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High-frequency leaky whispering-gallery modes in embedded elastic spheres2
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The goal of this paper is to investigate the characteristics of high-frequency whispering-gallery modes in
embedded elastic spheres, that is, surrounded by an infinite elastic matrix. Due to several modeling difficulties,
the high-frequency regime of embedded spheres has remained unexplored in elasticity. Our approach consists
of formulating a specific finite-element method in spherical coordinates. The basic idea is to discretize only
the radial coordinate while describing analytically the angular distribution of elastodynamic fields. Then, we
also introduce a radial perfectly matched layer to cope with the unbounded nature of the external medium. Our
approach yields a linear matrix eigensystem, simple and costless to solve. In order to identify general trends, both
stiff and soft configurations are considered, corresponding to a sphere stiffer and softer than the external medium,
respectively. Including material loss, our results highlight the behavior of leaky elastic whispering-gallery modes
in the high-frequency regime. This work is motivated by the well-known behavior of whispering-gallery modes
in optical resonators, reaching high Q factors as the frequency increases. Identifying high-Q-factor whispering-
gallery modes in elastic spheres could find promising applications for sensing the mechanical properties of
external media.
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I. INTRODUCTION22

In this paper, we address the computation of leaky res-23

onances of embedded elastic spheres at high acoustical24

frequencies. Our aim is to investigate the characteristics of25

whispering-gallery modes (WGMs) with particular attention26

to their attenuation (Q factor), which has not been considered27

yet. This work is motivated by the well-known behavior of28

WGMs in optical resonators [1], reaching high Q factors as29

the frequency increases. High-Q-factor optical WGMs have30

sustained the development of numerous optical sensors [2].31

Identifying such modes in elastic spheres could therefore find32

many interesting applications, e.g., for sensing the mechanical33

properties of a media external to the sphere.34

Resonances of elastic spheres have been largely studied35

in vacuo, first by Lamb in 1881 as a classical problem in36

mechanics [3]. This topic has then drawn the attention of37

geophysicists, using the normal modes of the Earth to analyze38

the internal structure of our planet [4,5]. More recently, elastic39

resonances of nanoparticles have been studied because of their40

significant role in Raman scattering [6,7], stimulated Brillouin41

scattering [8], or surface plasmonic resonances [9].42

However, the case of embedded elastic spheres, i.e., buried43

in an external solid matrix, is more intricate than in a vacuum.44

As a consequence, this case has been far less considered in45

the literature, and the analyses are most often limited to quite46

low acoustical frequencies [10–14]. Indeed, the modeling of47

*fabien.treyssede@univ-eiffel.fr
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an embedded elastic sphere can be described as an open res- 48

onator, which raises several difficulties. 49

First, the physics of open resonators strongly differ from 50

closed systems: their spectrum involves a continuum of radi- 51

ation modes, difficult to handle from a mathematical point of 52

view. This continuum can be approximated by a discrete set, 53

easier to manipulate, of so-called leaky modes (or quasinor- 54

mal modes) [15]. Since energy leaks out of the sphere due to 55

radiative loss, leaky resonances are damped in time: the eigen- 56

frequencies are hence no longer real but necessarily complex. 57

However, the behavior of leaky modes is somewhat unusual at 58

infinity: while exponentially decreasing in time, these modes 59

exponentially grow in the transverse direction [15,16] (that is, 60

in the radial direction for our spherical problem). 61

Second, radiative loss dramatically increases in a low- 62

frequency range, leading to a drastic drop of Q factors. This 63

motivates the consideration of high-frequency regimes, i.e., 64

normalized frequency greater than 102 in practice. However, 65

high-frequency modes are difficult to solve by means of 66

analytical methods because of the instabilities of secular equa- 67

tions [14,17,18]. 68

To circumvent this problem, our approach consists of for- 69

mulating a specific finite-element (FE) method in spherical 70

coordinates. Full three-dimensional or two-dimensional FE 71

models are prohibited due to their computational cost in the 72

high-frequency regime [19]. Therefore, the basic idea is to 73

consider a semianalytical approach, consisting of separating 74

the angular and the radial variables. The solution along the 75

angular variables is analytical, decomposed on the basis of 76

vector spherical harmonics. The solution along the radial vari- 77

able is discretized, approximated with one-dimensional FE 78

(see Fig. 1). This semianalytical FE principle was applied 79
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FIG. 1. Sphere of radius a embedded into an infinite medium
truncated with a PML of thickness h. The PML cancels the natural
growth of leaky modes in the radial direction r, discretized by one-
dimensional FE (indicated by nodes). The spherical coordinates are
the radius r, the polar angle θ (0 � θ < π ), and the azimuthal angle
φ (0 � φ < 2π ).

to compute the resonances of in vacuo spheres in [20,21],80

but without taking full advantage of the analytical description81

leading to tedious integral calculus. Recently, a compact for-82

mulation has been proposed in [22]. The main difficulty to83

achieve such a compact form in elasticity is to uncouple the84

spherical harmonics, which requires orthogonality relations of85

tensor type (the wave equation is vectorial) [23].86

The goal of this paper is twofold: extend the formulation87

of Ref. [22] to the embedded case and highlight the behavior88

of leaky WGMs in the high-frequency regime. Nevertheless,89

a major difficulty for numerical methods is raised with the90

unbounded nature of the problem. This difficulty is particu-91

larly severe due to the exponential growth of leaky modes. A92

powerful technique to bound the problem consists in using93

a perfectly matched layer (PML). A PML is based on the94

complex scaling of the unbounded coordinate [24], which95

cancels the growth of leaky modes and allows truncating96

the unbounded embedding medium to a user-defined finite97

thickness (see Fig. 1). Regardless of spherical problems, this98

technique has been used to compute resonances in fluid and99

optical open cavities (see Refs. [25–28], for instance).100

In this paper, we propose to combine a semianalytical FE101

formulation in spherical coordinates with a radial PML in102

order to compute leaky modes in embedded elastic spheres103

(Sec. II). Our approach yields a linear eigenproblem, which is104

very simple and costless to solve, even in the high-frequency105

regime (the FE discretization is one-dimensional). Compared106

to analytical approaches, our formulation does not suffer from107

instabilities and is quite versatile (complex inhomogeneous108

spheres, e.g., made of several layers, can be readily consid-109

ered).110

Last but not least, the formulation remains applicable for111

viscoelastic materials (complex elastic constants are allowed).112

The intrinsic loss of materials is usually far greater in elas-113

ticity than in optics. It is noteworthy that the effects of 114

viscoelastic loss tend to increase with frequency. Therefore, 115

in the high-frequency regime, including viscoelastic loss in 116

addition to leakage loss appears to be essential for a proper 117

understanding of the physics of leaky WGMs in elasticity. 118

Numerical results will be presented in Sec. III. 119

II. SEMIANALYTICAL FE METHOD IN COMPLEX 120

SPHERICAL COORDINATES 121

A. Elastodynamic weak form with radial PML 122

Let us consider an elastic sphere of radius a embedded 123

into an infinite elastic matrix. With time-harmonic 124

dependence e−iωt , the displacement field ũ(r, θ, φ) = 125

[ũr (r, θ, φ), ũθ (r, θ, φ), ũφ (r, θ, φ)]T (T denotes matrix 126

transpose) is the solution of the weak form of elastodynamics 127

[29]: 128∫
Ṽ

δε̃Tσ̃dṼ − ω2
∫

Ṽ
ρ̃δũTũdṼ = 0, (1)

with dṼ = r̃2dr̃ sin θdθdφ in the spherical frame de- 129

picted in Fig. 1. Using Voigt notation, the stress and 130

strain vectors are σ̃ = [σ̃rr, σ̃θθ , σ̃φφ, σ̃θφ, σ̃rφ, σ̃rθ ]T and ε̃ = 131

[ε̃rr, ε̃θθ , ε̃φφ, 2ε̃θφ, 2ε̃rφ, 2ε̃rθ ]T. The stress-strain relationship 132

is σ̃ = C̃ε̃, where C̃ is the matrix of material properties. The 133

external medium is assumed as homogeneous and isotropic. 134

The sphere can be transversely isotropic and inhomogeneous 135

(e.g., constituted by several layers). For transversely isotropic 136

materials, the matrix depends on five independent coefficients 137

and can be written as 138

C̃ =

⎡
⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C12 C23 + 2C44 C23 0 0 0
C12 C23 C23 + 2C44 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C55

⎤
⎥⎥⎥⎥⎥⎦.

(2)

The strain-displacement relationship is ε̃ = L̃ũ with 139

L̃ = Lr
∂

∂ r̃
+ Lθ

∂

r̃∂θ
+ Lφ

∂

r̃ sin θ∂φ
+ 1

r̃
L1 + cot θ

r̃
L2,

(3)
where 140

Lr=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

⎤
⎥⎥⎥⎥⎥⎦, Lθ=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

⎤
⎥⎥⎥⎥⎥⎦, Lφ =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎦,

L1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
1 0 0
0 0 0
0 0 −1
0 −1 0

⎤
⎥⎥⎥⎥⎥⎦, L2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 1 0
0 0 −1
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎦. (4)

Along the radius, we introduce a radial PML thanks to 141

an analytic continuation [24] of the weak form (1) into the 142

004100-2
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complex transverse coordinate r̃:143

r̃(r) =
∫ r

0
γ (ξ )dξ . (5)

The function γ (r) is a user-defined function, with Im γ (r) >144

0 in the PML region, which enables the absorption of outgoing145

waves in the embedding medium. The PML is truncated to a146

thickness h to obtain a reflectionless bounded problem. In this147

paper, we choose a parabolic attenuation profile:148

γ (r) =
{

1, if r � a,

1 + 3(γ̂ − 1)
(

r−d
h

)2
, if r > a.

(6)

The PML interface is set at r = a; that is, stick to the physical149

interface between the sphere and the embedding medium, to150

avoid the computation of spurious eigenvalues [26]. For con-151

venience, we define the parameter γ̂ = 1
h

∫ d+h
d γ (ξ )dξ , the152

user-defined averaged value of γ (r) inside the PML. At the153

end of the PML (r = a + h), a Dirichlet boundary condition154

is applied.155

Finally, the weak form (1) can be transformed to go back156

to the real radial direction r thanks to the following change of157

variable r̃ �→ r, for any function g̃(r):158

g̃(r̃) = g(r), dr̃ = γ (r)dr,

∂ g̃

∂ r̃
= 1

γ (r)

∂g

∂r
. (7)

B. Semianalytical FE formulation159

Since the problem has been bounded by a finite PML, we160

can now apply the same procedure as in Ref. [22] to obtain a161

semianalytical FE formulation. For brevity, we recall the main162

steps of the procedure in the following (readers are invited to163

see Ref. [22] for further details).164

The basic idea is to treat analytically the angular behavior165

of the solution and to use numerical discretization along the166

radial coordinate. Based on Refs. [30,31], the displacement167

field can be decomposed into vector spherical harmonics:168

u(r, θ, φ) =
∑
l�0

∑
|m|�l

Sm
l (θ, φ)ûm

l (r). (8)

The matrix Sm
l (θ, φ) concatenates the vector spherical har-169

monics which describe the angular distribution of the three170

components of the displacement field. This matrix is explicitly171

given by172

Sm
l (θ, φ) =

⎡
⎢⎣

Ym
l (θ, φ) 0 0

0 ∂Ym
l (θ,φ)
∂θ

− ∂Ym
l (θ,φ)

sin θ∂φ

0 ∂Ym
l (θ,φ)

sin θ∂φ

∂Ym
l (θ,φ)
∂θ

⎤
⎥⎦, (9)

where Ym
l (θ, φ) corresponds to normalized spherical harmon-173

ics of integer degree l and order m (|m| � l) [32]. l and m are174

also called polar and azimuthal wave numbers, respectively.175

The vector ûm
l (r) = [ûm

l (r), v̂m
l (r), ŵm

l (r)]T is the (l, m) co-176

efficient of the vector spherical harmonic transform of the177

physical field u(r, θ, φ). With a full analytical method, these178

coefficients could be expressed as spherical Bessel functions179

(for the interior problem with r � a) and spherical Hankel180

functions (for the exterior problem with r > a) [17,31]. In-181

stead, a one-dimensional FE approximation is used in this182

FIG. 2. Normal displacement distribution for the following
spherical harmonics (from left to right): (l, m) = (100, 0), (l, m) =
(100, 20), (l, m) = (100, 100), corresponding to zonal, tesseral, and
sectoral patterns, respectively (WGMs are of sectoral type).

paper, so that 183

ûm,e
l (r) = Ne(r)Û

m,e
l , (10)

where Ne(r) is the matrix of interpolating functions and Û
m,e
l 184

is the vector of degrees of freedom (dofs) at the element level 185

(e). 186

To achieve the separation of angular and radial variables, 187

the key point is to properly choose the arbitrary test fields. We 188

choose the virtual displacements as 189

δUeT(r, θ, φ) = δÛ
eT

NeT(r)Sp∗
k (θ, φ), (11)

where the operation ∗ stands for transpose conjugate. Thanks 190

to this choice, it can be shown that the orthogonality relations 191

of both vector [31] and tensor [23] spherical harmonics appear 192

in Eq. (1) when integrating over the angular coordinates (see 193

Ref. [22] for details). This choice is therefore fundamental to 194

get uncoupled equations for every spherical harmonics (l, m) 195

of the displacement field. After lengthy calculations, the fol- 196

lowing compact matrix system is obtained for a given pair 197

(l, m): 198

[K(l ) − ω2M(l )]Û
m
l = 0. (12)

The detailed expressions of the elementary stiffness and mass 199

matrices are given in Appendix. Equation (12) is a linear 200

eigenproblem with respect to ω2. For a given value of l , it 201

yields n = 1, . . . , N eigenfrequencies ω
(n)
l and eigenvectors 202

Û
(n)
l . The latter corresponds to radial mode shapes. 203

Regarding analytical approaches [17,30], two main fea- 204

tures are recovered by the matrix eigensystem (12). First, the 205

eigensystem can be subdivided into two independent linear 206

eigenproblems corresponding on the one hand to spheroidal 207

modes (with nonzero displacements in each direction), and 208

on the other hand to torsional modes (with zero displacement 209

in the radial direction). This can be easily deduced from the 210

structure of matrices in Eqs. (A1)–(A5). 211

Second, it can be noticed that the eigensystem is degenerate 212

with respect to the azimuthal wave number m. This means that 213

2l + 1 modes have the same eigenfrequency and the same 214

radial mode shape [33]. These multiple modes only differ 215

from their angular distribution. 216

Figure 2 shows the angular distribution of the normal 217

displacement ûm
l , given by Y m

l (θ, φ) [see Eq. (9)], for three 218

spherical harmonics: (l, m) = (100, 0), (l, m) = (100, 20), 219

and (l, m) = (100, 100). The distributions corresponding to 220

m = 0, m �= l , and m = l are the zonal, tesseral, and sectoral 221

patterns of spherical harmonics, respectively [31,32]. As ob- 222

served in Fig. 2, sectoral modes are confined at the equator 223
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(θ = π/2) and are the so-called WGMs, which have found224

many applications in optics [1,2,34]. Note that the distribu-225

tion of WGMs gets narrower near the equator for increasing226

wave numbers l = m. This means that narrow WGMs can be227

achieved only at a high-frequency regime in practice.228

C. Improved conditioning for large wave number229

With Eq. (12), ill conditioning may result for large value230

of l . This can be easily deduced from the expression of the231

mass matrix, given by Eq. (A1), where terms of order 1 and232

l2 occur together in the diagonal inner matrix. To circumvent233

this problem, we introduce the following transformation for234

l �= 0:235

ûm
l =

⎡
⎢⎣

1 0 0
0 1√

l
0

0 0 1√
l

⎤
⎥⎦φ̂

m
l , (13)

which merely consists in dividing by
√

l the angular compo-236

nents of the transformed displacement field, denoted as φ̂
m
l .237

At the global FE level, we denote this transformation as238

follows:239

Û
m
l = T(l )�̂

m
l , (14)

where T(l ) is the global transformation matrix. Then, the240

initial eigensystem (12) is transformed into241

(TTKT − ω2TTMT)�̂
m
l = 0, (15)

where the dependence on l of matrices has been dropped for242

conciseness of notations.243

With this transformation, it can be checked that the inner244

diagonal terms of the element mass matrix (A1) are now all245

transformed to unity. The eigensystem (15) hence remains246

well conditioned for large l . Note also that the symmetry of247

the eigensystem has been preserved.248

D. Spectrum characteristics249

As outlined in the introduction, the physics of open res-250

onators is significantly different from in vacuo systems.251

Understanding their spectral behavior is essential to properly252

exploit the numerical results.253

We define k2
l,s∞ = ω2/c2

l,s∞ , the shear and longitudinal254

wave numbers in the infinite medium. Let us first briefly255

recall some theoretical results by considering the unbounded256

problem without introducing any PML. Theoretically, the257

spectrum of an unbounded problem is constituted by a con-258

tinuum of radiation modes and proper discrete poles [15,35–259

37].260

Proper discrete poles are referred to as trapped modes,261

having a pure real resonance frequency if material loss is262

neglected (infinite Q factor). They are located on the Riemann263

sheet Im(kl,s∞ ) � 0, where fields spatially decay at infinity.264

The occurrence of trapped modes depends on the configu-265

ration of the problem. Actually, such modes never exist in266

spherical problems. This can be shown using Rellich’s lemma267

[38], stating that if the energy is zero far from the sphere then268

the displacement is zero everywhere (that is, only the zero269

eigenvalue satisfies the decaying wave condition at infinity).270

FIG. 3. Representation of the eigenspectrum of an open res-
onator in the complex frequency plane. Red dashed line: Continuum
of radiation modes without PML [branch cuts Im(kl,s∞ ) = 0]. Red
solid line: Continuum rotated by the infinite PML [branch cuts
Im(γ kl,s∞ ) = 0]. Blue region: Portion of the initial improper Rie-
mann sheets, Im(kl,s∞ ) < 0, accessible thanks to the PML rotation
and containing leaky modes (crosses). Black bullets indicate PML
modes (discretization of the continuum caused by truncation of PML
to a finite thickness).

This a major difference with flat problems, for which trapped 271

waves can occur (such as Stoneley waves [39]). 272

As a consequence, only the continuum of radiation modes 273

theoretically takes part in the solution of our problem. For 274

elastic waves, this continuum corresponds to the contribu- 275

tion of two branch cuts given by Im(kl,s∞ ) = 0. These two 276

branch cuts define a fourfolded Riemann surface for the 277

square roots of k2
l,s∞ (multivalued functions), according to 278

the sign of Im(kl∞ ) and Im(ks∞ ). Figure 3 depicts the branch 279

cuts in the complex frequency plane. Both branch cuts co- 280

incide with each other for pure real bulk wave speeds cl,s∞ 281

(in the case of viscoelastic materials, the imaginary part of 282

wave speeds is yet relatively small compared to the real 283

part so that both branch cuts remain almost coincident in 284

practice). 285

Actually, a second type of discrete mode occurs, corre- 286

sponding to complex-valued poles located in the improper 287

Riemann sheets [i.e., Im(kl∞ ) < 0 and/or Im(ks∞ ) < 0]. 288

These improper eigenvalues are the so-called leaky modes (or 289

quasinormal modes). They do not satisfy the spatially decay- 290

ing wave condition at infinity, and hence, do not theoretically 291

contribute to the exact solution. However, leaky modes can be 292

conveniently used to approximate the continuum of radiation 293

modes as a discrete sum. Besides, they reveal key information, 294

hidden inside the continuum, about wave properties (group 295

velocity, attenuation, etc.) [40]. Note that, because trapped 296

modes do not exist in spherical problems, the WGMs of em- 297

bedded spheres are indeed necessarily leaky modes. 298

Now, let us introduce an infinite PML. As demonstrated 299

in Refs. [26,37], this further modifies the eigenspectrum. For 300

simplicity, we assume a constant attenuation function γ inside 301

the PML. Introducing an infinite PML changes the branch 302

cuts to Im(γ kl,s∞ ) = 0. This corresponds to a branch-cut ro- 303

tation in the complex-frequency plane by the angle of rotation 304

−arg γ (see Fig. 3). With a PML, the proper Riemann surface 305

is now given by Im(γ kl,s∞ ) � 0. This surface contains leaky 306

modes, revealed by the branch-cut rotation (blue region in 307

004100-4
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FIG. 4. Spectrum computed for a steel sphere into concrete
(l = 10, γ̂ = 1 + 2i, h = 0.25a). Black bullets: PML modes; black
crosses: leaky modes identified from the criterion given by Eq. (16).
Red line: Theoretical branch cut (rotated by −arg γ̂ ).

Fig. 3). The number of revealed leaky resonances depends on308

the argument of γ .309

Finally, let us truncate the infinite PML to a finite thickness310

h. Truncation induces discretization of branch cuts: the con-311

tinuum of radiation modes is transformed into a discrete set of312

radiation modes [26,41], with finer discretization as the PML313

thickness increases [15,27,40]. These modes are often called314

PML modes (see Fig. 3). They resonate mainly inside the315

PML and are hence not intrinsic to the physics (they strongly316

depend on the user-defined PML parametrization). Although a317

solution of the eigenvalue problem, PML modes are therefore318

of little interest for the analysis of this paper.319

E. Mode filtering320

As a postprocessing step, it is necessary to filter out PML321

modes from the solution in order to properly visualize only322

the leaky WGMs. Following Refs. [42,43], leaky modes can323

be identified efficiently from the following energy-based cri-324

terion:325

1 − Im(Em
l )

|Em
l | > ηmin, (16)

where ηmin is a user-defined threshold and Em
l =326

1
2 |ω2

l |Û
m∗
l MÛ

m
l . Em

l can be interpreted as the kinetic energy327

integrated over the radius, including the PML. The imaginary328

part of this energy is expected to be much greater inside the329

PML for PML modes than for leaky resonances (which are330

expected to resonate mostly inside the sphere).331

As an example, Fig. 4 shows a typical spectrum computed332

with the semianalytical FE formulation. The frequency is333

normalized as ωa/cs0 , where cs0 denote the shear bulk wave334

velocity of the sphere material. The test case, a steel sphere335

buried into concrete, is described later in the next section.336

As explained earlier at the end of Sec. II B, the whole spec-337

trum consists of two separate sets of modes, spheroidal and338

torsional modes (both types of modes have been computed339

together and are not distinguished in the figure). The latter are340

related to shear waves only [44] and give only one continuous341

set. The former are a mixture of longitudinal and shear waves342

[44] and give two continuous sets. As observed in Fig. 4, these343

continuous sets are discretized by the finite PML, yielding 344

PML modes which are close to the theoretical branch cuts 345

(rotated by −arg γ̂ ). Leaky modes have a small imaginary 346

part (small leakage) and are clearly distinguished from PML 347

modes. The criterion given by Eq. (16) allows an efficient and 348

straightforward separation of leaky and PML modes. 349

F. Remarks on mode normalization 350

From a theoretical point of view, the exponential growth of 351

leaky modes raises normalization issues. As proved in optics 352

(see, e.g., [15]), a PML solves this intricate problem by trans- 353

forming the divergent field of leaky modes into a decaying 354

field. 355

Actually, a PML provides normalization and orthogonal- 356

ity for both leaky resonances and PML modes. Considering 357

Eq. (12) and owing to the symmetry of the complex-valued 358

stiffness and mass matrices, the following orthogonality rela- 359

tionships holds: 360

Û
( j)T
l K(l )Û

(i)
l = ω

(i)2
l δi j, (17)

Û
( j)T
l M(l )Û

(i)
l = δi j, (18)

where the superscripts m have been dropped for conciseness 361

of notations (and since the eigensystem is degenerate with 362

respect to m). Based on modal expansions, these orthogonality 363

relationships can be used to compute the forced response of 364

spheres to optimize the generation of WGMs. Details about 365

this type of calculation can be found in Ref. [22] for in 366

vacuo spheres (i.e., without PML). With a PML, the result 367

remains unchanged because the relationships (18) still hold 368

in both cases. For paper conciseness, the presentation of the 369

computation process of the forced response is not repeated 370

here. 371

III. RESULTS 372

This section presents numerical results computed with the 373

semianalytical FE formulation. In particular, we investigate 374

the high-frequency behavior of leaky WGMs in embedded 375

spheres. 376

As outlined in the introduction, it is of importance to take 377

into account the material loss. For simplicity, we will consider 378

a viscoelastic frequency independent hysteretic model. With 379

this model, the bulk wave velocities c̃l and c̃s of the materials 380

are complex and given by 381

c̃l,s = cl,s

(
1 + i

κl,s

2π

)−1
, (19)

where κl and κs denote the bulk wave attenuations in nepers 382

per wavelength. 383

Two test cases are considered. The first case is that of a stiff 384

sphere, that is, a sphere material with bulk wave velocities 385

greater than the external medium. The second test case is 386

that of a soft sphere (bulk wave velocities lower than the 387

external medium). Results computed for embedded spheres 388

are compared with those for in vacuo spheres. A thorough 389

investigation of these configurations allows the identification 390

of general trends about the behavior of leaky WGMs. 391
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TABLE I. Material properties.

Material ρ (kgm−3) cl (ms−1) cs (ms−1) κl (Npλ−1) κs (Npλ−1)

Steela 7932 5500.7 3175.8 0.003 0.008
Concreteb 2152 3758 2090 0.186 0.229
Epoxyc 1600 2960 1450 0.029 0.043

aProperties taken from Ref. [45].
bProperties taken from Ref. [46].
cProperties taken from Ref. [47].

A. Model parameters392

A concrete medium is chosen for the embedment. The393

sphere is made of steel in the stiff case and epoxy in the soft394

case. Material parameters are given in Table I. A perfectly395

bonded interface is assumed between the sphere and the ex-396

ternal matrix (i.e., continuity of stress and displacement in the397

three directions).398

The PML parameters are set to h = 0.25a, γ̂ = 1 + 2i.399

This choice follows from a convergence study (not shown400

for conciseness), by varying both h and γ̂ . The radial coor-401

dinate is meshed with one-dimensional quadratic FE of length402

0.005a, yielding 1500 degrees of freedom (dofs) (reduced403

to 1200 dofs in the in vacuo case). The eigenproblem (12)404

is solved repeatedly for a wide range of wave numbers, l =405

0, . . . , 150. In order to compute mainly high-frequency leaky406

modes, the normalized eigenvalues ωa/cs0 are solved around407

a user-defined shift equal to 1.2l in the eigenvalue solver (see408

ARPACK library [48]).409

Dispersion curves will be given as a function of l for the410

phase velocity vp, the group velocity vg [30], and the Q factor,411

defined by412

vp = Re(ω(n)
l )a

l + 1/2
, vg = Re

(
∂ω

(n)
l

∂l

)
a, Q = − Re(ω(n)

l )

2Im(ω(n)
l )

.

(20)

The group velocity can be postprocessed as follows (see413

Ref. [22] for proof):414

vg = Re

{
Û

(n)T
l

(
∂K(l )

∂l − ω
(n)2
l

∂M(l )
∂l

)
Û

(n)
l

2ω
(n)
l Û

(n)T
l M(l )Û

(n)
l

}
a. (21)

Depending on the configuration, the parameter ηmin for filter-415

ing PML modes has been set between 0.8 and 0.9.416

B. Case 1: Stiff-sphere configuration417

Figure 5 shows the dispersion curves of spheroidal modes418

for the stiff configuration (steel into concrete), as well as for419

the in vacuo steel sphere. The dispersion curves for torsional420

modes are shown in Fig. 6.421

As a general trend, the phase velocity tends toward cs0 ,422

the shear wave bulk velocity of the sphere, as l increases423

(i.e., in the high-frequency regime), for all modes except the424

fundamental spheroidal modes n = 0 (this particular mode425

will be discussed later). This velocity limit can be more clearly426

observed for the group velocity. WGMs have hence a nondis-427

persive behavior as the frequency increases. Besides, both428

phase and group velocities with the embedment remain close 429

to their in vacuo counterparts. 430

Compared to torsional modes [Fig. 6(b)], the nonmono- 431

tonic changes observed in the group velocities of spheroidal 432

modes [Fig. 5(b)] can be explained by the complex body wave 433

combination of P waves and SV waves traveling through the 434

sphere, reflected and converted several times at the surface, 435

and fulfilling constructive interference conditions [5,44]. As 436

the polar wave number l increases, the spheroidal modes 437

become mainly formed from a combination of multiple re- 438

flected SV waves (the polar displacement uθ nearly goes to 439

zero), which explains why they tend toward a shear wave 440

behavior. These modes are the so-called transverse spheroidal 441

modes, observed for a sphere in vacuum [8], for which the 442

SV-wave content prevails. Compared to spheroidal modes, 443

torsional modes rather tend monotonically toward the shear 444

wave behavior because torsional modes are formed from mul- 445

tiple reflected horizontal shear waves (SH waves) only (no 446

conversion) [5,44]. 447

The Q factor behaves completely differently for the em- 448

bedded sphere [see Figs. 5(c) and 6(c)]. In vacuo, the Q 449

factor of spheroidal modes quickly decreases toward Qs0 = 450

π/κs0 , the Q factor of shear waves inside the sphere. The 451

Q factor of torsional modes remains constant and equal to 452

Qs0 . Conversely, with embedment, the Q factor is weak in 453

the low-frequency regime and then slowly increases in the 454

high-frequency regime, up to Qs0 according to the shear wave 455

limit. 456

These results are consistent with the competing effects 457

of viscoelasticity and leakage found in embedded elastic 458

waveguides [45]: as the frequency increases, the attenuation 459

due to viscoelasticity tends to increase while the attenuation 460

due to leakage tends to decrease. Note that if viscoelastic- 461

ity was neglected (κs → 0), Q would tend to infinity in the 462

high-frequency regime, which would be unrealistic (hence the 463

importance of taking into account material loss). 464

In a stiff configuration, the Q factor tends to improve as the 465

mode order n grows. This trend is particularly visible for tor- 466

sional modes, although less significant for spheroidal modes. 467

It can be explained by the energy distribution, concentrated 468

near the interface for low-order modes, hence increasing their 469

leakage in the external medium. 470

As far as the fundamental spheroidal mode n = 0 is con- 471

cerned (see Fig. 5), its in vacuo characteristics tend toward 472

those of the Rayleigh wave in the high-frequency regime. In 473

a half space, the Rayleigh wave speed can be approximated 474

by c̃r0 � c̃s0 (0.862 + 1.14ν̃0)/(1 + ν̃0) [where ν̃0 = 0.5(c̃2
l0

− 475

2c̃2
s0

)/(c̃2
l0

− c̃2
s0

) is the complex Poisson ratio], yielding a qual- 476

ity factor roughly equal to Qr0 � −0.5Im(c̃r0 )/Re(c̃r0 ). 477
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FIG. 5. Stiff-sphere configuration, spheroidal modes. From left to right: Phase velocity, group velocity, and Q factor as a function of the
polar wave number l (ηmin = 0.8). Red: Steel into concrete; blue: steel in vacuum.

Embedded in concrete, the fundamental spheroidal mode478

corresponds to a solid-solid interface wave, which hence tends479

toward the behavior of a Stoneley wave between two elastic480

half spaces. Note that its phase velocity remains higher than481

the shear bulk wave velocities so that this Stoneley wave is of482

leaky type (attenuating). The Q factor of the n = 0 Stoneley-483

like wave is very low compared to the other modes. Such a484

wave hence appears of less interest for generating WGMs.485

The main conclusion is that the Q factor of leaky WGMs486

cannot exceed π/κs0 , the quality factor of shear waves inside487

the material constituting the sphere (� 400 for steel). The Q488

factor reached by elastic WGMs is hence far weaker than in489

optics (Q ≈ 109 for l ≈ 1000 in practice).490

Additional numerical tests have been conducted to further491

explore the behavior of leaky WGMs (results not shown for492

conciseness). By increasing the contrast between materials,493

the convergence of the Q factor toward Qs0 for large l becomes494

faster (this has been observed by artificially multiplying the495

density of steel by 10). As far as Stoneley waves are con-496

cerned, their behavior is more complex than Rayleigh waves.497

Their existence depends on material combination. This has498

been checked by artificially dividing the density of steel by499

10. In this case, no Stoneley-like mode has been found. This500

is consistent with the theoretical findings of Ref. [49] (the501

Stoneley wave disappears if the material of greater density has502

a velocity much lower).503

C. Case 2: Soft-sphere configuration 504

A soft-sphere configuration offers a stronger analogy with 505

WGMs in optics. In optics, total internal reflection can be ob- 506

tained when light propagates faster in the embedding medium 507

than in the sphere. In elasticity, total internal reflection is 508

more complicated to obtain because of multiple reflection, 509

transmission, and conversion of three kinds of waves (P, SV, 510

and SH waves) [50]. Yet, we can expect a behavior similar to 511

light when both shear wave and longitudinal wave velocities 512

are smaller in the sphere than in the embedding medium, that 513

is, in the case of a soft inclusion into a stiffer matrix. 514

For a steel sphere (stiff configuration), there was a critical 515

angle only for the conversion of SV waves into P waves, there- 516

fore leading to significant leakage loss and a slow increase of 517

the Q factor. Let us replace steel with epoxy (soft configu- 518

ration). The shear and longitudinal bulk waves of epoxy are 519

slower than in the embedding medium, so that both waves in- 520

deed admit critical angles in reflection [50] (although P-wave 521

reflection into a reflected SV wave can still occur). 522

Figure 7 shows the dispersion curves of spheroidal modes 523

for the soft configuration, as well as for the in vacuo epoxy 524

sphere. The dispersion curves for torsional modes are shown 525

in Fig. 8. 526

Several differences can be observed compared to the stiff 527

configuration. First, no Stoneley-like wave is found for this 528

material combination (as shown in Fig. 7, a Rayleigh wave is 529

FIG. 6. Same caption as Fig. 5 but for torsional modes.
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FIG. 7. Soft-sphere configuration, spheroidal modes. From left to right: Phase velocity, group velocity, and Q factor as a function of the
polar wave number l (ηmin = 0.8). Red: Epoxy into concrete; blue: epoxy in vacuum.

found in vacuo but no Stoneley wave is found in the embedded530

sphere). Second, the velocities (both phase and group) are531

significantly different from their in vacuo counterparts. Third,532

the Q factor tends toward Qs0 far more rapidly than in the533

stiff configuration. Fourth, for a given l , the Q factor tends534

to decrease as the mode order n increases (as opposed to the535

stiff configuration). This behavior is quite similar to those of536

WGMs in optics [1,51].537

As a side remark, it can be observed that the group velocity538

of spheroidal modes [Fig. 7(b)] changes in a strong nonmono-539

tonic manner, with maxima of group velocities coinciding540

with minima of Q factors (this phenomenon also occurs in541

Fig. 5 but is less visible). These maxima correspond to a polar-542

ization of spheroidal modes in the azimuthal direction. Such543

modes correspond to the so-called pseudolongitudinal modes544

of a sphere in vacuum [8], for which the P-wave contribution545

is significant. The Q factor of pseudolongitudinal modes and546

torsional modes strongly depends on the bonding condition of547

the interface, as will be briefly discussed in Sec. III D.548

The main result with this test case is that the Q factor549

can quickly tend toward Qs0 in a soft-sphere configuration.550

However, this advantage is counterbalanced by the fact that551

quality factors are usually significantly weaker in soft than in552

stiff materials in practice (Qs0 < 100 for epoxy).553

D. Perfectly sliding interface 554

To further illustrate the influence of the polarization of 555

WGMs, we consider the case of a perfectly sliding interface. 556

Only the continuity of normal stress and normal displacement 557

is therefore allowed at the interface between the sphere and 558

the external medium. The tangential components of the dis- 559

placement, uθ and uφ , are free. 560

With a sliding interface, note that the torsional modes are 561

no longer coupled to the external medium. Their character- 562

istics are exactly the same as in vacuo (in particular, the Q 563

factor of torsional modes remains constant and equal to Qs0 ); 564

see blue curves in Figs. 6 and 8. 565

Conversely, the behavior of spheroidal modes is strongly 566

affected. Figures 9 and 10 show the Q factor computed with 567

a sliding interface in the stiff and soft configurations, re- 568

spectively. As opposed to a perfectly bonded interface, the 569

Q factor can reach high values in a low-frequency range. 570

These values appear to be close to the Rayleigh Q factor. 571

This striking behavior can be explained by the polarization of 572

spheroidal modes in the low-frequency regime. As mentioned 573

previously, spheroidal modes in this frequency regime corre- 574

spond to pseudolongitudinal modes, mainly oriented along the 575

azimuthal direction, which minimizes their sensitivity to the 576

external medium. 577

FIG. 8. Same caption as Fig. 7 but for torsional modes (ηmin = 0.9).
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FIG. 9. Same caption as Fig. 5 but for a sliding interface (for
conciseness, only the Q factor of spheroidal modes is shown).

IV. CONCLUSION578

In this paper, we have investigated the characteristics of579

high-frequency whispering-gallery modes in embedded elas-580

tic spheres. For this purpose, a specific FE method in spherical581

coordinates has been proposed. With this method, only the582

radial coordinate is discretized while the angular distribution583

of elastodynamic fields is described analytically. Besides, a584

radial PML is introduced to cope with the unbounded nature585

of the problem. Our approach leads to a linear matrix eigen-586

system, simple and fast to solve in the high-frequency regime.587

The solution of the eigenproblem delivers leaky and PML588

modes. The leaky modes are revealed thanks to the PML, by589

the rotation of the continuum in the complex frequency plane,590

allowing access to the improper Riemann sheets. The PML591

modes, related to the continuum of radiation modes, are not592

FIG. 10. Same caption as Fig. 7 but for a sliding interface (for
conciseness, only the Q factor of spheroidal modes is shown).

intrinsic to the physics but can be efficiently filtered out, in a 593

postprocessing step, thanks to an energy-based criterion. Be- 594

sides, the PML can provide normalization and orthogonality 595

for the leaky modes, which allows the computation of forced 596

responses based on modal expansions. 597

Two configurations have been considered, corresponding 598

to a stiff sphere and a soft sphere. Material loss has been 599

included by considering a viscoelastic hysteretic model. Our 600

results highlight the behavior of leaky elastic WGMs in the 601

high-frequency regime, not yet considered in the literature. 602

Except for the Stoneley-like fundamental spheroidal mode 603

(peculiar to elasticity but of low Q factor), the modal char- 604

acteristics of leaky WGMs tends, as the frequency increases, 605

toward the shear wave properties of the material constituting 606

the sphere. As opposed to leakage, the material viscoelasticity 607

tends to increase the attenuation of waves with frequency, 608

leading to relatively low Q factor limits. 609

In particular, it has been shown that the Q factor of leaky 610

WGMs tends to slowly increase up to the quality factor of the 611

shear bulk waves of the sphere. Owing to internal reflection 612

mechanisms and by analogy with optics, this slow increase 613

can be enhanced in the case of a soft-sphere configuration. 614

However, this advantage is counterbalanced by the fact that 615

quality factors are usually weaker in soft than in stiff materi- 616

als. 617

Elastic WGMs in spheres could be of prime interest for 618

sensing the mechanical properties of an external medium, 619

e.g., by measuring a shift of their eigenfrequency [52]. More 620

generally, we expect that elastic WGMs could be optimized 621

in a more complex configuration, considering multilayered 622

spheres for instance. The formulation proposed in this paper is 623

versatile and allows modeling such complex spheres without 624

difficulties. 625
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APPENDIX: FE MATRICES 636

In this Appendix, we give the detailed expression of the FE 637

matrices involved in Eq. (12). 638

The elementary mass matrix is given by 639

Me(l ) =
∫

ρNeT

⎡
⎣1 0 0

0 l 0
0 0 l

⎤
⎦Ner̃2γ dr. (A1)

The stiffness matrix can be written as 640

K(l ) = K1(l ) + K2(l ) + KT
2 (l ) + K3(l ), (A2)
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with641

Ke
1(l ) =

∫
dNeT

dr

⎡
⎣C11 0 0

0 lC55 0
0 0 lC55

⎤
⎦dNe

dr

r̃2

γ
dr, (A3)

Ke
2(l ) =

∫
dNeT

dr

⎡
⎣2C12 −lC12 0

lC55 −lC55 0
0 0 −lC55

⎤
⎦Ner̃dr, (A4)

Ke
3(l ) =

∫
NeT

⎡
⎣ lC55 + 4(C23 + C44) −l[C55 + 2(C23 + C44)] 0

−l[C55 + 2(C23 + C44)] l
2
C23 + lC55 + 2l (l − 1)C44 0

0 0 lC55 + l (l − 2)C44

⎤
⎦Neγ dr. (A5)

The above expressions differ from those of Ref. [22] due to642

the introduction of the PML, which yields complex-valued643

matrices. Without PML (γ = 1, r̃ = r), the expressions well 644

degenerate to the in vacuo case treated in [22]. 645
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