
HAL Id: hal-03463338
https://hal.science/hal-03463338v1

Preprint submitted on 2 Dec 2021 (v1), last revised 22 Mar 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Linear Invariant Generation with Farkas’
Lemma

Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, Guoqiang Li

To cite this version:
Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, Guoqiang Li. Scalable Linear Invariant Gener-
ation with Farkas’ Lemma. 2021. �hal-03463338v1�

https://hal.science/hal-03463338v1
https://hal.archives-ouvertes.fr


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Location-by-Location Linear Invariant Generation
with Farkas’ Lemma

HONGMING LIU, Shanghai Jiao Tong University, China

HONGFEI FU, Shanghai Jiao Tong University, China

ZHIYONG YU, Shanghai Jiao Tong University, China

JIAXIN SONG, Shanghai Jiao Tong University, China

GUOQIANG LI, Shanghai Jiao Tong University, China

Invariant generation is a classical problem that has been studied over decades, with the objective to auto-

matically generate invariants at critical program locations that can be used for the formal analysis of the

underlying program. In this work, we propose a novel approach for linear invariant generation via constraint

solving and Farkas’ Lemma. Our main contribution is an implemented algorithmic insight that generates the

linear invariants only at a single program location every time to run the invariant generation process. The

insight endows the following advantages over the previous approaches that generate the linear invariants

once for all the program locations. First, the insight leads to more subsumptions between polyhedra and hence

reduces the number of generator-computation problems involved in the invariant generation. Second, in each

generator-computation problem, the insight has the potential to conduct the computation under a projected

polyhedral cone with reduced dimension, thus can reduce the time needed for a single generator computation.

Third, the insight allows a parallel computation that assigns the whole task of invariant generation over all

program locations to multiple processors, for which each processor solves only a small fraction of program

locations. Theoretically, we prove that the invariants generated from our approach is at least as tight as

from the previous approach [Sankaranarayanan et al., SAS 2004]. Practically, we conduct experiments on

realistic scenarios involving complex linear invariants, and show that our approach can be much faster than

[Sankaranarayanan et al., SAS 2004] in these examples (even if one considers the sum of the execution time

for all the program locations).

1 INTRODUCTION

Invariants. An assertion at a program location is called an invariant if it is always satisfied by the

values taken by the program variables whenever the location is reached in the execution of the

program. Invariants play a fundamental role in program analysis and verification as they provide

over-approximation for reachable program states. Therefore, they are widely used in proving basic

properties such as safety, reachability (including termination) and time complexity, etc. A detailed

demonstration of these applications is as follows.

Safety Analysis. Safety is one of the most classical model checking problems that given a program

and a set of safety assertions that must hold at specific program locations of the program, the task

is to prove that the assertions indeed hold or report that they might be violated by some execution

of the program. As invariants serve as an over-approximation of the set of reachable program

states, an effective way for safety analysis is to first generate invariants and then check whether

the invariants imply the safety assertions. Many existing approaches for safety analysis rely on

invariants to prove the desired safety properties (see e.g. [3, 54, 58]).

Reachability Analysis. Reachability is the most basic liveness property that investigates whether a

program location is reachable from a given set of initial program states. The simplest reachability

objective is to prove the termination of programs (i.e., reachability to the termination program
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location). For termination analysis, a principal approach is to synthesize a ranking function [34]

whose value always decreases in a well-founded relation along the execution of the underlying

program. To synthesize a ranking function, virtually all synthesis algorithms require adequate

invariants as input (see e.g. [4, 10, 19, 21, 59]). Beyond termination, reachability analysis also

considers the reachability to erroneous program locations, resulting in static detection of program

errors. In this scenario, danger invariants (a.k.a inductive reachability witnesses) [6, 27], intuitively

as invariants extended with ranking functions, has been proposed as a formal witness to the

reachability. Recently, invariants have also been shown necessary in the reachability analysis of

probabilistic programs [12, 16, 72, 73].

Time-Complexity Analysis. Another basic problem is to automatically infer asymptotic complexity

bounds on the runtime of a program. Current algorithms for tackling this problem, such as [14],

rely heavily on adequate invariants.

Accuracy Matters. The quality of the generated invariants is measured by their accuracy, i.e.,

the amount of over-approximation against the actual set of reachable program states. In both the

applications above, the accuracy of the invariants is an important factor. Inaccurate invariants can

lead to loose results or even failure to get meaningful results for program analysis and verification.

Invariant Generation. Invariant generation is the classical problem that asks to automatically

generate invariants for an input program, and has been studied for decades. Various approaches

have been proposed to solve the problem, such as abstract interpretation [23, 25], constraint

solving [15, 20, 47], recurrence analysis [32, 45, 49, 50], logical inference [30, 35, 36, 39, 55, 67],

machine learning [37, 42, 76], dynamic analysis [26, 57, 68], etc.

Inductive Invariants. To infer invariants at program locations directly is often infeasible, and

most existing approaches generate invariants by considering a strengthened notion called inductive
invariants. An inductive invariant at a program location is an assertion that holds for the first

visit to the location and is preserved under every cyclic execution path to and from the location.

Inductive invariants are guaranteed to be invariants, and the well-established method to prove that

an assertion is an invariant is to find an inductive invariant that strengthens it [20, 54].

Numerical Inductive Invariants. An important category of inductive invariants is that of numer-
ical inductive invariants that captures the relationship between the numerical values taken by the

program variables. Numerical values are a basic aspect of programs, and many common failures of

programs (such as array out-of-bound, division by zero, etc.) are closely related to numerical values.

Thus, numerical inductive invariants are essential in proving numeric-critical properties. In this

work, we consider automated generation of numerical inductive invariants. To be more precise, we

consider algorithmic approaches for generating linear inductive invariants, as follows.

Linear Inductive Invariants. A notable subclass of numerical inductive invariants is the class of

linear inductive invariants. Informally, a numerical inductive invariant is linear if the invariant

takes the form of a system of linear inequalities over the program variables. Linear inductive

invariants are the most basic form of numerical invariant invariants, hence is important both for the

academic and practical purpose. To resolve the automated generation of linear inductive invariants,

we consider the method of constraint solving below.

The Method of Constraint Solving. To solve the invariant-generation problem, constraint-solving

based approaches usually consider the following paradigm: first establish a template with unknown

parameters for the target invariant, then collect constraints from the inductive condition for

invariants, and finally solve the unknown parameters in the template to get the desired invariants.

Constraint-solving based approaches for numerical invariant generation can roughly be classified by

linear and polynomial invariant generation. For linear invariant generation, Farkas’ Lemma provides
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Location-by-Location Linear Invariant Generation with Farkas’ Lemma 3

a complete characterization of the inductive condition and has been studied in [20, 65], which

was further solved by quantifier elimination [20] and several heuristics [65]. The STING invariant

generator [70] implements the approach in [65], and the INVGEN invariant generator [40] integrates

abstraction interpretation and the approach in [65]. Besides, an approach based on eigenvectors for

a restricted class of invariants is proposed in [29]. Recently, probabilistic linear invariants have also

been considered in probabilistic programs through Farkas’ Lemma and Motzkin’s Transposition

theorem [17, 48]. For polynomial invariant generation, a variety of approaches were proposed in

the literature. Complete approaches (that typically have high runtime complexity) were proposed

through quantifier elimination [47] and other computer-algebra based techniques [75]. Semi-

complete approaches (that have lower runtime complexity but retain completeness in restricted

situations as compared with complete approaches) through Positivstellensätze have been proposed

in [15]. The special case of polynomial-equality invariants was solved completely by Zariski-

closure [43] and Gröbner basis [62]. Heuristics for polynomial invariant generation have also

been extensively studied, such as semidefinite programming with relaxation [1, 22, 53], Lagrange

interpolation [18], reduction to linear algebra [28], Hypergeometric sequences [44] and Gröbner

basis [64]. Recently, an approach based on Stengle’s Postivstellensatz for generating probabilistic

polynomial invariants in probabilistic programs is proposed in [33]. Compared with other methods

(such as abstract interpretation, machine learning, etc.), constraint solving has the advantage of

having a theoretical guarantee on the accuracy of the generated invariants based on the considered

numerical form of the invariants, but typically require higher runtime complexity.

Our Contribution.We follow the constraint-solving method and consider automated generation of

linear inductive invariants over affine programs. An affine program is an imperative program where

every assignment is an affine expression over program variables and every guard condition (in

e.g. conditional branches, while loops, etc.) is a propositional combination of comparison between

affine expressions over program variables. Our work is based on the previous works [20, 65] that

establish the first framework for solving linear inductive invariants through Farkas’ Lemma. The

contribution of this work lies at the key insight that instead of considering all the program locations

simultaneously when applying the approaches in [20, 65], one could focus on a single program

location and only solves the invariant at the concerned location. The insight enables a more effective

subsumption testing, generator computation of polyhedral cones with fewer dimension, and the

possibility to speed up the whole invariant generation through parallel computation where muliple

processors compute the invariants together and each processor handles only a small fraction of

program locations. We show that the new approach with our novel insight outputs at least as

tight invariants as compared with the original approach [65]. Moreover, experimental results show

that our insight leads to dramatic improvement on the amount of runtime needed for invariant

generation over large realistic examples, as compared with [65]. Note that although our insight is

simple, to our best knowledge, our result is the first major improvement after almost two decades

(since [65]) in constraint solving approaches.

1.1 Related Works
Compared with the vast amount of existing works for invariant generation, our result has the

following novelties.

• Compared with the most relevant previous results [65] in constraint solving, our approach

has the potential of substantially improving the runtime by adopting our novel insight of

focusing on one program location at a time. Experimental results show that our approach is

orders of magnitude faster than the previous approach [65].
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• Compared with other methods, we follow the constraint-solving method that in general

has a theoretical guarantee on the accuracy of the generated invariants in a given specific

form. Note that our approach is based on [65] that uses several heuristics to reduce the

amount of runtime, which means that these heuristics decrease the original full theoretical

guarantee from constraint solving. However, as shown in [65], adopting these heuristics

still ensures substantial improvement on the accuracy of the generated invariants against

the mainstream approach of abstract interpretation. Our approach guarantees to output

at least as tight invariants as from [65], therefore inherits the merit of high accuracy from

constraint solving.

Below we compare our approach with existing approaches in more detail.

Constraint Solving. Our result falls in the category of linear invariant generation, thus is incom-

parable with the approaches for polynomial invariant generation [1, 15, 18, 22, 28, 43, 44, 47, 53, 62,

64, 75]. Below we compare results on linear invariant generation. Compared with results [20, 65]

that are based on Farkas’ Lemma, our approach further incoporates the novel sight of handling a

single program location at a time that can substantially speed up the invariant generation process

while preserving the precision of the generated invariants. Compared with the result [29] that uses

eigenvectors to tackle restricted classes of linear invariants, our result tackles the general class of

affine programs, thus focusing on a completely different aspect.

Abstract Interpretation. A mainstream method to find inductive invariants is abstract interpreta-
tion [2, 8, 13, 24, 56, 61, 63], which is the oldest and most classical approach to invariant generation.

Roughly speaking, the method of abstract interpretation first establishes an abstract domain for

the specific form of invariants to be generated, and then perform forward/backward propagation

to reach a fixed point. Compared with constraint solving, abstract interpretation does not provide

any guarantee on the accuracy of the generated invaraints, except for some rare cases [38]. This

point is experimental observed in [65], where the method of constraint solving can produce much

tighter invariants even with several heuristics that loses some precision. In our results, we prove

that our approach generates at least as tight invariants as the approach in [65], hence inherits the

advantage of higher accuracy from constraint solving.

Recurrence Analysis. Another closely-related method is recurrence analysis [11, 32, 45, 49, 50].
The method of recurrence analysis usually first transforms the invariant-generation problem into a

recurrence relation, and then solve the invariants through the analysis of the recurrence relation.

Compared with constraint solving, the disadvantage of recurrence-based approaches is that they

are only applicable to the situations where the underlying recurrence relation has a closed form

solution, while with appropriate templates constraint solving can be applied to any program.

Logical Inference. Invariants could also be obtained through logical inference, such as abductive

inference [30], Craig interpolation [35, 55], ICE learning [36, 74], predicate abstraction [39], random

search [67], etc. Compared with constraint solving, logical-inference based approaches usually

could not give any theoretical guarantee on the accuracy of the generated invariants.

Machine Learning. The method of machine learning [37, 42, 76] solves the invariant-generation

problem as follows: first, one needs to establish a (typically large) training set of programs whose

invariants are given; then, trainning approaches (such as neural networks) are applied to the

trainning set to train an invariant generator; finally, the trained invariant generator is used to

generator invariants for programs outside the trainning set. Compared with constraint solving,

machine-learning based approaches require a large training set to cover as most typical situtations

as possible, and still cannot guarantee the correctness and accuracy of the generated invariants.
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Dynamic Analysis. Dynamic analysis [26, 57, 68] first runs the program of concern for multiple

times to collect its execution data, and then guess the invariants based on the collected data. Com-

pared with constraint solving that statically generates the invariants with correctness and precision

guarantee, dynamic analysis needs to run the program multiple times to collect a potentially large

amount of execution data, and similar to machine learning cannot give any guarantee on the

correctness and accuracy of the generated invariants.

Summary.We consider linear-invariant generation over affine programs. Our approach is based on

constraint solving and hence can achieve better accuracy of the generated invariants than methods

such as abstract interpretation or machine learning, and a wider application range than recurrence

analysis. Compared with existing constraint-solving based approaches, our approach is capable of

substantially speeding up the process of invariant generation through the insight of generating the

invariants location by location instead of handling all program locations in one shot.

2 LINEAR TRANSITION SYSTEMS AND INVARIANTS
We consider linear transition systems (LinTS’s) [65] as the underlyingmodel for invariant generation.

A LinTS is composed of locations and linear transitions between locations, thus is suitable for

modelling the executions of an affine program, for which a location in a LinTS corresponds

to a program location (a.k.a program counter) of an affine program, and the linear transitions

corresponds to the affine updates (arising from assignment statements) and guards (arising from

if-branches and while-loops) in the program. Throughout this work, we denote by N,Z and R the

sets of natural numbers (including zero), integers and real numbers respectively.

To present the definitions for LinTS’s, we first define the basic notions of linear (in)equalities and

assertions. For linear inequalities, we only consider the non-strict comparison operator ≥. Note
that although an equality 𝛼 = 𝛽 can be equivalently expressed by two inequalities 𝛼 ≤ 𝛽 and 𝛼 ≥ 𝛽 ,

the equalities in a LinTS are tackled directly as various optimizations could be applied to equalities.

Also note that inequalities of the form 𝛼 ≤ 𝛽 could be equivalently tranformed into −𝛼 ≥ −𝛽 .

Linear (In)equalities and Assertions. A linear equality over a set 𝑉 = {𝑥1, . . . , 𝑥𝑛} of real-valued
variables is of the form 𝑎1𝑥1 + · · · +𝑎𝑛𝑥𝑛 +𝑏 = 0, where 𝑎𝑖 ’s and 𝑏 are real coefficients. Analogously,

a linear inequality over 𝑉 is of the form 𝑎1𝑥1 + · · · + 𝑎𝑛𝑥𝑛 + 𝑏 ≥ 0. A linear assertion over 𝑉 is a

conjunction of linear equalities and inequalities over 𝑉 .

Then we present the model of linear transition systems.

Linear Transition Systems. A linear transition system (LinTS) is a tuple ⟨𝑋,𝑋 ′, 𝐿, T, ℓ∗, 𝜃⟩ where
we have:

• 𝑋 is a finite set of real-valued variables such that each variable 𝑥 ∈ 𝑋 represents the current

value of the variable, while 𝑋 ′ = {𝑥 ′ | 𝑥 ∈ 𝑋 } is the corresponding set of primed variables
such that each primed variable 𝑥 ′ ∈ 𝑋 ′ represents the value of the unprimed counterpart

𝑥 ∈ 𝑋 in the next step of the system;

• 𝐿 is a finite set of locations and ℓ∗ ∈ 𝐿 is the initial location;

• T is a finite set of transitions where each transition 𝜏 is a triple ⟨ℓ, ℓ ′, 𝜌⟩ that specifies the
transit from the current location ℓ to the next location ℓ ′ with the guard condition 𝜌 as a

linear assertion over 𝑋 ∪ 𝑋 ′;
• 𝜃 is a linear assertion over the variables 𝑋 that specifies the initial condition at the initial

location ℓ∗.

To describe the behaviour of a LinTS, we further define the notions of valuations, configurations

and their associated satisfaction relation as follows.
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Valuations and Configurations. A valuation over a variable set 𝑉 is a function 𝜎 : 𝑉 → R that

assigns to each variable 𝑥 ∈ 𝑉 a real value 𝜎 (𝑥) that corresponds to the current value held by 𝑥 . In

this work, we mainly consider valuations over the variable set 𝑋 of a LinTS and simply abbreviate

“valuation over 𝑋 ” as “valuation” (i.e., omitting 𝑋 ). Given a LinTS, a configuration is a pair (ℓ, 𝜎)
such that ℓ ∈ 𝐿 is a location and 𝜎 is a valuation (over 𝑋 ), with the intuition that ℓ is the current

location and 𝜎 specifies the current values for the variables in the LinTS.

The Satisfaction Relation. Given a linear assertion 𝜑 over 𝑋 and a valuation 𝜎 (over 𝑋 ), we write

𝜎 |= 𝜑 to mean that 𝜎 satisfies 𝜑 , i.e., 𝜑 is true when one substitutes the corresponding values

𝜎 (𝑥) in 𝜎 to all the variables 𝑥 in 𝜑 . Analogously, given two valuations 𝜎, 𝜎 ′ (over 𝑋 ) and a linear

assertion 𝜑 over 𝑋 ∪ 𝑋 ′, we write 𝜎, 𝜎 ′ |= 𝜑 to mean that 𝜑 is true when one substitutes every

variable 𝑥 ∈ 𝑋 by 𝜎 (𝑥) and every variable 𝑥 ′ ∈ 𝑋 ′ by 𝜎 ′(𝑥) in 𝜑 . Moreover, given two linear

assertions 𝜑,𝜓 over 𝑋 , we write 𝜑 |= 𝜓 to mean that it is always the case that 𝜑 implies𝜓 , i.e., for

every valuation 𝜎 we have that 𝜎 |= 𝜑 implies 𝜎 |= 𝜓 .

Now we describe the semantics of a LinTS.

The Semantics of LinTS’s. Informally, a LinTS starts at its initial location ℓ∗ with an arbitrary

initial valuation 𝜎∗ such that 𝜎∗ |= 𝜃 , constituting an initial configuration (ℓ0, 𝜎0) = (ℓ∗, 𝜎∗); then
at each step 𝑛 (𝑛 ≥ 0), given the current configuration (ℓ𝑛, 𝜎𝑛), the LinTS determines the next

configuration (ℓ𝑛+1, 𝜎𝑛+1) by first selecting a transition 𝜏 = ⟨ℓ, ℓ ′, 𝜌⟩ such that ℓ = ℓ𝑛 and then

choosing (ℓ𝑛+1, 𝜎𝑛+1) to be any configuration that satisfies ℓ𝑛+1 = ℓ ′ and 𝜎𝑛, 𝜎𝑛+1 |= 𝜌 . Formally, the

semantics of an LinTS is specified the notion of paths. A path 𝜋 is a finite sequence of configurations

(ℓ0, 𝜎0) . . . (ℓ𝑛, 𝜎𝑛) such that

• (Initialization) ℓ0 = ℓ∗ and 𝜎0 |= 𝜃 , and

• (Consecution) for every 0 ≤ 𝑘 ≤ 𝑛 − 1, there exists a transition 𝜏 = ⟨ℓ, ℓ ′, 𝜌⟩ satisfying
ℓ = ℓ𝑘 , ℓ

′ = ℓ𝑘+1 and 𝜎𝑘 , 𝜎𝑘+1 |= 𝜌 .

Intuitively, a path starts with some legitimate initial configuration (as specified by Initialization)

and evolves by repeatedly applying the transitions to the current configuration (as described in

Consecution). Thus, any path 𝜋 = (ℓ0, 𝜎0) . . . (ℓ𝑛, 𝜎𝑛) corresponds to a possible evolution of the

underlying LinTS.

Below we present an example LinTS from [20].

Example 1. Consider a scenario of a vagrant robot from [20]. The control of the robot works in two
alternating modes modelled as two locations ℓ0, ℓ1. Each mode takes a time between 1 and 2 seconds
to complete its task. In mode ℓ0, the robot moves in the positive direction of 𝑥 and 𝑦, and in mode
ℓ1, it moves in the positive direction of 𝑥 and negative direction of 𝑦. Figure 1 shows the LinTS of a
vagrant robot that consists of three variables 𝑥,𝑦, 𝑡 and the two location ℓ0, ℓ1. The variable pair (𝑥,𝑦)
corresponds to the current position of the robot on the two-dimensional plane, while the variable 𝑡
records the amount of the elapsed time. From the LinTS, we have the following:

• At the start, the robot is at its initial position (0, 0) (i.e., 𝑥 = 0 and 𝑦 = 0) at time 𝑡 = 0 in the
initial mode ℓ0.
• At the location ℓ0, the robot takes the transition 𝜏1. During the transition, the robot first moves
for a time period Δ𝑡 = 𝑡 ′ − 𝑡 between 1 to 2 seconds (as indicated by the linear assertion
1 ≤ 𝑡 ′ − 𝑡 ≤ 2 in 𝜌1), for which the movement is in the positive direction of both the 𝑥- and
𝑦-axis, each with a nondeterministic distance that falls in the interval [Δ𝑡, 2Δ𝑡] (as specified
by the linear assertions Δ𝑡 ≤ 𝑥 ′ − 𝑥 ≤ 2Δ𝑡 and Δ𝑡 ≤ 𝑦 ′ − 𝑦 ≤ 2Δ𝑡 in 𝜌1); then the robot
changes its mode to ℓ1.
• At the location ℓ1, the robot takes the transition 𝜏2 and changes its mode to ℓ0. The movement
of the robot is specified by 𝜌2 and similar to the situation at ℓ0. The only difference is that the
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𝑋 = {𝑥,𝑦, 𝑡}, 𝐿 = {ℓ0, ℓ1}, T = {𝜏1, 𝜏2}
𝜏1 : ⟨ℓ0, ℓ1, 𝜌1⟩ 𝜏2 : ⟨ℓ1, ℓ0, 𝜌2⟩
𝜃 : 𝑥 = 0 ∧ 𝑦 = 0 ∧ 𝑡 = 0,

𝜌1 :


𝑡 ′ − 𝑡 ≤ 𝑥 ′ − 𝑥 ≤ 2(𝑡 ′ − 𝑡)∧
𝑡 ′ − 𝑡 ≤ 𝑦 ′ − 𝑦 ≤ 2(𝑡 ′ − 𝑡)∧

1 ≤ 𝑡 ′ − 𝑡 ≤ 2


𝜌2 :


𝑡 ′ − 𝑡 ≤ 𝑥 ′ − 𝑥 ≤ 2(𝑡 ′ − 𝑡)∧

−(𝑡 ′ − 𝑡) ≤ 𝑦 ′ − 𝑦 ≤ −2(𝑡 ′ − 𝑡)∧
1 ≤ 𝑡 ′ − 𝑡 ≤ 2


Fig. 1. The LinTS for a Vagrant Robot

robot now moves in the positive direction along the 𝑥-axis and in the negative direction along
the 𝑦-axis.
• The robot switches between ℓ0 and ℓ1 back and forth by alternately taking the transitions 𝜏1
and 𝜏2.

A possible path under this LinTSwould be (ℓ0, (𝑥,𝑦, 𝑡) = (0, 0, 0)), (ℓ1, (𝑥,𝑦, 𝑡) = (2, 2, 1)), (ℓ0, (𝑥,𝑦, 𝑡) =
(3, 1, 2)). □

In this work, we consider algorithms for linear invariant generation that work on LinTS’s as

an intermediate model. Informally, an invariant at a location is a logical formula that is always

satisfied by the values of the variables whenever the location is entered by some path. An invariant

is linear if it is a linear assertion. The formal definition is as follows.

(Linear) Invariants. An invariant at a location ℓ of a LinTS is a logical formula 𝜑 such that for

every path under the LinTS 𝜋 = (ℓ0, 𝜎0) . . . (ℓ𝑛, 𝜎𝑛) and 0 ≤ 𝑘 ≤ 𝑛, it holds that ℓ𝑘 = ℓ implies

𝜎𝑘 |= 𝜑 . Furthermore, we say that an invariant 𝜑 is linear if 𝜑 is a linear assertion over the variable

set 𝑋 .

To automatically generate invariants, one often investigates a strengthened notion called inductive
invariants. Since we only consider linear invariants, we directly present the definition of inductive

linear invariants in the form of inductive linear assertion maps.

(Inductive) Linear Assertion Maps. A linear assertion map over an LinTS is a function 𝜂 that

maps every location ℓ to a linear assertion 𝜂 (ℓ) over the variables 𝑋 . A linear assertion map 𝜂 is

inductive if the following conditions hold:

• (Initialization) 𝜃 |= 𝜂 (ℓ∗);
• (Consecution) For every transition 𝜏 = ⟨ℓ, ℓ ′, 𝜌⟩, we have that 𝜂 (ℓ) ∧ 𝜌 |= 𝜂 (ℓ ′) ′, where
𝜂 (ℓ ′) ′ is the linear assertion obtained by replacing every variable 𝑥 ∈ 𝑋 in 𝜂 (ℓ ′) with its

next-value counterpart 𝑥 ′ ∈ 𝑋 ′.

Informally, a linear assertion map is inductive if it is (i) implied by the initial condition given by

𝜃 at the initial location ℓ∗ (i.e., Initialization) and (ii) preserved under the application of every

transition (i.e., Consecution). By a straightfoward induction on the length of a path under a LinTS,

one could verify that the linear assertion at every location in an inductive linear assertion map is

guaranteed to be a linear invariant. In the rest of the work, we focus on the automated synthesis of

inductive linear assertion maps.
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3 AN OVERVIEW OF OUR APPROACH
In this section, we present an overview of our approach. We first review the original approaches

in [20, 65] that generate linear invariants through constraint solving and Farkas’ Lemma, and then

sketch our key insight.

3.1 The Original Approaches [20, 65]
In [20, 65], a specialized constraint-solving approach for linear invariant generation is proposed

via Farkas’ Lemma [31]. The use of Farkas’ Lemma transforms the inductive condition for linear

invariants equivalently into a system of quadratic constraints, by solving which one could obtain a

concrete linear invariant. The key point is that the use of Farkas’ Lemma simplifies the constraints

from the inductive condition. In [20], the constraints obtained after applying Farkas’ Lemma were

solved exactly through quantifier elimination. While in [65], these constraints were solved by

several heuristics to mitigate the high runtime complexity caused by quantifier elimination.

To review these two approaches, we first recall Farkas’ Lemma. Farkas’ Lemma is a fundamental

result that characterizes basic relationships between linear inequalities. Below we present the

version of Farkas’ Lemma that charactertizes the implication from a linear assertion to a linear

inequality. We follow the presentation of Farkas’ Lemma in [20].

Theorem 3.1 (Farkas’ Lemma). Consider a linear assertion 𝜑 over a set 𝑉 = {𝑥1, . . . , 𝑥𝑛} of
real-valued variables in the form of a conjunction of the following linear inequalities:

𝜑 :

𝑎11 · 𝑥1 + · · · + 𝑎1𝑛 · 𝑥𝑛 + 𝑏1 ≥ 0

...
...

...

𝑎𝑚1 · 𝑥1 + · · · + 𝑎𝑚𝑛 · 𝑥𝑛 + 𝑏𝑚 ≥ 0

When 𝜑 is satisfiable (i.e., there exists a valuation over 𝑉 that satisfies 𝜑), we have that it implies a
linear inequality𝜓

𝜓 : 𝑐1 · 𝑥1 + · · · + 𝑐𝑛 · 𝑥𝑛 + 𝑑 ≥ 0

(i.e., 𝜑 |= 𝜓 ) if and only if there exist non-negative real numbers 𝜆0, 𝜆1, . . . , 𝜆𝑚 such that (i) 𝑐 𝑗 =∑𝑚
𝑖=1 𝜆𝑖 · 𝑎𝑖 𝑗 for all 1 ≤ 𝑗 ≤ 𝑛, and (ii) 𝑑 = 𝜆0 +

∑𝑚
𝑖=1 𝜆𝑖 · 𝑏𝑖 . Moreover, 𝜑 is unsatisfiable if and only if

the inequality −1 ≥ 0 (as𝜓 ) can be derived from above.

One direction of Farkas’ Lemma is straightforward, as one easily sees that if we have a non-

negative linear combination of the inequalities in 𝜑 that can derive𝜓 , then it is guaranteed that𝜓

holds whenever 𝜑 is true. Farkas’ Lemma further establishes that the other direction is also valid.

Remark 1. In the statement of Farkas’ Lemma above, if we change a single linear inequality
𝑎 𝑗1𝑥1+· · ·+𝑎 𝑗𝑛𝑥𝑛+𝑏 𝑗 ≥ 0 in𝜑 to equality (i.e., 𝑎 𝑗1𝑥1+· · ·+𝑎 𝑗𝑛𝑥𝑛+𝑏 𝑗 = 0), then the theorem statement
still holds with the relaxation that we do not require 𝜆 𝑗 ≥ 0. This could be easily observed by first
replacing the equality equivalent with both 𝑎 𝑗1𝑥1+· · ·+𝑎 𝑗𝑛𝑥𝑛 +𝑏 𝑗 ≥ 0 and 𝑎 𝑗1𝑥1+· · ·+𝑎 𝑗𝑛𝑥𝑛 +𝑏 𝑗 ≤ 0,
and then applying Farkas’ Lemma. By similar arguments, the theorem statement holds upon changing
multiple linear inequalities into equalities with the relaxation of non-negativity for the corresponding
𝜆 𝑗 ’s.

The application of Farkas’ Lemma can be conveniently visualized by the tabular form in Table 1,

where Z1, . . . ,Z𝑚∈ {=, ≥} and we mulitply 𝜆0, 𝜆1, . . . , 𝜆𝑚 with their inequalities in 𝜑 and sum up

them together to get𝜓 . For 1 ≤ 𝑗 ≤ 𝑚, if Z𝑗 is ≥, we require 𝜆 𝑗 ≥ 0, otherwise (i.e., Z𝑗 is =) we do

not impose constraints on 𝜆 𝑗 .

We then recall several concepts from polyhedra theory.
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Table 1. The Tabular Form for Farkas’ Lemma

𝜆0 1 ≥ 0

𝜆1 𝑎11 · 𝑥1 + · · · + 𝑎1𝑛 · 𝑥𝑛 + 𝑏1 Z1 0

...
...

...
...

𝜆𝑚 𝑎𝑚1 · 𝑥1 + · · · + 𝑎𝑚𝑛 · 𝑥𝑛 + 𝑏𝑚 Z𝑚 0

𝑐1 · 𝑥1 + · · · + 𝑐𝑛 · 𝑥𝑛 + 𝑑 ≥ 0

−1 ≥ 0

 𝜑

← 𝜓

← false

Polyhedra and polyhedral cones. A subset 𝑃 of R𝑛 is a polyhedron if 𝑃 = {x ∈ R𝑛 | A · x ≤ b} for
some real matrix 𝐴 ∈ R𝑚×𝑛 and real vector b ∈ R𝑚 , where x is treated as a column vector and the

comparison A · x ≤ b is defined in the coordinate-wise fashion. A polyhedron 𝑃 is a polyhedral
cone if 𝑃 = {x ∈ R𝑛 | A · x ≤ 0} for some real matrix 𝐴 ∈ R𝑚×𝑛 , where 0 is the𝑚-dimensional

zero vector. It is well-known from Farkas-Minkowski-Weyl Theorem [66, Corollary 7.1a] that any

polyhedral cone 𝑃 can be represented as 𝑃 = {∑𝑘
𝑖=1 𝜆𝑖 · g𝑖 | 𝜆𝑖 ≥ 0 for 1 ≤ 𝑖 ≤ 𝑘} for some real

vectors g1, . . . , g𝑘 , where the set of the real vectors g𝑖 ’s is called a collection of generators for the
polyhedral cone 𝑃 .

Polyhedron projection. For a polyhedron 𝑃 = {(xT, uT)T ∈ R𝑝+𝑞 | A · x + B · u ≤ c} where
A ∈ R𝑚×𝑝 ,B ∈ R𝑚×𝑞 are real matrices and 𝑐 ∈ R𝑚 is a real vector, the projection of 𝑃 onto the

dimensions x (i.e., the first 𝑝 dimensions) is defined as the polyhedron 𝑃 [x] := {x ∈ R𝑝 | ∃u ∈
R𝑞 .(xT, uT)T ∈ 𝑃}.

Now we review the previous approaches in [20, 65].

The Invariant-Generation Workflow. Based on Farkas’ Lemma, the approaches in [20, 65]

generate linear invariants over a LinTS by the following steps. Below we fix an input LinTS with

𝑋 = {𝑥1, . . . , 𝑥𝑛}.
Step 1 In the first step, both the approaches establish a template for an inductive linear assertion

maps. A template 𝜂 involves a linear inequality 𝜂 (ℓ) = 𝑐ℓ,1 ·𝑥1 + · · · +𝑐ℓ,𝑛 ·𝑥𝑛 +𝑑 ≥ 0 at each location

ℓ of the LinTS, such that the coefficients 𝑐ℓ,1, . . . , 𝑐ℓ,𝑛, 𝑑 are unknown and to be solved.

Step 2 In the second step, both the approaches establish constraints from the initialization and

the consecution conditions for invariants. The initialization condition specifies that the linear

inequality 𝜂 (ℓ∗) at the initial location ℓ∗ should be implied by the initial condition 𝜃 , i.e., 𝜃 |= 𝜂 (ℓ∗).
The consecution condition specifies that every transition preserves the linear assertion map 𝜂, i.e.,

for every transition ⟨ℓ, ℓ ′, 𝜌⟩ we have that 𝜂 (ℓ) ∧ 𝜌 |= 𝜂 (ℓ ′) ′.
Step 3 In the third step, both the approaches apply Farkas’ Lemma to the constraints collected

from the initialization condition 𝜃 |= 𝜂 (ℓ∗) and the consecution conditions 𝜂 (ℓ) ∧ 𝜌 |= 𝜂 (ℓ ′) ′ for
each transition ⟨ℓ, ℓ ′, 𝜌⟩. For intialization, we apply the tabular form (Table 1) to obtain

𝜆0 1 ≥ 0

𝜆1 𝑎11𝑥1 + · · · + 𝑎1𝑛𝑥𝑛 + 𝑏1 Z1 0

...
...

...
...

𝜆𝑚 𝑎𝑚1𝑥1 + · · · + 𝑎𝑚𝑛𝑥𝑛 + 𝑏𝑚 Z𝑚 0

𝑐ℓ∗,1𝑥1 + · · · + 𝑐ℓ∗,𝑛𝑥𝑛 + 𝑑ℓ∗ ≥ 0

−1 ≥ 0

 𝜃

← 𝜂 (ℓ∗)
← false

which results in a linear assertion over the unknown coefficients 𝑐ℓ∗,1, . . . , 𝑐ℓ∗,𝑛, 𝑑 and the fresh

variables 𝜆0, 𝜆1, . . . , 𝜆𝑚 . Similarly, the tabular form for the consecution condition of a transition
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⟨ℓ, ℓ ′, 𝜌⟩ gives

𝜇 𝑐ℓ,1𝑥1+· · ·+ 𝑐ℓ,𝑛𝑥𝑛 + 𝑑ℓ ≥ 0

𝜆0 1 ≥ 0

𝜆1 𝑎11𝑥1+· · ·+ 𝑎1𝑛𝑥𝑛 + 𝑎′
11
𝑥 ′
1
+· · ·+ 𝑎′

1𝑛
𝑥 ′𝑛 + 𝑏1 Z1 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

𝜆𝑚 𝑎𝑚1𝑥1+· · ·+𝑎𝑚𝑛𝑥𝑛 +𝑎′𝑚1
𝑥 ′
1
+· · ·+𝑎′𝑚𝑛𝑥

′
𝑛 +𝑏𝑚Z𝑚 0

𝑐ℓ′,1𝑥
′
1
+· · ·+𝑐ℓ′,𝑛𝑥 ′𝑛 + 𝑑ℓ′ ≥ 0

−1 ≥ 0

← 𝜂 (ℓ)

 𝜌

←𝜂 (ℓ ′)′
← false

where in addition to 𝜆 𝑗 , 𝑐ℓ, 𝑗 , 𝑑ℓ , 𝑐ℓ′, 𝑗 , 𝑑ℓ′ we have a fresh variable 𝜇 as the non-negative muliplier for

𝜂 (ℓ). Note that for the consecution condition, the constraint obtained is no longer linear since the

fresh variable 𝜇 is multiplied to 𝜂 (ℓ) in the tabular above.

Step 4 In the last step, the (non-linear) constraints collected in the previous step are solved to obtain

the concrete values for the unknown coefficients in 𝜂, so that a concrete inductive linear assertion

map would be obtained. In [20], these constraints were solved through quantifier elimination, while

in [65] the constraints were solved through (i) several heuristics to remove the non-linearity and

(ii) the transformation of a polyhedral cone originally represented by its linear inequality to its

generator representation. A major heuristics adopted in [65] to remove the non-linearity is to guess

possible values for the fresh variables 𝜇 in the consecution conditions, based on some practical

rules such as factorization. Below we focus on the workflow of [65], since it is the most related

work to our result. Since the approach of [65] resolves the mulipliers 𝜇 for consecution by guessing

their concrete values, the guessed values for the consecution condition of each transition of a LinTS

result in a disjunction of linear assertions over the unknown coefficients in the template 𝜂, where

one guessed value for the 𝜇 of the transition under concern corresponds to one linear assertion

in the disjunction. By combining conjunctively the constraints obtained from the consecution

condition (for every tranisition) and those from the initial condition, we obtain a propositional

formula in conjunctive normal form (CNF) where each atomic proposition is a linear assertion

over the unknown coefficients of 𝜂. More specifically, each atomic proposition is in the form

A · c ≤ 0 where c is the vector of unknown coefficients in the template, hence is a polyhedral cone.

Having obtained the CNF formula, the approach expands the formula (through the distributive law

between conjunction and disjunction) equivalently into a DNF (disjunctive normal form) formula

where each disjunctive clause is a conjunction of certain atomic propositions in the original CNF

formula (therefore being still a polyhedral cone), and then computes through the double description

method [7] and Parma Polyhedra library (PPL) [7, 60] the generators of each disjunctive clause (in

the form of a polyhedral cone) once a disjunctive clause is expanded. A key ingredient to reduce the

runtime arising from the expansion from CNF to DNF is subsumption testing that checks whether

the current conjunction of atomic propositions during the expansion is already subsumed by (i.e.,

implies) the invariants obtained from the previously-expanded disjunctive clauses; once the current

conjunction implies the invariants already obtained, one knows that it will not produce more

meaningful invariants, hence the computation for the current conjunction halts and the expansion

then switches to other branches. By instantiating the computed generators back to the unknown

coefficients in the template, the approach obtains the solved concrete linear invariants, for which

one generator corresponds to one inductive linear asertion map.

Below we present an example for the workflow of [65].

Example 2. Consider the LinTS in Example 1. The approach in [65] first establishes a template 𝜂 by
setting 𝜂 (ℓ𝑖 ) := 𝑐ℓ𝑖 ,1𝑥 + 𝑐ℓ𝑖 ,2𝑦 + 𝑐ℓ𝑖 ,3𝑡 + 𝑑ℓ𝑖 ≥ 0 for 𝑖 ∈ {0, 1}. Then the approach encodes initialiation
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and consecution by the tabular form in Table 1. For the initialization, we have

𝜆0 1 ≥ 0

𝜆1 𝑥 = 0

𝜆2 𝑦 = 0

𝜆3 𝑡 = 0

𝑐ℓ0,1𝑥 + 𝑐ℓ0,2𝑦 + 𝑐ℓ0,3𝑡 + 𝑑ℓ0 ≥ 0

 𝜃

← 𝜂 (ℓ0)

resulting in the constraints
[
𝑐ℓ0,1 = 𝜆1, 𝑐ℓ0,2 = 𝜆2, 𝑐ℓ0,3 = 𝜆3, 𝑑ℓ0 ≥ 0

]
. After projecting away the fresh

variables 𝜆 𝑗 ’s, we obtain [𝑑ℓ0 ≥ 0] for the initialization. For the consecution conditions, we present the
tabular form for the transition 𝜏1:

𝜇 𝑐ℓ0,1𝑥 +𝑐ℓ0,2𝑦 +𝑐ℓ0,3𝑡 +𝑑ℓ0 ≥0
𝜆0 1 ≥0
𝜆1 −𝑥 + 𝑡 + 𝑥 ′ − 𝑡 ′ ≥0
𝜆2 𝑥 − 2𝑡− 𝑥 ′ + 2𝑡 ′ ≥0
𝜆3 −𝑦− 2𝑡 + 𝑦′+ 2𝑡 ′ ≥0
𝜆4 𝑦 + 𝑡 − 𝑦′− 𝑡 ′ ≥0
𝜆5 − 𝑡 𝑡 ′− 1 ≥0
𝜆6 𝑡 − 𝑡 ′+ 2 ≥0

𝑐ℓ1,1𝑥
′+𝑐ℓ1,2𝑦′+𝑐ℓ1,3𝑡 ′+𝑑ℓ1 ≥0

← 𝜂 (ℓ0)
𝜌1

←𝜂 (ℓ1)′

where the fresh variables 𝜆 𝑗 ’s are local to the tabular above and does not overlap with the tabulars for
other transitions. The 𝜆 𝑗 ’s are again eliminated by polyhedron projection, while the fresh variable 𝜇 is
eliminated by heuristically guessing its values. The transition 𝜏2 is treated in the similar way.
After applying Farkas’ Lemma to the initialization and consecution conditions, the resultant con-

straint is a CNF formula where each atomic proposition is a polyhedral cone over the unknown
coefficients. The approach further expands the CNF equivalently into a DNF formula. For this example,
one disjunctive clause from the DNF formula is as follows (where we abbreviate 𝑐ℓ𝑖 , 𝑗 as 𝑐𝑖 𝑗 , 𝑑ℓ𝑖 as 𝑑𝑖 ):



𝑐01=𝑐11, 𝑐02=𝑐12, 𝑐03=𝑐13, 𝑑0 ≥ 0,
2𝑐01−𝑑0+𝑐12+𝑐13+𝑑1 ≥ 0, 2𝑐01−𝑑0+2𝑐12+𝑐13+𝑑1 ≥ 0,

4𝑐01−𝑑0+4𝑐12+2𝑐13+𝑑1 ≥ 0, 𝑐01−𝑑0+𝑐12+𝑐13+𝑑1 ≥ 0,
𝑐01−𝑑0+2𝑐12+𝑐13+𝑑1 ≥ 0,2𝑐01−𝑑0+4𝑐12+2𝑐13+𝑑1 ≥ 0,

2𝑐01+𝑑0−4𝑐12+2𝑐13−𝑑1 ≥ 0,4𝑐01+𝑑0−4𝑐12+2𝑐13−𝑑1 ≥ 0,
𝑐01+𝑑0−2𝑐12+𝑐13−𝑑1 ≥ 0, 2𝑐01+𝑑0−2𝑐12+𝑐13−𝑑1 ≥ 0,
𝑐01+𝑑0−𝑐12+𝑐13−𝑑1 ≥ 0, 2𝑐01+𝑑0−𝑐12+𝑐13−𝑑1 ≥ 0


(1)

By computing the generators of the polyhedral cone above, we obtain the following generators and
their corresponding invariants. Table 2 gives the result where (i) in the left part each row specifies a
generator (over the unknown coefficients 𝑐𝑖 𝑗 , 𝑑𝑖 ’s) and (ii) in the right part we instantiate the generator
to the unknown coefficients in the template 𝜂 to obtain the invariants at locations ℓ0 and ℓ1.
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Table 2. Generators (left) and Their Invariants (right) for (1)

𝑐01 𝑐02 𝑐03 𝑑0 𝑐11 𝑐12 𝑐13 𝑑1 𝜂 (ℓ0) 𝜂 (ℓ1)
0 0 0 1 0 0 0 1 1 ≥ 0 1 ≥ 0

0 0 0 0 0 0 0 0 0 ≥ 0 0 ≥ 0

−1 0 2 0 −1 0 2 0 −𝑥 + 2𝑡 ≥ 0 −𝑥 + 2𝑡 ≥ 0

0 −1 1 0 0 −1 1 2 −𝑦 + 𝑡 ≥ 0 −𝑦 + 𝑡 + 2 ≥ 0

0 −1 2 0 0 −1 2 0 −𝑦 + 2𝑡 ≥ 0 −𝑦 + 2𝑡 ≥ 0

0 0 1 0 0 0 1 1 𝑡 ≥ 0 𝑡 + 1 ≥ 0

0 1 2 0 0 1 2 0 𝑦 + 2𝑡 ≥ 0 𝑦 + 2𝑡 ≥ 0

0 1 1 0 0 1 1 −2 𝑦 + 𝑡 ≥ 0 𝑦 + 𝑡 − 2 ≥ 0

1 0 −1 0 1 0 −1 0 𝑥 − 𝑡 ≥ 0 𝑥 − 𝑡 ≥ 0

0 0 1 0 0 0 1 −1 𝑡 ≥ 0 𝑡 − 1 ≥ 0

The obtained invariants are further minimized, so that the final invariants obtained at 𝜂 (ℓ0) are[
−𝑥 + 2𝑡 ≥ 0 − 𝑦 + 𝑡 ≥ 0 𝑥 − 𝑡 ≥ 0 𝑦 + 𝑡 ≥ 0

]
and for 𝜂 (ℓ1) the invariants are[

−𝑥 + 2𝑡 ≥ 0 −𝑦 + 𝑡 + 2 ≥ 0 −𝑦 + 2𝑡 ≥ 0

𝑡 − 1 ≥ 0 𝑦 + 𝑡 − 2 ≥ 0 𝑥 − 𝑡 ≥ 0

]
It happens that the final invariants from the whole DNF formula coincide with the invariants computed
from (1). □

3.2 The Main Idea of Our Approach
A drawback of the approach in [65] is that in the last step of the approach (cf. Step 4 in the previous

subsection), the invariants are obtained as the generators of a whole polyhedral cone that involves

all the unknown coefficients at all locations. This leads to two obstacles that may largely increase

the runtime of the invariant generation process. The first obstacle is that in the subsumption

testing, there is only a small chance that a whole polyhedral cone with all the unknown coefficients

may be subsumed by the invariants already generated. The second obstacle is that the generator

computation of a polyhedral cone is an expensive operation since it may cause exponential blowup

in the number of its variables, thus to compute the generators of a whole polyhedral cone that

involves all the unknown coefficients may induce a huge amount of runtime.

To address the two obstacles, we propose the novel insight of generating the invariants one

location at a time (which we call the location-by-location insight). With this insight, the chance of

subsumption is increased since now the subsumption testing involves only one location. Moreover,

the amount of runtime to compute the generators may also be reduced since we only need to

handle a much smaller number of unknown coefficients (to be more precise, only the unknown

coefficients at the location of concern). Note that although the insight seems simple, it can indeed

lead to dramatic improvement on the runtime over realistic examples.

Below we present an example to illustrate the location-by-location insight.

Example 3. Continue with Example 2. Recall that in the last step of the approach [65], we obtain a
DNF where each disjunctive clause corresponds to a polyhedral cone over all the unknown coefficients,
and compute the generators over each such polyhedral cone. To implement the location-by-location
insight, we focus on the location ℓ0 and run Steps 1–3 in the previous subsection. Then in Step 4, our
insight works as follows. Recall that in Step 4, the approach [65] expands the CNF into its equivalent
DNF, and computes the generators for each atomic proposition (polyhedral cone) of the DNF. Suppose
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that we need to compute the generators of the polyhedral cone specified by (1) only at the location ℓ0.
One way to implement the insight is to project the polyhedral cone onto the dimensions specified by
the unknown coefficients 𝑐0𝑗 ’s (1 ≤ 𝑗 ≤ 3) and 𝑑0, to obtain the following polyhedral cone[

𝑑0 ≥ 0 𝑐01 − 𝑐02 + 𝑐03 ≥ 0 𝑐01 + 𝑐02 + 𝑐03 ≥ 0

2𝑐01 − 𝑐02 + 𝑐03 ≥ 0 2𝑐01 + 𝑐02 + 𝑐03 ≥ 0

]
.

The generators of this projected polyhedral cone gives the following linear invariants at the location ℓ0:

𝑐01 𝑐02 𝑐03 𝑑0 𝜂 (ℓ0)
0 0 0 1 1 ≥ 0

0 0 0 0 0 ≥ 0

1 0 −1 0 𝑥 − 𝑡 ≥ 0

0 1 1 0 𝑦 + 𝑡 ≥ 0

−1 0 2 0 −𝑥 + 2𝑡 ≥ 0

0 −1 1 0 −𝑦 + 𝑡 ≥ 0

After minimization, the invariants added for the location ℓ0 from the polyhedral cone (1) include[
−𝑥 + 2𝑡 ≥ 0 − 𝑦 + 𝑡 ≥ 0 𝑥 − 𝑡 ≥ 0 𝑦 + 𝑡 ≥ 0

]
.

which happen to include all the linear inductive invariants at ℓ0. Note that we only generate the
invariants at ℓ0 in one invariant-generation process, and keep the invariants at other locations (i.e., ℓ1)
to be true. By another invariant-generation process for the location ℓ1, we get the invariants at the
location ℓ1 as follows: [

−𝑥 + 2𝑡 ≥ 0−𝑦 + 𝑡 + 2 ≥ 0−𝑦 + 2𝑡 ≥ 0

𝑡 − 1 ≥ 0 𝑦 + 𝑡 − 2 ≥ 0 𝑥 − 𝑡 ≥ 0

]
.

The invariants obtained coincide with the approach in [65]. □

4 THE LOCATION-BY-LOCATION INSIGHT
In this section, we formally demonstrate our location-by-location insight, i.e., generating the

invariant only at one location in a single invariant-generation process. The insight is composed of

two ingredients. The first one is the reordering of the expansion from the CNF into its equivalent

DNF at Step 4 (Section 3.1) so that the transitions associated with the location of concern is

expanded first to maximize the chance of subsumption. The second one is the computation of the

generators of each atomic proposition (as a polyhedral cone) in the DNF obtained at Step 4 that

only involve the unknown coefficients at the location of concern. Below we demonstrate the two

ingredients in detail. We fix a LinTS and a location ℓ★ on which invariant generation is considered.

4.1 Expanding ℓ★ First from CNF to DNF
Recall that in Step 4, we obtain a CNF from which we extract invariants. To facilitate the location-

by-location insight, we maximize the chance of subsumption by reordering the expansion from the

CNF into its DNF as follows, which is the first ingredient in our location-by-location insight.

Reordering. One motivation of the location-by-location insight aims at increasing the chance of

successfull subsumption in Step 4 by performing the subsumption test at ℓ★ only. To maximize

such chance, we reorder the expansion from the CNF to its DNF so that the transitions of the

LinTS associated with ℓ★ are expanded first, and the other transitions are expanded last. The

reason to expand the transitions with the target location ℓ★ first is as follows: since we focus on

the invariant generation at ℓ★, successful subsumptions would be detected earlier if we check

transitions that involve the target location ℓ★ first. In contrast, if one chooses an arbitary order for
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the expansion, then the expansion at locations other than ℓ★ cannot lead to successful subsumption,

as the subsumption testing is operated by checking the polyhedral inclusion that only involves

the unknown coefficients at ℓ★ (i.e., not involving the unknown coefficients at other locations). We

refine the epansion order by having that the intra-transitions in the LinTS that involves only the

location ℓ★ (i.e., the transitions from ℓ★ to itself) are expanded first, those that involves ℓ★ and other

locations (i.e., the inter-transitions from ℓ★ to other locations or from other locations to ℓ★) are

expanded second, those that does not involve location ℓ★ are expanded last.

The pseudo-code for our invariant generation algorithm that integrates the location-by-location

insight is given in Algorithm 1. In the pseudo-code, the algorithm first reorders the CNF formula∧
𝑖 𝐶𝑖 obtained from Step 4 in Section 3.1 as stated in the previous paragraph (line 1). The reordered

CNF is

∧
𝑖 𝐶
′
𝑖 . Then the algorithm initializes the values for inv(ℓ★), 𝑖 and all 𝑛𝑖 ’s (lines 2–4): the

variable inv(ℓ★) is a set variable used to collect linear invariants generated in the algorithm and

initialized to be ∅; since we implement expansion from the reordered CNF to its DNF through

backtracking, we use the variable 𝑖 to represent that the algorithm is currently traversing the

atomic propositions in𝐶 ′𝑖 , and the variable 𝑛𝑖 to represent that the current atomic proposition being

traversed in𝐶 ′𝑖 is the 𝑛𝑖 -th atomic proposition. Next, the algorithm follows the backtracking process

that iteratively selects one atomic proposition 𝑑𝑖 from each 𝐶 ′𝑖 (line 7) following the increasing

order of 𝑖 , aggressively checks whether the current exploration has already been subsumed by the

current invariant inv(ℓ★) (line 9), and updates the current invariant set by adding the invariants

only at ℓ★ derived from the conjunction

∧𝑚
𝑠=1 𝑑𝑠 (as a polyhedral cone) through the Gen procedure

if all the preceding subsumption testings have been unsuccessful. Note that in the subsumption

testing, the condition

∧𝑖
𝑠=1 𝑑𝑠 ⊈ inv(ℓ★) means that the polyhedral cone defined by the linear

assertion

∧𝑖
𝑠=1 𝑑𝑠 is not a subset of the counterpart generated by the linear invariants (as generators

extended with full dimension at other locations) in inv(ℓ★). The return value is the final set value

of inv(ℓ★) after the whole backtracking process, which collects all the linear invariants that are

generators of the polyhedral cones that pass the subsumption testing in the algorithm. A missing

part in the pseudo-code is the details for the procedure Gen, which will be illustrated in the next

subsection as the second ingredient.

4.2 Detailed Implementation of the Procedure Gen
To complete the pseudo-code in Algorithm 1, we give the details for the procedure Gen, which

is the second ingredient in the location-by-location insight. This procedure generates the linear

invariants at the target location ℓ★ from an input polyhedron poly over all the unknown coefficients.

There are various solutions to implement the procedureGen. The first solution is still to compute

the generators of poly, but to project the computed generators onto the unknown coefficients at

the location ℓ★, which we refer as No-Proj (i.e., no polyhedron projection). The second solution is

to apply the classical method of Fourier-Motzkin Elimination (FME) [66, Chapter 12.2] that first

projects away the extra dimensions other than the unknown coefficients at the target location ℓ★
and then computes the generators. In this work, we consider Kohler’s approach [51] as a third

solution.

Kohler’s Approach. A problem of the FME method is that it may produce many redundant linear

inequalities that significantly increase the amount of time required to compute projection. To avoid

introducing redundant inequalities, Kohler [51] proposed an alternative approach through the

computation of the generators of the projection cone of a polyhedron. To illustrate this approach,

we first present a variant form of Farkas’ Lemma [66, Corollary 7.1e].
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Algorithm 1 Linear Invariant Generation at Location ℓ★

Input: ℓ★ : target location;∧𝑚
𝑖=1𝐶𝑖 : the CNF formula obtained from Step 4 (Section 3.1) in the approach [20] where each

𝐶𝑖 is the 𝑖-th conjunctive clause and is a disjunction of polyhedra over the unknown coefficients

in the template;

Reordering(∧𝑖 𝐶𝑖 ) : a procedure that reorders all 𝐶𝑖 ’s into
∧

𝑖 𝐶
′
𝑖 w.r.t whether each 𝐶𝑖

corresponds to an intra- or an inter-transition as stated previously; we write 𝐶 ′𝑖 =
∨𝑁𝑖

𝑗=1
𝑐 ′𝑖, 𝑗

where each 𝑐 ′𝑖, 𝑗 is an atomic proposition in the form of a polyhedron over the unknown

coefficients;

Gen(ℓ, poly) : a procedure that generates the invariants at a location ℓ given a polyhedron

poly over the unknown coefficients

Output: a collection inv(ℓ★) of linear invariants at ℓ★;
1:

∧𝑚
𝑖=1𝐶

′
𝑖 ← Reordering(

∧𝑚
𝑖=1𝐶𝑖 ); //𝐶

′
𝑖 =

∨𝑁𝑖

𝑗=1
𝑐 ′𝑖, 𝑗

2: 𝑖𝑛𝑣 (ℓ★) ← ∅;
3: 𝑖 ← 1;

4: 𝑛𝑖 ← 1 (for 1 ≤ 𝑖 ≤ 𝑚);

5: while 𝑖 > 0 do

6: if 𝑛𝑖 ≤ 𝑁𝑖 then

7: 𝑑𝑖 ← 𝑐 ′𝑖,𝑛𝑖 ; //select one atomic proposition

8: 𝑛𝑖 ← 𝑛𝑖 + 1;
9: if

∧𝑖
𝑠=1 𝑑𝑠 ⊈ 𝑖𝑛𝑣 (ℓ★) then //subsumption

10: if 𝑖 =𝑚 then

11: 𝑖𝑛𝑣 (ℓ★) ← 𝑖𝑛𝑣 (ℓ★) ∪ Gen(ℓ★,
∧𝑚

𝑠=1 𝑑𝑠 );
12: else

13: 𝑖 ← 𝑖 + 1;
14: end if

15: end if

16: else

17: 𝑛𝑖 ← 1; //backtracking

18: 𝑖 ← 𝑖 − 1;
19: end if

20: end while;

21: return inv(ℓ★);

Theorem 4.1 (Farkas’ Lemma Variant). Let A be a real matrix and b be a real vector. The
polyhedron 𝑃 = {x | Ax ≤ b} is non-empty if and only if there is no vector y satisfying y ≥ 0, yTA = 0
and yTb < 0.

The polyhedral cone {y | y ≥ 0 ∧ yTA = 0} derived from the polyhedron 𝑃 = {x | Ax ≤ b} in
the statement of Theorem 4.1 is called the projection cone of 𝑃 , which we denoted by proj(A) since
it is only related to the matrix A.
Kohler’s approach utilizes projection cones to reduce the amount of redundant inequalities.

Consider the polyhedron 𝑃 = {(xT, uT)T ∈ R𝑝+𝑞 | Ax +Bu ≤ c} and the projection of 𝑃 onto x. The
approach treats 𝑃 as a polyhedron 𝑄 (x) with the parameter x such that 𝑄 (x) := {u ∈ R𝑞 | Bu ≤
c−Ax} and computes the generators of the projection cone proj(B). By Theorem 4.1, to ensure that

𝑄 (x) is non-empty, it suffices to guarantee that gT (c−Ax) ≥ 0 for all the generators g of proj(𝑄 (x)).
Hence, after the generators g1, . . . , g𝑘 of the projection cone proj(𝑄 (x)) are computed, the approach
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outputs the projected polyhedron 𝑃 [x] as defined by the linear inequalities gT𝑗 (c − Ax) ≥ 0 for

1 ≤ 𝑗 ≤ 𝑘 .

Our improvement on Kohler’s approach. In our situation, the task is to compute the projected

generators of a polyhedral cone Ac ≤ 0 onto the unknown coefficients at ℓ★ (here c is the vector of
unknown coefficients in the template). Following Kohler’s approach, we project the polyhedral

cone Ac ≤ 0 onto the unknown coefficients at ℓ★, and improve the approach by exploring the

detailed structure of the polyhedral cone. Let c★ be the vector of unknown coefficients at ℓ★ and c∗
be the vector of unknown coefficients at other locations. Then Ac ≤ 0 can be decomposed as

Ac = ©«
F 0
G G′

0 H

ª®¬ ·
(
c∗
c★

)
≤ 0

where Fc∗ ≤ 0 include the inequalities that involve only variables in c∗, Gc∗ +G′c★ ≤ 0 include the
inequalities that involve both c∗ and c★, and Hc★ ≤ 0 include the inequalities that involve only

variables in c★. Since Hc★ ≤ 0 is not related to c∗, our first (slight) improvement is to consider only

Bc∗ ≤ b with B :=

(
F
G

)
and b :=

(
0

−G′ · c★

)
(2)

in the projection onto c★. Furthermore, in the projection cone proj(B):(
y∗
y★

)
≥ 0,

(
yT∗ , yT★

)
·
(
F
G

)
= 0, (3)

we only need to consider the projection onto the dimensions y★ that correspond to the rows of G
since the vector b in (2) has all zero at the dimensions y∗. Thus, our second (major) improvement is

to project the projection cone proj(B) onto y★, and then compute the generators of the projected

cone.

4.3 The Accuracy of Our Approach
The accuracy of the generated invariants from our location-by-location insight can be shown

by proving that our approach generates at least the invariants from the most related previous

approach [65] that our approach is based on. This can be observed from the two points as follows.

First, the invariant generation at the target location ℓ★ outputs correctly the projected generators at

ℓ★. Second, any disjunctive clause 𝑄 (in the form of a polyhedral cone) in the final DNF that passes

all the preceding subsumption testing in the previous approach [65] is subsumed by the polyhedral

cone 𝑃★ generated by the linear invariants (as generators) in the final result inv(ℓ★) produced by

our approach. This can be easily seen as follows: for any such disjunctive clause 𝑄 , if it does not

pass the subsumption testing in our new approach, then naturally we have that 𝑄 ′ ⊆ 𝑃★ where 𝑄 ′

is the projection of 𝑄 onto the unknown coefficients at ℓ★ (i.e., projection preserves set inclusion);

otherwise, the algorithm adds the generators of 𝑄 ′ into inv(ℓ★) so that the final value of inv(ℓ★)
still include the projected generators of 𝑄 onto ℓ★.

5 EXPERIMENTAL RESULTS

Implementation. We implemented our algorithms as an extension of StInG [70] in C++, and used

PPL 1.2 [7] for polyhedra computation. To have a prototype implementation that synthesizes linear

invariants directly over programs, we wrote the benchmark examples in C programming language

and implemented the transformation from these examples into their format in StInG [70] via Sparse

0.6.4 [69] (a C language semantic parser). All results were obtained on an Intel Core i7-7700 (3.6

GHz) machine with 15.5 GiB of memory, running Ubuntu 20.04.2 LTS.
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Table 3. Experimental Results for Reordering Expansion

Benchmarks

StInG

Our Approach

Name Loc Dim Line

Expan-Order A: No-Proj Expan-Order B: No-Proj

Time ( Banged ) Time ( Banged ) Speedup Time ( Banged ) Speedup

Origin Scheduler

2p 2 16 - 0.01 ( 26 ) 0.02 ( 34 ) 0.50X 0.01 ( 34 ) 1.00X

3p 3 33 - 0.17 ( 380 ) 0.12 ( 289 ) 1.41X 0.10 ( 245 ) 1.70X

4p 4 56 - 60.81 ( 26,629 ) 2.92 ( 4,137 ) 20.82X 1.38 ( 1,508 ) 44.06X

5p 5 85 - 7,436.34 ( 2,548,704 ) 228.68 ( 219,735 ) 32.51X 26.52 ( 25,996 ) 280.40X

6p 6 120 - >36,000.00 ( >1,685,618 ) >36,000.00 ( >1,427,726 ) - 892.75 ( 66,905 ) >40.32X

Fixed Scheduler

3p 3 33 336 0.17 ( 279 ) 0.11 ( 305 ) 1.54X 0.10 ( 261 ) 1.70X

4p 4 56 609 4.16 ( 2,895 ) 2.46 ( 4,184 ) 1.69X 0.98 ( 1,474 ) 4.24X

5p 5 85 1017 135.80 ( 39,150 ) 227.16 ( 141,952 ) 0.59X 13.97 ( 8,570 ) 9.72X

6p 6 120 1587 7,541.53 ( 906,454 ) 28,890.44 ( 6,850,492 ) 0.26X 277.96 ( 63,070 ) 27.13X

Fischer

6p 7 63 710 9.18 ( 8,423 ) 4.35 ( 4,167 ) 2.11X 3.07 ( 4,217 ) 2.99X

7p 8 80 987 59.16 ( 32,668 ) 28.50 ( 12,494 ) 2.07X 13.60 ( 12,566 ) 4.35X

8p 9 99 1327 373.62 ( 127,918 ) 139.83 ( 43,093 ) 2.67X 70.42 ( 43,191 ) 5.30X

9p 10 120 1736 2,345.96 ( 503,369 ) 1,194.47 ( 163,495 ) 1.96X 398.26 ( 163,623 ) 5.89X

10p 11 143 2218 14,664.68 ( 1,985,857 ) Out of Memory ( - ) - 2,361.87 ( 649,409 ) 6.20X

11p 12 168 2780 >36,000.00 ( >3,347,744 ) Out of Memory ( - ) - 14,307.40 ( 2,620,864 ) >2.51X

Fixed Cars

2p 3 27 216 0.01 ( 28 ) 0.02 ( 45 ) 0.50X 0.01 ( 63 ) 1.00X

3p 5 60 616 560.70 ( 788,508 ) 0.39 ( 659 ) 1,437.69X 1.21 ( 2,299 ) 463.38X

4p 7 105 1283 >36,000.00 ( >11,727,189 ) 45.39 ( 6,841 ) >793.12X 86.83 ( 37,567 ) >414.60X

Benchmarks. We consider the following benchmarks from a variety of application domains [5, 52,

65, 70, 71]:

• Scheduler. The invariant analysis for cooperative multitasking (task scheduling) activated by

interrupts and pre-emptive programming can be used to ensure the liveness of scheduling. In

these benchmarks, taken from Arduino [5] and Sankaranarayanan [65], the goal is to generate

invariants on cooperative multitasking with multiple threads. The benchmarks here are divided

into two categories, namely "Origin Scheduler" and "Fixed Scheduler". The category "Origin

Scheduler" considers a non-standard setting to assign an initial condition to every location in

the LinTS in order to model the scenario that the initial location is nondeterministic, and the

benchmarks are directly in the format of StInG. The category "Fixed Scheduler" considers the

origninal benchmarks from StInG but under the standard setting of a prescribed initial location,

fixes several places in the original benchmarks that deviate from the original description in [41],

and the benchmarks are written in C.

• Fischer. Fischer mutual exclusion protocol [52] is a timing-based algorithm that implements

mutual exclusion for a distributed system with skewed clocks, and the invariant analysis of this

can be used to adjust some parameters to ensure reachability properties. The benchmarks here

are taken from PAT [71] and rewritten in C.

• Cars. The cars detection is a dynamic decision problem [65] whose invariant analysis can be used

to ensure the safety property of autopilot. The cars system has 𝑛 cars on a straight road and the

acceleration and velocity are determining by their controllers. The lead car non-deterministically

starts at an arbitary acceleration with initial velocity 0. The controllers of other cars detect

whether the distance between the front car and itself is too close or too far, and adjust their

acceleration accordingly. We take the benchmarks from [65], rewrite them equivalently into

multi-location versions, and implement them in C. We name the category of these benchmarks

as "Fixed Cars".

For each benchmark above, we consider a variety on the number 𝑟 of processes (denoted by “𝑟 -p”,

e.g. “2p”) involved. For all the benchmarks, we compare the running time between our algorithms

and the original algorithm in StInG.

Results. Our experimental results are sumarized in Table 3– 5, where we set a bound of 10 hours

for time-out. In the tables, we have that "Loc" means the number of locations in each benchmark,
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Table 4. Experimental Results for Polyhedron Projection

Benchmarks Our Approach

Name

Time ( Expan-Order B )

No-Proj FME Kohler Kohler*

Origin Scheduler

2p 0.01 0.01 0.02 0.02

3p 0.06 0.08 0.27 0.08

4p 0.24 0.52 1.42 0.46

5p 0.38 1.32 4.03 1.07

6p 38.59 48.88 28.01 11.20

7p 62,852.98 67,350.57 182.71 114.64

Fixed Scheduler

3p 0.05 0.09 0.16 0.08

4p 0.16 0.41 1.20 0.34

5p 1.40 2.12 5.71 1.63

6p 36.54 46.59 23.98 6.60

7p 67,671.98 72,406.55 156.64 80.51

Table 5. Experimental Results for Parallel Computation

Benchmarks Time ( Expan-Order B: Kohler* )

Name Loc Dim Line Max Speedup(original) Speedup

Origin Scheduler

2p 2 16 - 0.01 0.50X 1.00X

3p 3 33 - 0.05 1.21X 3.40X

4p 4 56 - 0.47 40.54X 129.38X

5p 5 85 - 7.52 272.69X 988.87X

6p 6 120 - 308.48 >41.44X >116.70X

7p 7 161 - 5,424.19 >1.60X >6.63X

Fixed Scheduler

3p 3 33 336 0.04 1.41X 4.25X

4p 4 56 609 0.39 3.25X 10.66X

5p 5 85 1017 4.90 8.58X 27.71X

6p 6 120 1587 72.07 31.35X 104.64X

7p 7 161 2352 1,350.66 >7.57X >26.65X

Fischer

6p 7 63 710 1.22 2.91X 7.52X

7p 8 80 987 7.75 3.96X 7.63X

8p 9 99 1327 45.41 5.25X 8.22X

9p 10 120 1736 283.95 5.66X 8.26X

10p 11 143 2218 1,700.51 6.11X 8.62X

11p 12 168 2780 10,230.51 >2.51X >3.51X

Fixed Cars

2p 3 27 216 0.01 1.00X 1.00X

3p 5 60 616 0.83 463.38X 675.54X

4p 7 105 1283 75.83 >426.08X >474.74X
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"Dim" means the number of total dimensions of the benchmark, "Line" means the number of lines

of the implemented program in C, "Time" is the amount of runtime measured in seconds, "Banged"

means the number of successful subsumptions, and "Speedup" shows the ratio of the amount of

runtime consumed by StInG against ours, "Our Approach" means the experimental results by our

approach, "StInG" means the experimental results by StInG, and the symbol "-" means that the cell

in the table is not applicable. Furthermore, under "Our Approach" with the set of locations 𝐿 and

the target location ℓ★ , the tag "Expan-Order A" means to make the intra-transitions on 𝐿\{ℓ★} in
front of the inter-transitions between 𝐿\{ℓ★} when reordering expansion, the tag "Expan-Order B"

means that making the inter-transitions between 𝐿\{ℓ★} in front of the intra-transition on 𝐿\{ℓ★}
when reordering expansion, "No-Proj" means that computing the generators without any projection

method in procedure Gen, "FME" means that computing the generators by applying projection of

Fourier-Motzkin Elimination, "Kohler" means that computing the generators by applying Kohler’s

approach, and "Kohler* " means that computing the generators by applying Kohler’s approach with

our improvement. In all the benchmarks, the generated invariants by our approach are exactly the

same as from StInG, thus we focus on the comparison in the runtime. Due to the limit of space,

we only present the most representative experimental results and relegate the other results in

Appendix A.

Table 3 presents the runtime for StInG, our approach with "Expan-Order A" and "No-Proj"

and our approach with "Expan-Order B" and "No-Proj", for which the amount of runtime for our

approach is taken as the summation of all locations in the LinTS. From the table, we see that our

approach implemented with both expansion order A and B and without polyhedron projection

for the generator computation can improve the runtime performance of StInG up to a magnitude

of hundreds. Moreover, Expansion order B stably improves the performance as it improves the

runtime in all cases. This demonstrates that our improved expansion order from the CNF to its DNF

is indeed effective. The effectiveness is also supported by the number of successful subsumptions, as

one can observe that a smaller number of successful subsumptions means that these subsumptions

are detected earlier by our improved expansion order.

Table 4 records the total amount of time consumed by the generator computation under our

improved expansion order. From the table, one can observe that "No-Proj" is the best when the

dimension is moderate, while our improvement on Kohler’s approach out-performs all other

methods when the dimension is high. This shows that our improved Kohler’s approach is effective

when the dimension in generation computation is high.

Finally, Table 5 checks the advantage of parallel computation through our approach. Recall that

by the location-by-location insight, our approach allows to compute the invariants at each location

separately. In Table 5, we present the maximum running time under our improved Kohler with

parallelism. The "Max" column records the maximum running time over all locations. Compared

with the "Speedup(original)" column which records the summation of the running time under

our approach at all locations (i.e., without parallelism), our approach with parallel computation

achieves much better speed-up on the runtime performance.

6 CONCLUSION AND FUTUREWORK
In this work, we proposed a new approach based on the previous approach [65] through constraint

solving and Farkas’ Lemma, with the improvement from the location-by-location insight that

handles only one (target) program location in a single invariant-generation process. To facilitate

the insight, we considered a reordered expansion from a key CNF formula in the invariant gen-

eration process into its equivalent DNF form to maximize the success chance of subsumption;

we also considered variants of generator computation that generate the invariants at the target

location of concern; in addition, the location-by-location insight allows a speed-up through parallel
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computation that computes the invariants at the locations separately over multiple processors.

Experimental results show that our novel insight can dramatically improve the efficiency of linear

invariant generation as compared with the previous approach [65]. A future direction would be

to incorporate dynamic programming that reuses intermediate results in the expansion from the

CNF into its DNF. Another possible future direction is to integrate other methods (e.g. [9, 46]) on

polyhedron projection.
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Table 6. Experimental Results for Polyhedron Projection

Benchmarks Our Approach

Name Loc Dim Line

Time ( Expan-Order A ) Time ( Expan-Order B )

No-Proj FME Kohler Kohler* No-Proj FME Kohler Kohler*

Origin Scheduler

2p 2 16 - 0.01 0.01 0.03 0.02 0.01 0.01 0.02 0.02

3p 3 33 - 0.06 0.12 0.25 0.05 0.06 0.08 0.27 0.08

4p 4 56 - 0.22 0.55 1.38 0.47 0.24 0.52 1.42 0.46

5p 5 85 - 0.48 1.31 3.88 1.20 0.38 1.32 4.03 1.07

6p 6 120 - - - - - 38.59 48.88 28.01 11.20

7p 7 161 - - - - - 62,852.98 67,350.57 182.71 114.64

Fixed Scheduler

3p 3 33 336 0.05 0.09 0.28 0.08 0.05 0.09 0.16 0.08

4p 4 56 609 0.16 0.32 1.14 0.32 0.16 0.41 1.20 0.34

5p 5 85 1017 1.22 1.83 4.86 1.49 1.40 2.12 5.71 1.63

6p 6 120 1587 34.07 44.46 21.67 6.35 36.54 46.59 23.98 6.60

7p 7 161 2352 - - - - 67,671.98 72,406.55 156.64 80.51

Table 7. Experimental Results for Parallel Computation ( Expan-Order A: No-Proj )

Benchmarks Time ( Expan-Order A: No-Proj )

Name Loc Dim Line 1 2 3 4 5 6 7 8 9 10 11 12 Max Speedup(original) Speedup

Origin Scheduler

2p 2 16 - 0.01 0.01 - - - - - - - - - - 0.01 0.50X 1.00X

3p 3 33 - 0.04 0.04 0.04 - - - - - - - - - 0.04 1.41X 4.25X

4p 4 56 - 0.51 1.27 0.93 0.21 - - - - - - - - 1.27 20.82X 47.88X

5p 5 85 - 2.36 29.98 81.85 102.53 11.96 - - - - - - - 102.53 32.51X 72.52X

6p 6 120 - - - - - - - - - - - - - - - -

7p 7 161 - - - - - - - - - - - - - - - -

Fixed Scheduler

3p 3 33 336 0.04 0.04 0.03 - - - - - - - - - 0.04 1.54X 4.25X

4p 4 56 609 0.26 0.87 1.07 0.26 - - - - - - - - 1.07 1.69X 3.88X

5p 5 85 1017 3.24 45.94 91.71 82.26 4.01 - - - - - - - 91.71 0.59X 1.48X

6p 6 120 1587 146.05 3,172.04 8,389.32 8,068.50 8,232.79 881.74 - - - - - - 8,389.32 0.26X 0.89X

7p 7 161 2352 - - - - - - - - - - - - - - -

Fischer

6p 7 63 710 1.37 0.20 0.20 0.26 0.50 1.49 0.33 - - - - - 1.49 2.11X 6.16X

7p 8 80 987 13.31 0.44 0.48 0.59 1.03 2.72 9.08 0.85 - - - - 13.31 2.07X 4.44X

8p 9 99 1327 56.16 0.96 1.02 1.25 2.12 5.05 15.65 55.38 2.24 - - - 56.16 2.67X 6.65X

9p 10 120 1736 713.68 1.99 2.12 2.59 4.26 9.59 28.02 93.18 333.30 5.74 - - 713.68 1.96X 3.28X

10p 11 143 2218 - - - - - - - - - - - - - - -

11p 12 168 2780 - - - - - - - - - - - - - - -

Fixed Cars

2p 3 27 216 0.01 <0.01 0.01 - - - - - - - - - 0.01 0.50X 1.00X

3p 5 60 616 0.26 0.02 0.03 0.04 0.04 - - - - - - - 0.26 1,437.69X 2,156.53X

4p 7 105 1283 42.89 0.33 0.47 0.34 0.49 0.36 0.51 - - - - - 42.89 >793.12X >839.35X

Table 8. Experimental Results for Parallel Computation ( Expan-Order A: FME )

Benchmarks Time ( Expan-Order A: FME )

Name Loc Dim Line 1 2 3 4 5 6 7 8 9 10 11 12 Max Speedup(original) Speedup

Origin Scheduler

2p 2 16 - 0.01 0.01 - - - - - - - - - - 0.01 0.50X 1.00X

3p 3 33 - 0.07 0.05 0.05 - - - - - - - - - 0.07 1.00X 2.42X

4p 4 56 - 0.65 1.15 1.01 0.27 - - - - - - - - 1.15 19.74X 52.87X

5p 5 85 - 2.38 29.11 84.96 107.82 12.94 - - - - - - - 107.82 31.34X 68.96X

6p 6 120 - - - - - - - - - - - - - - - -

7p 7 161 - - - - - - - - - - - - - - - -

Fixed Scheduler

3p 3 33 336 0.05 0.05 0.04 - - - - - - - - - 0.05 1.21X 3.40X

4p 4 56 609 0.33 0.93 1.11 0.31 - - - - - - - - 1.11 1.55X 3.74X

5p 5 85 1017 3.34 47.52 94.79 82.96 4.11 - - - - - - - 94.79 0.58X 1.43X

6p 6 120 1587 145.78 3,172.68 8,402.87 8,058.62 7,947.10 884.46 - - - - - - 8,402.87 0.26X 0.89X

7p 7 161 2352 - - - - - - - - - - - - - - -

Fischer

6p 7 63 710 1.28 0.22 0.24 0.29 0.54 1.53 0.35 - - - - - 1.53 2.06X 6.00X

7p 8 80 987 13.47 0.51 0.55 0.66 1.13 2.81 9.33 0.93 - - - - 13.47 2.01X 4.39X

8p 9 99 1327 57.69 1.11 1.24 1.39 2.27 5.57 16.58 56.76 2.37 - - - 57.69 2.57X 6.47X

9p 10 120 1736 721.78 2.26 2.38 2.91 4.56 10.02 28.55 95.98 348.36 6.64 - - 721.78 1.91X 3.25X

10p 11 143 2218 - - - - - - - - - - - - - - -

11p 12 168 2780 - - - - - - - - - - - - - - -

Fixed Cars

2p 3 27 216 0.01 <0.01 0.01 - - - - - - - - - 0.01 0.50X 1.00X

3p 5 60 616 0.27 0.03 0.03 0.04 0.04 - - - - - - - 0.27 1,367.56X 2076.66X

4p 7 105 1283 44.08 0.39 0.54 0.42 0.55 0.44 0.57 - - - - - 44.08 >766.12X >816.69X

A DETAILED EXPERIMENTAL RESULTS
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Table 9. Experimental Results for Parallel Computation ( Expan-Order A: Kohler )

Benchmarks Time ( Expan-Order A: Kohler )

Name Loc Dim Line 1 2 3 4 5 6 7 8 9 10 11 12 Max Speedup(original) Speedup

Origin Scheduler

2p 2 16 - 0.01 0.02 - - - - - - - - - - 0.02 0.33X 0.50X

3p 3 33 - 0.11 0.11 0.11 - - - - - - - - - 0.11 0.51X 1.54X

4p 4 56 - 0.79 1.38 1.24 0.49 - - - - - - - - 1.38 15.59X 44.06X

5p 5 85 - 2.89 29.64 82.10 103.74 12.67 - - - - - - - 103.74 32.18X 71.68X

6p 6 120 - - - - - - - - - - - - - - - -

7p 7 161 - - - - - - - - - - - - - - - -

Fixed Scheduler

3p 3 33 336 0.09 0.11 0.12 - - - - - - - - - 0.12 0.53X 1.41X

4p 4 56 609 0.50 1.12 1.31 0.53 - - - - - - - - 1.31 1.20X 3.17X

5p 5 85 1017 3.93 46.51 92.50 82.02 4.71 - - - - - - - 92.50 0.59X 1.46X

6p 6 120 1587 146.57 3,228.52 8,468.86 8,105.17 8,171.11 868.50 - - - - - - 8,468.86 0.26X 0.89X

7p 7 161 2352 - - - - - - - - - - - - - - -

Fischer

6p 7 63 710 1.31 0.26 0.28 0.33 0.58 1.56 0.39 - - - - - 1.56 1.94X 5.88X

7p 8 80 987 13.36 0.58 0.61 0.74 1.19 2.88 9.42 1.02 - - - - 13.36 1.98X 4.42X

8p 9 99 1327 57.09 1.22 1.27 1.51 2.34 5.37 16.20 56.62 2.58 - - - 57.09 2.59X 6.54X

9p 10 120 1736 728.55 2.38 2.53 3.02 4.63 10.08 28.60 94.00 339.17 6.19 - - 728.55 1.92X 3.22X

10p 11 143 2218 - - - - - - - - - - - - - - -

11p 12 168 2780 - - - - - - - - - - - - - - -

Fixed Cars

2p 3 27 216 <0.01 0.01 0.01 - - - - - - - - - 0.01 0.50X 1.00X

3p 5 60 616 0.27 0.04 0.04 0.05 0.06 - - - - - - - 0.27 1,218.91X 2,076.66X

4p 7 105 1283 44.04 0.49 0.64 0.51 0.66 0.55 0.68 - - - - - 44.04 >756.77X >817.43X

Table 10. Experimental Results for Parallel Computation ( Expan-Order A: Kohler* )

Benchmarks Time ( Expan-Order A: Kohler* )

Name Loc Dim Line 1 2 3 4 5 6 7 8 9 10 11 12 Max Speedup(original) Speedup

Origin Scheduler

2p 2 16 - 0.01 0.01 - - - - - - - - - - 0.01 0.50X 1.00X

3p 3 33 - 0.06 0.04 0.04 - - - - - - - - - 0.06 1.21X 2.83X

4p 4 56 - 0.58 1.15 0.98 0.26 - - - - - - - - 1.15 20.47X 52.87X

5p 5 85 - 2.36 28.93 81.02 103.14 12.04 - - - - - - - 103.14 32.68X 72.09X

6p 6 120 - - - - - - - - - - - - - - - -

7p 7 161 - - - - - - - - - - - - - - - -

Fixed Scheduler

3p 3 33 336 0.05 0.06 0.04 - - - - - - - - - 0.06 1.13X 2.83X

4p 4 56 609 0.30 0.91 1.11 0.29 - - - - - - - - 1.11 1.59X 3.74X

5p 5 85 1017 3.38 45.85 91.55 81.78 3.94 - - - - - - - 91.55 0.59X 1.48X

6p 6 120 1587 144.89 3,177.27 8,386.05 8,137.26 8,376.15 864.79 - - - - - - 8,386.05 0.25X 0.89X

7p 7 161 2352 - - - - - - - - - - - - - - -

Fischer

6p 7 63 710 1.51 0.22 0.23 0.29 0.53 1.52 0.37 - - - - - 1.52 1.96X 6.03X

7p 8 80 987 13.35 0.50 0.54 0.65 1.12 2.80 9.29 0.93 - - - - 13.35 2.02X 4.43X

8p 9 99 1327 56.87 1.07 1.13 1.36 2.20 5.17 15.94 55.96 2.35 - - - 56.87 2.63X 6.56X

9p 10 120 1736 735.70 2.17 2.31 2.78 4.43 9.87 28.55 105.75 350.42 6.26 - - 735.70 1.87X 3.18X

10p 11 143 2218 - - - - - - - - - - - - - - -

11p 12 168 2780 - - - - - - - - - - - - - - -

Fixed Cars

2p 3 27 216 <0.01 0.01 <0.01 - - - - - - - - - 0.01 1.00X 1.00X

3p 5 60 616 0.27 0.03 0.03 0.04 0.05 - - - - - - - 0.27 1335.00X 2,076.66X

4p 7 105 1283 44.61 0.39 0.53 0.41 0.55 0.43 0.57 - - - - - 44.61 >758.05X >806.99X

Table 11. Experimental Results for Parallel Computation ( Expan-Order B: No-Proj )

Benchmarks Time ( Expan-Order B: No-Proj )

Name Loc Dim Line 1 2 3 4 5 6 7 8 9 10 11 12 Max Speedup(original) Speedup

Origin Scheduler

2p 2 16 - 0.01 0 - - - - - - - - - - 0.01 1.00X 1.00X

3p 3 33 - 0.04 0.03 0.03 - - - - - - - - - 0.04 1.70X 4.25X

4p 4 56 - 0.40 0.45 0.32 0.21 - - - - - - - - 0.45 44.06X 135.13X

5p 5 85 - 6.93 5.81 7.36 4.54 1.88 - - - - - - - 7.36 280.40X 1010.37X

6p 6 120 - 42.30 178.32 310.36 216.76 114.69 30.32 - - - - - - 310.36 >40.32X >115.99X

7p 7 161 - - - - - - - - - - - - - - - -

Fixed Scheduler

3p 3 33 336 0.03 0.04 0.03 - - - - - - - - - 0.04 1.70X 4.25X

4p 4 56 609 0.23 0.27 0.26 0.22 - - - - - - - - 0.27 4.24X 15.40X

5p 5 85 1017 2.40 3.29 4.16 2.83 1.29 - - - - - - - 4.16 9.72X 32.64X

6p 6 120 1587 27.75 47.90 80.32 55.99 44.81 21.19 - - - - - - 80.32 27.13X 93.89X

7p 7 161 2352 - - - - - - - - - - - - - - -

Fischer

6p 7 63 710 0.40 0.19 0.20 0.26 0.47 1.21 0.34 - - - - - 1.21 2.99X 7.58X

7p 8 80 987 0.90 0.44 0.45 0.53 0.85 2.17 7.40 0.86 - - - - 7.40 4.35X 7.99X

8p 9 99 1327 1.78 0.94 0.98 1.12 1.67 3.89 12.34 45.49 2.21 - - - 45.49 5.30X 8.21X

9p 10 120 1736 3.31 1.89 1.95 2.22 3.33 7.15 21.29 74.17 277.24 5.71 - - 277.24 5.89X 8.46X

10p 11 143 2218 5.97 3.66 3.82 4.38 6.45 13.68 38.88 128.98 456.91 1,684.68 14.46 - 1,684.68 6.20X 8.70X

11p 12 168 2780 10.42 6.96 7.25 8.55 12.97 27.77 76.58 240.98 813.28 2,841.46 10,224.63 36.55 10,224.63 >2.51X >3.52X

Fixed Cars

2p 3 27 216 0.01 <0.01 <0.01 - - - - - - - - - 0.01 1.00X 1.00X

3p 5 60 616 0.84 0.08 0.09 0.10 0.10 - - - - - - - 0.84 463.38X 667.50X

4p 7 105 1283 76.99 1.55 1.48 1.69 1.67 1.72 1.73 - - - - - 76.99 >414.60X >467.59X
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Table 12. Experimental Results for Parallel Computation ( Expan-Order B: FME )

Benchmarks Time ( Expan-Order B: FME )

Name Loc Dim Line 1 2 3 4 5 6 7 8 9 10 11 12 Max Speedup(original) Speedup

Origin Scheduler

2p 2 16 - 0.01 <0.01 - - - - - - - - - - 0.01 1.00X 1.00X

3p 3 33 - 0.05 0.04 0.05 - - - - - - - - - 0.05 1.21X 3.40X

4p 4 56 - 0.48 0.50 0.36 0.26 - - - - - - - - 0.50 38.00X 121.62X

5p 5 85 - 7.04 5.93 7.46 4.66 2.02 - - - - - - - 7.46 274.30X 996.82X

6p 6 120 - 42.26 181.22 313.45 220.01 116.21 33.12 - - - - - - 313.45 >39.72X >114.85X

7p 7 161 - - - - - - - - - - - - - - - -

Fixed Scheduler

3p 3 33 336 0.04 0.05 0.04 - - - - - - - - - 0.05 1.30X 3.40X

4p 4 56 609 0.29 0.32 0.30 0.27 - - - - - - - - 0.32 3.52X 13.00X

5p 5 85 1017 2.51 3.44 4.30 2.91 1.42 - - - - - - - 4.30 9.31X 31.58X

6p 6 120 1587 28.43 51.57 80.06 58.66 43.09 23.49 - - - - - - 80.06 26.43X 94.19X

7p 7 161 2352 - - - - - - - - - - - - - - -

Fischer

6p 7 63 710 0.41 0.23 0.23 0.28 0.46 1.25 0.35 - - - - - 1.25 2.85X 7.34X

7p 8 80 987 0.91 0.51 0.52 0.60 0.93 2.23 7.54 0.94 - - - - 7.54 4.17X 7.84X

8p 9 99 1327 1.83 1.06 1.09 1.23 1.80 4.03 12.48 46.06 2.39 - - - 46.06 5.19X 8.11X

9p 10 120 1736 3.55 2.11 2.18 2.46 3.51 7.36 21.81 75.38 284.34 6.09 - - 284.34 5.73X 8.25X

10p 11 143 2218 6.43 4.03 4.22 4.81 7.05 14.18 40.05 131.75 465.63 1,736.17 14.94 - 1,736.17 6.03X 8.44X

11p 12 168 2780 10.96 7.47 7.83 9.11 13.64 28.67 78.04 244.84 822.43 2,869.50 10,339.85 37.42 10,339.85 >2.48X >3.48X

Fixed Cars

2p 3 27 216 0.01 0.01 <0.01 - - - - - - - - - 0.01 0.50X 1.00X

3p 5 60 616 0.85 0.09 0.09 0.11 0.11 - - - - - - - 0.85 448.56X 659.64X

4p 7 105 1283 77.60 1.36 1.32 1.52 1.52 1.56 1.55 - - - - - 77.60 >416.52X >463.91X

Table 13. Experimental Results for Parallel Computation ( Expan-Order B: Kohler )

Benchmarks Time ( Expan-Order B: Kohler )

Name Loc Dim Line 1 2 3 4 5 6 7 8 9 10 11 12 Max Speedup(original) Speedup

Origin Scheduler

2p 2 16 - 0.01 0.02 - - - - - - - - - - 0.02 0.33X 0.50X

3p 3 33 - 0.11 0.10 0.10 - - - - - - - - - 0.11 0.54X 1.54X

4p 4 56 - 0.65 0.69 0.59 0.48 - - - - - - - - 0.69 25.23X 88.13X

5p 5 85 - 7.68 6.62 8.21 5.34 2.64 - - - - - - - 8.21 243.89X 905.76X

6p 6 120 - 44.24 177.94 313.50 220.60 112.74 18.25 - - - - - - 313.50 >40.57X >114.83X

7p 7 161 - 871.68 3,517.01 5,463.73 4,203.43 2,678.93 5,671.06 430.29 - - - - - 5,671.06 >1.57X >6.34X

Fixed Scheduler

3p 3 33 336 0.08 0.09 0.09 - - - - - - - - - 0.09 0.65X 1.88X

4p 4 56 609 0.46 0.52 0.49 0.49 - - - - - - - - 0.52 2.12X 8.00X

5p 5 85 1017 3.11 4.07 4.87 3.50 2.00 - - - - - - - 4.87 7.73X 27.88X

6p 6 120 1587 30.10 47.30 75.93 59.12 41.39 8.47 - - - - - - 75.93 28.75X 99.32X

7p 7 161 2352 463.98 806.16 1,371.55 915.13 774.16 531.02 45.03 - - - - - 1,371.55 >7.33X >26.24X

Fischer

6p 7 63 710 0.43 0.25 0.27 0.30 0.50 1.29 0.40 - - - - - 1.29 2.66X 7.11X

7p 8 80 987 0.96 0.58 0.59 0.67 1.00 2.30 7.61 1.02 - - - - 7.61 4.01X 7.77X

8p 9 99 1327 1.96 1.18 1.21 1.37 1.93 4.15 12.87 46.34 2.51 - - - 46.34 5.08X 8.06X

9p 10 120 1736 3.74 2.38 2.38 2.67 3.76 7.68 22.17 76.12 286.63 6.23 - - 286.63 5.66X 8.18X

10p 11 143 2218 6.68 4.39 4.51 5.09 7.23 14.63 40.31 132.17 465.49 1,705.49 15.20 - 1,705.49 6.10X 8.59X

11p 12 168 2780 11.44 8.01 8.34 9.66 14.19 29.08 78.58 246.01 823.62 2,871.39 10,345.63 37.95 10,345.63 >2.48X >3.47X

Fixed Cars

2p 3 27 216 0.01 0.01 <0.01 - - - - - - - - - 0.01 0.50X 1.00X

3p 5 60 616 1.01 0.12 0.12 0.15 0.15 - - - - - - - 1.01 361.74X 555.14X

4p 7 105 1283 77.75 1.46 1.42 1.62 1.62 1.67 1.66 - - - - - 77.75 >412.84X >463.02X

Table 14. Experimental Results for Parallel Computation ( Expan-Order B: Kohler* )

Benchmarks Time ( Expan-Order B: Kohler* )

Name Loc Dim Line 1 2 3 4 5 6 7 8 9 10 11 12 Max Speedup(original) Speedup

Origin Scheduler

2p 2 16 - 0.01 0.01 - - - - - - - - - - 0.01 0.50X 1.00X

3p 3 33 - 0.05 0.04 0.05 - - - - - - - - - 0.05 1.21X 3.40X

4p 4 56 - 0.41 0.47 0.36 0.26 - - - - - - - - 0.47 40.54X 129.38X

5p 5 85 - 7.04 6.01 7.52 4.70 2.00 - - - - - - - 7.52 272.69X 988.87X

6p 6 120 - 41.77 175.80 308.48 216.41 110.84 15.22 - - - - - - 308.48 >41.44X >116.70X

7p 7 161 - 981.03 3,669.94 5,413.91 4,025.82 2,567.09 5,424.19 402.58 - - - - - 5,424.19 >1.60X >6.63X

Fixed Scheduler

3p 3 33 336 0.04 0.04 0.04 - - - - - - - - - 0.04 1.41X 4.25X

4p 4 56 609 0.32 0.39 0.31 0.26 - - - - - - - - 0.39 3.25X 10.66X

5p 5 85 1017 2.63 3.54 4.90 3.37 1.38 - - - - - - - 4.90 8.58X 27.71X

6p 6 120 1587 28.74 44.04 72.07 51.77 38.62 5.26 - - - - - - 72.07 31.35X 104.64X

7p 7 161 2352 443.54 787.35 1,350.66 892.31 745.12 505.90 27.13 - - - - - 1,350.66 >7.57X >26.65X

Fischer

6p 7 63 710 0.40 0.22 0.23 0.26 0.44 1.22 0.38 - - - - - 1.22 2.91X 7.52X

7p 8 80 987 0.92 0.53 0.54 0.62 1.00 2.53 7.75 1.02 - - - - 7.75 3.96X 7.63X

8p 9 99 1327 1.86 1.04 1.07 1.21 1.79 3.97 12.45 45.41 2.35 - - - 45.41 5.25X 8.22X

9p 10 120 1736 3.48 2.10 2.12 2.40 3.48 7.71 25.06 77.82 283.95 5.96 - - 283.95 5.66X 8.26X

10p 11 143 2218 6.27 3.95 4.10 4.69 6.77 13.99 39.27 134.19 469.25 1,700.51 15.39 - 1,700.51 6.11X 8.62X

11p 12 168 2780 10.91 7.46 7.77 9.10 13.51 28.25 77.18 241.64 813.60 2,841.93 10,230.51 36.98 10,230.51 >2.51X >3.51X

Fixed Cars

2p 3 27 216 0.01 <0.01 <0.01 - - - - - - - - - 0.01 1.00X 1.00X

3p 5 60 616 0.83 0.08 0.09 0.10 0.11 - - - - - - - 0.83 463.38X 675.54X

4p 7 105 1283 75.83 1.33 1.32 1.48 1.47 1.54 1.52 - - - - - 75.83 >426.08X >474.74X
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