 0.30 0.50 1.29 0.40 - - - - - 1.29 2.66X 7.11X

7p 8 80 987 0.96 0.58 0.59 0.67 1.00 2.30 7.61 1.02 - - - - 7.61 4.01X 7.77X

8p 9 99 1327 1.96 1.18 1.21 1.37 1.93 4.15 12.87 46.34 2.51 - - - 46.34 5.08X 8.06X

9p 10 120 1736 3.74 2.38 2.38 2.67 3.76 7.68 22.17 76.12 286.63 6.23 - - 286.63 5.66X 8.18X

10p 11 143 2218 6.68 4.39 4.51 5.09 7.23 14.63 40.31 132.17 465.49 1,705.49 15.20 - 1,705.49 6.10X 8.59X

11p 12 168 2780 11.44 8.01 8.34 9.66 14.19 29.08 78.58 246.01 823.62 2,871.39 10,345.63 37.95 10,345.63 >2.48X >3.47X

Cars

2p 3 27 216 0.01 0.01 0 - - - - - - - - - 0.01 0.50X 1.00X

3p 5 60 616 1.01 0.12 0.12 0.15 0.15 - - - - - - - 1.01 361.74X 555.14X

4p 7 105 1283 77.75 1.46 1.42 1.62 1.62 1.67 1.66 - - - - - 77.75 >412.84X >463.02X

, Vol. 1, No. 1, Article . Publication date: March 2022.

Scalable Linear Invariant Generation with Farkas’ Lemma 31

Table 10. Experimental Results for Parallel Computation (Reordered-Expansion: Block+)

Benchmarks Time (Reordered-Expansion: Block+)
Name Loc Dim Line 1 2 3 4 5 6 7 8 9 10 11 12 Max Speedup(original) Speedup

Scheduler’

2p 2 16 - 0.01 0.01 - - - - - - - - - - 0.01 0.50X 1.00X

3p 3 33 - 0.05 0.04 0.05 - - - - - - - - - 0.05 1.21X 3.40X

4p 4 56 - 0.41 0.47 0.36 0.26 - - - - - - - - 0.47 40.54X 129.38X

5p 5 85 - 7.04 6.01 7.52 4.7 2 - - - - - - - 7.52 272.69X 988.87X

6p 6 120 - 41.77 175.8 308.48 216.41 110.84 15.22 - - - - - - 308.48 >41.45X >116.70X

7p 7 161 - 928.54 5,755.83 11,134.30 9,202.96 5,199.67 2,646.72 92.06 - - - - - 11,134.30 >1.03X >3.23X

Scheduler

3p 3 33 336 0.04 0.04 0.04 - - - - - - - - - 0.04 1.21X 4.25X

4p 4 56 609 0.32 0.39 0.31 0.26 - - - - - - - - 0.39 3.20X 10.66X

5p 5 85 1017 2.63 3.54 4.90 3.37 1.38 - - - - - - - 4.90 7.27X 27.71X

6p 6 120 1587 28.74 44.04 72.07 51.77 38.62 5.26 - - - - - - 72.07 31.36X 104.64X

7p 7 161 2352 440.33 776.02 1,336.13 887.65 735.75 495.42 26.99 - - - - - 1,336.13 >7.66X >26.94X

Fischer

6p 7 63 710 0.40 0.22 0.23 0.26 0.44 1.22 0.38 - - - - - 1.22 2.91X 7.52X

7p 8 80 987 0.92 0.53 0.54 0.62 1.00 2.53 7.75 1.02 - - - - 7.75 3.97X 7.63X

8p 9 99 1327 1.86 1.04 1.07 1.21 1.79 3.97 12.45 45.41 2.35 - - - 45.41 5.25X 8.22X

9p 10 120 1736 3.48 2.10 2.12 2.40 3.48 7.71 25.06 77.82 283.95 5.96 - - 283.95 5.67X 8.26X

10p 11 143 2218 6.27 3.95 4.10 4.69 6.77 13.99 39.27 134.19 469.25 1,700.51 15.39 - 1,700.51 6.11X 8.62X

11p 12 168 2780 10.91 7.46 7.77 9.10 13.51 28.25 77.18 241.64 813.60 2,841.93 10,230.51 36.98 10,230.51 >2.51X >3.51X

Cars

2p 3 27 216 0.01 0 0 - - - - - - - - - 0.01 1.00X 1.00X

3p 5 60 616 0.83 0.08 0.09 0.10 0.11 - - - - - - - 0.83 463.39X 675.54X

4p 7 105 1283 75.83 1.33 1.32 1.48 1.47 1.54 1.52 - - - - - 75.83 >426.09X >474.74X

Table 11. Experimental Results for Parallel Computation with Segmented Subsumption (Two)

Benchmarks Time (Reordered-Expansion: Block+: Two)

Name Loc Dim Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Max Speedup(original) Speedup

Scheduler’

2p 2 16 - 0.02 0.01 - - - - - - - - - - - - 0.02 0.33X 0.50X

3p 3 33 - 0.08 0.06 0.06 - - - - - - - - - - - 0.08 0.85X 2.13X

4p 4 56 - 0.51 0.56 0.44 0.33 - - - - - - - - - - 0.56 33.05X 108.59X

5p 5 85 - 7.33 5.63 4.11 2.26 1.53 - - - - - - - - - 7.33 356.49X 1,014.51X

6p 6 120 - 48.73 180.93 302.22 116.35 58.27 14.28 - - - - - - - - 302.22 >49.95X >119.12X

7p 7 161 - 1,009.57 5,800.58 5,944.38 4,729.79 1,418.55 718.13 100.28 - - - - - - - 5,944.38 >1.83X >6.06X

Scheduler

3p 3 33 336 0.07 0.06 0.06 - - - - - - - - - - - 0.07 0.89X 2.43X

4p 4 56 609 0.49 0.48 0.44 0.37 - - - - - - - - - - 0.49 2.34X 8.49X

5p 5 85 1017 3.16 4.42 3.57 2.44 1.62 - - - - - - - - - 4.42 8.93X 30.72X

6p 6 120 1587 30.50 45.44 70.04 30.00 19.86 5.69 - - - - - - - - 70.04 37.42X 107.67X

7p 7 161 2352 409.76 713.09 750.41 466.37 235.03 146.37 31.63 - - - - - - - 750.41 >13.08X >47.97X

Fischer

6p 7 63 710 0.44 0.36 0.33 0.39 0.45 0.79 0.43 - - - - - - - 0.79 2.88X 11.62X

7p 8 80 987 1.07 0.74 0.75 0.79 0.97 1.25 2.85 1.03 - - - - - - 2.85 6.26X 20.76X

8p 9 99 1327 1.86 1.43 1.50 1.63 1.78 2.64 3.95 11.14 2.36 - - - - - 11.14 13.21X 33.54X

9p 10 120 1736 3.96 2.82 2.88 2.94 3.51 4.25 8.32 13.73 43.96 5.59 - - - - 43.96 25.51X 53.37X

10p 11 143 2218 6.16 4.96 5.25 5.66 6.16 9.00 12.24 31.03 54.23 187.85 12.93 - - - 187.85 43.71X 78.07X

11p 12 168 2780 11.98 9.25 9.70 10.06 12.43 14.46 28.29 41.72 125.05 218.08 768.56 30.48 - - 768.56 >28.12X >46.84X

12p 13 195 3453 16.99 15.11 18.96 21.41 23.27 36.89 45.97 116.61 175.17 568.44 972.30 3,437.67 72.98 - 3,437.67 >6.52X >10.47X

13p 14 224 4397 33.59 46.27 51.49 53.28 67.60 73.81 156.35 187.12 544.83 772.99 2,596.30 4,147.56 14,885.30 195.51 14,885.30 >1.51X >2.42X

Cars

2p 3 27 216 0.02 0 0.02 - - - - - - - - - - - 0.02 0.25X 0.50X

3p 5 60 616 1.04 0.22 0.23 0.25 0.27 - - - - - - - - - 1.04 278.96X 539.13X

4p 7 105 1283 84.46 2.52 2.51 2.74 2.68 2.70 2.74 - - - - - - - 84.46 >358.74X >426.24X

Table 12. Experimental Results for Parallel Computation with Segmented Subsumption (Three)

Benchmarks Time (Reordered-Expansion: Block+: Three)
Name Loc Dim Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Max Speedup(original) Speedup

Scheduler’

2p 2 16 - 0.01 0.01 - - - - - - - - - - - - 0.01 0.50X 1.00X

3p 3 33 - 0.08 0.08 0.08 - - - - - - - - - - - 0.08 0.71X 2.13X

4p 4 56 - 0.57 0.61 0.48 0.36 - - - - - - - - - - 0.61 30.10X 99.69X

5p 5 85 - 4.72 5.10 4.13 2.37 2.37 - - - - - - - - - 5.10 397.88X 1458.11X

6p 6 120 - 70.31 185.54 183.11 144.43 43.51 21.89 - - - - - - - - 185.54 >55.49X >194.03X

7p 7 161 - 1,243.21 6,448.61 11,367.73 4,793.80 1,678.43 759.46 129.51 - - - - - - - 11,367.73 >1.36X >3.17X

Scheduler

3p 3 33 336 0.07 0.06 0.07 - - - - - - - - - - - 0.07 0.85X 2.43X

4p 4 56 609 0.53 0.58 0.51 0.42 - - - - - - - - - - 0.58 2.04X 7.17X

5p 5 85 1017 10.18 11.10 7.89 4.80 3.76 - - - - - - - - - 11.10 3.60X 12.23X

6p 6 120 1587 39.01 51.71 51.06 40.59 17.51 9.62 - - - - - - - - 51.71 36.00X 145.84X

7p 7 161 2352 458.80 800.71 1,337.00 514.26 423.28 173.42 53.08 - - - - - - - 1,337.00 >9.57X >26.93X

Fischer

6p 7 63 710 0.50 0.38 0.39 0.40 0.48 0.77 0.48 - - - - - - - 0.77 2.70X 11.92X

7p 8 80 987 1.03 0.82 0.82 0.85 0.98 1.21 1.84 1.23 - - - - - - 1.84 6.74X 32.15X

8p 9 99 1327 1.99 1.56 1.61 1.72 1.87 2.27 4.33 7.52 2.52 - - - - - 7.52 14.72X 49.68X

9p 10 120 1736 3.78 3.01 3.05 3.15 3.37 4.71 6.36 9.77 29.07 5.78 - - - - 29.07 32.56X 80.70X

10p 11 143 2218 6.85 5.34 5.57 5.67 6.59 7.61 9.61 21.21 34.83 66.63 15.74 - - - 66.63 78.99X 220.09X

11p 12 168 2780 11.32 9.16 9.71 10.76 11.79 13.39 24.73 36.63 58.18 191.20 357.30 30.84 - - 357.30 >47.06X >100.76X

12p 13 195 3453 18.51 17.69 19.32 19.96 21.11 33.91 41.13 52.76 160.55 247.41 420.38 1,563.39 73.52 - 1,563.39 >13.38X >23.03X

13p 14 224 4397 30.82 30.16 57.67 61.76 79.98 80.45 91.80 230.24 267.03 365.31 1,338.83 2,051.84 3,503.46 240.65 3,503.46 >4.27X >10.28X

Cars

2p 3 27 216 0.02 0.01 0.01 - - - - - - - - - - - 0.02 0.25X 0.50X

3p 5 60 616 0.65 0.24 0.23 0.25 0.25 - - - - - - - - - 0.65 343.99X 862.62X

4p 7 105 1283 74.29 2.39 2.56 2.74 2.66 2.70 2.44 - - - - - - - 74.29 >400.98X >484.59X

, Vol. 1, No. 1, Article . Publication date: March 2022.

32 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

Table 13. Experimental Results for Parallel Computation with Segmented Subsumption (Four)

Benchmarks Time (Reordered-Expansion: Block+: Four)
Name Loc Dim Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Max Speedup(original) Speedup

Scheduler’

2p 2 16 - 0 0.02 - - - - - - - - - - - - 0.02 0.50X 0.50X

3p 3 33 - 0.09 0.07 0.07 - - - - - - - - - - - 0.09 0.74X 1.89X

4p 4 56 - 0.74 0.80 0.64 0.51 - - - - - - - - - - 0.80 22.61X 76.01X

5p 5 85 - 6.76 5.94 6.45 3.01 2.19 - - - - - - - - - 6.76 305.39X 1,100.05X

6p 6 120 - 801.28 609.96 424.12 264.74 190.76 179.55 - - - - - - - - 801.28 >14.57X >44.93X

Scheduler

3p 3 33 336 0.05 0.08 0.08 - - - - - - - - - - - 0.08 0.81X 2.13X

4p 4 56 609 1.22 0.92 0.77 0.68 - - - - - - - - - - 1.22 1.16X 3.41X

5p 5 85 1017 19.09 19.72 15.56 10.43 7.80 - - - - - - - - - 19.72 1.87X 6.89X

6p 6 120 1587 218.92 139.75 98.58 59.09 42.02 38.46 - - - - - - - - 218.92 12.64X 34.45X

7p 7 161 2352 2,201.23 2,353.41 1,784.56 986.37 777.18 460.28 423.88 - - - - - - - 2,353.41 >4.01X >15.30X

Fischer

6p 7 63 710 0.67 0.53 0.55 0.56 0.62 0.79 0.68 - - - - - - - 0.79 2.09X 11.62X

7p 8 80 987 1.31 1.06 1.11 1.09 1.28 1.48 2.15 1.38 - - - - - - 2.15 5.44X 27.52X

8p 9 99 1327 2.61 2.10 2.15 2.20 2.34 2.70 4.47 6.60 3.01 - - - - - 6.60 13.25X 56.61X

9p 10 120 1736 5.02 4.00 4.12 4.15 4.68 5.16 6.63 9.54 25.92 6.73 - - - - 25.92 30.89X 90.51X

10p 11 143 2218 8.91 7.33 7.61 7.69 8.16 8.92 14.16 18.51 31.61 58.66 18.79 - - - 58.66 77.04X 249.99X

11p 12 168 2780 14.23 11.65 12.52 12.55 15.68 16.83 21.23 27.80 73.70 111.71 230.93 34.67 - - 230.93 >61.70X >155.89X

12p 13 195 3453 24.86 22.02 24.78 21.90 25.80 27.70 51.41 63.60 95.44 145.89 538.21 857.67 77.55 - 857.67 >18.21X >41.97X

13p 14 224 4397 44.02 40.31 58.40 59.24 78.20 61.62 91.45 105.36 372.57 442.64 706.02 1,125.37 4,868.35 186.11 4,868.35 >4.37X >7.39X

Cars

2p 3 27 216 0.02 0.01 0.02 - - - - - - - - - - - 0.02 0.20X 0.50X

3p 5 60 616 0.79 0.29 0.28 0.33 0.35 - - - - - - - - - 0.79 274.85X 709.75X

4p 7 105 1283 83.52 3.27 3.25 3.34 3.37 3.43 3.41 - - - - - - - 83.52 >347.52X >431.03X

, Vol. 1, No. 1, Article . Publication date: March 2022.

Scalable Linear Invariant Generation with Farkas’ Lemma 33

C AN EXAMPLE OF BENCHMARKS

#define time_cnt __attribute__ ((time_cnt))

#define p1_p1 __attribute__ ((p1_p1))

#define p2_p2 __attribute__ ((p2_p2))

#define p3_p3 __attribute__ ((p3_p3))

#define p4_p4 __attribute__ ((p4_p4))

#define p5_p5 __attribute__ ((p5_p5))

#define p6_p6 __attribute__ ((p6_p6))

#define p7_p7 __attribute__ ((p7_p7))

#define p0_p2 __attribute__ ((p0_p2))

#define p0_p1 __attribute__ ((p0_p1))

#define p1_p2 __attribute__ ((p1_p2))

#define p2_p1 __attribute__ ((p2_p1))

#define p2_p0 __attribute__ ((p2_p0))

#define p1_p0 __attribute__ ((p1_p0))

#define p1_p3 __attribute__ ((p1_p3))

#define p3_p1 __attribute__ ((p3_p1))

#define p1_p4 __attribute__ ((p1_p4))

#define p4_p1 __attribute__ ((p4_p1))

#define p1_p5 __attribute__ ((p1_p5))

#define p5_p1 __attribute__ ((p5_p1))

#define p1_p6 __attribute__ ((p1_p6))

#define p6_p1 __attribute__ ((p6_p1))

#define p1_p7 __attribute__ ((p1_p7))

#define p7_p1 __attribute__ ((p7_p1))

#define p2_p3 __attribute__ ((p2_p3))

#define p3_p2 __attribute__ ((p3_p2))

#define p2_p4 __attribute__ ((p2_p4))

#define p4_p2 __attribute__ ((p4_p2))

#define p2_p5 __attribute__ ((p2_p5))

#define p5_p2 __attribute__ ((p5_p2))

#define p2_p6 __attribute__ ((p2_p6))

#define p6_p2 __attribute__ ((p6_p2))

#define p2_p7 __attribute__ ((p2_p7))

#define p7_p2 __attribute__ ((p7_p2))

#define p3_p4 __attribute__ ((p3_p4))

#define p4_p3 __attribute__ ((p4_p3))

#define p3_p5 __attribute__ ((p3_p5))

#define p5_p3 __attribute__ ((p5_p3))

#define p3_p6 __attribute__ ((p3_p6))

#define p6_p3 __attribute__ ((p6_p3))

#define p3_p7 __attribute__ ((p3_p7))

#define p7_p3 __attribute__ ((p7_p3))

, Vol. 1, No. 1, Article . Publication date: March 2022.

34 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

#define p4_p5 __attribute__ ((p4_p5))

#define p5_p4 __attribute__ ((p5_p4))

#define p4_p6 __attribute__ ((p4_p6))

#define p6_p4 __attribute__ ((p6_p4))

#define p4_p7 __attribute__ ((p4_p7))

#define p7_p4 __attribute__ ((p7_p4))

#define p5_p6 __attribute__ ((p5_p6))

#define p6_p5 __attribute__ ((p6_p5))

#define p5_p7 __attribute__ ((p5_p7))

#define p7_p5 __attribute__ ((p7_p5))

#define p6_p7 __attribute__ ((p6_p7))

#define p7_p6 __attribute__ ((p7_p6))

static int x1 = 0;

static int x2 = 0;

static int c1 = 0;

static int k1 = 0;

static int k2 = 0;

static int c2 = 0;

static int time_cnt t = 0;

static void p1_p1 l1evolve(void) {

if (x1 <= 4) {

c1 = c1 + t;

c2 = c2 + t;

x1 = x1 + t;

x2 = x2;

k1 = k1;

k2 = k2;

}

}

static void p1_p1 l1increasel1(void) {

if (c1 >= 10) {

k1 = k1 + 1;

c1 = 0;

c2 = c2;

x1 = x1;

x2 = x2;

k2 = k2;

t = t;

}

}

, Vol. 1, No. 1, Article . Publication date: March 2022.

Scalable Linear Invariant Generation with Farkas’ Lemma 35

static void p1_p1 l1decrease(void) {

if (x1 == 4 && k1 >= 2) {

k1 = k1 - 1;

x1 = 0;

c1 = c1;

c2 = c2;

x2 = x2;

k2 = k2;

t = t;

}

}

static void p2_p2 l2evolve(void) {

if (x2 <= 8) {

c1 = c1 + t;

c2 = c2 + t;

x2 = x2 + t;

x1 = x1;

k1 = k1;

k2 = k2;

}

}

static void p2_p2 l2increasel1(void) {

if (c1 >= 10) {

k1 = k1 + 1;

c1 = 0;

c2 = c2;

x1 = x1;

x2 = x2;

k2 = k2;

t = t;

}

}

static void p2_p2 l2increasel2(void) {

if (c2 >= 20) {

k2 = k2 + 1;

c2 = 0;

c1 = c1;

x1 = x1;

x2 = x2;

k1 = k1;

t = t;

, Vol. 1, No. 1, Article . Publication date: March 2022.

36 Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li

}

}

static void p2_p2 l2decrease(void) {

if (x2 == 8 && k2 >= 2) {

k2 = k2 - 1;

x2 = 0;

c1 = c1;

c2 = c2;

x1 = x1;

k1 = k1;

t = t;

}

}

static void p1_p2 l1tol2(void) {

if (c2 >= 20) {

c2 = 0;

k2 = 1;

c1 = c1;

x1 = x1;

x2 = x2;

k1 = k1;

t = t;

}

}

static void p2_p1 l2tol1(void) {

if (x2 == 8 && k1 >= 1 && k2 == 1) {

x2 = 0;

k2 = k2 - 1;

c1 = c1;

c2 = c2;

x1 = x1;

k1 = k1;

t = t;

}

}

, Vol. 1, No. 1, Article . Publication date: March 2022.

