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Abstract

This paper presents a non exhaustive list of
different methods of uncertainty propaga-
tion when the knowledge of some param-
eters of physical models is represented by
probability measures, and others by possi-
bility measures or belief functions.
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1 Introduction

Currently, decisions pertaining to the management
of potentially polluted sites very often rely on the
evaluation of risks for man and the environment.
This evaluation is carried out with the help of models
which simulate the transfer of pollutants from a
source to a vulnerable target, for different scenarii
of exposure. It may happen, in practice, that some
parameters of these models can be represented by
probability distributions while others are better
represented by possibility distributions, or by belief
functions of Shafer (for lack of information). Many
researchers are used to either one or the other of
these modes of representation of uncertainty. But
fewer researchers are interested in the question: how
to combine these different modes of representation
(probability, possibility, belief function).
Let T:Rn → R be a function (model) of n arguments
xi (x = (x1, ...,xn)). We want to know the extent
to which the criterion T (x) ≤ e is satisfied. The
knowledge on parameters xi can be represented
using a distribution of probability, of possibility or

a mass function. The main issue is thus to carry the
uncertainty attached to the variables over to T (x) with
the least possible loss of initial information. This is
uncertainty propagation. Generally, in the evaluation
of risks for man and the environment, one tries to
estimate PT (X)(]−∞,e]) where e is an absorbed dose
limit for exemple.
There are three difficulties: the first is to represent the
available information faithfully (cf [1]), the second
one is how to account for dependencies, correlations
between the parameters in the propagation process
(linear, non linear monotone dependency, interac-
tion ...). For example the fact of assuming stochastic
independence between parameters can generate too
optimistic results. The last one is the choice of the
propagation technique.

In Section 2 (resp Section 3), we consider propaga-
tion when arguments of T are purely represented by
probabilities (resp possibilities). Section 4 deals with
the case where some arguments of T are represented
by probability, and others by possibility or mass func-
tions. Examples of results provided by the different
methods are presented in Section 5.

2 Random variables

When the knowledge on all arguments of T is repre-
sented using random variables (that is random vari-
ables Xi are associated to parameters xi), then T (X)
is also a random variable where X is the random
vector. We can estimate the cumulative distribution
function FT using Monte Carlo methods. Iman and
Conover [10] take into consideration monotone de-
pendencies between parameters (Spearman rank cor-
relation) when they are known.



The situation is more complex when the form of the
dependence is not known. Ferson [5], [6] discusses
the consequences on the results if one makes depen-
dence assumptions when one does not have this in-
formation. A few researchers [7] proposed to scan
all correlation coefficients ranging between -1 and 1
when no information is available. The problem is that
not all forms of dependence are covered, since this ap-
proach only deals with linear dependencies. Indeed, a
zero correlation between two parameters does not im-
ply independence.
We can also estimate the cumulative distribution func-
tion FT approximating a probability distribution func-
tion using quantile/histograms. So Berleant and
Goodman-Strauss [2] maximise and minimise FT us-
ing histograms. They obtain an envelope of FT with-
out any knowledge of dependencies, for any contin-
uous T . In other words, they obtain F−T ≤ FT ≤ F

+
T ,

by scanning all possible joint probability distribution
functions of random vector X .
Williamson and Downs [13] use copulas to achieve
propagation without knowledge on dependence (bi-
nary operations). The use of copulas becomes very
difficult as soon as the number of variables is higher
than 3

3 Possibility

When the knowledge on all arguments of T is repre-
sented by possibility distributions πi, the knowledge
on T can also be represented by a possibility distri-
bution πT . To compute it, we can use the extension
principe [4]: ∀u ∈ R

n

πT (u) = sup
x1,...,xn ,T (x1,...,xn)=u

π(x1, ...,xn)

When there is no interaction between the parameters,
we can write: ∀u ∈ R

n

πT (u) = sup
x1,...,xn ,T (x1,...,xn)=u

min(π1(x1), ...,πn(xn))

The use of min characterizes a lack of knowledge
about the dependence between possibilistic variables,
when the result is supposed to be a possibility distri-
bution. Thus, we can compute the degrees of pos-
sibility ΠπT (]−∞,e]) and of necessity NπT (]−∞,e])
of remaining under a threshold e. This calculus can-
not serve as a conservative substitute to a probabilis-
tic propagation under stochastic independence, that

is, even if ∀i PXi ∈ FXi = {PXi ,∀C ⊂ R Nπi(C) ≤
PXi(C) ≤ Ππi(C)} with PX joint probability of ran-
dom vector X (assiociated vector parameters x of T )
with projections PXi , it does not imply PT (X) ∈FT (X) =
{PT (X),∀C ⊂R NπT (C)≤ PT (X)(C)≤ΠπT (C)}. We
shall observe this feature in example 1 (cf Section 5).

4 Probability and Possibility

Suppose there are k < n random variables (X1, ...,Xk)
associated to values (x1, ...,xk) and n − k possi-
bilistic variables (Xk+1, ...,Xn) associated to values
(xk+1, ...,xn).

4.1 Hybrid method [9]

If we fix the variables (X1 = x1, ...,Xk = xk), the
knowledge on T (X) value becomes a fuzzy subset.
By randomizing this choice, T (X) is a random fuzzy
subset. In practice, we can combine a Monte Carlo
technique with the extension principe. It generates a
sample (F1, ...,Fm) of fuzzy subsets which estimate
T (X). Guyonnet et al. [9] propose to synthetise the
result into a single fuzzy subset denoted Fd. For each
α cut of the random fuzzy set obtained, Guyonnet et
al. separately rearrange the left side and the right side
of sets in increasing order. The set [Fin f αd ,Fsupα

d ] is
considered such that P(le f tside ≤ Fin f αd ) = 1− d%
and P(rightside ≤ Fsupα

d ) = d%. Varying α ∈ [0,1],
a fuzzy interval Fd is thus built. The standard value
d = 95 is chosen.
It is worthwile noticing that within a Monte Carlo
approach the rank correlation between the random
variables [10] (if known) can be taken into consid-
eration. This raises the following question for this
method: how to take into consideration dependencies
between the random and possibilistic variables if they
exist?
However, we must be careful with this method. It
is interesting if we want to estimate for exemple
PT (X)(]−∞,e]). But, when checking whether T (X)
lies between two values e1 and e2, we get false
estimates of PT (X)([e1,e2]) with it. That is we obtain
the same result whatever the imprecision on each Fi
and the variability on the sample of all Fi (see figure
1). We get the same fuzzy number Fd whether we
have large imprecision with a small variability as on
the left part of fig.1 ,or we have little imprecsion with
a great variability as on the right part. Indeed we



treat independently le f tside and rightside whereas
rightside is entirely determined by le f tside and
conversely since any α cut is generated as a whole.

T(x) T(x)

1 1

00

Large imprecision of each fuzzy number Fi
small variability of the sample

Little imprecision of each fuzzy number Fi
great variability of the sample

Fd

Figure 1: Two different possible results with hybrid
method

To evaluate the imprecision of T , we can estimate an
average fuzzy number Fmeand with:

Fmeand =
1
m

m

∑
i=1
Fi

and compute the area under Fmeand .

To obtain knowledge on the variability of T , we can
work with a representative value vri of each fuzzy
number Fi. Then we can estimate a variance V with
estimator:

V =
1
m

m

∑
i=1
vri

2−
2

m(m−1) ∑
j<i
vrjv

r
i

where vri is a representative value of Fi. If V is small,
the variability is small as on the left part of figure 1 for
exemple. We can choose for the representative value
vri the middle point of the mean interval:

vri =

∫ 1

0

(supFα
i + in fFα

i )

2
dα

As will be observed on some examples, the use of Fd
may overweight extreme fuzzy values, in the case of
precise results with high variability, even if some out-
liers can be deleted by the threshold d.

4.2 Homogeneous Approach with belief
functions [3]

Both possibilistic and probabilistic information can
be cast in the framework of Evidence theory. Ev-
idence theory includes probability and necessity. It

introduces a plausibility function (noted Pl) and a be-
lief function (noted Bel) defined from a mass func-
tion m : P (Ω)→ [0,1] such that ∑E∈P (Ω)m(E) = 1. If
m(E) > 0, E is a focal element, m(E) is the probabil-
ity of knowing that x ∈ E and nothing else. Moreover,
Bel(A) = ∑E,E⊆Am(E) and Pl(A) = ∑E,E∩A 	= /0m(E).
If the focal elements are nested, a belief func-
tion is a necessity measure and a plausibility func-
tion is a possibility measure. They indeed satisfy:
Bel(A ∩ B) = min(Bel(A),Bel(B)) and Pl(A∪ B) =
max(Pl(A),Pl(B)).
If the focal elements are some disjoint intervals, belief
and plausibility functions coincide with a probability
measure for unions of such intervals. We can model
each possibility distribution function and each prob-
ability distribution function by a mass function. We
assign to the Cartesian product of focal sets attached
to each variable Xi, and, assiming independence, the
product of the corresponding masses (see [3]). The
obtained joint mass is then assigned to the interval
[min T (x),max T (x)] obtained by interval analysis
on each focal element of vector X (see [3]). This
approach supposes independence between focal ele-
ments of each Xi.
Borrowing from [2], we propose here a ”Dempster
Shafer conservative approach”: the idea is to com-
pute extreme upper plausibility Plmax and lower be-
lief functions Belmin without assuming knowledge on
dependencies. It yields a linear optimization prob-
lem whose unknown is the joint mass function (see
[2]). It ensures Belmin(T (X) ≤ e) ≤ P(T (X) ≤ e) ≤
Plmax(T (X)≤ e). Consider an example involving two
parameters x,y. The knowledge on x is represented by
a probability measure approximated by a mass func-
tion m with focal elements [0,1], [1,2] and [2,3]; the
knowledge on y is represented by a possibility mea-
sure with mass q and focal elements [1,2] and [0,6].
Suppose we want to estimate T (x,y) = x+ y. The
table below shows the focal elements and the mass
function obtained for T (x,y) = x+ y in the case of in-
dependent x and y.

[1,3] [0,7] [0,1]
m1q1 = h11 m1q2 = h12 m1

[2,4] [1,8] [1,2]
m2q1 = h21 m2q2 = h22 m2

[3,5] [2,9] [2,3]
m3q1 = h31 m3q2 = h32 m3

[1,2] [0,6] x
q1 q2 y



In the conservative approach, contrary to the standard
Dempster-Shafer method, we must find h such that,
with e fixed, Pl(]−∞,e]) is maximal and Bel(]−∞,e])
is minimal. For example, we obtain Plmax(x+ y ≤ 2)
by solving the following problem:

Max 1−h31
∑ j hi j =mi
∑i hi j = qj
∑i, j hi j = 1

Similary we obtain Belmin(x+ y ≤ 4) by solving the
following problem:

Min h11 +h21
∑ j hi j =mi
∑i hi j = qj
∑i, j hi j = 1

4.3 Homogeneous Approach with Monte
Carlo [11]

We perform a random selection among focal ele-
ments, according to the probability provided by the
mass function. For each variable Xi of T , we randomly
select a focal element Ai j and we compute their image
Bj by T . If we perform N samples, we assign mass
1/N to each Bj. We obtain:

Pl(T (X)≤ e) =
1
N
Card{ j, in f (Bj)≤ e}

Bel(T (X)≤ e) =
1
N
Card{ j,sup(Bj)≤ e}

Of course, this method has all limitations of Monte
Carlo method as discussed by Ferson [7]. This sam-
pling approach to estimating the Bel and the Pl func-
tion will almost always understimate Pl and over-
estimate Bel. This approach is adapted to the case
when there are many focal elements due to a fine-
grained discretization of distributions. In the discrete
case, with few focal elements, the result can be com-
puted directly. In the preceeding example, one would
find Pl(x+ y ≤ 2) = 1−m3q1 and Bel(x+ y ≤ 4) =
q1(m1 +m2).

4.4 Casting possibilistic and probabilistic data in
the setting of upper and lower probabilities

Let us finally suggest a last method. We can interpret
possibilistic variables (Xk+1, ...,Xn) of T , in terms of

upper and a lower probability . That is we work with
F∗(x j) = ΠXj(]−∞,x j]) and F∗(x j) = NXj(]−∞,x j])
∀ k+1≤ j≤ n. Ferson [8] uses upper and lower prob-
abilities separately, to represent and to propagate im-
precise knowledge. We showed in [1] that to work
with F∗, F∗ separately is less precise than to work
with a possibility distribution π = min(F∗,1 − F∗)
(when the latter is normalized) because the set FX
of probabilities induced by π is contained in the set
{P,F∗ ≤ P ≤ F∗}. However, we can use probabilistic
methods on upper and lower cumulative distribution
functions separately and take into consideration cor-
relations between parameters if they exist. We obtain
upper and lower cumulative distributions for T. As one
works with upper and lower probabilities separately,
this method makes sense only if T is monotonic.

5 Examples

We are going to show by means of examples how the
different methods perform. In all figures, cumulative
distributions are pictured. That is for all e, we repre-
sented PT (X)(]−∞,e]), ΠT (]−∞,e]), NT (]−∞,e]),
PlT (]−∞,e]) or BelT (]−∞,e]).

In Figure 2, we first model two variables A and B by
means of a uniform probability distribution on [6,9].
The same variables A and B are modelled by a fuzzy
number (support [6,9], core {6}) for possibilistic vari-
ables. We have PA ∈ FA and PB ∈ FB (see section
3). We plot A+B using Monte Carlo with differ-
ent correlations. In the case of fuzzy numbers we
used both fuzzy arithmetic and the Dempster-Shafer
model. In this case, it is not necessary to repre-
sent upper distributions (possibility and plausibility)
because they are the same step-function. The par-
allelogram [(0,12);(0,15);(1,18);(1,15)] is the tightest
region that encloses all of the possible lower distri-
butions for A+B that could arise under different de-
pendencies between A and B. It is the best-possible
bound on the set of all distributions resulting from ad-
dition of A and B under all possible dependency as-
sumptions. This result comes from Fréchet bounds
[13]. We can see the necessity function obtained by
fuzzy arithmetic is inside the parallelogram. More-
over NπA ≤ PA ≤ΠπA and NπB ≤ PB ≤ΠπB do not im-
ply NπA+B ≤ PA+B ≤ ΠπA+B . For instance, the figure
shows NπA+B(]12,14]) = 0.35 > PA+B(]12,14]) = 0.2
(the latter with independence assumption). However,



by minimizing the resulting belief function we ob-
tain the right side of the parallelogram. That means
the maximal plausibility Plmax and the minimal belief
Belmin are upper and lower probability bounds what-
ever knowledge of dependencies. Thus for all depen-
dencies between A and B we can obtain Belmin(]−
∞,e])≤ PA+B(]−∞,e])≤ Plmax(]−∞,e]).
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Belief min
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Figure 2: Various computations of A+B.

In the second example (cf Figure 3), we do the same
kind of calculation as previously. Consider three vari-
ables A, B, C. Suppose A=Unif([1,5]), B=Unif([3,8])
and C=Norm(7.5,1) in the pure random case. We
use fuzzy numbers (supp(A)=[1,5], core(A)=[2,3];
supp(B)=[3,8], core(B)=[4,6]; supp(C)=[4,11],
core(C)=[7,8]) in the possibilistic case. We compute
(A+B)/C in each pure case. Note that the minimal
belief function is greater than the necessity function
for x=2.5. It is due to a coarse discretisation of
possibility distributions in order to build focals
elements.

The last example (in Figure 4) is the most interesting.
We have two possibilistic variables A, B (fuzzy num-
bers supp(A)=[1,5], core(A)=[2,3]; supp(B)=[3,8],
core(B)=[4,6]). We have one random variable
C=Norm(7.5,1). We try to estimate (A+B)/C. We
use the Dempster-Shafer calculation (also the case
of ignored dependencies; see Section 4.2), the hy-
brid method, the Dempster-Shafer calculation com-
bined with Monte Carlo and the Monte Carlo with up-
per and lower probability for A and B. We can see
that methods presented in Section 4.2, 4.3 et 4.4 re-
turn almost the same results. Indeed, we suppose
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Possibility
Necessity
Belief min
Plausibility max
Plausibility
Belief

Figure 3: Various computations of (A+B)/C.

the independency of the variables with these methods.
Dempster-Shafer conservative approach (see Section
4.2) produces an envelope for all results except for
hybrid necessity. This due to the construction of Fd
(see Section 4.1). Indeed, when Guyonnet et al [9]
compute Fd, they transform the variability of T into
imprecision. In fact, the hybrid method does not ac-
count for variability and may put excessive weights
on randomly generated fuzzy numbers located on the
sides of Fd. It seems that too conservative a result
is obtained in this way. Belmin and Plmax remain the
most credible conservative bounds on the cumulative
distribution function of T . For example we have:
0≤ P(A+B

C ≤ 0.5) ≤ 0.28 or 0.85 ≤ P(A+B
C ≤ 2) ≤ 1.

We have not information on P(A+B
C ≤ 1) because we

only know: 0≤ P(A+B
C ≤ 1)≤ 1.

6 Conclusion

This paper has proposed a preliminary investigation
of possible methods for handling uncertain parame-
ters in environmental risk analysis. It is based on the
idea of jointly exploiting incomplete and probabilis-
tic information. First experiments suggest that the
possibilistic modeling of ill-known data, interpreted
in terms of upper and lower probabilities and belief
functions can be useful for the propagation step. It is
recalled that contrary to what is sometimes claimed,
fuzzy interval analysis based on the extension princi-
ple does not necessarily produce conservative proba-
bilistic bounds. It could even be locally less conser-
vative than a standard Monte-Carlo approach. How-
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Figure 4: Hybrid computation of (A+B)/C.

ever the setting of belief functions can provide such
conservative bounds, using discrete random intervals
and no dependence assumption. In the case of mixed
probabilistic/possibilistic data, the exploitation of ran-
dom fuzzy outputs produced by Monte-Carlo simula-
tion (as in [9]) may also produce results sometimes
locally less conservative than a standard Dempster-
Shafer approach, sometimes more conservative than
the Dempster-Shafer approach without dependence
assumption. More investigations are needed for an in-
depth comparison of uncertainty propagation methods
so as to properly explain some of the obtained results.
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