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The goal of this paper is to investigate the characteristics of high-frequency whispering-gallery modes in embedded elastic spheres, that is, surrounded by an infinite elastic matrix. Due to several modeling difficulties, the high-frequency regime of embedded spheres has remained unexplored in elasticity. Our approach consists of formulating a specific finite-element method in spherical coordinates. The basic idea is to discretize only the radial coordinate while describing analytically the angular distribution of elastodynamic fields. Then, we also introduce a radial perfectly matched layer to cope with the unbounded nature of the external medium. Our approach yields a linear matrix eigensystem, simple and costless to solve. In order to identify general trends, both stiff and soft configurations are considered, corresponding to a sphere stiffer and softer than the external medium, respectively. Including material loss, our results highlight the behavior of leaky elastic whispering-gallery modes in the high-frequency regime. This work is motivated by the well-known behavior of whispering-gallery modes in optical resonators, reaching high Q factors as the frequency increases. Identifying high-Q-factor whisperinggallery modes in elastic spheres could find promising applications for sensing the mechanical properties of external media.

I. INTRODUCTION

In this paper, we address the computation of leaky resonances of embedded elastic spheres at high acoustical frequencies. Our aim is to investigate the characteristics of whispering-gallery modes (WGMs) with particular attention to their attenuation (Q factor), which has not been considered yet. This work is motivated by the well-known behavior of WGMs in optical resonators [1], reaching high Q factors as the frequency increases. High-Q-factor optical WGMs have sustained the development of numerous optical sensors [2].

Identifying such modes in elastic spheres could therefore find many interesting applications, e.g., for sensing the mechanical properties of a media external to the sphere.

Resonances of elastic spheres have been largely studied in vacuo, first by Lamb in 1881 as a classical problem in mechanics [3]. This topic has then drawn the attention of geophysicists, using the normal modes of the Earth to analyze the internal structure of our planet [4,5]. More recently, elastic resonances of nanoparticles have been studied because of their significant role in Raman scattering [START_REF] Saviot | [END_REF]7], stimulated Brillouin scattering [8], or surface plasmonic resonances [9]. However, the case of embedded elastic spheres, i.e., buried in an external solid matrix, is more intricate than in a vacuum.

As a consequence, this case has been far less considered in the literature, and the analyses are most often limited to quite low acoustical frequencies [10][11][12][13][14]. Indeed, the modeling of * fabien.treyssede@univ-eiffel.fr † pro@mgal.fr an embedded elastic sphere can be described as an open res-48 onator, which raises several difficulties. [START_REF] Pilant | [END_REF] First, the physics of open resonators strongly differ from 50 closed systems: their spectrum involves a continuum of radi-51 ation modes, difficult to handle from a mathematical point of 52 view. This continuum can be approximated by a discrete set, 53 easier to manipulate, of so-called leaky modes (or quasinor-54 mal modes) [15]. Since energy leaks out of the sphere due to 55 radiative loss, leaky resonances are damped in time: the eigen-56 frequencies are hence no longer real but necessarily complex. 57 However, the behavior of leaky modes is somewhat unusual at 58 infinity: while exponentially decreasing in time, these modes 59 exponentially grow in the transverse direction [15,16] (that is, 60 in the radial direction for our spherical problem).

61

Second, radiative loss dramatically increases in a low-62 frequency range, leading to a drastic drop of Q factors. This 63 motivates the consideration of high-frequency regimes, i.e., 64 normalized frequency greater than 10 2 in practice. However, 65 high-frequency modes are difficult to solve by means of 66 analytical methods because of the instabilities of secular equa-67 tions [14,17,18].

68

To circumvent this problem, our approach consists of for-69 mulating a specific finite-element (FE) method in spherical 70 coordinates. Full three-dimensional or two-dimensional FE 71 models are prohibited due to their computational cost in the 72 high-frequency regime [START_REF] Buchanan | [END_REF]. Therefore, the basic idea is to 73 consider a semianalytical approach, consisting of separating 74 the angular and the radial variables. The solution along the 75 angular variables is analytical, decomposed on the basis of 76 vector spherical harmonics. The solution along the radial vari-77 able is discretized, approximated with one-dimensional FE 78 (see Fig. 1). This semianalytical FE principle was applied 79 to compute the resonances of in vacuo spheres in [20,[START_REF] Park | Wave motion in finite and infinite media using the thin-layer method[END_REF], but without taking full advantage of the analytical description leading to tedious integral calculus. Recently, a compact formulation has been proposed in [START_REF] Gallezot | [END_REF]. The main difficulty to achieve such a compact form in elasticity is to uncouple the spherical harmonics, which requires orthogonality relations of tensor type (the wave equation is vectorial) [23].

The goal of this paper is twofold: extend the formulation of Ref. [START_REF] Gallezot | [END_REF] to the embedded case and highlight the behavior of leaky WGMs in the high-frequency regime. Nevertheless, a major difficulty for numerical methods is raised with the unbounded nature of the problem. This difficulty is particularly severe due to the exponential growth of leaky modes. A powerful technique to bound the problem consists in using a perfectly matched layer (PML). A PML is based on the complex scaling of the unbounded coordinate [24], which cancels the growth of leaky modes and allows truncating the unbounded embedding medium to a user-defined finite thickness (see Fig. 1). Regardless of spherical problems, this technique has been used to compute resonances in fluid and optical open cavities (see Refs. [25][26][27][28], for instance).

In this paper, we propose to combine a semianalytical FE formulation in spherical coordinates with a radial PML in order to compute leaky modes in embedded elastic spheres (Sec. II). Our approach yields a linear eigenproblem, which is very simple and costless to solve, even in the high-frequency regime (the FE discretization is one-dimensional). Compared to analytical approaches, our formulation does not suffer from instabilities and is quite versatile (complex inhomogeneous spheres, e.g., made of several layers, can be readily considered).

Last but not least, the formulation remains applicable for viscoelastic materials (complex elastic constants are allowed).

The intrinsic loss of materials is usually far greater in elas-ticity than in optics. It is noteworthy that the effects of 114 viscoelastic loss tend to increase with frequency. Therefore, 115 in the high-frequency regime, including viscoelastic loss in 116 addition to leakage loss appears to be essential for a proper 117 understanding of the physics of leaky WGMs in elasticity. 118 Numerical results will be presented in Sec. III. The sphere can be transversely isotropic and inhomogeneous 135 (e.g., constituted by several layers). For transversely isotropic 136 materials, the matrix depends on five independent coefficients 137 and can be written as

138 C = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ C 11 C 12 C 12 0 0 0 C 12 C 23 + 2C 44 C 23 0 0 0 C 12 C 23 C 23 + 2C 44 0 0 0 0 0 0 C 44 0 0 0 0 0 0 C 55 0 0 0 0 0 0 C 55 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ . ( 2 
)
The strain-displacement relationship is ˜ = L ũ with

139 L = L r ∂ ∂ r + L θ ∂ r∂θ + L φ ∂ r sin θ∂φ + 1 r L 1 + cot θ r L 2 , (3) 
where

140 L r = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , L θ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , L φ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , L 1 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 0 1 0 0 1 0 0 0 0 0 0 0 -1 0 -1 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , L 2 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ . ( 4 
)
Along the radius, we introduce a radial PML thanks to 141 an analytic continuation [24] of the weak form (1) into the 142 004100-2 

148 γ (r) = 1, if r a, 1 + 3( γ -1) r-d h 2 , if r > a. ( 6 
)
The PML interface is set at r = a; that is, stick to the physical 

158 g(r) = g(r), d r = γ (r)dr, ∂ g ∂ r = 1 γ (r) ∂g ∂r . (7) 

B. Semianalytical FE formulation 159

Since the problem has been bounded by a finite PML, we 160 can now apply the same procedure as in Ref. [START_REF] Gallezot | [END_REF] to obtain a 161 semianalytical FE formulation. For brevity, we recall the main 162 steps of the procedure in the following (readers are invited to 163 see Ref. [START_REF] Gallezot | [END_REF] for further details).

164

The basic idea is to treat analytically the angular behavior 165 of the solution and to use numerical discretization along the 166 radial coordinate. Based on Refs. [START_REF] Eringen | Elastodynamics[END_REF][START_REF] Kausel | Fundamental Solutions in Elastodynamics: A Compendium[END_REF], the displacement 167 field can be decomposed into vector spherical harmonics:

168 u(r, θ, φ) = l 0 |m| l S m l (θ, φ) ûm l (r). (8) 
The matrix S m l (θ, φ) concatenates the vector spherical har-169 monics which describe the angular distribution of the three 170 components of the displacement field. This matrix is explicitly

171 given by 172 S m l (θ, φ) = ⎡ ⎢ ⎣ Y m l (θ, φ) 0 0 0 ∂Y m l (θ,φ) ∂θ - ∂Y m l (θ,φ) sin θ∂φ 0 ∂Y m l (θ,φ) sin θ∂φ ∂Y m l (θ,φ) ∂θ ⎤ ⎥ ⎦, (9) 
where Y m l (θ, φ) corresponds to normalized spherical harmonics of integer degree l and order m (|m| l) [START_REF] Arfken | Mathematical Methods for Physicists[END_REF]. l and m are 174 also called polar and azimuthal wave numbers, respectively.

The vector ûm l (r) = [û m l (r), vm l (r), ŵm l (r)] T is the (l, m) coefficient of the vector spherical harmonic transform of the paper, so that ûm,e l (r) = N e (r) Ûm,e l , (10) where N e (r) is the matrix of interpolating functions and Ûm,e l is the vector of degrees of freedom (dofs) at the element level (e).

To achieve the separation of angular and radial variables, the key point is to properly choose the arbitrary test fields. We choose the virtual displacements as

δU eT (r, θ, φ) = δ ÛeT N eT (r)S p * k (θ, φ), (11) 
where the operation * stands for transpose conjugate. Thanks to this choice, it can be shown that the orthogonality relations of both vector [START_REF] Kausel | Fundamental Solutions in Elastodynamics: A Compendium[END_REF] and tensor [23] spherical harmonics appear in Eq. ( 1) when integrating over the angular coordinates (see Ref. [START_REF] Gallezot | [END_REF] for details). This choice is therefore fundamental to get uncoupled equations for every spherical harmonics (l, m) of the displacement field. After lengthy calculations, the following compact matrix system is obtained for a given pair (l, m):

[K(l ) -ω 2 M(l )] Ûm l = 0. ( 12 
)
The detailed expressions of the elementary stiffness and mass matrices are given in Appendix. Equation ( 12) is a linear eigenproblem with respect to ω 2 . For a given value of l, it yields n = 1, . . . , N eigenfrequencies ω (n) l and eigenvectors Û(n)

l . The latter corresponds to radial mode shapes.

Regarding analytical approaches [17,[START_REF] Eringen | Elastodynamics[END_REF], two main features are recovered by the matrix eigensystem (12). First, the eigensystem can be subdivided into two independent linear eigenproblems corresponding on the one hand to spheroidal modes (with nonzero displacements in each direction), and on the other hand to torsional modes (with zero displacement in the radial direction). This can be easily deduced from the structure of matrices in Eqs. (A1)-(A5).

Second, it can be noticed that the eigensystem is degenerate with respect to the azimuthal wave number m. This means that 2l + 1 modes have the same eigenfrequency and the same radial mode shape [START_REF] Silbiger | [END_REF]. These multiple modes only differ from their angular distribution.

Figure 2 shows the angular distribution of the normal displacement ûm l , given by Y m l (θ, φ) [see Eq. ( 9)], for three spherical harmonics: (l, m) = (100, 0), (l, m) = (100, 20), and (l, m) = (100, 100). The distributions corresponding to m = 0, m = l, and m = l are the zonal, tesseral, and sectoral patterns of spherical harmonics, respectively [START_REF] Kausel | Fundamental Solutions in Elastodynamics: A Compendium[END_REF][START_REF] Arfken | Mathematical Methods for Physicists[END_REF]. As observed in Fig. 2 With Eq. ( 12), ill conditioning may result for large value of l. This can be easily deduced from the expression of the mass matrix, given by Eq. (A1), where terms of order 1 and l 2 occur together in the diagonal inner matrix. To circumvent this problem, we introduce the following transformation for l = 0:

ûm l = ⎡ ⎢ ⎣ 1 0 0 0 1 √ l 0 0 0 1 √ l ⎤ ⎥ ⎦ φm l , ( 13 
)
which merely consists in dividing by l the angular components of the transformed displacement field, denoted as φm l .

At the global FE level, we denote this transformation as follows:

Ûm l = T(l ) ˆ m l , (14) 
where T(l ) is the global transformation matrix. Then, the initial eigensystem ( 12) is transformed into

(T T KT -ω 2 T T MT) ˆ m l = 0, (15) 
where the dependence on l of matrices has been dropped for conciseness of notations.

With this transformation, it can be checked that the inner diagonal terms of the element mass matrix (A1) are now all transformed to unity. The eigensystem (15) hence remains well conditioned for large l. Note also that the symmetry of the eigensystem has been preserved.

D. Spectrum characteristics

As outlined in the introduction, the physics of open resonators is significantly different from in vacuo systems.

Understanding their spectral behavior is essential to properly exploit the numerical results.

We define k 2 l,s ∞ = ω 2 /c 2 l,s ∞ , the shear and longitudinal wave numbers in the infinite medium. Let us first briefly recall some theoretical results by considering the unbounded problem without introducing any PML. Theoretically, the spectrum of an unbounded problem is constituted by a continuum of radiation modes and proper discrete poles [15,[START_REF] Malischewsky | Surface Waves and Discontinuities[END_REF][START_REF] Collin | Field Theory of Guided Waves[END_REF][START_REF] Gallezot | [END_REF].

Proper discrete poles are referred to as trapped modes, having a pure real resonance frequency if material loss is neglected (infinite Q factor). They are located on the Riemann sheet Im(k l,s ∞ ) 0, where fields spatially decay at infinity.

The occurrence of trapped modes depends on the configuration of the problem. Actually, such modes never exist in spherical problems. This can be shown using Rellich's lemma [38], stating that if the energy is zero far from the sphere then the displacement is zero everywhere (that is, only the zero eigenvalue satisfies the decaying wave condition at infinity). This a major difference with flat problems, for which trapped 271 waves can occur (such as Stoneley waves [39]).

272

As a consequence, only the continuum of radiation modes 273 theoretically takes part in the solution of our problem. For 274 elastic waves, this continuum corresponds to the contribu-275 tion of two branch cuts given by Im(k l,s ∞ ) = 0. These two 276 branch cuts define a fourfolded Riemann surface for the 277 square roots of k 2 l,s ∞ (multivalued functions), according to 278 the sign of Im(k l ∞ ) and Im(k s ∞ ). Figure 3 depicts the branch 279 cuts in the complex frequency plane. Both branch cuts co-280 incide with each other for pure real bulk wave speeds c l,s ∞ 281 (in the case of viscoelastic materials, the imaginary part of 282 wave speeds is yet relatively small compared to the real 283 part so that both branch cuts remain almost coincident in 284 practice).

285

Actually, a second type of discrete mode occurs, corre-286 sponding to complex-valued poles located in the improper 287 Riemann sheets [i.e., Im(k l ∞ ) < 0 and/or Im(k s ∞ ) < 0]. 288 These improper eigenvalues are the so-called leaky modes (or 289 quasinormal modes). They do not satisfy the spatially decay-290 ing wave condition at infinity, and hence, do not theoretically 291 contribute to the exact solution. However, leaky modes can be 292 conveniently used to approximate the continuum of radiation 293 modes as a discrete sum. Besides, they reveal key information, 294 hidden inside the continuum, about wave properties (group 295 velocity, attenuation, etc.) [40]. Note that, because trapped 296 modes do not exist in spherical problems, the WGMs of em-297 bedded spheres are indeed necessarily leaky modes.

298

Now, let us introduce an infinite PML. As demonstrated 299 in Refs. [26,[START_REF] Gallezot | [END_REF], this further modifies the eigenspectrum. For 300 simplicity, we assume a constant attenuation function γ inside 301 the PML. Introducing an infinite PML changes the branch 302 cuts to Im(γ k l,s ∞ ) = 0. This corresponds to a branch-cut ro-303 tation in the complex-frequency plane by the angle of rotation 304 -arg γ (see Fig. 3). With a PML, the proper Riemann surface 305 is now given by Im(γ k l,s ∞ ) 0. This surface contains leaky 306 modes, revealed by the branch-cut rotation (blue region in 307 FIG. 4. Spectrum computed for a steel sphere into concrete (l = 10, γ = 1 + 2i, h = 0.25a). Black bullets: PML modes; black crosses: leaky modes identified from the criterion given by Eq. ( 16). Red line: Theoretical branch cut (rotated by -arg γ ). 

1 - Im(E m l ) |E m l | > η min , ( 16 
)
where η min is a user-defined threshold and [44] and give two continuous sets. As observed in Fig. 4, these 343 continuous sets are discretized by the finite PML, yielding PML modes which are close to the theoretical branch cuts (rotated by -arg γ ). Leaky modes have a small imaginary part (small leakage) and are clearly distinguished from PML modes. The criterion given by Eq. ( 16) allows an efficient and straightforward separation of leaky and PML modes.

E m l = 326 1 2 |ω 2 l | Ûm * l M Ûm l . E m l can

F. Remarks on mode normalization

From a theoretical point of view, the exponential growth of leaky modes raises normalization issues. As proved in optics (see, e.g., [15]), a PML solves this intricate problem by transforming the divergent field of leaky modes into a decaying field.

Actually, a PML provides normalization and orthogonality for both leaky resonances and PML modes. Considering Eq. ( 12) and owing to the symmetry of the complex-valued stiffness and mass matrices, the following orthogonality relationships holds:

Û( j)T l K(l ) Û(i) l = ω (i)2 l δ i j , ( 17 
) Û( j)T l M(l ) Û(i) l = δ i j , (18) 
where the superscripts m have been dropped for conciseness of notations (and since the eigensystem is degenerate with respect to m). Based on modal expansions, these orthogonality relationships can be used to compute the forced response of spheres to optimize the generation of WGMs. Details about this type of calculation can be found in Ref. [START_REF] Gallezot | [END_REF] for in vacuo spheres (i.e., without PML). With a PML, the result remains unchanged because the relationships (18) still hold in both cases. For paper conciseness, the presentation of the computation process of the forced response is not repeated here.

III. RESULTS

This section presents numerical results computed with the semianalytical FE formulation. In particular, we investigate the high-frequency behavior of leaky WGMs in embedded spheres.

As outlined in the introduction, it is of importance to take into account the material loss. For simplicity, we will consider a viscoelastic frequency independent hysteretic model. With this model, the bulk wave velocities cl and cs of the materials are complex and given by cl,s = c l,s 1

+ i κ l,s 2π -1 , ( 19 
)
where κ l and κ s denote the bulk wave attenuations in nepers per wavelength.

Two test cases are considered. The first case is that of a stiff sphere, that is, a sphere material with bulk wave velocities greater than the external medium. The second test case is that of a soft sphere (bulk wave velocities lower than the external medium). Results computed for embedded spheres are compared with those for in vacuo spheres. A thorough investigation of these configurations allows the identification of general trends about the behavior of leaky WGMs. ARPACK library [START_REF] Lehoucq | ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods[END_REF]).

409 Dispersion curves will be given as a function of l for the 410 phase velocity v p , the group velocity v g [START_REF] Eringen | Elastodynamics[END_REF], and the Q factor, 411 defined by

412 v p = Re(ω (n) l )a l + 1/2 , v g = Re ∂ω (n) l ∂l a, Q = - Re(ω (n) l ) 2Im(ω (n) l ) . ( 20 
)
The group velocity can be postprocessed as follows (see 413

Ref. [START_REF] Gallezot | [END_REF] for proof):

414 v g = Re Û(n)T l ∂K(l ) ∂l -ω (n)2 l ∂M(l ) ∂l Û(n) l 2ω (n) l Û(n)T l M(l ) Û(n) l a. ( 21 
)
Depending on the configuration, the parameter η min for filter-415 ing PML modes has been set between 0.8 and 0.9. Compared to torsional modes [Fig. 6(b)], the nonmonotonic changes observed in the group velocities of spheroidal modes [Fig. 5(b)] can be explained by the complex body wave combination of P waves and SV waves traveling through the sphere, reflected and converted several times at the surface, and fulfilling constructive interference conditions [5,44]. As the polar wave number l increases, the spheroidal modes become mainly formed from a combination of multiple reflected SV waves (the polar displacement u θ nearly goes to zero), which explains why they tend toward a shear wave behavior. These modes are the so-called transverse spheroidal modes, observed for a sphere in vacuum [8], for which the SV-wave content prevails. Compared to spheroidal modes, torsional modes rather tend monotonically toward the shear wave behavior because torsional modes are formed from multiple reflected horizontal shear waves (SH waves) only (no conversion) [5,44].

The Q factor behaves completely differently for the embedded sphere [see Figs. 5(c) and 6(c)]. In vacuo, the Q factor of spheroidal modes quickly decreases toward Q s 0 = π/κ s 0 , the Q factor of shear waves inside the sphere. The Q factor of torsional modes remains constant and equal to Q s 0 . Conversely, with embedment, the Q factor is weak in the low-frequency regime and then slowly increases in the high-frequency regime, up to Q s 0 according to the shear wave limit.

These results are consistent with the competing effects of viscoelasticity and leakage found in embedded elastic waveguides [45]: as the frequency increases, the attenuation due to viscoelasticity tends to increase while the attenuation due to leakage tends to decrease. Note that if viscoelasticity was neglected (κ s → 0), Q would tend to infinity in the high-frequency regime, which would be unrealistic (hence the importance of taking into account material loss).

In a stiff configuration, the Q factor tends to improve as the mode order n grows. This trend is particularly visible for torsional modes, although less significant for spheroidal modes. It can be explained by the energy distribution, concentrated near the interface for low-order modes, hence increasing their leakage in the external medium.

As far as the fundamental spheroidal mode n = 0 is concerned (see Fig. 5), its in vacuo characteristics tend toward those of the Rayleigh wave in the high-frequency regime. In a half space, the Rayleigh wave speed can be approximated by cr 0 cs 0 (0.862 + 1.14 ν0 )/(1 + ν0 ) [where ν0 = 0.5( c2 l 0 -2c 2 s 0 )/(c 2 l 0 -c2 s 0 ) is the complex Poisson ratio], yielding a quality factor roughly equal to Q r 0 -0.5Im( cr 0 )/Re( cr 0 ). A soft-sphere configuration offers a stronger analogy with WGMs in optics. In optics, total internal reflection can be obtained when light propagates faster in the embedding medium than in the sphere. In elasticity, total internal reflection is more complicated to obtain because of multiple reflection, transmission, and conversion of three kinds of waves (P, SV, and SH waves) [START_REF] Auld | Acoustic Fields and Waves in Solids[END_REF]. Yet, we can expect a behavior similar to light when both shear wave and longitudinal wave velocities are smaller in the sphere than in the embedding medium, that is, in the case of a soft inclusion into a stiffer matrix.

For a steel sphere (stiff configuration), there was a critical angle only for the conversion of SV waves into P waves, therefore leading to significant leakage loss and a slow increase of the Q factor. Let us replace steel with epoxy (soft configuration). The shear and longitudinal bulk waves of epoxy are slower than in the embedding medium, so that both waves indeed admit critical angles in reflection [START_REF] Auld | Acoustic Fields and Waves in Solids[END_REF] (although P-wave reflection into a reflected SV wave can still occur).

Figure 7 shows the dispersion curves of spheroidal modes for the soft configuration, as well as for the in vacuo epoxy sphere. The dispersion curves for torsional modes are shown in Fig. 8. Several differences can be observed compared to the stiff configuration. First, no Stoneley-like wave is found for this material combination (as shown in Fig. 7 

D. Perfectly sliding interface

To further illustrate the influence of the polarization of WGMs, we consider the case of a perfectly sliding interface. Only the continuity of normal stress and normal displacement is therefore allowed at the interface between the sphere and the external medium. The tangential components of the displacement, u θ and u φ , are free.

With a sliding interface, note that the torsional modes are no longer coupled to the external medium. Their characteristics are exactly the same as in vacuo (in particular, the Q factor of torsional modes remains constant and equal to Q s 0 ); see blue curves in Figs. 6 and8.

Conversely, the behavior of spheroidal modes is strongly affected. Figures 9 and10 show the Q factor computed with a sliding interface in the stiff and soft configurations, respectively. As opposed to a perfectly bonded interface, the Q factor can reach high values in a low-frequency range. These values appear to be close to the Rayleigh Q factor. This striking behavior can be explained by the polarization of spheroidal modes in the low-frequency regime. As mentioned previously, spheroidal modes in this frequency regime correspond to pseudolongitudinal modes, mainly oriented along the azimuthal direction, which minimizes their sensitivity to the external medium. intrinsic to the physics but can be efficiently filtered out, in a postprocessing step, thanks to an energy-based criterion. Besides, the PML can provide normalization and orthogonality for the leaky modes, which allows the computation of forced responses based on modal expansions.

Two configurations have been considered, corresponding to a stiff sphere and a soft sphere. Material loss has been included by considering a viscoelastic hysteretic model. Our results highlight the behavior of leaky elastic WGMs in the high-frequency regime, not yet considered in the literature. Except for the Stoneley-like fundamental spheroidal mode (peculiar to elasticity but of low Q factor), the modal characteristics of leaky WGMs tends, as the frequency increases, toward the shear wave properties of the material constituting the sphere. As opposed to leakage, the material viscoelasticity tends to increase the attenuation of waves with frequency, leading to relatively low Q factor limits.

In particular, it has been shown that the Q factor of leaky WGMs tends to slowly increase up to the quality factor of the shear bulk waves of the sphere. Owing to internal reflection mechanisms and by analogy with optics, this slow increase can be enhanced in the case of a soft-sphere configuration. However, this advantage is counterbalanced by the fact that quality factors are usually weaker in soft than in stiff materials.

Elastic WGMs in spheres could be of prime interest for sensing the mechanical properties of an external medium, e.g., by measuring a shift of their eigenfrequency [52]. More generally, we expect that elastic WGMs could be optimized in a more complex configuration, considering multilayered spheres for instance. The formulation proposed in this paper is versatile and allows modeling such complex spheres without difficulties.

  FIG.1. Sphere of radius a embedded into an infinite medium truncated with a PML of thickness h. The PML cancels the natural growth of leaky modes in the radial direction r, discretized by onedimensional FE (indicated by nodes). The spherical coordinates are the radius r, the polar angle θ (0 θ < π), and the azimuthal angle φ (0 φ < 2π ).

  weak form with radial PML 122 Let us consider an elastic sphere of radius a embedded 123 into an infinite elastic matrix. With time-harmonic 124 dependence e -iωt , the displacement field ũ(r, θ, φ) = 125 [ũ r (r, θ, φ), ũθ (r, θ, φ), ũφ (r, θ, φ)] T (T denotes matrix 126 transpose) is the solution of the weak form of elastodynamics 127 [29]: 128 Ṽ δ˜ T σd Ṽ -ω 2 Ṽ ρδ ũT ũd Ṽ = 0, (1) with d Ṽ = r2 d r sin θ dθ dφ in the spherical frame de-129 picted in Fig. 1. Using Voigt notation, the stress and 130 strain vectors are σ = [ σrr , σθθ , σφφ , σθφ , σrφ , σrθ ] T and ˜ = 131 [˜ rr , ˜ θθ , ˜ φφ , 2˜ θφ , 2˜ rφ , 2˜ rθ ] T . The stress-strain relationship 132 is σ = C˜ , where C is the matrix of material properties. The 133 external medium is assumed as homogeneous and isotropic. 134

  function γ (r) is a user-defined function, with Im γ (r) > 144 0 in the PML region, which enables the absorption of outgoing 145 waves in the embedding medium. The PML is truncated to a 146 thickness h to obtain a reflectionless bounded problem. In this 147 paper, we choose a parabolic attenuation profile:
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  interface between the sphere and the embedding medium, to 150 avoid the computation of spurious eigenvalues[26]. For con-151 venience, we define the parameter γ = 1 h d+h d γ (ξ )dξ , the 152 user-defined averaged value of γ (r) inside the PML. At the 153 end of the PML (r = a + h), a Dirichlet boundary condition 154 is applied. 155 Finally, the weak form (1) can be transformed to go back 156 to the real radial direction r thanks to the following change of 157 variable r → r, for any function g(r):
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 2 FIG. 2. Normal displacement distribution for the following spherical harmonics (from left to right): (l, m) = (100, 0), (l, m) = (100, 20), (l, m) = (100, 100), corresponding to zonal, tesseral, and sectoral patterns, respectively (WGMs are of sectoral type).

  Figure2shows the angular distribution of the normal displacement ûm l , given by Y m l (θ, φ) [see Eq. (9)], for three spherical harmonics: (l, m) = (100, 0), (l, m) = (100, 20), and (l, m) = (100, 100). The distributions corresponding to m = 0, m = l, and m = l are the zonal, tesseral, and sectoral patterns of spherical harmonics, respectively[START_REF] Kausel | Fundamental Solutions in Elastodynamics: A Compendium[END_REF][START_REF] Arfken | Mathematical Methods for Physicists[END_REF]. As observed in Fig.2, sectoral modes are confined at the equator

FIG. 3 .

 3 FIG. 3. Representation of the eigenspectrum of an open resonator in the complex frequency plane. Red dashed line: Continuum of radiation modes without PML [branch cuts Im(k l,s∞ ) = 0]. Red solid line: Continuum rotated by the infinite PML [branch cuts Im(γ k l,s∞ ) = 0]. Blue region: Portion of the initial improper Riemann sheets, Im(k l,s∞ ) < 0, accessible thanks to the PML rotation and containing leaky modes (crosses). Black bullets indicate PML modes (discretization of the continuum caused by truncation of PML to a finite thickness).

Fig. 3 )

 3 Fig.3). The number of revealed leaky resonances depends on 308

  step, it is necessary to filter out PML 321 modes from the solution in order to properly visualize only 322 the leaky WGMs. Following Refs.[42,43], leaky modes can 323 be identified efficiently from the following energy-based cri-324 terion:

  325

416B. Case 1 : Stiff-sphere configuration 417 Figure 5

 14175 Figure5shows the dispersion curves of spheroidal modes

  FIG. 5. Stiff-sphere configuration, spheroidal modes. From left to right: Phase velocity, group velocity, and Q factor as a function of the polar wave number l (η min = 0.8). Red: Steel into concrete; blue: steel in vacuum.

503C.

  Case 2: Soft-sphere configuration

FIG. 7 .

 7 FIG.6. Same caption as Fig.5but for torsional modes.

  553

FIG. 8 .

 8 FIG.8. Same caption as Fig.7but for torsional modes (η min = 0.9).

  be interpreted as the kinetic energy

	327	
	328	integrated over the radius, including the PML. The imaginary
	329	part of this energy is expected to be much greater inside the
	330	PML for PML modes than for leaky resonances (which are
	331	expected to resonate mostly inside the sphere).
	332	As an example, Fig. 4 shows a typical spectrum computed
	333	with the semianalytical FE formulation. The frequency is
	334	normalized as ωa/c s 0 , where c s 0 denote the shear bulk wave
	335	velocity of the sphere material. The test case, a steel sphere
		buried into concrete, is described later in the next section.

336

As explained earlier at the end of Sec. II B, the whole spec-337 trum consists of two separate sets of modes, spheroidal and 338 torsional modes (both types of modes have been computed 339 together and are not distinguished in the figure). The latter are 340 related to shear waves only [44] and give only one continuous 341 set. The former are a mixture of longitudinal and shear waves 342

TABLE I .

 I Material properties.

		Material	ρ (kgm -3 )	c l (ms -1 )	c s (ms -1 )	κ l (Npλ -1 )	κ s (Npλ -1 )
		Steel a	7932	5500.7	3175.8	0.003	0.008
		Concrete b	2152	3758	2090	0.186	0.229
		Epoxy c	1600	2960	1450	0.029	0.043
		a Properties taken from Ref. [45].			
		b Properties taken from Ref. [46].			
		c Properties taken from Ref. [47].			
	392		A. Model parameters			
	393	A concrete medium is chosen for the embedment. The		
	394	sphere is made of steel in the stiff case and epoxy in the soft		
	395	case. Material parameters are given in Table I. A perfectly		
		bonded interface is assumed between the sphere and the ex-		

396

ternal matrix (i.e., continuity of stress and displacement in the 397 three directions).

398

The PML parameters are set to h = 0.25a, γ = 1 + 2i. 399 This choice follows from a convergence study (not shown 400 for conciseness), by varying both h and γ . The radial coor-401 dinate is meshed with one-dimensional quadratic FE of length 402 0.005a, yielding 1500 degrees of freedom (dofs) (reduced 403 to 1200 dofs in the in vacuo case). The eigenproblem (12) 404 is solved repeatedly for a wide range of wave numbers, l = 405 0, . . . , 150. In order to compute mainly high-frequency leaky 406 modes, the normalized eigenvalues ωa/c s 0 are solved around 407 a user-defined shift equal to 1.2l in the eigenvalue solver (see 408
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(A1)

The stiffness matrix can be written as The above expressions differ from those of Ref. [START_REF] Gallezot | [END_REF] due to the introduction of the PML, which yields complex-valued matrices. Without PML (γ = 1, r = r), the expressions well 644 degenerate to the in vacuo case treated in [START_REF] Gallezot | [END_REF].