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Abstract. The aim of this position paper is to outline a unified view of plausible
reasoning under incomplete information and belief revision, based on an ordinal
representation of uncertainty. The information possessed by an agent is supposed
to be made of three items: sure observations, generic knowledge and inferred
contingent beliefs. The main notion supporting this approach is the confidence
relation, a partial ordering of events which encodes the generic knowledge of an
agent. Plausible inference is achieved by conditioning. The paper advocates the
similarity between plausible reasoning with confidence relations and probabilistic
reasoning. The main difference is that the ordinal approach supports the notion of
accepted beliefs forming a deductively closed set, while probability theory is not
tailored for it. The framework of confidence relations sheds light on the
connections between some approaches to non-monotonic reasoning methods,
possibilistic logic and the theory of belief revision. In particular the distinction
between revising contingent beliefs in the light of observations and revising the
confidence relation is laid bare.

1 Introduction

The aim of this position paper is to present a synthetic view of an approach to plausible 
reasoning under incomplete information with an ordinal representation of uncertainty. 
This approach has close connections with various works carried out more or less 
independently by philosophers like Ernest Adams, David Lewis, in the seventies, and 
Peter Gärdenfors and colleagues in the eighties, as well as several AI researchers, such 
as Yoav Shoham, Daniel Lehmann, Judea Pearl, Joe Halpern, Maryanne Williams, and 
others. Indeed, the issue of an ordinal approach to uncertainty has to do with several 
important topics of theoretical Artificial Intelligence, such as non-monotonic reasoning, 
belief revision, conditional logics, and to probabilistic reasoning as well. It seems that 
the ultimate aim of symbolic AI in plausible reasoning is to perform a counterpart to 
probabilistic inference without probabilities (Dubois and Prade 1994a).

Suppose an agent who has to reason about the current state of the world. In order to 
support the above thesis, we claim that the issue of plausible reasoning cannot be 
properly addressed without assuming that the body of information possessed by the 
agent contains (at least) three distinct types of items: observations pertaining to the 
current situation, generic knowledge about similar situations, and beliefs as to the



features of the current situation. Observations are supposed to be reliable and non
conflicting. Beliefs are on the contrary taken for granted, hence brittle. Under this
assumption, plausible reasoning precisely consists in inferring beliefs from (contingent)
observations, and generic (background) knowledge, valid across situations. This view is
classical in probability theory (De Finetti, 1974), and we claim that it also makes sense
under a qualitative or an ordinal approach to plausible reasoning

2 From Confidence Relations to Accepted Beliefs

The ordinal approach presupposes that the agent’s knowledge is modeled by a relation
among events or propositions (built from a language), we call a confidence relation.
Typically, it is a partial preordering on a set of propositions, that is consistent with
classical deduction, expressing that some propositions are generally more plausible than
(or at least as plausible as) others. The contingent observations available to the agent
form a context according to which the confidence relation is conditioned. Confidence
relations include comparative probability relations first introduced by De Finetti (1937)
and Koopman (1940), and extensively studied by Savage (1954). All set-functions used
in uncertainty modeling (probability measures, possibility measures, belief functions,
etc.) generate confidence relations which are complete preorders. The set-functions
studied by Friedman and Halpern (1996) under the name of "plausibility measures"
generate confidence relations which are partial preorders.

A proposition is called an accepted belief for the agent if it is more plausible (in the
sense of the confidence relation) than its negation, in the context of available
observations. The term "accepted belief" also means that the agent considers the derived
conclusions as valid, until some further observation is obtained that questions them;
lastly the agent is allowed to reason with accepted beliefs as if they were true, using
classical logic. Hence, by assumption, accepted beliefs form a deductively closed set of
propositions. Under this assumption, a confidence relation is called an acceptance
relation (Dubois and Prade, 1995b; Dubois et al. 1998a).

This logical closure condition for accepted beliefs has a drastic impact on the nature
of acceptance relations. Basically it implies that, when a proposition A is more plausible
than each of two other ones B and C, where A, B, C are mutually exclusive, considering
the disjunction of B and C cannot form a proposition that is more plausible than the
most plausible one A. In other words, a notion of negligibility is embedded in the
acceptance relation. The closure condition, plus a few other uncontroversial ones (like
monotony with respect to set inclusion) are enough to ensure the existence of a
representation of the acceptance relation by means of a family of so called "comparative
possibility relations" (Dubois et al. 2001). A proposition is then more plausible than
another one if and only if the former is more possible than the latter in the sense of all
comparative possibility relations in the family.

Comparative possibility relations have been independently introduced by David
Lewis (1973) in the seventies, in the framework of modal logics of counterfactuals, and
Dubois (1986) in the scope of decision theory. Their numerical counterparts have been
introduced by the economist Shackle (1961), the philosopher Cohen (1977), and the
systems engineer Zadeh (1978) completely independently of one another. Comparative
possibility relations are very simple confidence relations because each of them is
completely specified by means of a single complete preordering of elementary events



(interpretations, states of nature, possible worlds) distinguishing between normal and
less normal worlds. Namely a proposition is more possible than another if the most
normal situation where the former is true is more plausible than all situations where the
latter is true. The case when the ordering of elementary events is partial is studied by
Halpern (1997).

3 Nonmonotonic Reasoning and Default Rules

In practice, the generic knowledge possessed by an agent is often expressed by means of
"if then" rules. The condition part of a rule denotes a context (in the above sense:
everything the agent has observed in a given situation) and the conclusion is an accepted
belief of the agent in this context. Each such rule can thus be modeled as the statement
that some proposition is more plausible than another one, and a rule base can be equated
to a (partially defined) acceptance relation (or a plausibility measure after Friedman and
Halpern, 1996).

Each rule can also be modeled in the framework of a three-valued logic (Dubois and
Prade, 1994b). In a given situation, a rule is true or false according to whether its
conclusion is true or false, provided that its condition holds in this situation. Otherwise
the rule takes the third truth-value which stands for "irrelevant". This is a so-called tri-
event introduced by De Finetti (1937). Such generic rules form conditional knowledge
bases, and the plausible inference of some proposition consists of syntactically deriving
from a rule base a rule whose condition part exactly models the set of available
observations, and whose conclusion part is the proposition under concern (Kraus et al,
1991). In the formal framework of acceptance relations, this syntactic inference
procedure yields a plausible proposition if and only if this proposition is an accepted
belief in the prescribed context, in the sense of the acceptance relation (plausibility
measure after Friedman and Halpern, 1996) induced by the rule base

Indeed, under the logical closure condition, the plausible inference relation
producing accepted beliefs according to a confidence relation also satisfies all
postulates of preferential inference introduced by Kraus et al. (1991) for the purpose of
computing what is entailed from a conditional knowledge base (except for the inference
from a contradictory context), and conversely these postulates enable the confidence
relation to be reconstructed. Similar properties have been laid bare in older conditional
logics by Adams (1975), using infinitesimal probabilities, and, of course, Lewis (1973).
A rule base also generates a family of comparative possibility relations (“ rankings of
models ” after Lehmann and Magidor, 1992; see Dubois and Prade, 1995a).

If the family of comparative possibility relations reduces to a single one, then the
plausible relation satisfies the so-called rational monotony property introduced by
Makinson. This feature is characteristic of comparative possibility relations (Benferhat
et al., 1997). Plausible inference with a comparative possibility relation meets Shoham
(1988)'s view of nonmonotonic inference, as classical inference from the most normal
situations in a given context. Plausible inference under a comparative possibility
relation can be syntactically managed in possibilistic logic (Dubois et al., 1994; Lang
2000). When an acceptance relation corresponds to a family of more than one
comparative possibility relations, there is a principle of information minimization that
enables a unique comparative possibility relation in the family to be selected (Dubois
and Prade, 1998). It is a most cautious choice ensuring a ranking of elementary events



that is as compact as possible. This selection process is at work in Pearl (1990)’s system
Z and Lehmahn and Magidor (1992)’s "rational closure", as well the possibilistic
handling of default rule bases (Benferhat et al, 1998). Selecting a least informative
comparative possibility relation in agreement with an acceptance relation is equivalent
to attaching priorities to rules in a conditional knowledge base, the higher priorities
being granted to the most specific rules (Pearl, 1990).

4 Plausible Inference versus Probabilistic Reasoning

The originality of the confidence relation approach to plausible inference is that, rather
than starting from syntactic objects and intuitive postulates (like Lehmann and
colleagues), our starting points are on the one hand the confidence relation that is
thought of as a natural tool for describing an agent’s uncertain knowledge, and the
notion of accepted belief on the other hand. This point of view enables plausible (non-
monotonic) reasoning to be cast in the general framework of uncertain reasoning, which
includes probabilistic reasoning. The analogy between plausible reasoning with
accepted beliefs and probabilistic reasoning is now patent (see also Paris, 1994). In
probabilistic reasoning, the confidence relation stems from a probability measure or a
family thereof. A set of generic rules is then encoded as a set of conditional probabilities
characterizing a family of probability measures. The most popular approach in AI is
currently when this family reduces to a single one, and the set of conditional
probabilities defines a Bayesian network (Pearl, 1988). When the probabilistic
information is incomplete, the selection of a unique probability measure often relies on
the principle of maximal entropy. A Bayesian network really represents generic
knowledge, like any confidence relation. This network derives either from expert
domain knowledge or from statistical data. The selection of a most cautious comparative
possibility relation in agreement with an acceptance relation is similar to the selection of
a unique probability measure using maximal entropy (Paris, 1994).

Probabilistic inference with a Bayesian network consists in calculating the
(statistical) conditional probability of a conclusion, where the conditioning event
encodes the available observations (Pearl, 1988). The obtained conditional probability
value is interpreted as the degree of belief of the conclusion in the current situation,
assuming that this situation is a regular one in the context described by the observations.
This procedure is very similar to the derivation of a plausible conclusion by
conditioning an acceptance relation, or by deducing a rule from a rule base. The derived
rule is valid "generally". Its conclusion is considered as an accepted belief in the current
situation assuming that this situation is not an exceptional one in the context described
by the observations modeled by the condition part of the derived rule. There is in fact a
strong similarity between conditional probability and conditional possibility, and an
ordinal form of Bayes rule exists for possibility theory (Dubois and Prade, 1998).

Of course, there are also noticeable differences between probabilistic reasoning and
ordinal plausible inference:

i) The latter does not quantify belief;
ii) Plausible reasoning considers the most plausible situations and neglects others,

while probability theory performs reasoning in the average.



iii) Lastly, probabilistic reasoning is not compatible with the notion of accepted
belief.

Indeed, the conjunction of two highly probable events may fail to be highly probable
and may even turn out to be very improbable. However, the arbitrary conjunction of
accepted beliefs is still an accepted belief (this is because we assume that the agent
considers accepted beliefs as tentatively true). This property of ordinal plausible
inference has been criticized by several authors (Kyburg 1988, Poole 1991). It means
that ordinal plausible inference suffers from the so-called "lottery paradox" (one can
believe that any given player in a one-winner lottery game will lose with arbitrary high
probability, all the more so as players are numerous, but one cannot believe that all of them
will lose).

Yet, an acceptance relation can also be represented by means of a family of standard
probability relations (Benferhat et al., 1999a, Snow, 1999). The corresponding
probability measures are very special. They enforce a total ordering of states and are
such that the probability of a state is always larger that the sum of the probabilities of
less probable states. We call them "big-stepped probabilities". They are in some sense
the total opposite of uniformly distributed ones (without expressing pure determinism,
though). Indeed, in any context the most likely elementary event in the sense of a big-
stepped probability occurs much more often than the disjunction of other elementary
events.

 We cannot expect to find natural sample spaces equipped with such kinds of
empirically observed statistical probability functions. But one may think that for
phenomena which have significant regularities, without being purely deterministic (like
birds flying!), there may exist at least one partition of the sample space, the elements of
which can be ordered via a big-stepped probability, and form a set of conceptually
meaningful states for the agent. The existence of probabilities in strict agreement with
non-monotonic inference, may also resolve the lottery paradox, that has been proposed
as a counterexample to the use of classical deduction on accepted beliefs. Indeed, for
big-stepped probabilities (and only for them), the set of probable beliefs {A, P(A ��C) >
0.5} remains consistent and deductively closed for any context C. In the lottery
example, it is implicitly assumed that all players have equal chance of winning. The
underlying probability is uniform. Hence there is no regularity at all in the lottery game:
no particular occurrence is typical and randomness prevails. It is thus unlikely that an
agent can come up with a set of consistent default rules about the lottery game.

On the contrary, plausible reasoning based on acceptance relations models an
agent’s reasoning in front of phenomena which have very regular features (but where
exceptional situations may nevertheless occur). We conjecture that domains where a
body of default knowledge exists can be statistically modeled by big-stepped
probabilities on a meaningful partition of the sample space. If this conjecture is valid, it
points out a potential link between non-monotonic reasoning and statistical data, in a
knowledge discovery perspective. An open problem along this line is as follows: Given
statistical data on a sample space, find the "best" partition(s) of the sample space, on
which big-stepped probabilities are induced and meaningful default rules can be
extracted (See Benferhat et al. 2001b for preliminary results). The difference between
other rule extraction techniques and the one suggested here, is that, in our view, the
presence of exceptions is acknowledged in the very definition of symbolic rules for
which the proportion of such exceptions is not explicit.



 5 Two Kinds of Epistemic Revision

The framework of confidence relations can also account for the AGM revision theory
after Alchourron et al (1985), but it somehow questions the idea of Gärdenfors and
Makinson (1988) that revision and plausible inference are two sides of the same coin.
Indeed, in Gärdenfors revision theory, the agent only possesses a closed set of
propositions (a belief set) and receives a sure input that can be understood as a new
observation of the (static) world. So, the Gärdenfors revision theory only accounts for
the evolution of the beliefs of an agent who makes a new contingent observation.

However, this is only one possible kind of epistemic revision. The distinction
between contingent beliefs and generic knowledge forces to consider another meaning
of revision: the revision of the generic knowledge, which is not the topic of the AGM
theory. It consists of modifying the confidence relation upon arrival of new generic
knowledge, for instance when the agent happens to acquire a new default rule on his
domain of investigation. Then events that were thought to normally occur are now
considered less normal. For instance a medical doctor does not modify his medical
knowledge when he gets new test results for a patient. He just revises his beliefs about
the patient state. However, a medical doctor may revise his medical knowledge when he
reads a specialized book or attends a medicine conference. Several authors like Spohn
(1988), Williams (1994), Boutilier and Goldszmidt (1995), Darwiche and Pearl (1997),
Dubois and Prade (1997), Benferhat et al.(1999c) have considered tools and principles
for generic knowledge revision, although the distinction between the two types of
revision is not always so clear from reading these works. Indeed, there is no consensus
on a general and systematic approach to that kind of epistemic change in the literature,
and the same can be observed for problems of revision of Bayesian networks (which
pertain to probability kinematics, see Domotor, 1985).

The AGM revision theory only assumes that a belief set is replaced by another belief
set, and it gives minimal rationality constraints relating the prior and the posterior belief
sets. Thus doing, it may wrongly suggest that the posterior belief set can indeed be
derived from the prior one and the input information only. The confidence relation
framework shows that this is not the case. The calculation of the posterior belief set
does not use the prior belief set. The posterior belief set is built by means of plausible
inference from the generic knowledge encoded in the confidence relation conditioned
on the new context formed by all the available observations, including the new one. This
is what we called "focusing" in previous publications (Dubois et al., 1998b).

 The representation theorem of the AGM theory actually lays bare the existence of
an epistemic entrenchment relation (basically the dual of a possibility relation, see
Dubois and Prade, 1991) and confirms that the construction of the revised belief set can
be expressed by conditioning this particular confidence relation on the input
information. This strategy is the same as the one adopted when querying a Bayesian net
on the basis of new observations. However, in the AGM theory, the epistemic
entrenchment looks like a technical by-product of the formal construction, while we
claim that this is the primitive object, and that all the belief sets are derived from it in
every context. Concerning the iteration of contingent belief revision, suppose two inputs
are obtained in a row. Note that since the inputs are considered as sure observations
about a static world, they cannot be contradictory. When the second input arrives, a
sound strategy is, in the AGM setting, to revise the original belief set (not the one



revised by the first input) by the conjunction of the two inputs. In practice, The case
when two observations are inconsistent suggests that, either one of them is wrong, or
they do not pertain to the same case.

Some people have claimed that in order to iterate AGM belief revision, one needs to
construct not only the new belief set, but also a new epistemic entrenchment relation. In
the scope of the revision of contingent beliefs induced by generic knowledge, this is
questionable. On the contrary, the same epistemic entrenchment should remain across
successive revisions of contingent beliefs caused by new contingent observations.
Similarly, in probabilistic reasoning (Pearl, 1988), the same Bayesian network is used
when new observations come in. If the epistemic entrenchment must be revised, it
means that the input information is a piece of generic knowledge, and such a kind of
revision is not the purpose of the AGM theory.

6 Conclusion

To sum up, the framework of confidence relations provides a unified view of non-
monotonic and probabilistic reasoning. It also points out the distinction between the
revision of contingent beliefs (by focusing the confidence relations on the proper
context formed by the observations) and the revision of the confidence relation itself.
This distinction is made clear by considering that the information possessed by an agent
is made of three items: sure observations, generic knowledge and inferred contingent
beliefs. From a computational point of view, plausible inference from a confidence
relation can be achieved using a standard theorem-prover in propositional logic, and
comes down to a sequence of consistency tests. When the confidence relation takes the
form of a unique possibility relation, like in system Z and the like, the problem can be
encoded in possibilistic logic, which handles prioritized propositional bases, with a
complexity of SAT��Log2n if there are n priority levels (Lang, 2001).

Future lines of research in the ordinal approach to plausible reasoning include the
modeling of independence (Dubois et al. 1997, Ben Amor et al. 2000) and the study of
graphical models that would be the qualitative counterpart of Bayesian networks
(Benferhat et al. 1999b). Some results indicate that possibilistic logic bases, conditional
knowledge bases and possibilistic nets have the same expressive power (Benferhat et
al., 2001a). However it is no clear which is the most natural framework for knowledge
elicitation, and for practical computation. Lastly, by bridging the gap between
probability and non-monotonic reasoning, the confidence relation approach paves the
way to the data-driven learning of default rules.
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