This article proposes digital simulations of a bacterial communication system termed quorum sensing, and investigates the design of artificial networks build on the behavior of bacteria societies that tweet using quorum sensing signals. To this end, this article proposes a cell-based model that uses a "bottom-up" agent-based model coupled with ordinary differential equations, and develops the abstraction of intracellular dynamics as a basis underlying cooperative artificial network formation. Results show the emergence of self-sustainable behaviors thanks to the proposed model of metabolism that permits bacteria to grow, reproduce, interact, and coordinate at the population level to exhibit near-perfect bioluminescence behaviors. Moreover, the evolution of cooperation in the subsequent artificial network leads to the emergence of non-predicted coercive strategies. Coercion has been shown to be beneficial to share common interests between variants of cooperators leading the entire population of cells to be networked.

The simulation and design of biological mechanisms of self-regulation has been shown to provide insights through engineering digital artefacts that display self-organized, scalable and robust features which is one of the key purposes of the artificial life research. One of the self-organizing mechanisms of biological systems is that their units have the ability to communicate to help to fulfill their goals. For instance, there is a growing realization that the robustness of biological systems is often derived from collective population-level behaviors that extend beyond individual cells (Gorochowski, 2016). In the context of unicellular organisms, bacteria were for a long time thought to be independent unicellular organisms, until 1979, when bacterial colonies of Gram-negative bacteria such as Vibrio-fischeri

and Vibrio-harveyi were shown to be able to perform a collective light-emitting behavior [START_REF] Bassler | How bacterial talk to each other: Regulation of gene expression by quorum sensing[END_REF]. Traditionally, this phenomenon is known as Quorum Sensing (QS), and happens when the cellular density reaches a certain threshold. Indeed, bacteria cells can communicate with each other by producing, realizing, and taking up diffusible signaling molecules known as "autoinducers". When the autoinducer bounds to the target genetic receptor in a receiving cell, this results in the production of more signaling molecules. At high cell densities, this process causes the triggering of specific phenotypic responses such as bioluminescence or biofilm formation.

Communication is a widespread phenomenon in natural organisms and is fundamental to any kind of coordinated, parallel and distributed processes in human designed systems. The design and simulation of cellular communications has been explored by the artificial life community in two backgrounds: multicellular [START_REF] Doursat | A review of morphogenetic engineering[END_REF][START_REF] Stanley | A Taxonomy for Artificial Embryogeny[END_REF] and unicellular organisms. However, cell signaling in unicellular organisms is less studied. Indeed, there are fewer works on cell signaling in unicellular cell signaling.

We believe that the unicellular approach, provides several intrinsic beneficial properties, e.g. all the organisms are autonomous and share a single distributed communication system (QS). In addition, despite their sizes, single celled organisms such as bacteria have computational and evolutionary autonomous capabilities for self-replication and self-organization [START_REF] Majumdar | Conversation game: Talking bacteria[END_REF]. Moreover, an improved understanding of unicellular signaling by QS has numerous scientific benefits [START_REF] Beckmann | Evolving Quorum Sensing in Digital Organisms[END_REF] and may provide insight into the evolution of multicellularity itself. Indeed, compared to a cell from a multicellular organism, a bacterial cell is a mobile and autonomous entity that can grow and act independently at an individual level, and coordinate its behavior with other cells at a population level to exhibit coordinated features previously recognized as specific to multicellular organisms, e.g. shape formation [START_REF] Pascalie | Developmental Design of Synthetic Bacterial Architectures by Morphogenetic Engineering[END_REF].

The potential of QS then resides in the simplicity of its general concept that gives rise to complex behaviors. But it should be noted that, although QS is simple in its fundamental principles, the QS mechanism is complex in its biological details. Although we have a good understanding of intra-cellular mechanisms, there remains considerable challenges.

We believe that abstracting the complex interactions of cell-to-cell communication into a representation will enrich our understanding of complex bacterial societies and may provide insights for alternative design techniques.

Thus, this paper proposes a multiagent computational model of QS, and investigates the potential of the link that can be established between QS and artificial communication networks. Specifically, the model uses a bottom-up agent-based approach and proposes a cell-based model coupled with Ordinary Differential Equations (ODEs) that abstract the intracellular dynamics of a bacterium cell such as a model of growth, a model of communication, a model of lightproduction, and a model of metabolism.

Our model is tested in a set of experiments (Djezzar, Fernandez Perez, Djedi, & Duthen, n.d.) where we evaluate the communication capabilities of bacterial colonies, their self-organized bioluminescence behavior, and their sustainable abilities to cooperatively form artificial communication networks. Results show evolution of cooperation and emergence of coercive strategies.

Our bacterial-inspired networks could be potentially used for the emergence of robust and autonomous network topologies that can address issues such as mobility or energy, which are key factors for the development of new self-organizing networks [START_REF] Aziz | A Survey on Distributed Topology Control Techniques for Extending the Lifetime of Battery Powered Wireless Sensor Networks[END_REF][START_REF] Dressler | A survey on bio-inspired networking[END_REF].

The rest of this paper is organized as follows. Section 2 presents the related works and the problem statement. Our cellular model and their main parts, explicitly: growth, quorum sensing, metabolism and light-production, are detailed in Section 3. The proposed artificial communication network model is presented in section 4. Simulations results are evaluated and discussed in section 5 and 6. Section 7 outlines the model parameters and Section 9 concludes the paper.

Given its relevance as a simple and powerful biological communication system, QS has attracted the interest of interdisciplinary research groups. In the field of bioinspired systems, QS has been investigated from various perspectives, including: membrane computing [START_REF] Esmaeili | A Model of the Quorum Sensing System In Genetically Engineered E. Coli Using Membrane Computing[END_REF][START_REF] Romero-Campero | A Model of the Quorum Sensing System in Vibrio fischeri Using P Systems[END_REF], decision-making in mobile autonomous team [START_REF] Sofge | Quorum Sensing for Collective Action and Decision-Making in Mobile Autonomous Teams[END_REF], nanomachine computing [START_REF] Wiedermann | Nanomachine computing by quorum sensing[END_REF], logic computing [START_REF] Ji | A Formalized Design Process for Bacterial Consortia That Perform Logic Computing[END_REF], dynamic clustering [START_REF] Tan | A Quorum Sensing Inspired Algorithm for Dynamic Clustering[END_REF], agent-based modeling [START_REF] Niu | Biomimicry of quorum sensing using bacterial lifecycle model[END_REF], artificial ecosystems [START_REF] Beckmann | Evolving Quorum Sensing in Digital Organisms[END_REF][START_REF] Ouannes | Emergent group behaviors from bacteria quorum sensing simulation[END_REF], game theory [START_REF] Burgos | Cooperation and antagonism in information exchange in a growth scenario with two species[END_REF], as well as, nanoscale robotic cooperation [START_REF] Amir | Nanoscale robots exhibiting quorum sensing[END_REF][START_REF] Zhao | A Quorum Sensing algorithm to control nanorobot population and drug concentration in cancer area[END_REF], and humanoid robot synchronization [START_REF] Bechon | Synchronization and quorum sensing in a swarm of humanoid robots[END_REF].

Moreover, many mathematical models have proposed the simulation of phenotypic traits of QS particularly biofilm formation [START_REF] Emerenini | A Mathematical Model of Quorum Sensing Induced Biofilm Detachment[END_REF][START_REF] Zhao | Three-Dimensional Numerical Simulations of Biofilm Dynamics with Quorum Sensing in a Flow Cell[END_REF].

In the field of artificial life, few works have investigated digital simulations of QS considering metabolism and bioluminescence. While in the seminal works of (J. W. [START_REF] Williams | Robust and sensitive control of a quorumsensing circuit by two interlocked feedback loops[END_REF] and [START_REF] Melke | A cell-based model for quorum sensing in heterogeneous bacterial colonies[END_REF], a QS simulation was proposed, their model did not consider bacterial metabolism for energy production and consumption. Since energy is vital to any physiological process in living organisms, that model of metabolism is included in our simulations. Further, we propose a computational model of bioluminescence using the same QS model, and the same environment shared by cells. Such light-producing behaviors in natural cells have attracted a growing interest in the research community. Indeed, researchers have investigated the possibility of using bioluminescent systems for bio-lightning and as a concrete example, a bioluminescent plant has been developed [START_REF] Callaway | Glowing plants spark debate[END_REF]. More recently and from a more abstract perspective, Song and Yamada [START_REF] Song | Bioluminescence-Inspired Human-Robot Interaction[END_REF] have proposed a bioluminescence-inspired model for the simulation of human-robot interaction. In our model we use bioluminescence as a basis underlying the cooperative formation of artificial communication networks.

On the other hand, few works have investigated the analogy between QS and communication networks. In our work, we establish a conceptual link between QS and artificial communication networks. In [START_REF] Wei | Molecular tweeting: Unveiling the social network behind heterogeneous bacteria populations[END_REF], a QS-based communication network model was proposed, which used autoinducer molecules for communication. In our work, we address a similar problem using a network-centric approach, but we use a light-based communication protocol instead of autoinducers, because the propagation of light is less limited by distance than a signaling molecule. Moreover, the variance in the light intensities is favorable for cluster-based structures by providing hierarchical cell types: super-spreaders of light called wild-type cooperators, simple spreaders called cooperators and non-spreaders of light called cheaters. Hierarchical structures are recognized to be beneficial for the optimization of the network resources such as energy [START_REF] Aziz | A Survey on Distributed Topology Control Techniques for Extending the Lifetime of Battery Powered Wireless Sensor Networks[END_REF].

Cells are mobile agents that evolve in a 2D environment and have the ability of sensing the environment (taking up substrates and autoinducers), growing, dividing and surviving. They possess a QS genetic controller circuit allowing them to coordinate their cellular communication with other cells. Moreover, they can synthesize light via a proposed model of bioluminescence and have a metabolism allowing them to accomplish all of these actions.

Cell growth is the primary response of viable cells to substrates and nutrients. It occurs via a growth of the cell mass followed by a cell division (Figure 1). For simplicity, in our model, the cell mass grow through the Monod limiting-substrate growth model [START_REF] Monod | The Growth of Bacterial Cultures[END_REF]. We use a substrate-limited model because it is generally observed that the substrate and energy (ATP) consumption rates are higher under substrate-sufficient conditions than under substrate limitation conditions [START_REF] Zeng | A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions[END_REF]. In Monod model, the specific growth rate µ ( ) of a bacterium biomass ( ) depends on the substrate concentration ( ) . The equation is given by:

µ µ = ⋅ + max S S S K (1)
where µ max is the maximum growth rate and k s is the substrate affinity (the value of when µ µ / . max =0 5 ). These two parameters are assumed to be constant, but depend on strain and environmental conditions. Using the specific growth rate µ

( ) , d X dt       is calculated as follows: d X dt X       = ⋅ µ (2)
As a cell takes up substrates, it grows until it doubles size, at which point it divides. When the cell divides, it gives rise to two cells. One of the cells is arbitrarily chosen to be the mother and the other the daughter. Then, the program running on the mother is copied, and the copy is associated with the daughter.

To calculate the specific energy requirement rate q ATP ( ) for cell growth, we use the energetic growth yield coefficients Y X ATP ( ) . This parameter is assumed to be constant and represents the cell mass synthesized ( ) per a unit of energy generated (ATP). The equation is given by:

q Y ATP X ATP = µ (3)
Note that the energy (ATP) consumption due to the cell growth is subtracted from the total energy of the cell.

To simulate cell-to-cell communication in heterogeneous microbial communities, we use a generic LuxI LuxR / QS language that is employed by over 30 species of Gram-negative bacteria [START_REF] Bassler | How bacterial talk to each other: Regulation of gene expression by quorum sensing[END_REF]. All LuxI R / systems are mediated by autoinducers, such as acylated homoserine lactone (AHL). Typically, the process involves bacterial cells releasing small diffusible signals (AHL molecules). Cells respond to the uptake of the AHL molecules by producing more AHL molecules. At low cell densities, cells produce only a basal level of AHL, so there is only a low concentration in the environment. When the cell density starts increasing, then, there will be higher levels of AHL, causing the activation of specific genes in the genome. There are specific genes for each specific phenotype: bioluminescence, biofilm, etc.

Our computational model of the molecular regulation network is based on the empirical ODEmodels proposed by (J. W. [START_REF] Williams | Robust and sensitive control of a quorumsensing circuit by two interlocked feedback loops[END_REF] and [START_REF] Melke | A cell-based model for quorum sensing in heterogeneous bacterial colonies[END_REF]. This model uses two positive feedback loops as illustrated in Figure 2. The AHL molecule (A) and the receptor LuxR ( ) form a complex RA ( ) . Two molecules of the complex RA ( ) form the dimerized complex ( ) . The dimerized complex ( ) regulates the expression of both:

• luxI genes which produce more, AHL molecules (positive feedback loop1); and • luxR genes which produce more LuxR receptors (positive feedback loop 2).

The corresponding equations are described as follows:
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where the notation       represents the concentration of a molecular species . C A and C R represent the basal level transcription of and , respectively. A e is the extracellular concentration of in the environment. p e and p a are emission and absorption rates of

and A e respectively. The constant parameters values are listed in Table 2 in the model parameter Section.

In general, light production usually known as bioluminescence or photogenesis is a chemical reaction catalyzed by a photoprotein enzyme called luciferase. The luciferase is responsible for transforming a light-producing substrate called luciferin into light. The process requires the presence of other substances, like oxygen and adenosine triphosphate (ATP). For simplicity, oxygen is assumed to exist in abundance in the environment. The enzymatic reaction can therefore be written in the form of a bi-molecular reaction that involves an enzyme (E), binding to a substrate (S) to form a complex (ES), which in turn releases a product (P), regenerating the original enzyme. This may be represented as follows:

E S ES E P K K K r f cat + ← → → + (9)
where K f is the forward rate, K r the reverse rate, and K cat the catalytic rate. By applying conservation constraints of the material and assuming that the concentration of enzymes is very low in comparison to the metabolite concentration, the equation describing this reaction is resolved to:

d P dt K E S K K K S cat r cat f       =             + +       (10)
By setting:

K K K K L r cat f = + and P K E max cat =      
we obtain the following equation:

d P dt P S K S max L       =       +       (11) 
where P max represents the maximum production rate and K L is the concentration of where the reaction rate is half-maximum.

In the case of bioluminescent bacteria, the bacterial luciferase is encoded and synthesized by the lux operon. The transcription of the lux operon is activated by the LuxR -AHL dimerized complex (C), as shown in Figure 2. The bacterium produces light only at high cell density. More precisely, when a quorum is reached. At low cell densities, even with higher concentrations of the luciferin substrate, bacteria cells do not produce light. Then, we assume that: (1) the substrate exists abundantly in the cell cytoplasm and (2) the dimerized complex C that controls the synthesis of the luciferase enzyme is assumed to be a determining factor. We therefore model light production as a function of the dimerized complex C, hence Equation 11 is modified to:

d L dt L C K C max L       =       +       (12)
where L is the light production rate, L max the maximum light production rate, and K L the concentration of C where L is at half-maximum. Bioluminescence is expressed as the accumulation of the green fluorescent protein gfp. The gfp is incremented at each time step according to the light production rate L.

Metabolism is calculated as the organism total energy. The sum of basal energy and substrate energy from which the energy spent to grow, divide, produce light, or simply survive (maintenance energy) is subtracted. Figure 3 represents material and energy inputs and outputs of the bacterium metabolism.

Since ATP is the molecule that stores and transports energy in living organisms, we model the bacterial ATP cycle as follows:

∆ = + + + + + ( ) ∆ ( ) ATP ATP E ATP ATP ATP ATP ATP t S G D L M 0 . ( 13 
)
where:

• ∆ATP is the total organism energy expenditure;

• ATP is the basal energy;

• ATP S is the substrate energy. It represents the energy produced from metabolized substrates. This term is calculated as follows:

d ATP dt Y d S dt S ATP S       = ⋅       (14) 
where / Y ATP S is the energetic substrate yield. It represents the amount of ATP produced per a unit of substrate:

• is the substrate metabolism efficiency (equal to 40%) as only 40 to 50% of the energy stored in a carbon substrate is converted to biological energy (ATP). The rest is released as heat (Figure 3); • ATP G is the growth energy. It represents the energy consumption due to the cell growth. The consumption of ATP due to the cell growth, at each time step, is given by:

d ATP dt q X G ATP       = - ⋅ (15) 
Using Equation 3, Equation 15 becomes:

d ATP dt Y X G X ATP       = - ⋅ µ ( 16 
)
Using Equation 2, Equation 16 becomes:

d ATP dt Y d X dt G X ATP       = - ⋅       1 / (17)
• ATP D is the division energy. It represents the energetic cost of cell division and is equal to 0.5 µ ;

• ATP L is the light energy. It represents the energy used to produce light. We use a similar equation in Equation 17to calculate ATP L . This is given by:

d ATP dt Y d L dt L L ATP       = - ⋅       1 / (18)
where Y L ATP is the energetic light yield coefficient.

• ATP M is the maintenance energy (equal to 0.25 µ ).

The QS-based communication network differs from a classical network due to the fact that bacteria cells do not have IP addresses and the signals that they convey do not have specific destinations. Consequently, the information coded in the signals cannot be precisely "routed" to the target receiver in the network. However, the QS-based communication network is similar to traditional computer networks in several aspects:

• Traditional networks can connect heterogeneous devices. Within microbiomes, different types of bacteria can establish molecular communication networks; • The strength of the emitted signal may be analogous to the light intensity; • The sensitivity of the receiver is analogous to the concentration of the signal receptor Lux R

(

) .

Based on the above observations, we propose a QS network definition based only on intracellular factors. Specifically, a directed link is established from bacterium A to bacterium B under two conditions:

• The light signal concentration gfp volume ( ) inside bacterium A is larger than that of bacterium B; • A bacterium B is a sensitive receiver to light if its concentration of LuxR is above an activation threshold TR.

The first condition specifies the link direction. It represents the fact that there is a descending light gradient from bacterium A to Bacterium B. the second condition ensures that bacterium B can receive the signal.

A node is an abstraction of a bacterium cell. As within microbiomes, different types of cooperators and cheaters (not producers) tend to coexist in collaboration or in conflict (Moreno-Fenoll, Cavaliere, [START_REF] Moreno-Fenoll | Eco-evolutionary feedbacks can rescue cooperation in microbial populations[END_REF][START_REF] Sexton | Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation[END_REF], we adopt a similar biological terminology to define the node's type of our communication network.

To account for different light productivity, we classify the network nodes into three categories based on the intracellular intensity of light (Figure 4). More precisely, nodes with gfp / volume > 20 are up-regulated cells with high light productivity. This category of nodes is a super spreader that can send light to all the other types of node. They are considered to be wild-type cooperators (WT cooperators). Nodes with 0 < gfp / volume < 20 are considered to be cooperators. These nodes are down-regulated cells that can receive light from all WT cooperators, but do not produce light at high intensity. So, they are able to send light to sensitive cheater cells at a rate equal to T L = 0,20 . Finally, cheater nodes are non-bioluminescent bacteria with gfp / volume = 0 . They may be non-QS cells or QS cells that do not produce light. They are receivers called cheaters because they do not collaborate toward the common interests (establishing links via sending light) but gain benefit from those that do.

Using an open source simulator [START_REF] Jang | Specification and Simulation of Synthetic Multicelled Behaviors[END_REF], we set up a 2D environment of size ( 80 µ , 80 µ ) . At the beginning of the simulation, 100 generic bacterial agents were randomly dispersed in the environment (Figure 5a). A bacterium cell is assumed to be µ in diameter and, initially 2 μm long. So that, its initial volume is V = 1.57fl (femtoliters). To support the survival and growth of bacteria cells, a constant substrate concentration S = 10 µMol is assumed. As a cell takes up substrates, it grows until it doubles in volume to V = 3.14fL , at which point it divides.

The quorum is met at t ≃ 180 min , when the population size is 250 cell (Figure 5d). From t = 270 min (Figure 5g-h), we can clearly see the AHL in blue around the colony that does not appear clearly in the early stages, because the diffusion of signaling molecules is spatially limited and significantly slower than the kinetic dynamics of bacteria. Figure 6a shows the evolution of the AHL amount inside cells over time. It shows the mean and variance of 20 independent runs of the simulation. Indeed, from the beginning of the simulation to t ≃ 180 min , the AHL amount was stable, but after this crucial moment, at which the quorum is reached, the intracellular AHL amount begins to accelerate exponentially up to 0.6. In our model, unlike the seminal work of [START_REF] Melke | A cell-based model for quorum sensing in heterogeneous bacterial colonies[END_REF], the AHL does not exist abandonment in the environment (no initialization of substrate in the environment), but it is rather only produced and realized by cells. However, in our simulations the AHL level exceeds the rate achieved in [START_REF] Melke | A cell-based model for quorum sensing in heterogeneous bacterial colonies[END_REF] (0.6 against 0.1). This shows that the cells in our model provide a stable self-sustainable behavior that allows them to exploit the metabolism to grow, reproduce, survive, and thus produce more AHL molecules, which in turn triggers communication.

Bioluminescence is shown as a gradient ranging from dark to light green. In Figure 5, green cells are bioluminescent cells while black cells are not bioluminescent. It is interesting to understand the bioluminescence regulation at the molecular level. Indeed, at high cell densities, the number of cells exceeding 250 contributes to the increase of AHL emitted by all the cells in the environment. This accelerates exponentially the production rates of AHL by cells, thanks to the positive feedback loop in Equation 1. Consequently, the intracellular amount of the dimerized complex C increases as well, which can be seen in Figure 6b, where the quantity of the dimerized complex begins to increase exponentially from t ≃ 180 min . At this point, the values of the light production rate given by Equation 12are non-null, and thus cells can accumulate gfps and express bioluminescence. Bioluminescence is observed from t = 217 min in Figure 5d.

Figure 6c presents the evolution of the mean and variance of the gfp amount inside cells. It shows that cells begin to produce gfp from t ≃ 180 min , when the quorum is met. It also shows a high variance in the gfp values. Indeed, cells show different light intensities i.e. different shades of green that can also be observed in Figure 5. This is called phenotypic heterogeneity. Indeed, real populations of bacteria show that the bioluminescence strength varies throughout the glowing cells [START_REF] Anetzberger | Autoinducers Act as Biological Timers in Vibrio harveyi[END_REF][START_REF] González-Cabaleiro | Heterogeneity in Pure Microbial Systems: Experimental Measurements and Modeling[END_REF][START_REF] Grote | Phenotypic Heterogeneity, a Phenomenon That May Explain Why Quorum Sensing Does Not Always Result in Truly Homogenous Cell Behavior[END_REF].

It is interesting to observe the bioluminescence behavior at individual and population level. At the individual level, the number of bioluminescent cells represents 73% of the population (see Figure 6d). This corresponds to the empirical rates found in real populations of bacteria. In fact, analysis of the QS-regulated bioluminescence of a wild type strain revealed that, even at high cell densities, only 69% of the cells of the population produced bioluminescence, 25% remained dark and 6% were dead [START_REF] Anetzberger | Heterogeneity in quorum sensing-regulated bioluminescence of Vibrio harveyi[END_REF][START_REF] Pérez | Heterogeneous Response to a Quorum-Sensing Signal in the Luminescence of Individual Vibrio fischeri[END_REF].

At the beginning of the simulation, in Figure 5a-f, the arrangement of bioluminescent cells is not homogeneous, and we cannot observe a spatial self-organized behavior at the population level. Towards the end of the simulation, starting at t= 318 min, we can clearly see the degradation of the fluorescence from the center of the colony towards the extremities. Bioluminescent cells organize themselves around the colony to locate at its edges.

Figure 7 shows the evolution of the cell metabolism via the ATP curve which can be divided into four periods. At the beginning of the simulation (t = 0), the ATP level was equal to the basal level. Then, from t = 0 to 25 min, the more cells take up substrates, the more their ATP level starts having values higher than the basal level to stabilizes on between 104 and 107 units average.

Once the quorum is met at t min ≃ 180 and the cells begin to produce gfp, the ATP rate starts decelerate. This is due to the energy cost of bioluminescence. From t = 250 min to the end of the simulation, the ATP level stabilizes, which provides a stable self-sustainable behavior.

Consequently, the different runs show that the QS has a positive influence on the cells energy regulation. In fact, actual populations of bacteria show that QS induces a series of extracellular factors that promote population growth and energy regulation [START_REF] Popat | Conflict of interest and signal interference lead to the breakdown of honest signaling[END_REF][START_REF] Schuster | Acyl-Homoserine Lactone Quorum Sensing: From Evolution to Application[END_REF][START_REF] Williams | Look who's talking: Communication and quorum sensing in the bacterial world[END_REF].

A cell is considered to be sensitive to light if its intracellular concentration of luxR is above a threshold T R _ , = 0 0155 . The first network measure we calculate, is the number of cells of each of the node type. This is represented in Figure 8a. From t = 0 to t = 50 min, the number of cheaters is stable and equal to 50 cells. After this, the number of cheaters begins to increase gradually, when it reaches its maximum i.e. 294 cells at t = 260 min. Then, this number stagnates until the end of the simulation. At t = 210 min, the quorum is reached, the cells begin to emit light, and consequently cooperator cells begin to appear in the population.

At t = 300 min the number of cooperators exceeds the number of cheaters, while WT-cooperator cells start appearing. The number of cooperators and wild-type cooperators go on increasing as the number of cells increases, while the number of cheaters remains stable. At the end of the simulation, we notice that cooperator cells are dominant in the population with 752 cells which represent 54.89% of the population, against 294 of cheaters and 324 of WT-cooperators which represent respectively 21.46% and 23.65% of the population.

The second measure we calculated is the number of links. This is represented in Figure 8b. From t min = -230 350

, the total number of links is minimal. This number explodes at =350 , when the number of cooperator links takes over. At the end of the simulation, it can be clearly seen that despite the fact that the number of WT-cooperators does not exceed 23.65% , the number of links of Wild-type cooperators cells largely exceeds that of the other cell types with 41.12% of all links versus 27.93% of cheater links and 30.94% of cooperators links. Another very important point to emphasize, is that despite the number of cheaters stagnated from t = 260 min , the number of cheater links goes on increasing which means that these cells continue to receive links in order to be connected to the entire population. Figure 8c represents the third measure we calculated, the number of networked cells. At t = 290 min , networked WT-cooperator cells begin to emerge, and the number of networked cells fit the total number of total cells (the number of non-networked cells is equal to 0). This means that, WT cooperators cells have a high degree of cooperation and allow the entire population to be connected. In order to explore this observation further, in the next section we measure the cooperation degree to observe how cooperation evolves through the simulations.

Thought the study of cooperation has preoccupied researchers for centuries, the potential for social behavior in microbiomes has only recently been recognized [START_REF] Tarnita | The ecology and evolution of social behavior in microbes[END_REF]. Indeed, as in societies at the macroscopic scale, within microbiomes, different types of bacteria tend to coexist in conflict or in cooperation for common interests. Since our model uses cooperation expressed via light, as a basis underlying cooperative artificial network formation, we consider:

1. The number of cooperators (respectively WT cooperators) as a cost; and 2. The resulting network components: total links and networked nodes as benefits, which we call common interests.

Then, we calculate cooperation as the benefit/cost ratio. So that, the benefit/cost ratio expresses to what extent cooperators contribute to the evolution of the common interest. In this experiment we consider two common interests. The first common interest represents the total number of links. The second the number of networked cells.

Figure 9a shows the evolution of cooperation toward common interest 1. At t = 300 min, the cooperation level of WT cooperators reaches its peak, while the cooperator's one is equal to zero. This situation changes progressively from t =310-380 min. Indeed, the cooperation level of WT cooperators starts decreasing while that of cooperators begins to show positive values. In this case, WT cooperators seem to show a kind of "coercive" behavior, as they force (coerce) cooperators to change their behavior. Their level of cooperation shifts from zero to positive values, i.e. WT cooperators coerce the other variant to cooperate.

We consider this behavior, which has not been predicted in the model design, as an "emerging" coercive strategy. A strategy is termed coercive if the production of substance X by cell A forces a clear response from cell B (Diggle, Gardner, West, & Griffin, 2007).

Initially, from t = 300-380 min, WT cooperators "coerce" other individuals (i.e. cooperators) to produce more links, while producing less themselves (see also Figure 8b at t = 300-380 min). The initial increase in the cooperation level of WT cooperators is due to the benefits of their coercive strategy (high signalers, low producers of links) in presence of other cooperator variants i.e. cooperators (low signalers, high producers of links), however, as the cooperator's cooperation starts increasing the diminishing levels of the WT cooperator cooperation ultimately makes coercive strategy much moderates from t= 380 min. This behavior will stabilize until the end of the simulation.

Figure 9b shows the evolution of the cooperation degree toward the common interest 2: networked cells. Similarly, a coercion behavior is observed at t = 300. Cooperation levels of the two variants stabilize from t= 400 min and remain stable until the end of the simulation. Final values are summarized in Table 1.

As a global statement, it is important to note that, at any time, the cooperation degree of WT cooperator toward both common interests (Figure 9a and9b) is higher than that of cooperators.

Consequently, up-regulated cells, here WT cooperators, have a higher degree of cooperation in the evolution of the properties of the subsequent communication network: links and nodes.

Results are discussed in two subsections namely: cellular model and artificial network.

Realistic simulations should involve a large number of bacteria. Our model enables the simulation of growing colonies having up to 2000 bacteria cells while, in the seminal work presented in [START_REF] Melke | A cell-based model for quorum sensing in heterogeneous bacterial colonies[END_REF], the population size does not exceed 256 cells. Our proposed computational model of bioluminescence is based on a simplification of nature. Nevertheless, bioluminescence emerges as a spontaneous property of the regulation system, without any centralized control on the QS genetic circuit. We note that no cell density counter is used to control QS molecular triggering, and neither global nor local control is exercised on cells and their actions. In [START_REF] Ouannes | Emergent group behaviors from bacteria quorum sensing simulation[END_REF], the authors propose an algorithm of QS that uses a cell density counter, to decide the cells behavior. Conversely, in our model, cell actions are executed autonomously by the bacterial agent, all the time and in parallel-just like reactions in real cells are going all the time in parallel.

In most artificial life models, metabolism is rarely taken into account, or it is considerably abstracted into a simplistic one that uses an energy counter, decremented at each time step, as in (Forrest & Jones, 1993;[START_REF] Ouannes | Emergent group behaviors from bacteria quorum sensing simulation[END_REF][START_REF] Ouannes | Modeling a bacterial ecosystem through chemotaxis simulation of a single cell[END_REF]. In such models, there is no real transformation of matter from nutrients to biomass, or ATP. Instead, in our model, there is an actual simulation of such an energy production and consumption. Positive terms in the metabolism equation (Equation 13) describe energy production (transformation of matter i.e. metabolization of substrate into ATP and biomass), while negative terms describe energy consumption. Our work is among the rare works in artificial life that links metabolism to QS, while metabolism control is a kind of QS regulation [START_REF] Queck | RNAIII-independent target gene control by the agr quorum-sensing system: Insight into the evolution of virulence regulation in Staphylococcus aureus[END_REF][START_REF] Schuster | Acyl-Homoserine Lactone Quorum Sensing: From Evolution to Application[END_REF][START_REF] Williams | Look who's talking: Communication and quorum sensing in the bacterial world[END_REF]. Results show clearly that the ATP curve stabilizes after the quorum is being met.
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Although our communication network is defined on the basis of two simple rules: an emission rule and a reception rule, the network allows the totality of the cells of the population (100%) to be networked, whatever their position (near or far from the colony); their type (QS or non-QS cell, bioluminescent or non-bioluminescent cell). We note that the results converged as a spontaneous evolution of the network dynamics without the use of any evolutionary algorithm. Because unicellular organisms are autonomous, the network developed by these unicellular organisms is autonomous too. Moreover, the network links are established upon communication rules that respect the simple bacteria policy of communication. This is challenging for the morphogenesis of autonomous network topologies that can be developed in the future. Indeed, the emergent communication networks establish links, in a cooperative manner, upon reproductive and self-energy producer nodes (metabolism).

Currently, a lot of works tend to investigate coercive strategies in microbial societies to answer various questions, for example, to ask whether QS within bacteria is a honest signaling, or whether QS is also used for the coercion of other cells (Allen, McNally, Popat, & Brown, 2016;Diggle et al., 2007;Popat, Cornforth, McNally, & Brown, 2014;Roman Popat et al., 2015). In our simulated microbial society, WT cooperators coerced other individuals to cooperate. This coercive strategy has been shown to be beneficial to share the common interests between two variants of cooperators, otherwise, the system might be invaded by a variant of cooperators that do not cooperate to common interests. The problem of honesty arises when individuals signal dishonestly to coerce others into behaving in a way that benefits the signaler, prompting the question of what maintains signal honesty [START_REF] Dawkins | Animal signals: information or manipulation[END_REF]? Evolutionary theory has suggested that honesty can be maintained through mechanisms such as a common interest between signaler and receiver [START_REF] Searcy | The evolution of animal communication : reliability and deception in signaling systems[END_REF]. Results show that our model behaves with respect to this suggestion i.e. honest signaling is maintained to coerce other individuals to cooperate for common interests.

Note that the social behavior of microorganisms, with respect to evolutionary theory, has been studied only recently (Crespi, 2001), and researchers recognize that there is a great potential for interdisciplinary research to explore this area from different perspectives [START_REF] Asfahl | Social Evolution: Selection on Multiple Cooperative Traits Optimizes Cost-Benefit Relationships[END_REF][START_REF] Tarnita | The ecology and evolution of social behavior in microbes[END_REF][START_REF] West | Social evolution theory for microorganisms[END_REF].

The novelty of the paper is that the simulation model considers some key biological processes such as growth, quorum sensing, bioluminescence and metabolism. Moreover, in this paper, local intra and intercellular dynamics at the level of a cell bimolecular interactions are abstracted into a global communication system. This leads to the emergence of homogenous behaviors over the population, e.g. the cooperation to common interests in the evolution of the light-based communication networks. This cooperation allows the total of the cells of the population to be networked.

Not only this paper expands the scope of QS in the field of artificial life systems, it also provides more evidence that QS bacteria relying on AHL as signaling molecules should not be under-estimated. Indeed, results show that the evolution of cooperation leads to the emergence of coercive strategies which have not been predicted in the model design. Coercive strategy has been shown to be beneficial to share the common interests between two variants of cooperators, otherwise the system could be invaded by a variant of cooperators who do not cooperate to common interests.

We hope that our models of metabolism and bioluminescence may inspire researchers to develop new bioinspired computational models, where multiple distributed, autonomous and energy-producing agents need to coordinate their behavior efficiently, based on very limited local information of their environment, to exhibit interesting behaviors at the population level.

As future works, the network model could be extended further. For example, since we are using gfp, green fluorescent proteins, we could also establish different light emissions: red, yellow or green lights. To do so, we could add components to the genetic circuit such as photosensitive promoters, e.g. different promoters for different light wavelengths: green, red, yellow. Moreover, the network could also be evolved with an evolutionary algorithm to solve specific problems such as optimizing energy.

Table 2 lists the parameters used in our model. The values of some parameters have been experimentally tuned, for example, to allow to visualize graphically certain behaviors e.g. L max , or to prolong the ) . QS parameters are adopted from a LuxIR system (Melke et al., 2010).

Parameter Value Unit C A , C R 1e-4 µ k A , k R 2e-3 - K A , K R 1e-9 µ , 1e -2 - , , , 1e-1 - 
Other parameters are variable, and are described in the main body of this document. We assume that the light intensity units are proportional to Relative Light Units (RLU).