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ABSTRACT

We explore the structure around the shell-crossing time of cold dark matter protohaloes seeded by two or three crossed sine waves
of various relative initial amplitudes, by comparing Lagrangian perturbation theory (LPT) up to the tenth order with high-resolution
cosmological simulations performed with the public Vlasov code ColDICE. Accurate analyses of the density, the velocity, and related
quantities such as the vorticity are performed by exploiting the fact that ColDICE can follow the phase-space sheet locally at the
quadratic level. To test LPT predictions beyond the shell-crossing, we employ a ballistic approximation, which assumes that the velocity
field is frozen just after the shell-crossing. In the generic case, where the amplitudes of the sine waves are all different, high-order LPT
predictions match the exact solution very well, even beyond collapse. As expected, convergence slows down when going from quasi-1D
dynamics, where one wave dominates over the two others, to the axial-symmetric configuration, where all the amplitudes of the waves
are equal. We also notice that LPT convergence is slower when considering velocity-related quantities. Additionally, the structure of the
system at and beyond collapse given by LPT and the simulations agrees very well with singularity theory predictions, in particular with
respect to the caustic and vorticity patterns that develop beyond collapse. Again, this does not apply to axial-symmetric configurations,
which are still correct from the qualitative point of view, but rather when multiple foldings of the phase-space sheet produce very high
density contrasts and hence a strong back-reaction of the gravitational force.
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1. Introduction
In the concordance model of large-scale structure formation, the
matter content of the Universe is dominated by collisionless
cold dark matter (CDM) following Vlasov-Poisson equations
(Peebles 1982, 1984; Blumenthal et al. 1984). The cold nature
of initial conditions implies that the dark matter distribution is
concentrated on a 3D sheet evolving in 6D phase-space. At the
shell-crossing, that is, in places where the phase-space sheet first
self-intersects, the seeds of the first dark matter haloes are cre-
ated. In these regions, the fluid enters a multi-stream regime dur-
ing which violent relaxation takes place (Lynden-Bell 1967) to
form primordial CDM haloes. Numerical investigations suggest
that dark matter haloes formed during this process initially have
a power-law density profile ρ ∝ rα with α ≈ −1.5 (Moutarde
et al. 1991; Diemand et al. 2005; Ishiyama 2014; Angulo et al.
2017; Ogiya & Hahn 2018; Delos et al. 2018; Colombi 2021).
During their subsequent evolution, which includes successive
mergers, dark matter haloes relax to the well-known univer-
sal Navarro-Frenk-White (NFW) profile (Navarro et al. 1996,
1997).

From an analytical point of view, many approaches have
been proposed to describe the results of simulations and
the different steps of dark matter halo history, relying, for

example, on entropy maximisation (Lynden-Bell 1967; Hjorth &
Williams 2010; Carron & Szapudi 2013; Pontzen & Governato
2013), self-similarity (Fillmore & Goldreich 1984; Bertschinger
1985; Henriksen & Widrow 1995; Sikivie et al. 1997; Zukin
& Bertschinger 2010b,a; Alard 2013), or, more recently, a
post-collapse perturbative treatment (Colombi 2015; Taruya &
Colombi 2017; Rampf et al. 2021). However, because of the
highly non-linear complex processes taking place during the
post-collapse phase, the formation and evolution of dark matter
haloes remain a subject of debate, and a consistent framework
that explains the different phases of halo history remains to be
proposed.

The early growth of large-scale structures up to the first
shell-crossing, on the other hand, is well understood thanks to
perturbation theory. Indeed, restricting ourselves to the early
phase of structure formation (i.e. to the single-stream regime
before the shell-crossing), we can employ perturbation theory
as long as fluctuations in the density field remain small (see
e.g. Bernardeau et al. 2002, and references therein for a
review). Lagrangian perturbation theory (LPT; e.g. Shandarin
& Zeldovich 1989; Bouchet et al. 1992, 1995; Buchert 1992;
Buchert & Ehlers 1993; Bernardeau 1994) uses the displacement
field as a small quantity in the expansion of the equations of
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motion. First-order LPT corresponds to the classic Zel’dovich
approximation (Zel’dovich 1970), and in 1D space it is an
exact solution until the shell-crossing (Novikov 1969). Because
the Lagrangian description follows elements of fluid along the
motion, the Zel’dovich approximation and higher-order LPT pro-
vide us with a rather accurate description of the large-scale
matter distribution, even in the non-linear regime, shortly after
the shell-crossing. The families of singularities that form at the
shell-crossing and after have been examined in detail within the
Lagrangian dynamics framework (Arnold et al. 1982; Hidding
et al. 2014; Feldbrugge et al. 2018), and the structure of cos-
mological systems at the shell-crossing has been investigated
for specific initial conditions (Novikov 1969; Rampf & Frisch
2017; Saga et al. 2018; Rampf 2019) and for random initial
conditions (Rampf & Hahn 2021).

As described above, investigations into the early stages of
large-scale structure formation represent a key to understanding
the bottom-up scenario underlying the CDM model. Practically,
perturbation theory under the single-stream assumption, which
is strictly valid only during the early stages of the dynamical
evolution, provides the basis for predicting statistics of the large-
scale structure distribution and has been successfully confronted
with N-body simulations and observations (see e.g. Bernardeau
et al. 2002, for a review). In order to incorporate the effects
of multi-streaming at small scales, introducing effective fluid
equations with a non-vanishing stress tensor in the dark matter
fluids has recently been proposed, the so-called effective field
theory of large-scale structure (Baumann et al. 2012; Carrasco
et al. 2012; Hertzberg 2014; Baldauf et al. 2015). Although this
approach needs parameters in the stress tensor to be calibrated
with N-body simulations, it has attracted much attention and
has recently been applied to real observational datasets to derive
cosmological parameter constraints (Ivanov et al. 2020; d’Amico
et al. 2020). Accordingly, the understanding of multi-streaming
effects from first principles, even at an early stage, would pro-
vide significant insights into the precision theoretical modelling
of large-scale structure.

The aim of this paper is to extend the investigations of
Saga et al. (2018), hereafter STC18. In that work, we studied
the phase-space structure of protohaloes at the shell-crossing
with simplified initial conditions composed of three crossed
sine waves, following in the footsteps of Moutarde et al. (1991,
1995). Thanks to a detailed comparison between LPT predic-
tions up to the tenth order and numerical simulations per-
formed with the state-of-the-art Vlasov-Poisson solver ColDICE
(Sousbie & Colombi 2016), we explicitly showed that the conver-
gence of the LPT series slows down when going from quasi-1D
to triaxial-symmetric initial conditions, where a spiky struc-
ture in phase-space appears. Using a global fitting form, we
were able to formally extrapolate the LPT solution to the infi-
nite order, obtaining remarkable agreement with the simulations,
even at the shell-crossing. In the present work, we thoroughly
examine the structure further, both at and shortly after the shell-
crossing of these systems, by considering the 2D case as well.
Although sine wave initial conditions are restrictive, they are to
a large extent representative of high peaks of a smooth random
Gaussian field (see e.g. Bardeen et al. 1986) and should pro-
vide fruitful guidance in the general case. Furthermore, initial
conditions expressed only in terms of sine waves consider-
ably simplify analytical calculations while still allowing for an
insightful exploration of the pre- and post-collapse dynamics.

The prominent features shortly after the shell-crossing are,
for instance, the appearance of caustics and, in the multi-
stream region delimited by these caustics, non-trivial vorticity

patterns (Doroshkevich 1973; Chernin 1993; Pichon &
Bernardeau 1999; Hahn et al. 2015). Thanks to a description
of the phase-space sheet at the quadratic level in ColDICE, we
can measure these quantities in high-resolution Vlasov simula-
tions, in particular the vorticity, with unprecedented accuracy. To
perform theoretical predictions shortly after the shell-crossing,
we use a simple dynamical approximation based on ballistic
motion applied to the state of the system described by high-order
LPT solutions at the shell-crossing. While convergence with the
perturbation order of LPT remains a complex subject of investi-
gation (Zheligovsky & Frisch 2014; Rampf et al. 2015; Michaux
et al. 2021), it seems to take place at least up to the shell-crossing,
not only for the three-sine-wave configurations we aim to exam-
ine (STC18) but also for more general, random initial conditions
(Rampf & Hahn 2021), although the effects of cutoffs on power
spectra remain to be investigated further in the latter case. There-
fore, as long as the back-reaction from multi-stream flows on
post-collapse dynamics remains negligible, the approximation
of the dynamics we propose here should work shortly after the
shell-crossing. This is the first step towards a proper analytical
description of post-collapse dynamics in 6D phase-space.

This paper is organised as follows. In Sect. 2, we begin
by introducing the basics of LPT and its recurrence relations,
as well as its applications to initial conditions given by lin-
ear superpositions of trigonometric functions, such as the initial
conditions of our sine waves. In Sect. 3, the important fea-
tures of the Vlasov solver ColDICE are briefly summarised.
We also address some aspects of measurement uncertainties in
simulation data. In Sect. 4, we examine the phase-space struc-
ture and radial profiles at the shell-crossing with a comparison
of analytic predictions with simulations, in the framework of
singularity theory. In Sect. 5, the structure shortly after the
shell-crossing is explored using the ballistic approximation by
examining phase-space diagrams, caustics, and density and vor-
ticity fields. Again, analytical predictions are compared with the
Vlasov runs. Finally, Sect. 6 summaries the main results of this
article. To complement the main text, Appendices A–D provide
details on the explicit form of high-order LPT solutions for the
initial conditions of the sine waves up to the fifth order, the
measurements in the Vlasov simulations, the predictions from
quasi-1D LPT, and the expected structure of singularities at the
collapse time, respectively.

Throughout the paper, we use the following units: a box size
L = 1 and an inverse of the Hubble parameter at present time,
H−1

0 = 1, for the dimensions of length and time, respectively.
In particular, the Lagrangian coordinate, Eulerian coordinate,
velocity, and vorticity are explicitly expressed as q/L, x/L,
u/(L H0), and ω/H0 = (L∇) × (u/(L H0)), respectively.

2. Lagrangian perturbation theory

The Lagrangian equation of motion of a fluid element is given
by (e.g. Peebles 1980)

d2x
dt2 + 2H

dx
dt

= −
1
a2∇xφ(x), (1)

where the quantities x, a, and H(t) = a−1da/dt are the
Eulerian comoving position, the scale factor of the Universe,
and Hubble parameter, respectively. The derivative operator
∇x = ∂/∂x is a spatial derivative in Eulerian space. The Newton
gravitational potential φ(x) is related to the matter density con-
trast δ(x) = ρ(x)/ρ̄−1 with ρ̄ being the background mass density,
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through the Poisson equation:

∇
2
xφ(x) = 4πGρ̄ a2 δ(x). (2)

In this framework, the velocity of each mass element is given by
u= a dx/dt.

Taking the divergence and curl of Eq. (1) with respect to
Eulerian coordinates, Eqs. (1) and (2) can be expressed by the
equivalent set of equations:

∇x · (ẍ + 2H ẋ) = 4πGρ̄ δ(x), (3)
∇x × (ẍ + 2H ẋ) = 0, (4)

where the dot represents the Lagrangian derivative of time, d/dt.
In the Lagrangian approach, for each mass element, the

Eulerian position x at the time of interest t is related to the
Lagrangian coordinate (initial position) q through the displace-
ment field Ψ(q, t) by

x(q, t) = q +Ψ(q, t). (5)

The velocity field is expressed as u(q, t) = a dΨ/dt. In the single
flow regime (i.e. before the first shell-crossing time tsc), mass
conservation implies ρ̄ d3q = ρ(x) d3x, which leads to

1 + δ(x) =
ρ(x)
ρ̄

=
1
J
, (6)

where the quantity J = det Ji j is the Jacobian of the matrix Ji j
defined by

Ji j(q, t) =
∂xi(q, t)
∂q j

= δi j + Ψi, j(q, t), (7)

and its inverse is given as

J−1
i j =

∂qi

∂x j
. (8)

While Eq. (6) is well defined only until the first shell-crossing
time tsc, that is, the first occurrence of J = 0, Eqs. (7) and (8)
can be formally used beyond tsc, as long as they are expressed
in terms of Lagrangian coordinates (except that Eq. (8) might
become singular).

2.1. Recursion relation

In LPT, the displacement field, Ψ, is the fundamental build-
ing block and is considered to be a small quantity. It can be
systematically formally expanded as follows,

Ψ(q, t) =

∞∑
n = 1

Ψ(n)(q, t). (9)

In what follows, we assume that the fastest growing modes dom-
inate. They are known to be given to a very good approximation
by (see e.g. Bernardeau et al. 2002, and references therein)

Ψ(n)(q, t) = Dn
+(t)Ψ(n)(q), (10)

where the purely time-dependent function D+(t) corresponds to
the linear growth factor. The velocity field is then given by

u(q, t) = a H f
∞∑

n = 1

n Dn
+(t)Ψ(n)(q), (11)

where function f (t) ≡ d ln D+/d ln a corresponds to the logarith-
mic derivative of the growth factor. We note that the analyses
performed in subsequent sections will consider the Einstein-de
Sitter cosmology, that is, a total matter density parameter Ωm = 1
and a cosmological constant density parameter ΩΛ = 0. In this
case, one simply has D+ ∝ a and f = 1.

During early phases of structure formation, the Universe
approaches Einstein-de Sitter cosmology and f is approximately
given by f ≈ Ω

3/5
m . With the further approximation f ≈ Ω

1/2
m , as

implicitly assumed in all the subsequent calculations (see e.g.
Peebles 1980; Bernardeau et al. 2002; Matsubara 2015), by sub-
stituting Eqs. (5)–(9) into Eqs. (3) and (4), one obtains simple
recurrence formulae for the longitudinal and transverse parts of
the motion (Rampf 2012; Zheligovsky & Frisch 2014; Rampf
et al. 2015; Matsubara 2015):(
T̂ −

3
2

)
Ψ

(n)
k,k = − εim ε jk

∑
n1+n2 = n

Ψ
(n1)
m,k

(
T̂ −

3
4

)
Ψ

(n2)
i, j , (12)

εi j T̂Ψ
(n)
j,i = εi j

∑
n1+n2 = n

Ψ
(n1)
k, j T̂Ψ

(n2)
k,i , (13)

in the 2D case, and(
T̂ −

3
2

)
Ψ

(n)
k,k =−εi jk εipq

∑
n1+n2 = n

Ψ
(n1)
j,p

(
T̂ −

3
4

)
Ψ

(n2)
k,q

−
1
2
εi jk εpqr

×
∑

n1+n2+n3 = n

Ψ
(n1)
i,p Ψ

(n2)
j,q

(
T̂ −

1
2

)
Ψ

(n3)
k,r , (14)

εi jk T̂Ψ
(n)
j,k =−εi jk

∑
n1+n2 = n

Ψ
(n1)
p, j T̂Ψ

(n2)
p,k , (15)

in the 3D case. Here and in what follows, we adopt the Einstein
summation convention when the equation includes repeated low-
ercase Latin letters, and the subscripts i, j, ... take 1, 2 or 3 (1 or
2) in the 3D (2D) case. In the above, we defined Ψi, j ≡ ∂Ψi/∂q j,
and the tensors εi j and εi jk are, respectively, the 2D and 3D
Levi-Civita symbols. The symbol T̂ stands for a differential
operator:

T̂ ≡
∂2

∂ ln D+
2 +

1
2

∂

∂ ln D+

. (16)

In obtaining the recursion relations, we used the following
formulae of linear algebra:

J =
1
2
εi j εkr Jik J jr, J−1

i j =
1
J
εik ε jr Jrk, (17)

for the 2D case, and

J =
1
6
εi jk εpqr Jip J jq Jkr, J−1

i j =
1

2J
ε jkp εiqr Jkq Jpr, (18)

for the 3D case.
In the fastest-growing mode regime (10), which will be

assumed in the LPT calculations of this work, the time depen-
dence in the recursion relations simplifies and one obtains

Ψ
(n)
k,k =−εim ε jk

∑
n1+n2 = n

4n2
2 + 2n2 − 3

2(n − 1)(2n + 3)
Ψ

(n1)
m,k Ψ

(n2)
i, j , (19)
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εi jΨ
(n)
j,i = εi j

∑
n1+n2 = n

n2(2n2 + 1)
n(2n + 1)

Ψ
(n1)
k, j Ψ

(n2)
k,i , (20)

for the 2D case, and

Ψ
(n)
k,k = − εi jk εipq

∑
n1+n2 = n

4n2
2 + 2n2 − 3

2(n − 1)(2n + 3)
Ψ

(n1)
j,p Ψ

(n2)
k,q

− εi jk εpqr

×
∑

n1+n2+n3 = n

(n3 + 1)(2n3 − 1)
2(n − 1)(2n + 3)

Ψ
(n1)
i,p Ψ

(n2)
j,q Ψ

(n3)
k,r , (21)

εi jk Ψ
(n)
j,k =−εi jk

∑
n1+n2 = n

n2(2n2 + 1)
n(2n + 1)

Ψ
(n1)
p, j Ψ

(n2)
p,k , (22)

for the 3D case.

2.2. Two-sine-wave and three-sine-wave initial conditions

Throughout this paper, we focus on specific initial conditions:
two or three sine waves in a periodic box covering the interval
[−L/2, L/2[:

Ψini
i (q, tini) =

L
2π

D+(tini) εi sin
(

2π
L

qi

)
. (23)

The parameters εi < 0 with |εx| ≥ |εy| ≥ |εz| quantify the lin-
ear amplitudes of the sine waves in each direction. The initial
time, tini, is chosen such that D+(tini)|εi| ≤ 0.012 � 1, which
makes the fastest growing mode approximation very accu-
rate, as shown by STC18. In this framework, the dependence
on εi of the dynamics is reduced to a function of the ratios
ε2D = εy/εx and ε3D = (εy/εx, εz/εx), respectively, for two- and
three-sine-wave initial conditions. These ratios will therefore
be the quantities of relevance to define our initial conditions.
In this setting, the initial density field, given by δini ' −∇q·

Ψini = D+(tini)
∑

i |εi| cos (2π/L qi), presents a small peak at the
origin, and mass elements subsequently infall towards the cen-
tral overdense region. With the proper choice of εi, this initial
overdensity can asymptotically match any peak of a smooth
random Gaussian field (see e.g. Bardeen et al. 1986), which actu-
ally makes the three-sine-wave initial conditions quite generic,
hence providing many insights into the dynamics during the
early stages of protohalo formation.

Naturally, this very symmetrical set-up remains unrealistic,
with a tidal environment restricted to periodic replica, but has the
advantage of belonging to the family of linear superpositions of
trigonometric functions, here simple sine functions, which con-
siderably simplifies LPT calculations, as described below. Initial
conditions that only involve linear superpositions of trigonomet-
ric functions include exact Fourier transforms, so are in principle
very general. Furthermore, with only a few Fourier modes, one
can theoretically account for more realistic initial conditions with
proper tidal environments and mergers, while keeping the ana-
lytical description still very tractable. However, as far as we are
concerned, applications beyond two or three sine waves are left
for future work.

For initial conditions given by linear superpositions of
trigonometric functions, it is trivial to see that all the terms of
the perturbation series are also expressed in the same way:

∇q ·Ψ
(n)
L =

∑
m
α(n)

m ei m·q, (24)

∇q ×Ψ
(n)
T =

∑
m
β(n)

m ei m·q, (25)

where the nth-order scalar coefficients α(n)
m and the nth-order vec-

tor coefficients β(n)
m are obtained recursively by calculating the

right-hand-side of Eqs. (21) and (22), which depends on lower-
order terms, starting from the n = 1 coefficients determined by
Eq. (23).

By imposing the conditions ∇q ×Ψ
(n)
L = 0 and ∇q · Ψ

(n)
T = 0,

one can build up the perturbative solutions Ψ(n)
L and Ψ(n)

T using
simple algebraic manipulations involving coefficients α(n)

m and
β(n)

m :

Ψ
(n)
L =

∑
m

(−i)α(n)
m

m
|m|2

ei m·q, (26)

Ψ
(n)
T =

∑
m

i
m×β(n)

m

|m|2
ei m·q. (27)

These solutions lead to the nth-order displacement field given
by Ψ(n) =Ψ

(n)
L + Ψ

(n)
T . Using this solution for Ψ(n) as well as

Eqs. (21) and (22), we subsequently construct the source of the
(n + 1)th-order derivatives ∇q ·Ψ

(n+1)
L and ∇q ×Ψ

(n+1)
T . By repeat-

ing the above operation together with the recursive relations, one
can derive, in principle, arbitrary high-order LPT solutions. In
Appendix A, we present the explicit forms of the LPT solutions
up to the fifth order derived in this way1.

The above prescription is valid in 3D space and can be
applied to the 2D case by cancelling all fluctuations along the
z axis, that is, by performing 3D calculations with εz = 0 (i.e.
ε3D = (εy/εx, 0)) for the three sine waves case. However, one can
also realise that in 2D, vector coefficients β(n)

m become scalars
β(n)

m , and that the solutions take the following form:

Ψ
(n)
L =

∑
m

(−i)
α(n)

m

|m|2

(
mx
my

)
ei m·q, (28)

Ψ
(n)
T =

∑
m

i
β(n)

m

|m|2

(
my

−mx

)
ei m·q. (29)

Our analytical investigations can easily cover a large range of
values of ε2D and ε3D, while the simulations, much more costly,
will only focus on three configurations, as detailed in Table 1,
reflecting various regimes in the dynamics: quasi 1D with |εx| �

|εy,z|, anisotropic with |εx| > |εy| > |εz|, and what we design by
axial-symmetric, with |εx|= |εy|( = |εz|), denoted by Q1D, ANI,
and SYM, respectively2.

3. Vlasov–Poisson simulations

To perform the numerical experiments, we use the public paral-
lel Vlasov solver ColDICE (Sousbie & Colombi 2016). ColDICE
follows the phase-space sheet with an adaptive tessellation of
simplices, composed, in 2D and 3D, of connected triangles and
connected tetrahedra, respectively. The phase-space coordinates
of the vertices of the tessellation, [X(t),V(t)], follow the standard

1 The LPT solutions up to the tenth order can be provided upon request
as a Mathematica notebook.
2 The designations named here, Q1D-3SIN, ANI-3SIN, and SYM-
3SIN, are the same as Q1D-S, ASY-Sb, and SYM-S, used in Saga et al.
(2018), respectively.
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Table 1. Parameters of the runs performed with ColDICE (Sousbie & Colombi 2016).

Designation ε2D or ε3D εx ng ns a∞sc asc âsc asc + ∆a

Quasi 1D
Q1D-2SIN 1/6 –18 2048 2048 0.05279 0.05285 0.05281 0.05402
Q1D-3SIN (1/6, 1/8) –24 512 256 0.03815 0.03832 0.03819 0.03907

Anisotropic
ANI-2SIN 2/3 –18 2048 2048 0.04531 0.04545 0.04534 0.04601
ANI-3SIN (3/4, 1/2) –24 512 512 0.02911 0.02919 0.02915 0.03003

Axial-symmetric
SYM-2SIN 1 –18 2048 2048 0.04076 0.04090 0.04078 0.04101
SYM-3SIN (1, 1) –18 512 512 0.03190 0.03155 0.03190 0.03201

Notes. The first column indicates the designation of the run. The second column corresponds to the relative amplitudes of the initial sine waves,
namely ε2D = εy/εx and ε3D = (εy/εx, εz/εx) for two and three sine waves, respectively. The third column gives the value of εx. The fourth and fifth
columns respectively give the spatial resolution ng of the grid used to solve the Poisson equation and the spatial resolution ns of the mesh of
vertices used to construct the initial tessellation (see Sect. 3 for details). The sixth column indicates the scale factor a∞sc at the shell-crossing
estimated by LPT extrapolated to the infinite order (Saga et al. 2018), while the seventh one provides the value asc measured in the Vlasov runs (see
Appendix B.1) and which is actually used in Sect. 4.2. The eighth column indicates the value âsc of the expansion factor of the closest available
simulation snapshot to the collapse time for the comparisons performed in Sect. 4. Finally, the last column indicates the value of the expansion
factor used for the analyses performed beyond the collapse time in Sect. 5. We note that with the normalisation of the scale factor used here, the
value of asc has to be multiplied by |εx| to obtain a more intuitive collapse time, which would be equal to unity in the purely 1D case.

Lagrangian equations of motion, similarly as in an N-body code,
but matter is distributed linearly inside each simplex instead of
being transported by the vertices. In what follows, after provid-
ing a few additional technical details on the algorithm (Sect. 3.1),
we address measurement uncertainties issues (Sect. 3.2).

3.1. The Vlasov code ColDICE

The Lagrangian coordinates defined in Sect. 2.1 correspond to
the following unperturbed initial set-up,

X(Q, t0) ≡ Q, (30)
V(Q, t0) ≡ 0, (31)

where t0 is a virtual time corresponding to a = 0 and Q is the
Lagrangian coordinate of each vertex. We note that we use cap-
ital letters to distinguish between vertex coordinates and the
actual coordinates of fluid elements of the phase-space sheet
that they are supposed to trace. These notations are used in
Appendix B.

Vertices phase-space coordinates are then perturbed using
Zel’dovich motion to set actual initial conditions defined in
Sect. 2.2:

X(Q, tini) = Q +Ψini(Q, tini), (32)

V(Q, tini) = a H f Ψini(Q, tini), (33)

with Ψini given by Eq. (23).
To update the position and the velocity of each vertex, a

standard second-order predictor-corrector scheme with slowly
varying time step is employed. Constraints on the value of the
time step combine bounds on the relative variations of the expan-
sion factor, classical Courant-Friedrichs-Lewy criterion and a
harmonic condition related to the local projected density. More
details about the parameters used for the time step constraints in
the 3D simulations are given in Colombi (2021, hereafter C21),
so we do not repeat these details here. Additionally, we chose the
same constraints on the time step for the 2D runs as for the 3D

simulations with ng = ns = 512 (see below for the definitions of
ng and ns).

The Poisson equation is solved using the fast-Fourier tech-
nique in a mesh of fixed resolution ng. To estimate the projected
density ρ(x) on this mesh, the intersection of each simplex of the
phase-space sheet with each voxel or pixel of the mesh is com-
puted exactly up to the linear order with a special ray-tracing
technique. Once the gravitational potential is obtained on the
mesh, the gravitational force is computed from the gradient of
the potential using a standard four-point stencil, and then it is
interpolated to the vertices using second-order triangular shape
cloud interpolation (see e.g. Hockney & Eastwood 1988) in order
to update their velocities.

Initially, the tessellation is constructed from a regular net-
work of nD

s vertices corresponding, respectively, to 2n2
s and

6n3
s simplices in 2D and 3D. ColDICE allows for local refine-

ment of the simplices following criteria based on local Poincaré
invariant conservation as explained more in detail in Sousbie &
Colombi (2016). Values of the refinement criterion parameter I
used for our 3D runs are listed in detail in C21. For complete-
ness, following the notations of C21, we used I = 10−8 for the 2D
runs.

To perform local refinement, the phase-space sheet is locally
described at the quadratic order inside each simplex with the
help of three and six additional tracers per simplex in 2D and
3D, respectively. At the dynamical times considered in this work,
which correspond at most to short periods after collapse, refine-
ment is not triggered, except for a small number of simplices in
the 3D axial-symmetric simulation, SYM-3SIN, so we do not
deem it necessary to discuss more about refinement. However,
the ability to describe the phase-space sheet at the quadratic
level is important to have correct estimates of derivatives of the
velocity field, in particular of the local vorticity of the mean flow.

The parameters used for all the simulations are listed in
Table 1, in particular the resolution ng of the mesh used to solve
Poisson equation and the initial number of vertices of the tes-
sellation, n3

s . In Appendix B, we explain how measurements of
various quantities are performed, such as the set of curves cor-
responding to the intersection of the phase-space sheet with the
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hyperplane y( = z) = 0 used in Sects. 4.2 and 5.2, the collapse
time tsc shown in Table 1, the radial profiles used in Sect. 4.3,
as well as the caustic network, the projected density and the
vorticity analysed in Sect. 5.3.

3.2. Accuracy and related considerations

Accuracy and possible defects of ColDICE are discussed in
Sousbie & Colombi (2016) and in C21 in the 3D case. In our
work, precise determination of the collapse time is critical, since
we consider, in the analyses performed below, either the collapse
time or a moment very shortly after it. The uncertainty on the
collapse time depends on the nature of the initial conditions and
the parameters that control the accuracy of the simulations, in
particular the number of simplices used to represent the phase-
space sheet and the spatial resolution ng of the mesh used to solve
Poisson equation. This latter turns out to be a very important
parameter. Indeed, decreasing ng augments the collapse time, as
discussed in C21. In Sect. B.2, relying on measurements in ANI-
3SIN configurations with various spatial resolutions, we estimate
that the quantity asc shown in Table 1 should be accurate at the
fourth significant digit level or better for all configurations, for
example asc = 0.02919± 10−4 for ANI-3SIN, except for SYM-
3SIN, where the uncertainty on the measured asc could be a few
10−4. Indeed, as just mentioned above, accuracy on the determi-
nation of the collapse time also depends on the nature of initial
conditions, the quasi-1D case and the triaxial-symmetric con-
figuration being the easiest and the most difficult to deal with,
respectively, as expected.

We note that accuracy regarding the collapse time also
depends on the ability to determine the exact position of the
shell-crossing point. Using the tessellation technique, the shell-
crossing coincides with a temporal change of sign of the orien-
tation of the simplices. In our symmetrical set-up, the position
of the shell-crossing point is simply the centre of the system and
the determination of the collapse time can be simply performed
using the intersection of the phase-space sheet with the y= z = 0
hyperplane (see Appendix B.2). However, even in a more com-
plex case where the centre of the forming halo would be moving,
one expects to be able to accurately compute the collapse time
thanks to the tessellation representation as long as sampling of
the phase-space sheet is sufficiently dense and, of course, if the
quadratic representation inside each simplex is fully exploited.
Sampling of the phase-space sheet is controlled by ns, as well as
the refinement parameter I limiting deviations from symplectic
motion. As discussed in Sect. 3.1, for our simulations, parameter
I does not influence the results except (probably marginally) for
SYM-3SIN. Effects related to the choice of ns are discussed in
Sousbie & Colombi (2016) and in C21. They should be negligi-
ble for our sine wave simulations compared with other sources of
uncertainty on the collapse time for the values of ns we adopted.
However, we did not test the accuracy of ColDICE in more
complex cases, because we do not need to.

An additional advantage of our setting is that the axes of the
sine waves are aligned with the mesh used to solve Poisson equa-
tion, which helps make the simulations more accurate: the same
configurations in an oblique fashion would not achieve the same
level of accuracy. This is illustrated by Appendix H of Sousbie
& Colombi (2016) in the single sine wave case. As shown in this
Appendix, anisotropies due to misalignments between preferred
directions in the representation and preferred directions in the
dynamics are the source of significant accuracy loss. However,
these cumulative effects should remain small for ColDICE at the
early times considered in this work.

Another critical issue is to determine accurately the shape
of the caustics and then the density and vorticity fields inside
the multi-stream region. The technique employed to extract the
caustics curves and surfaces from the 2D and the 3D simula-
tions, respectively, is rather simple and robust, as briefly sketched
in Appendix B.3. Based on a detection of a spatial sign change
on the simplices orientation, it consists in extracting a subset of
segments (in 2D) or triangles (in 3D) from the tessellation. These
segments and triangles correspond to intersections between adja-
cent simplices. Obviously this is a rather crude way to draw the
caustics, since, in Lagrangian space, it ends up into a subset of
segments/triangles of a regular pattern. Therefore, the accuracy
in the determination of the caustics location in Lagrangian space
is at best of the order of the distance between two neighbouring
vertices: L/ns, where L is the size of the simulation cube. This
uncertainty, which adds up to the effects discussed above, is dif-
ficult to transpose to Eulerian space due to the variations in the
strain tensor. It is however probably the main source of inaccu-
racy on the determination of the caustics in ColDICE. A way to
improve greatly on this would consist in exploiting the quadratic
representation inside each simplex, which we do not do here.

Turning to the fields, the vorticity, because it is composed
of derivatives, is particularly challenging to measure even with
the considerable gain brought by the tessellation technique com-
pared with more traditional representations based on particles.
Appendix B.5 explains in details how we measure density and
vorticity, making use, this time, of the locally quadratic represen-
tation of the phase-space sheet inside each simplex. Accuracy on
the fields measurements is not discussed quantitatively, as it was
not deemed necessary for the analyses performed in this work,
but we notice that vorticity becomes very noisy when very close
to the caustic curves or surfaces, which we keep in mind for the
analyses carried out in Sect. 5.3.

4. Shell-crossing structure

We are now in a position to study the structure of our proto-
haloes at the collapse time, tsc, and concentrate our investigations
on phase-space diagrams and radial profiles, with comparisons
of LPT pushed up to the tenth order to the Vlasov runs. This
section is organised as follows. First, Sect. 4.1 presents the calcu-
lation of the collapse time itself. Indeed, this quantity depends on
initial conditions and perturbation order, and the ability of LPT
to provide an accurate determination of tsc is of prime impor-
tance. We discuss the extrapolation to the infinite order of the
LPT series proposed by STC18 and generalise it to the 2D case.
Second, Sect. 4.2 examines the convergence of LPT at collapse
with phase-space diagrams, extending the earlier investigation
of STC18 to the 2D case. For comparison, we also tested the for-
mal extension of LPT to the infinite order and the predictions
of the quasi-1D approach proposed by Rampf & Frisch (2017,
hereafter RF17). Finally, in Sect. 4.3, LPT predictions and their
convergence are studied in terms of radial profiles of the density,
the velocity as well as the pseudo phase-space density, and put
into perspective in relation to singularity theory.

4.1. Shell-crossing time

This subsection presents estimates of the expansion factor at the
first shell-crossing, which we refer to as the collapse time. In the
following, the expansion factor will be formally identified to a
time variable, still denoted by a to contrast with actual physical
time t. We compare the value a(n)

sc of the collapse time obtained
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Fig. 1. Convergence behaviour of the shell-crossing time. Top: shell-
crossing time calculated at nth-order LPT (dots), together with the
fitting function given by Eq. (34) (solid lines), as a function of the
perturbation order for various initial conditions, as indicated in the
panel. The dashed horizontal lines present the values estimated from
the simulations (see Appendix B.1), corresponding to the sixth col-
umn of Table 1. Bottom: relative error between the shell-crossing time
calculated with nth-order LPT and the one obtained with the fitting
formula.

from nth-order LPT and its extrapolation to the infinite order
a∞sc, as described in STC18, with the value asc measured in the
Vlasov runs as explained in Appendix B.2. Our approach fol-
lows closely that of STC18. It is basically intended to repeat its
main steps and to supplement it with additional discussions and
comparisons with Vlasov runs in the 2D case.

Using nth-order LPT predictions, we explore the sequence
of the shell-crossing times, a(n)

sc , as a function of order n up to
n = 10, by solving J(n) = 0 at the origin, where J(n) is the Jaco-
bian of the nth-order LPT solution. Generally, except in the
pure 1D case where first-order LPT is exact before collapse, a(n)

sc
becomes smaller with increasing perturbation order n (see e.g.
RF17; Rampf & Hahn 2021, hereafter RH21, for recent works).
As illustrated by Fig. 1, the shell-crossing time calculated at the
nth-order with LPT is very accurately described by the following
fitting form (STC18):

a(n)
sc = a∞sc +

(
b + c exp

[
d ne])−1, (34)

with e > 0. This fitting form, also used for each coordinate of the
positions and velocities in Fig. 2 below, does not necessarily rep-
resent the sole choice for approximating the n dependence of the
collapse time, but using the exponential of a power law might be
the only way to match the convergence speed of LPT at large n,
when considering quantities computed at the collapse time a(n)

sc of
each respective order. Equation (34) also implies a(n)

sc − a(n−1)
sc ∼

exp(−|d| ne) when n � 1, which might, at first glance, seem
incompatible with the findings of RH21, who examined the LPT
series in the slightly different context of a Gaussian random field

in a periodic box. RH21 concluded from their analyses that con-
vergence speed was asymptotically compatible with a power-law
times an exponential of n. This would naively correspond to
a(n)

sc − a(n−1)
sc ∼ nκ exp(−η n) (i.e. e = 1), while our measurements

suggest values of e different from unity, ranging from, for exam-
ple, e ∼ 0.003 (SYM-3SIN) to e ∼ 0.8 (Q1D-3SIN) for fitting
a(n)

sc and from e ∼ 0.6–0.7 (SYM-3SIN) to e ∼ 1.3–1.5 (Q1D-
3SIN) for fitting the Eulerian position. However, in RH21, the
LPT series is studied in terms of the Taylor coefficients of the
displacement field expanded as a function of the linear growing
mode D+, while we consider the sequence of the shell-crossing
times a(n)

sc , or equivalently D(n)
+ . This additional n dependence

introduced in the time variable fundamentally changes the nature
of the LPT series as a function of n, which makes a direct com-
parison of Eq. (34) with the findings of RH21 inappropriate. Yet,
it would be interesting to investigate the convergence properties
of our systems seeded with sine waves using the approach of
RH21.

One important thing to note is that convergence of the col-
lapse time with order is rather slow, except in the quasi-1D case,
which still requires at least the third order for reaching an approx-
imately percent level of accuracy for approximate convergence,
while a much higher order is required for other configurations,
especially the 3D axial-symmetric case, ε3D = (1, 1), for which
convergence does not even seem to be achieved at the tenth order.
Figure 1 thus demonstrates that low-order perturbation theory
cannot be used to accurately estimate the collapse times (see also
STC18, in particular, Fig. 2 of this article, and RH21).

Despite these convergence issues, the extrapolated values of
a∞sc obtained with Eq. (34) are very accurate, as illustrated by
Table 1. Indeed, the relative difference between a∞sc and the value
asc measured in the Vlasov simulations remains of the order of
the percent or below, which suggests that the error on the extrap-
olated estimate of the collapse time remains small and should not
affect significantly the analytical predictions of the phase-space
structure and the radial profiles at the shell-crossing. Therefore,
we use a∞sc for the analytical predictions of the ‘exact’ collapse
time in the rest of Sect. 4. As for the simulations data, we use
the snapshot with the closest possible available value âsc of the
expansion factor to asc, as indicated in Table 1.

4.2. Phase-space structure

Figure 2 shows the (x, vx) subspace of the phase-space struc-
ture at the shell-crossing by considering the intersection of the
phase-space sheet with the hyperplane y= 0 for two sine waves
and y= z = 0 for three sine waves. For comparison, in addition
to standard LPT results, we also present the formal extension of
LPT to the infinite order as developed by STC18 and described
in Sect. 4.1 for the shell-crossing time, as well as the analyti-
cal prediction obtained in the context of the quasi-1D approach
developed by RF17, which we extended to the second order in
the transverse direction (see Appendix C for details).

For quasi-1D (Q1D-2SIN and Q1D-3SIN) and anisotropic
(ANI-2SIN and ANI-3SIN) initial conditions, the phase-space
sheet first self-intersects along the x axis, and, until then, the
dynamics is similar to the pure 1D case, in which 1LPT (the
Zel’dovich solution) is exact until the shell-crossing. As illus-
trated by Fig. 2, the LPT prediction quickly converges with
perturbation order n and describes the simulation results well
even at the shell-crossing, especially in the Q1D case. From
visual inspection of Fig. 2, it appears that the agreement between
the LPT predictions and the simulations is the worse in the
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Fig. 2. Phase-space structure for two- and three-sine-wave initial conditions at the collapse time: Q1D-2SIN (top left), ANI-2SIN (centre left),
SYM-2SIN (bottom left), Q1D-3SIN (top right), ANI-3SIN (centre right), and SYM-3SIN (bottom right). The intersection of the phase-space
sheet with the y= 0 plane for two sine waves and y= z = 0 hyper-plane for three sine waves is displayed in (x, vx) subspace. Simulation results
are compared with standard LPT predictions, which are supplemented with the blue line, denoted by ‘EXT’, which corresponds to the formal
extrapolation to the infinite order proposed by STC18 and sketched in Sect. 4.1 for the collapse time. For completeness, the quasi-1D approach
(Rampf & Frisch 2017), denoted by Q1D, is also presented (see Appendix C for details).

vicinity of the extrema of the x-coordinate of the velocity field
as a function of position x. We note that, due to the symmetry of
the initial conditions, these extrema are global and not specific
to the phase-space slice represented in Fig. 2.

In the axial-symmetric cases, SYM-2SIN and SYM-3SIN,
the phase-space sheet self-intersects simultaneously along all the
axes of the dynamics. Interestingly, the phase-space structure
for ε2D = 1 (SYM-2SIN) is still qualitatively similar to 1D col-
lapse and LPT again quickly converges with perturbation order
to the exact solution. This is clearly not the case for the 3D axial-
symmetric configuration, ε3D = (1, 1), where LPT convergence
is very slow. This set-up is indeed qualitatively different from
other initial conditions, with the appearance of a spiky struc-
ture in phase-space (STC18) similarly as in spherical collapse.
Interestingly, in the spherical case and in the Einstein-de Sitter
cosmology that we consider in this paper, convergence of the
LPT is likely to be lost at the collapse time (e.g. Rampf 2019),
and the analyses of RH21 suggest that the velocity blows up
when convergence is lost. The exact properties of the spike we
observe in our numerical data, in particular, whether the veloc-
ity diverges or remains finite, and, whether if finite, the velocity

is actually smooth at the fine level, remain unknown. While this
spike is not present in the LPT predictions at a finite order, it is
well reproduced by the formal extrapolation to the infinite order.
This is a hint that convergence of the LPT series might be lost at
collapse for SYM-3SIN.

A question might arise whether, because of such a spike
and because of their highly contrasted nature, close to axial-
symmetric 3D configurations correspond to a potentially differ-
ent population of protohaloes. A partial answer can be found
in C21, who followed numerically the evolution of the three
sine-wave configurations further in the non-linear regime. As
described in C21, collapse of our protohaloes is followed by a
violent relaxation phase leading to a power-law profile ρ(r) ∝
r−α, with α ∈ [1.5, 1.7] and then by relaxation to an NFW-
like universal profile. After violent relaxation, C21 did not
find specific signatures in the density profile nor the pseudo
phase-space density for the axial-symmetric case compared with
the non-axial-symmetric ones, except that α tends to augment
when going from Q1D to axial-symmetric, and that the axial-
symmetric configuration is subject to significant (and expected)
radial orbit instabilities.
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To complete the analyses, we note that the formal extrapola-
tion of LPT to the infinite order matches well (but not perfectly)
the simulation results for all the configurations, as already found
by STC18 in the 3D case. We also notice that the quasi-1D
approach of RF17 can describe very well the quasi-1D con-
figurations. Interestingly, at the second order in the transverse
fluctuations considered here, the predictions are rather similar to
those of standard fourth-order LPT, irrespective of initial con-
ditions. Thus, as expected, the quasi-1D approach becomes less
accurate when the ratio ε2D or ε3D approaches unity, particularly
in 3D as already shown by STC18.

4.3. Radial profiles

We now focus on radial profiles, and define Eulerian
polar and spherical coordinates for two- and three-sine-
wave initial conditions by (x, y) = (r cos θ, r sin θ) and (x, y, z) =
(r sin θ cos φ, r sin θ sin φ, r cos θ), respectively. Then the angular
averaged radial profiles of the density ρ/ρ̄, velocity dispersion
v2, radial velocity dispersion v2

r , and infall velocity −vr are given
by

ρ(r, t)/ρ̄=
〈
J−1(q, t)

〉
Ω
, (35)

v2(r, t) =

〈
J−1(q, t) v2(q, t)

〉
Ω〈

J−1(q, t)
〉

Ω

, (36)

v2
r (r, t) =

〈
J−1(q, t) (u(q, t) · x̂)2

〉
Ω〈

J−1(q, t)
〉

Ω

, (37)

vr(r, t) =

〈
J−1(q, t) (u(q, t) · x̂)

〉
〈
J−1(q, t)

〉
Ω

, (38)

where x̂ = x/r with r = |x| being the radial coordinate. In these
equations, we used the angle average defined by

〈 f (q)〉Ω =

∫
dθ
2π

f (q)|x = x(q,t), (39)

for two-sine-wave initial conditions, and

〈 f (q)〉Ω =

∫
sin θdθdφ

4π
f (q)|x = x(q,t), (40)

for three-sine-wave initial conditions. It is important to note that
the angular coordinates θ and φ in the integrands are the Eulerian
coordinates, and the integrands should be evaluated in terms of
the Eulerian coordinate by solving the equation x = x(q, t).

To complete the analyses, we also study the pseudo phase-
space density Q(r, t), defined by

Q(r, t) =
ρ(r, t)/ρ̄
v3(r, t)

. (41)

We additionally note that we present not only the radial profiles
but also their logarithmic slopes, defined by

n ≡
d ln X
d ln r

, (42)

where the quantity X stands for the radial profile under
consideration.

Radial profiles at the shell-crossing are presented in
Figs. 3–6. In these figures, measurements in the Vlasov code
are performed by replacing each simplex of the phase-space
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Fig. 3. Radial profiles and their logarithmic slopes for the two-sine-
wave initial conditions at the shell-crossing time. As indicated in top-left
panel, LPT predictions are given by solid lines of various colours and
Vlasov simulations results are represented by red dots. From left to
right, the initial conditions are given by Q1D-2SIN (ε2D = 1/6), ANI-
2SIN (ε2D = 2/3), and SYM-2SIN (ε2D = 1), respectively. From top to
bottom, we present the radial profiles of the normalised density ρ/ρ̄,
the velocity dispersion v2, the radial velocity dispersion v2

r , the infall
velocity −vr, and the pseudo phase-space density Q(r), respectively. We
note that when plotting the logarithmic slopes in Vlasov simulations,
we used the Savitzky-Golay filter implemented in savgol_filter
of SciPy (Virtanen et al. 2020) to smooth the data for presenta-
tion purposes. In the logarithmic slope panels, the horizontal dashed
lines correspond to the theoretical predictions at the small radii of
Appendix D, as listed in Table 2.

sheet with a large ensemble of particles as explained in detail
in C21 (see also Appendix B.4). Two approaches of collapse are
considered. In Figs. 3 and 4, which respectively correspond to
initial conditions with two and three sine waves, calculations are
performed at the exact shell-crossing time, that is, the extrap-
olated value a∞sc for LPT and the approximate value âsc for the
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Fig. 4. Same as Fig. 3 but for the three-sine-wave initial conditions, from
left to right, Q1D-3SIN [ε3D = (1/6, 1/8)], ANI-3SIN [ε3D = (3/4, 1/2)],
and SYM-3SIN [ε3D = (1, 1)], respectively. We note that in SYM-
3SIN, the closest snapshot from collapse we had at our disposal
from our Vlasov runs, âsc = 0.03190, is significantly beyond the actual
shell-crossing time estimated by the method described in Sect. B.2,
asc = 0.03155, which explains some discrepancies between the theory
and the simulation at small radii.

simulations. Figures 5 and 6 are analogous, but examine LPT
predictions of the nth order synchronised to their own shell-
crossing time a(n)

sc , which allows us to examine in detail the
structure of the singularity at collapse produced at each pertur-
bation order. It is important to note that from now on, we do
not further examine the quasi-1D approach proposed by RF17.
We also do not perform the formal extension to the infinite order
(Eq. (34)), because calculating radial profiles in this framework
was found to be too costly with the computational methods we
are currently using.

The examination of these figures confirms the conclusions
of the phase-space diagram analysis in Sect. 4.2. In partic-
ular, quasi-1D profiles (Q1D-2SIN and Q1D-3SIN) are well
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Fig. 5. Same as Fig. 3 but all analytical predictions evaluated at
individual shell-crossing times computed at each perturbation order.

described by LPT predictions even at low order. At the ‘exact’
collapse, considered in Figs. 3 and 4, LPT predictions generally
accurately describe the outer part of the halo, where density con-
trasts are lower, and then deviate from the exact solution when
the radius becomes smaller than some value rmin(n) decreasing
with increasing n, where n is the perturbation order. LPT can
describe arbitrarily large densities, as long as n is large enough.
In the results presented here, density contrasts as large as 100
or larger can be probed accurately by LPT, depending on the
order considered and on the nature of initial conditions. Again,
convergence worsens when approaching 3D axial-symmetry, the
worst case being, as expected, SYM-3SIN with ε3D = (1, 1). It is
worth noticing that velocity profiles require significantly higher
LPT orders than the density profiles to achieve a comparable
visual match between theory and measurements. In particular,
deviations between LPT predictions and simulations arise at
quite larger radii rmin(n) for the velocities than for the density,
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Fig. 6. Same as Fig. 4 but all analytical predictions evaluated at
individual shell-crossing times computed at each perturbation order.

with differences as large as an order of magnitude. With syn-
chronisation, performances of LPT predictions greatly improve,
as expected and as illustrated by Figs. 5 and 6. All perturba-
tion orders predict strikingly similar density profiles, in close to
perfect match with the simulations, except for SYM-3SIN dis-
cussed further below, while the velocity profiles still diverge
slightly from each other except for quasi-1D initial conditions,
Q1D-2SIN and Q1D-3SIN.

We now turn to the logarithmic slope of various profiles
shown in the bottom insert of each panel of Figs. 3–6. The nature
of the singularities of CDM structures at the collapse time and
beyond has been widely studied in the literature, particularly
in the framework of Zel’dovich motion (e.g. Zel’dovich 1970;
Arnold et al. 1982; Hidding et al. 2014; Feldbrugge et al. 2018).
In Appendix D, we re-derive the asymptotic properties of our
protohaloes at small radii by Taylor expanding the equations of
motion up to the third order in the Lagrangian coordinate q. For

our sine-wave configurations, whatever the order n of the per-
turbation order3, three kinds of singularities are expected at the
shell-crossing, as summarised in Table 2: the classic 1D pan-
cake with a power-law profile at small radii of the form (S1)
ρ(r) ∝ r−2/3, valid for all the configurations expect SYM-2SIN
and SYM-3SIN; then (S2) ρ(r) ∝ r−4/3 and (S3) ρ(r) ∝ r−2, for
SYM-2SIN and SYM-3SIN, respectively. On the other hand,
velocities are expected to follow the same power-law pattern
whatever initial conditions or dimensionality, with logarithmic
slopes equal to 2/3, 2/3, and 1/3 respectively, for v2, v2

r , and
−vr, which in turn implies Q(r) ∝ r−7/3 for SYM-2SIN, r−3 for
SYM-3SIN, and r−5/3 for other configurations.

Figures 3 and 4 consider LPT predictions for perturbation
order n calculated at the exact theoretical collapse time a∞sc and
not at the individual collapse time a(n)

sc at this perturbation order,
so the shell-crossing is not reached exactly, but gets nearer as n
increases. Consequently, the asymptotic slope is only approached
approximately, and better so with larger n. We note that conver-
gence is slower for velocities than for the density, especially for
axial-symmetric configurations, in particular SYM-3SIN. With
synchronisation, as illustrated by Figs. 5 and 6, the convergence
at a small radius to the prediction of singularity theory becomes
clear.

Except for SYM-3SIN, for which the best available snapshot
is still too far from collapse, with âsc > asc, one notices that all
the simulated data show a close to perfect agreement between
the measured slope at small radii and the predicted ones for all
the radial profiles. This result is non-trivial in the sense that the
Taylor expansion at small |q| underlying singularity theory is
not necessarily valid in the actual fully non-linear framework.
Indeed, while singularity theory seems to apply to each order n
for an arbitrarily large value of n in LPT framework, this does not
mean that the limit to n→ ∞ should converge to the same singu-
larity. The fact that the simulation agrees with singularity theory
predictions beyond the well-known, but nonetheless somewhat
trivial, 1D case, is remarkable even though naturally expected.

Several additional remarks are in order. First, we point out
that in this framework if crossed sine waves are considered
generic approximations of local peaks of a smooth random Gaus-
sian field, the probability of having exactly ε2D = εSYM

2D ≡ 1 or
ε3D = εSYM

3D ≡ (1, 1) is null, and hence one expects the classic
1D pancake to be exclusively dominant, from a pure mathe-
matical point of view. However, this can be unrealistic at the
coarse level, where high-density peaks can be close to spheri-
cal or filaments locally close to cylindrically symmetric. This
is illustrated by Fig. 7, which examines the transition between
various regimes in the vicinity of εSYM

2D (top panels) and εSYM
3D

(bottom panels) for tenth-order LPT. Clearly, at sufficiently large
radii, values of ε2D or ε3D close to εSYM

2D and εSYM
3D give similar

results for the profiles, even for the logarithmic slope, which can
approach that of the axial-symmetric case. The exact mathemat-
ical asymptotic behaviour is indeed reached only at very small
radii. In practice, the axial-symmetric configurations cannot be
ignored, which shows the limits of singularity theory if applied
blindly.

Second, we note that the slope of the density profile predicted
by LPT at collapse in the axial-symmetric 3D case, SYM-3SIN,
is different from the prediction of pure spherical collapse, ρ(r) ∝
r−12/7, for an initial profile with the same asymptotic behaviour
at a small radius of the form ρini ∝ 1 − αr2 with α > 0 (see e.g.
Nakamura 1985; Moutarde et al. 1995). Hence, the anisotropic

3 Strictly speaking, our calculations are performed for n ≤ 10, but it is
reasonable to expect that the result applies to any arbitrary order.
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Table 2. Summary of the logarithmic slopes at the shell-crossing obtained by singularity theory applied to LPT predictions at various orders (see
Appendix D for details).

Sine wave amplitudes Designation d ln ρ/ρ̄
d ln r

d ln v2

d ln r
d ln v2

r
d ln r

d ln (−vr)
d ln r

d ln Q
d ln r

0 ≤ −εz ≤ −εy < −εx Q1D-2SIN, ANI-2SIN, Q1D-3SIN, ANI-3SIN –2/3 2/3 2/3 1/3 –5/3
εz = 0, 0 < −εy = − εx SYM-2SIN –4/3 2/3 2/3 1/3 –7/3
0 < −εz = − εy = − εx SYM-3SIN –2 2/3 2/3 1/3 –3

Notes. The first and second columns indicate the relative amplitudes of the initial sine waves and the designation of the runs, respectively. The
third through seventh columns show the logarithmic slopes of the normalised density, velocity dispersion, radial velocity dispersion, infall velocity,
and pseudo phase-space density, respectively. We thus note that the logarithmic slopes do not depend, as expected, on the perturbation order of
LPT.
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Fig. 7. Radial profiles at the shell-crossing using tenth-order LPT in the vicinity of ε2D ' ε
SYM
2D ≡ 1 (top panels) and ε3D ' ε

SYM
3D ≡ (1, 1) (bottom

panels). In the top panels, ε2D is progressively varying in the range [0.9, 1] with linear intervals of ∆ε = 0.1/64. In the bottom panels, ε3D pro-
gressively changes from (0.97, 0.97) to (1, 1) with linear intervals of ∆ε = 0.03/64. From left to right, we present radial profiles of the normalised
density ρ/ρ̄, the velocity dispersion v2, the radial velocity dispersion v2

r , the infall velocity −vr, and the pseudo phase-space density Q, respectively.
In the lower inserts corresponding to logarithmic slopes, the horizontal dashed lines correspond to the values expected from singularity theory as
computed in Appendix D and listed in Table 2.

nature of the axial-symmetric case (contained in terms beyond
leading order r2 in the Taylor expansion of trigonometric func-
tions) provides significantly different results from pure spherical
collapse. We note, though, that this state of fact is not fully
proved by our simulations measurements, which as mentioned
above, are slightly beyond the actual collapse time.

Third, we can compare, in the 3D case, the logarithmic
slope of the pseudo phase-space density with that seen after
violent relaxation and at late stages of the evolution of dark
matter haloes, Q(r) ∼ r−β (see e.g. Taylor & Navarro 2001;
Navarro et al. 2010; Ludlow et al. 2010), which has been
found to be close to the prediction of secondary infall model,
βsph = 1.875 (Bertschinger 1985). This is also the case of our
three sine waves haloes, as analysed in detail by C21, including

SYM-3SIN, which shows again that this particularly symmetric
set-up, while being significantly more singular at collapse, with
β= 3, relaxes to a state similar to more generic 3D configura-
tions. The slope prior to collapse in the ‘generic’ cases, β=−5/3,
although of the same order of βsph, remains still different. Con-
cerning the 2D case, which is different from the dynamical point
of view, further analyses of the evolution of the haloes beyond
collapse need to be done.

5. Structure of the system shortly after
shell-crossing

Once the shell-crossing time is passed, the system enters into
a highly non-linear phase of violent relaxation. In this regime,
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standard LPT is not applicable anymore, but it is still pos-
sible, shortly after collapse, to take into account the effects
of the multi-streaming flow on the force field using an LPT
approach (see e.g. Colombi 2015; Taruya & Colombi 2017, for
the introduction of ‘post-collapse’ perturbation theory). While
the motion can still be described in a perturbative way for a short
time after the shell-crossing, it is no longer, overall, a smooth
function of time due to the formation of the singularity at the col-
lapse time (Rampf et al. 2021). Still, it is reasonable to assume
that very shortly after the shell-crossing, the back-reaction cor-
rections due to the multi-streaming flow can be neglected, as
a first approximation. However, it is important to notice that
the convergence radius in time of the LPT series is finite in
the generic case (e.g. Zheligovsky & Frisch 2014; Rampf et al.
2015; RH21). As illustrated by the measurement of the previous
section, the convergence of the perturbation series is expected
(although not proven) at least up to the collapse time, but not
necessarily far beyond collapse (see also RH21). Therefore, in
what follows, we shall use the LPT solution of the nth order at
collapse as a starting point, and from there, the standard bal-
listic approximation, where velocity field is frozen, to study the
structure of the system shortly after collapse.

In practice, one would like to use sufficiently large perturba-
tion order so that convergence of LPT is achieved, and ideally the
formal extrapolation to the infinite order proposed by STC18 and
reintroduced in Sect. 4.1. However, this extrapolation is insuffi-
ciently accurate for the purpose of the calculations performed
next, where very small time intervals after collapse are con-
sidered. Also, it is very costly from the computational point of
view to exploit this extrapolation when solving the multi-valued
problem intrinsic to the multi-streaming solutions. So from now
on, we shall consider only higher-order LPT calculations and
not their extrapolation to the infinite order (nor the quasi-1D
approximation proposed by RF17).

This section is organised as follows. In Sect. 5.1, we intro-
duce the ballistic approximation. We also relate, in the multi-
stream regime, the Eulerian density and velocity fields to their
Lagrangian counterparts, and introduce, in this framework, the
vorticity field. Indeed, after the shell-crossing, caustics form and
non-zero vorticity is generated in the multi-stream region delim-
ited by the caustics. In this section we also discuss the caustic
network created up to the second order by our systems seeded
by sine waves. Sect. 5.2 turns to actual comparisons of ana-
lytical predictions with Vlasov simulations using, similarly as
in Sect. 4.2, phase-space diagrams, but shortly after collapse.
In particular, we explore the limits of the ballistic approxima-
tion. Finally, Sect. 5.3 focuses on the overall structure of the
multi-stream region in configuration space, by successively test-
ing LPT predictions against simulations for the caustic pattern,
the projected density and the vorticity fields.

5.1. Multi-stream regime and ballistic approximation

Because the collapse time a(n)
sc depends on the perturbation order,

it only makes sense to test various perturbation orders shortly
after the shell-crossing and compare them with simulations only
if the collapse times are synchronised. In other words, in what
follows, we consider the time a(n)

pc = a(n)
sc +∆a for LPT of nth order

and aSIM
pc = asc + ∆a for the simulation, as listed in last column of

Table 1. The value of ∆a used for each sine waves configura-
tion is given by the difference between the values of the last and
sixth columns of the table. We recall that the quantity asc corre-
sponds to the ‘true’ collapse time measured in the Vlasov runs
as explained in Appendix B.2.

From the Eulerian coordinate and velocity fields given by
nth-order LPT solutions at the shell-crossing time a(n)

sc of each
perturbation order, we model the Eulerian coordinate after col-
lapse as follows:

x(q, a) = x(n)
(
q, a(n)

sc

)
+
∂x(n)

∂a

∣∣∣∣∣∣
a = a(n)

sc

∆a, (43)

= x(n)
(
q, a(n)

sc

)
+

u(n)

a2H(a)

∣∣∣∣∣∣
a = a(n)

sc

∆a, (44)

while the nth-order velocity field is frozen to its value at
the shell-crossing time of each perturbation order, u(q, a) =

u(n)(q, a(n)
sc ).

In the multi-stream region, given the Eulerian coordinate
x, the solution of the equation x = x(q) has an odd number of
solutions for the Lagrangian coordinate, which we denote as qF
labelled by the subscript F = [1, . . . , nF]. Shortly after collapse,
if εi , ε j for i , j, there are at most three streams, nF ≤ 3, in a
given point of space. For symmetric cases, for example ε2D = 1
in 2D or εx = εy in 3D, due to simultaneous shell-crossing along
several axes, the number of streams can reach 9 and 27 in 2D and
3D, respectively, as discussed further in Sect. 5.2.

In what follows, we omit the time dependence for brevity.
After defining the Lagrangian density and velocity fields,

ρL(q) = | det J(q)|−1, (45)

uL(q) = a
dΨ(q)

dt
, (46)

the Eulerian density and velocity fields are expressed by the
superpositions of each flow,

ρ(x) =
∑

F

ρL(qF), (47)

u(x) =

∑
F ρL(qF) uL(qF)∑

F ρL(qF)
, (48)

where the summation
∑

F is performed over all the solutions qF
of the equation x = x(qF).

While vorticity is not expected in single-stream regions,
unless already present in the initial conditions (and in that
case it corresponds to a decaying mode), its generation is one
of the prominent features of the shell-crossing (e.g. Pichon &
Bernardeau 1999; Pueblas & Scoccimarro 2009). By taking the
curl of the velocity field with respect to the Eulerian coordinate,
the vorticity is given, respectively in 2D and 3D, by

ω2D(x) = εi j
∂v j(x)
∂xi

= εi j
1
ρ(x)

∑
F

J−1
mi (qF)

∂ρL(qF)
∂qF,m

[
vL, j(qF) − v j(x)

]
+ εi j

1
ρ(x)

∑
F

J−1
mi (qF)

∂vL, j(qF)
∂qF,m

ρL(qF), (49)

ω3D
i (x) = εi jk

∂vk(x)
∂x j

,

= εi jk
1
ρ(x)

∑
F

J−1
m j(qF)

∂ρL(qF)
∂qF,m

[
vL,k(qF) − vk(x)

]
+ εi jk

1
ρ(x)

∑
F

J−1
m j(qF)

∂vL,k(qF)
∂qF,m

ρL(qF). (50)
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The vorticity fields in 2D and 3D space are scalar and vector
quantities, respectively. Because the acceleration derives from a
gravitational potential, local vorticity on each individual fold of
the phase-space sheet cancels. Only the non-linear superposition
of folds in the first term of Eqs. (49) and (50) induces non-zero
vorticity, while the second term should not contribute. Using
LPT however generates spurious vorticity in Eulerian space due
to the truncation at a finite perturbation order (see e.g. Buchert
& Ehlers 1993; Buchert 1994 and also Uhlemann et al. 2019
for a recent numerical investigation). This spurious vorticity is
mainly coming from the second term in Eqs. (49) and (50),
and can be especially noticeable in the single-stream region. We
neglected it in our predictions by simply forcing this term to
zero.

Before studying the structure of the system beyond col-
lapse, we take the time to analytically investigate the properties
of the ballistic solution for the sine waves case in the first-
and second-order LPT, in order to understand better the mea-
surements performed in the next paragraphs. In particular, it is
important to know how the solution behaves in the multi-stream
region, of which the boundaries are given by the caustics, where
J(q) = 0.

First, we start with 1LPT (Zel’dovich approximation). In the
ballistic approximation, the Eulerian coordinate can be easily
calculated shortly after the shell-crossing:

A(1LPT)(q, a) = qA +
L
2π

D(1LPT)
+,sc εA

(
1 + f

∆a
asc

)
sin

(
2π
L

qA

)
, (51)

with A = x, y, or z and D(1LPT)
+,sc =−1/εx stands for the growth fac-

tor at the shell-crossing time evaluated by using 1LPT. We note
that in Eq. (51), the growth rate f and the expansion factor asc

are evaluated at the same time as D(1LPT)
+,sc (we recall that f = 1 in

the Einstein-de Sitter cosmology considered in this work). The
value of D(1LPT)

+,sc is obtained in practice by solving the equation
∂x(1LPT)/∂qx = 0 at the origin, keeping in mind that |εx| ≥ |εy,z|.
We recall that Eq. (51) is exact in the pure 1D case, that is,
when εy = εz = 0. The condition for the caustics, J(1LPT)(q, a) = 0,
is reduced to the relation

cos
(

2π
L

qi

)
=

(
1 + f

∆a
asc

)−1

. (52)

Equation (52) implies that the equations of the caustics are given
by q = q0, with q0 being a constant vector depending on time
(i.e. on ∆a). Therefore, the 1LPT caustics consist of 1D lines
in 2D and 2D planes in 3D, even at the collapse time. This
configuration is actually degenerate and is not expected in real-
istic cases, for instance in the framework of a smooth Gaussian
random field (see e.g. Pichon & Bernardeau 1999). Indeed, the
regions where the first shell-crossing occurs should be com-
posed, in the non-degenerate case (that is non-vanishing εi), of
a set of points. In the vicinity of such points and shortly after
the shell-crossing, even in 1LPT, the equation of the caustics
should correspond, at leading order in q and in the non-axial-
symmetric case, εi , ε j, i , j, to the equation of an ellipse in 2D
and an ellipsoid in 3D (see e.g. Hidding et al. 2014; Feldbrugge
et al. 2018). The reason for this not being the case here is due
to the extremely restrictive class of initial conditions we have
chosen.

Due to the degenerate nature of the sine waves initial con-
ditions, it is therefore needed to go beyond the first order of the
perturbative development of the dynamical equations to obtain
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Fig. 8. 3D view of the expected caustic pattern shortly after the
shell-crossing for three-sine-wave initial conditions. The left panels cor-
respond to the most typical pancake, here embodied by ANI-3SIN, but
Q1D-3SIN would look similar, while the right ones show the axial-
symmetric case, i.e. SYM-3SIN. The calculations are performed using
2LPT along with ballistic approximation (Eq. (53)), but higher-order
LPT would provide the same topology from the qualitative point of
view, except that the position of the caustic surfaces would change,
especially in the axial-symmetric case.

a more realistic shape for the caustics. Indeed, for instance,
2LPT brings non-linear couplings between various axes of the
dynamics:

A(2LPT)(q, a) = qA +
L
2π

D(2LPT)
+,sc εA

(
1 + f

∆a
asc

)
sin

(
2π
L

qA

)
−

3
14

L
2π

(
D(2LPT)

+,sc

)2 ∑
B

(1 − δAB) εA εB

×

(
1 + 2 f

∆a
asc

)
sin

(
2π
L

qA

)
cos

(
2π
L

qB

)
, (53)

where D(2LPT)
+,sc stands for the growth factor at the shell-crossing

time evaluated by using 2LPT, which can be obtained as a
function of ε2D or ε3D by solving the following second-order
polynomial:

1 + D(2LPT)
+,sc εx −

3
14

(
D(2LPT)

+,sc

)2
εx(εy + εz) = 0. (54)

In Eq. (53), the growth rate f and the scale factor asc are evalu-
ated at the same time as D(2LPT)

+,sc . The additional terms compared
with Eq. (51) imply, shortly after collapse, non-vanishing con-
tributions from all axes at the quadratic level (and above) in
the Lagrangian coordinate q in the equation J(2LPT)(q, a) = 0
(as long as none of the εi cancels). This leads to, in the non-
axial-symmetric case (i.e. Q1D-2SIN, Q1D-3SIN, ANI-2SIN,
and ANI-3SIN), elliptic and ellipsoid shapes for the caustic
curve/surface in Lagrangian space, respectively in 2D and 3D,
as expected and as illustrated in the 3D case by the top-left panel
of Fig. 8, while the bottom-left one shows the expected typical
pancake shape in Eulerian space. Accordingly, in the analyses
performed below, except for the phase-space diagrams that we
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Fig. 9. Tests of the ballistic approximation in Vlasov simulations: measured phase-space structure for two- and three-sine-wave initial conditions.
This figure is analogous to Fig. 2, except that it shows a zoomed-in view of the central part of the system shortly after collapse. We test the validity
of the ballistic approximation by using two simulation snapshots slightly before (red curves, with a = âsc as shown in Table 1 except for ε3D = (1, 1),
for which a = 0.03103) and slightly after the collapse time (black, with a = asc + ∆a). The ballistic approximation, as described in the main text, is
applied to the red curves to obtain the magenta ones, to be compared directly with the exact solution, in black, given by the simulation.

examine first, LPT is examined from the second order and above.
We note that, as will be studied below, the axial-symmetric cases
ε2D = 1 and ε3D = (1, 1) are a bit more complex, as they require
Taylor expansion of the motion beyond the quadratic order in q to
obtain a full description of the correct and more intricate topol-
ogy of the caustic surfaces (e.g. the fourth order in q instead of
second for SYM-2SIN), as illustrated in 3D by the right panels of
Fig. 8, due to simultaneous collapses along several axes. It would
be beyond the scope of this article to go further into the analytic
details of catastrophe theory for these very particular configura-
tions, so we shall be content with a descriptive analysis of the
LPT results in the axial-symmetric cases.

5.2. Phase-space structure

Figures 9 and 10 display phase-space diagrams for our various
sine-wave systems shortly after collapse, namely the intersection
of the phase-space sheet with the hyperplanes y= 0 and y= z = 0,
for 2D and 3D configurations, respectively. The first figure

examines the validity of the ballistic approximation directly from
simulations data, while the second one compares predictions
from LPT at various orders with the simulations.

Interestingly, Fig. 9 shows that the ballistic approximation
can deviate significantly from the exact solution even quite
shortly after collapse. While it remains precise for all configura-
tions in 2D, with a slight worsening of the accuracy when going
from the quasi-1D to the axial-symmetric set-up, as expected,
significant or even dramatic deviations from the exact solution
can be seen in 3D for the anisotropic configuration (ANI-3SIN)
and the axial-symmetric configuration (SYM-3SIN). In the last
case (bottom-right panel), the intersection of the phase-space
sheet with the hyperplane y= z = 0 is composed, in the multi-
stream region, of three curves with an ‘S’ shape instead of
a single one, as a result of simultaneous shell-crossing along
all coordinates axes. The prediction from the ballistic approx-
imation has then to be compared with the ‘S’ with the largest
amplitude along the x axis. Similar arguments apply to the
2D case (bottom-left panel), but in this case, the intersection
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Fig. 10. Phase-space structure for two- and three-sine-wave initial conditions shortly after collapse. This figure is analogous to Fig. 2, except that
we compare predictions of LPT at various orders in the ballistic approximation framework with measurements in Vlasov simulations shortly after
collapse, i.e. for a = asc + ∆a, as listed in Table 1 and discussed in the main text. We note that the additional cyan curve corresponds to the LPT
prediction at the tenth order without using the ballistic approximation.

with the y= 0 hyperplane is composed of two curves instead of
three4.

The results shown in Fig. 9 must however be interpreted with
caution. Strictly speaking, we aim to apply the ballistic approx-
imation from the collapse time, which is not exactly the case in
this figure. The red curves, which correspond to the snapshots
used to originate the ballistic motion, all correspond to a time
abc slightly before the actual collapse (namely abc = 0.03103 for

4 When examining the bottom panels of Figs. 9 (black curves) and 10,
we see that solving the equation x(q) = x0 in the multi-stream region
does not seem to have the expected number of solutions, that is, 3, 9,
or 27 (only the bottom-right panel has an expected number of solu-
tions, i.e., 27). But this is because we are sitting exactly at the centre
of the system and symmetries imply superposition of solutions in the
subspace y= 0 in 2D and y= z = 0 in 3D. In particular, as discussed
in Sect. 5.1, first-order LPT has each coordinate axis totally decoupled
from the others, which means that only one ‘S’ shape, which corre-
sponds respectively, in the (x, vx) subspace, to 3 and 9 superposed ‘S’
shapes, is visible as the orange curve on bottom panels of Fig. 10. On
the other hand, higher-order LPT induces non-linear couplings between
various axes of the dynamics, which implies that we have, respectively,
only 2 and 3 visible ‘S’ shapes on the bottom-left and right panels of
Figs. 9 (black curves) and 10, both for the simulations and LPT predic-
tions at order n ≥ 2 among those the remaining 3 − 2 = 1 and 9 − 3 = 6
curves overlap with their visible ‘S’ counterpart in (x, vx) subspace.

SYM-3SIN and abc = âsc, as given in Table 1 for other cases)
because we do not have access to the exact moment of the actual
collapse. The level of proximity to collapse is, at least from the
visual point of view, the lowest for the axial-symmetric cases,
particularly SYM-3SIN. In this case, the ratio ∆aeff/abc ' 0.03 is
the largest, where ∆aeff is the difference between apc ≡ asc + ∆a
and abc and is used to test the ballistic approximation. We also
note that ∆aeff/abc ' 0.03 is also of the same order for ANI-
3SIN. The greater the value of ∆aeff/abc, the greater the deviation
due to non-linear corrections of the motions to be expected. Fur-
thermore, we also expect the ballistic approximation to worsen
from quasi-1D cases to fully axial-symmetric.

When examining Fig. 9 more in detail, we also note that for
ANI-3SIN, the central part of the ‘S’ shape is well reproduced by
the ballistic approximation, while the tails underestimate veloc-
ities. This last defect is in fact present to some extent in all
configurations except for Q1D cases, given the uncertainties on
the measurements. In the 3D axial-symmetric case, not only the
velocities in the tails are strongly underestimated, but also the
magnitude of the position of the caustics along the x axis (local
extremum of x coordinate). This suggests that the effects of
acceleration in the vicinity of collapse are strong, which implies
that the ballistic approximation can be applied only for a very
short time (or it could be that it is not applicable, mathematically,
due to the strength of the singularity).
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Fig. 11. Caustic pattern shortly after the shell-crossing in the 2D case: comparison of LPT predictions using ballistic approximation with Vlasov
runs. The left, middle, and right panels correspond, respectively, to Q1D-2SIN, ANI-2SIN, and SYM-2SIN configurations, while the top and
bottom panels show the caustics in Lagrangian and Eulerian spaces, respectively.

Now we turn to the comparison of LPT predictions of various
orders with the simulations, as shown in Fig. 10. We recall that
the ballistic approximation is applied from the respective col-
lapse times of each perturbation order, which obviously makes
predictions of LPT artificially more realistic than it should be.

The conclusions of Sect. 4.2, where we compared LPT with
simulations at collapse, still stand at the coarse level, obviously,
since the time considered in Fig. 10 is nearly equal to the col-
lapse time. When zooming on the central part of the system,
we notice that the ballistic approximation applied to LPT works
increasingly well with the order, as expected, especially when
approaching quasi-1D dynamics. It can fail in the tails of the
‘S’ shape of the phase-space sheet, as a combination of limits of
LPT to describe the system in the vicinity of the velocity extrema
and the limits of the ballistic approximation itself just discussed
above.

It is important to note at this point that the ballistic approxi-
mation is not necessarily the best choice outside the multi-stream
region, where LPT predictions can still perform very well. This
is illustrated in Fig. 10 by the cyan curves, which show tenth-
order LPT results without assuming ballistic approximation; they
should be compared with the dark purple curves, which corre-
spond to tenth-order LPT with ballistic approximation. While
the differences are very small given the time considered and the
accuracy of the measurements, it can be seen, when just exam-
ining middle right panel of Fig. 10, that pure tenth-order LPT
seems to perform better than its ballistic counterpart in the tails
of the ‘S’ and nearby the local extrema of the velocity.

On the other hand, in bottom panels of Fig. 10, which cor-
respond to axial-symmetric configurations, it is not clear at all
that the cyan curves bring any improvement over the dark pur-
ple ones outside the multi-stream region. Here, LPT performs
significantly more poorly than for other configurations, with or
without assuming ballistic approximation. In this case, the topol-
ogy of the phase-space structure in the multi-stream region (two
or three curves according to the number of dimensions) is cor-
rect and the very central part of the shell corresponding to x-axis

motion remains synchronised with the simulation, but except for
this, the structure of the system is reproduced only qualitatively.
This will be confirmed by the analyses that follow next.

5.3. Configuration space: Caustics, density, and vorticity

We now enter into the heart of this work, which consists of exam-
ining in detail the structure of the system shortly after collapse
in configuration space, both in Lagrangian and Eulerian coordi-
nates. The multi-stream region is delimited by caustics, where
density and vorticity are singular, so an accurate description of
the caustic pattern represents the first test of LPT predictions. In
most cases, the singularity corresponds to a simple fold of the
phase-space sheet, with ρ(r) ∼ r−1/2 (see e.g. Feldbrugge et al.
2018) and likewise for the vorticity along the direction orthog-
onal to the caustic (see e.g. Pichon & Bernardeau 1999). This
means that a large part of the vorticity signal is generated in the
vicinity of caustics. Having the correct shape of caustics is there-
fore fundamental because this information mostly determines the
subsequent internal structure of the multi-stream region both for
the density and the vorticity fields. Hence, in what follows, we
first comment on Figs. 11 and 12, which compare, respectively
in the 2D and 3D cases, the caustic pattern at various orders of
LPT with the Vlasov code for our various sine waves initial con-
ditions. Then, we turn to the normalised density and the vorticity
in Figs. 13 to 18, and compare LPT predictions at the second and
tenth order with the simulations. We remind the reader again that
LPT predictions with the ballistic approximation are computed
by synchronising the respective collapse times obtained at each
perturbation order, which obviously artificially improves the per-
formances of LPT. We cautiously note that in plotting the results
below in 3D cases, the caustics outputs (Figs. 11 and 12) are
shown at the intersections with the x = 0, y= 0, and z = 0 planes,
while the density and vorticity outputs (Figs. 14 and 16–18) are
shown in slices slightly away from the origin because the vor-
ticity vanishes in the x = 0, y= 0, and z = 0 planes due to the
symmetries in the chosen setting.
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Fig. 12. Structure of caustics shortly after the shell-crossing for three-sine-wave initial conditions: comparison of LPT predictions using ballistic
approximation with Vlasov runs. The top six, middle six, and bottom two panels respectively correspond to Q1D-3SIN, ANI-3SIN, and SYM-3SIN.
In each group of six panels, the top and bottom lines correspond to Lagrangian and Eulerian spaces, and the intersection of the caustic surfaces
with the plane are qx = 0, qy = 0, and qz = 0, respectively, for the first, second, and third column of each group. In the bottom group of two panels,
the left and right panels correspond respectively to Lagrangian and Eulerian space and only show the intersection of the caustic surface network
with the plane qz = 0 due to the symmetry of the system.
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Fig. 13. 2D density shortly after the shell-crossing: comparison of LPT
predictions using ballistic approximation with Vlasov runs. From top
to bottom: Q1D-2SIN, ANI-2SIN, and SYM 2SIN. From left to right:
2LPT, 10LPT, and measurements in Vlasov simulations.

The examination of left four panels of Fig. 11 and top twelve
panels of Fig. 12 provides us insights on the caustic pattern in
the most typical configurations, εi , ε j, i , j, that is the non-
axial-symmetric case, both in 2D and in 3D. We note that in
the 3D case, to have a clearer view of the caustic pattern, we
consider the intersection of the caustic surfaces with the planes
x = 0, y= 0 and z = 0 (we recall, however, that a 3D view of the
caustic surfaces was given for 2LPT in Fig. 8). In the case of
the simulations, as explained in Sect. 3.2 and Appendix B.3,
the caustic pattern corresponds to a tessellation, that is, a set of
ensembles of connected segments in 2D and of connected tri-
angles in 3D. The intersection of a tessellation of triangles with
a plane also gives a set of ensembles of connected segments.
In the figures, only the vertices of these segments are repre-
sented, and the initial regular pattern of the tessellation used to
represent the phase-space sheet is clearly visible in Lagrangian
space.

Figures 11 and 12 confirm the results of the previous sec-
tion, namely that high-order LPT provides a rather accurate
description of the caustic pattern in the Q1D case, with a
clear convergence to the simulation when the perturbation order
increases. In the anisotropic cases, ANI-2SIN and ANI-3SIN,
the match between LPT and simulations is not perfect, even at the
tenth order, but remains still reasonably good, especially in 2D.
For the axial-symmetric configurations, the convergence of LPT

with order seems much slower, particularly in Eulerian space and
in 3D.

While the shape of the caustic pattern is very simple in
the generic cases, it becomes significantly more intricate in the
axial-symmetric cases, particularly in Eulerian space. Indeed,
the caustics are composed of two connected curves instead of
one for ε2D = 1, and three connected surfaces instead of one for
ε3D = (1, 1). For ε2D = 1, the shapes of simulation caustics are
approximately reproduced by LPT, but we already see that con-
vergence to the exact solution is slow. In particular, the extension
of the outer caustic in Eulerian space is significantly underes-
timated by LPT, and it seems that increasing the perturbation
order to arbitrary values is not going to improve the agreement
with the simulations. The situation is much worse in 3D, partic-
ularly in Eulerian space, although the simulation measurements
are very noisy, which makes comparison with theoretical predic-
tions difficult. We know from the previous paragraph that these
mismatches are at least partly attributable to limits of the ballistic
approximation, along with limits of LPT to be able to describe
the velocity field at collapse in the vicinity of its extrema, partic-
ularly the spike observed on the phase-space diagram in the 3D
case.

Not surprisingly, the projected density measurements of
Figs. 13 and 14 fully confirm the analyses of the caustic pat-
tern. Putting aside the axial-symmetric cases, we can see that the
agreement between simulations and LPT of high order is quite
good, inside and outside the caustics. We note that the very high
density contrasts observed in the axial-symmetric cases are due
to the multiple foldings of the phase-space sheet, even in 2D,
which explains the limits of the ballistic approximation, since
feedback effects from the gravitational force field after collapse
are expected to be orders of magnitude larger than in the generic
case.

Turning to the vorticity, as shown in Figs. 15 to 18, we obtain
again a good agreement between theory and measurements
in the non-axial-symmetric configurations, except that, at the
exact location of the caustics, the simulation measurements are
expected to be spurious. This is discussed in Appendix B.5 (see
also end of Sect. 3.2), which provides details on the measure-
ments of various fields, in particular how we exploit a quadratic
description of the phase-space sheet to achieve vorticity mea-
surements with unprecedented accuracy, but yet still limited by
strong variations of the fields in the vicinity of the caustics, in
particular the strong discontinuous transition between the inner
part and the outer part of the multi-stream regions at the precise
locations of the caustics.

From the qualitative point of view, the topology of the vor-
ticity field for the generic configurations, εi , ε j, i , j, agrees
perfectly with the predictions of Pichon & Bernardeau (1999)
based on Zel’dovich dynamics5. In 2D, the vorticity field is
a scalar that can be decomposed into the four sectors inside
the caustic, two of positive sign and two of negative one. In
3D, the vorticity field is a vector. Because the shell-crossing
takes place along the x axis, each component of this vector
field has specific properties, which are related to variations
of the velocity and density field along with the phase-space
sheet. In particular, it is easy to convince oneself that if col-
lapse happens along the x axis, the strongest variations of all
the fields are expected along this direction. That means, since

5 We recall, however, that the crossed sine waves configurations we
consider are degenerate with respect to 1LPT, as discussed at the end
of Sect. 5.1, so the reasoning of Pichon & Bernardeau (1999) requires
2LPT to be applicable in this particular case.
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Fig. 14. Slices of the projected density shortly after the shell-crossing: comparison of LPT using ballistic approximation with Vlasov runs. The left
and right groups of nine panels correspond respectively to Q1D-3SIN (top, middle, and bottom line of panels: x =−1.55× 10−4, y=−1.17× 10−3,
and z =−1.56× 10−3 slice) and ANI-3SIN (x =−5.16× 10−4, y=−2.15× 10−4, and z =−5.47× 10−4 slice), while the bottom group of three panels
corresponds to SYM-3SIN (z =−1.17× 10−5 slice). In each group of panels, the left, middle, and right columns give respectively the second-order
LPT prediction, the tenth-order LPT prediction, and the Vlasov code measurements. Due to the symmetry of the system for SYM-3SIN, only one
slice is shown for the bottom panels.

each coordinate of the vorticity vector depends on variations
in the velocity field in other coordinates, that the magnitude
of ωx is expected to be small. Due to symmetries, we also
expect that ωy and ωz are, respectively, an odd function of z
and y, which means that ωy approaches zero when approach-
ing the z = 0 plane, and similarly for ωz when approaching the
y= 0 plane, which explains the pattern of the vorticity field
in Figs. 16 and 17. These symmetries impose us to perform
measurements on slices slightly shifted from the centre of the
system, as detailed in the caption of Fig. 14. We also note that
in these figures the pattern is analogous to 2D for the y and z
coordinate of the vorticity fields in the x–z and x–y subspace,
respectively.

Turning to the axial-symmetric case, the agreement between
theory and measurements is again only partial. Yet the high
magnitude of vorticity is of the same order for theory and mea-
surements. The structure of the vorticity field, significantly more

complex than in the generic case due to multiple foldings of the
phase-space sheet, is qualitatively in agreement between LPT
and Vlasov code in 2D, while simulations measurements are
too noisy in the 3D case to make definitive conclusions. What
is clear, however, is that the outer part of the multi-stream region
seems to be qualitatively reproduced by the theory, but its size is
totally wrong.

6. Summary

In this paper, following in the footsteps of Saga et al. (2018),
we have investigated the structure of primordial CDM haloes
seeded by two or three crossed sine waves of various amplitudes
at and shortly after the shell-crossing, by thoroughly comparing
LPT, up to the tenth order, with high-resolution Vlasov-Poisson
simulations performed with the public Vlasov solver ColDICE.
We devoted our attention first to the phase-space structure and
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Fig. 15. 2D vorticity fields: comparison of LPT predictions with Vlasov
runs.

radial profiles of the density and velocities at the shell-crossing
and, second, to the phase-space structure, caustics, and density
and vorticity fields shortly after the shell-crossing. In particu-
lar, measurements of unprecedented accuracy of the vorticity in
the simulations were made possible by exploiting the fact that
ColDICE is able to follow the phase-space sheet structure locally
at the quadratic level.

We studied three qualitatively different initial conditions
characterised by the amplitude of three crossed sine waves,
as summarised in Table 1: quasi 1D (Q1D-2SIN, Q1D-3SIN),
where one amplitude of the sine waves dominates over the
other(s), anisotropic (ANI-2SIN, ANI-3SIN), where the ampli-
tude of each wave is different but remains of the same order, and
axial-symmetric (SYM-2SIN, SYM-3SIN), where all amplitudes
are the same. In order to predict the protohalo structure shortly
after the shell-crossing in an analytical way, we used the ballis-
tic approximation, where the acceleration is neglected after the
shell-crossing time.

Our main findings can be summarised as follows:
– Phase-space diagrams at collapse: Except for SYM-3SIN,

one expects the system to build up a classic pancake sin-
gularity at the shell-crossing, with a phase-space structure
along the x axis analogous to what is obtained in 1D.
This pancake is reproduced by LPT well, which converges
increasingly well to the exact solution when approaching
quasi-1D dynamics, as expected. The local extrema of the
velocity field around the singularity are the locations where
LPT differs most from the exact solution, underestimating
the magnitude of the velocity. Convergence with the per-
turbation order becomes very slow when approaching 3D

axial-symmetry, where spikes appear on the velocity field
on each side of the singularity;

– Radial profiles at collapse: With a sufficiently high order
of perturbation, LPT can reproduce arbitrarily high den-
sity contrasts at collapse, but we note a slower convergence
when turning to velocity profiles. Still, the convergence of
LPT is sufficiently good to probe the asymptotic logarith-
mic slope at the small radii expected at collapse for various
profiles from singularity theory, as summarised in Table 2
and confirmed by simulation measurements. These profiles
are ρ(r) ∝ r−2/3 for generic initial conditions (i.e. Q1D
and ANI), ρ(r) ∝ r−4/3 for SYM-2SIN, and ρ(r) ∝ r−2 for
SYM-3SIN, while velocity profiles always present the same
power-law behaviour, for example v2(r) ∝ r2/3. Confirming
predictions of singularity theory at collapse and explicit con-
vergence to asymptotic profiles at small radii was expected
but is not trivial;

– Synchronisation: Agreement with singularity theory predic-
tions is made even more explicit by computing LPT profiles
at the respective collapse times computed at each perturba-
tion order. In this case, convergence to the power-law profile
predicted at small radii by singularity theory is explicit. In
fact, the radial profiles obtained from LPT with such syn-
chronisation are strikingly alike, particularly for the density,
which motivates the use of a ballistic approximation to study
the motion slightly beyond collapse;

– Ballistic approximation: Measurements in simulations show
that the ballistic approximation provides an accurate descrip-
tion of the phase-space structure of the system slightly
beyond collapse, except in the axial-symmetric case SYM-
3SIN, where the very highly contrasted nature of the system
due to multiple superpositions of phase-space sheet folds
introduces strong force feedback effects. We notice, how-
ever, that even in the generic pancake case, the ballistic
approximation can still slightly underestimate velocities in
the vicinity of the singularity. Obviously, these conclusions
depend on how long this approximation is used. In this work,
we considered maximum relative variations of the expan-
sion factor of the order of three percent. For these values,
the deviations from pure ballistic motion were the most
significant, as expected;

– Structure beyond collapse: Given the limits discussed above,
we find, when considering generic, non-axial-symmetric
configurations, that LPT of sufficient order combined with
the ballistic approximation provides a very good description
of the structure of the system beyond the collapse time, with
excellent agreement between the predicted density and the
vorticity fields inside the multi-stream region and those mea-
sured in the Vlasov simulations. Turning to axial-symmetric
cases, this agreement is only obtained at the qualitative level,
even for tenth-order LPT, particularly for SYM-3SIN, where
the size of the outer caustics is strongly underestimated.

Obviously, the ballistic approximation is only the first step in
a more complete calculation that would take into account the
feedback due to the force field, as first proposed in the 1D case
by Colombi (2015) and Taruya & Colombi (2017) (see also the
recent work of Rampf et al. 2021), and formulated in terms
of post-collapse perturbation theory. The next step is to imple-
ment an LPT approach where the small parameter is the interval
of time ∆a = a − asc from the collapse time and where a Tay-
lor expansion of the phase-space sheet is performed around the
singularity in terms of Lagrangian coordinates. Shortly after
collapse, in the generic, non-axial-symmetric case, the system
presents an ‘S’ shape in x − vx subspace, similar to the 1D
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Fig. 16. Vorticity components shortly after the shell-crossing: comparison of LPT with the ballistic approximation with Vlasov runs for Q1D-3SIN.
The 2D slices are the same as those shown in the top-left group of nine panels of Fig. 14, except that the slice changes from left to right and the
vorticity component changes from top to bottom. Again, on each line of three panels, 2LPT (left panel) and 10LPT (middle panel) are compared
with simulation measurements (right panel).
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Fig. 17. Same as Fig. 16, but for ANI-3SIN. The 2D slices considered are the same as in the top-right group of nine panels of Fig. 14.

case where positions and velocities can be approximated as
third-order polynomials of the Lagrangian coordinate q. The
calculation of the force field requires a three-value problem to
be solved in the multi-stream region, similar to the 1D case.
While technically challenging, generalisation of post-collapse

perturbation theory to 2D and 3D seems possible. It might
provide significant insights on non-linear corrections due to
multi-stream dynamics on large-scale structure statistics, for
example predictions of the power spectrum of the large-scale
matter distribution from higher-order perturbation theory.
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Fig. 18. Same as Fig. 16, but for SYM-3SIN. Due to the symmetry of
the initial conditions, only an x-y slice is shown, which is the same as
in bottom three panels of Fig. 14.
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Appendix A: Expressions of the LPT solutions

In this appendix, we present the LPT solutions up to the fifth
order, which are obtained by solving the recursion relations
given in Eqs. (21) and (22). Since higher-order solutions are
straightforwardly derived in the same way, we do not explicitly
show them here.

The results are partly presented in Moutarde et al. (1991) up
to the third order, taking into account the contributions other
than the fastest growth mode (see also Buchert et al. 1997, for
the solutions including decaying modes). Here, we first explicitly

show the analytical solutions of the sine waves initial conditions
up to the fifth order.

As shown in Sect. 2.1, the fastest growing mode can be
expanded as follows:

Ψ(q, t) =
∞∑

n=1

Dn
+(t)Ψ(n)(q) . (A.1)

For presentation purposes, we only show the x-components
of the displacement field, that is, Ψ(n)

x (q) with the definition
(ϵ1, ϵ2) ≡ (ϵy/ϵx, ϵz/ϵx). Given the x-components, the y- and
z-components can be derived by permutating all x, y, and z:

Ψ(1)
x =

ϵx
2π

sin(2π qx) , (A.2)

Ψ(2)
x = −

3ϵ2x
28π

[
ϵ1 cos(2π qy) + ϵ2 cos(2π qz)

]
sin(2π qx) , (A.3)

Ψ(3)
x =

ϵ3x
2520π

[
78 cos(2πqx)(ϵ1 cos(2πqy) + ϵ2 cos(2πqz))

+ 160ϵ1ϵ2 cos(2πqy) cos(2πqz) − 3ϵ21 cos(4πqy) − 3ϵ22 cos(4πqz) + 75
(
ϵ21 + ϵ

2
2

)]
sin(2π qx) , (A.4)

Ψ(4)
x = −

ϵ4x
7761600π

[
ϵ2 cos(2πqz)

(
4242 cos(4πqx) + 28550ϵ21 cos(4πqy) + 208850ϵ21 + 57015ϵ22 + 89166

)
+ 60 cos(2πqx)

(
6010ϵ1ϵ2 cos(2πqy) cos(2πqz) + 1274ϵ21 cos(4πqy) + 1274ϵ22 cos(4πqz) + 2039

(
ϵ21 + ϵ

2
2

))
+ 2ϵ1 cos(2πqy)

(
2121 cos(4πqx) − 9303ϵ21 cos(4πqy) + 14275ϵ22 cos(4πqz) + 33159ϵ21 + 104425ϵ22 + 44583

)
− 9303ϵ32 cos(6πqz)

]
sin(2π qx) , (A.5)

Ψ(5)
x =

ϵ5x
36793476720000π

[
895050 cos(4πqx)

(
181296ϵ1ϵ2 cos(2πqy) cos(2πqz) + 41657

(
ϵ21 + ϵ

2
2

))
+ 560226137900ϵ21ϵ2 cos(2πqx) cos(4πqy) cos(2πqz) + 560226137900ϵ1ϵ22 cos(2πqx) cos(2πqy) cos(4πqz)

+ 594423768510ϵ31 cos(2πqx) cos(2πqy) − 18642271230ϵ31 cos(2πqx) cos(6πqy)

+ 57401651835ϵ21 cos(4π(qx − qy)) + 57401651835ϵ21 cos(4π(qx + qy)) + 1006179766020ϵ1ϵ22 cos(2πqx) cos(2πqy)

+ 106526974554ϵ1 cos(2πqx) cos(2πqy) − 6828912090ϵ1 cos(6πqx) cos(2πqy) + 1006179766020ϵ21ϵ2 cos(2πqx) cos(2πqz)

+ 57401651835ϵ22 cos(4π(qx − qz)) + 594423768510ϵ32 cos(2πqx) cos(2πqz) − 18642271230ϵ32 cos(2πqx) cos(6πqz)

+ 57401651835ϵ22 cos(4π(qx + qz)) + 106526974554ϵ2 cos(2πqx) cos(2πqz) − 6828912090ϵ2 cos(6πqx) cos(2πqz)

+ 46659033850ϵ21ϵ
2
2 cos(4π(qy − qz)) + 46659033850ϵ21ϵ

2
2 cos(4π(qy + qz)) + 503168866200ϵ31ϵ2 cos(2πqy) cos(2πqz)

− 54358176600ϵ31ϵ2 cos(6πqy) cos(2πqz) + 503168866200ϵ1ϵ32 cos(2πqy) cos(2πqz) − 54358176600ϵ1ϵ32 cos(2πqy) cos(6πqz)

+ 877320054000ϵ1ϵ2 cos(2πqy) cos(2πqz) + 115709716980ϵ21ϵ
2
2 cos(4πqy) − 35064073044ϵ41 cos(4πqy)

− 1607701095ϵ41 cos(8πqy) + 241408089450ϵ21 cos(4πqy) + 115709716980ϵ21ϵ
2
2 cos(4πqz) − 35064073044ϵ42 cos(4πqz)

+ 241408089450ϵ22 cos(4πqz) − 1607701095ϵ42 cos(8πqz)

+ 546975
(
ϵ21

(
940700ϵ22 + 443058

)
+ 171045ϵ41 + 21ϵ22

(
8145ϵ22 + 21098

))]
sin(2π qx) . (A.6)

We note that because of the underlying symmetry of the
initial conditions, the x-components of the LPT solutions are
symmetric under the exchange of y↔ z and ϵ1 ↔ ϵ2.

Appendix B: Measurements on the tessellation of
Vlasov simulations

of ColDICE, which consists of a tessellation of the phase-space
sheet with simplices, respectively triangles and tetrahedra in 4D
and 6D phase-space.

B.1. Phase-space diagrams

The intersection of a hypersurface of dimension D1 = D with
a hyperplane P of dimension D2 = D + 1 inside a phase-space
of dimension D3 = 2D is of dimension D1 + D2 − D3 = 1. In

This appendix explains in detail how measurements of various 
quantities studied in this article are performed on the output
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other words, this intersection corresponds in the non-trivial case
to a set of curves. Therefore, in 2D, the intersection of the phase-
space sheet with the hyperplane x = 0 is a set of curves, and
likewise in 3D, the intersection of the phase-space sheet with
the hyperplane x = y = 0. Furthermore, as discussed more in
detail in C21, because the phase-space sheet remains at all times
a fully connected hypersurface, this set of curves should also be
fully connected, with no hanging point.

To produce a phase-space diagram, we employed an
approach valid at the linear order, consisting in simply com-
puting, for each simplex, its geometric intersection with the
hyperplane P, which is empty, a point, or a segment. As a result,
phase-space diagrams extracted from the Vlasov runs consist of
sets of connected segments, the ends of which are plotted in
Figs. 2 and 10.

B.2. Expansion factor at collapse: asc

An accurate estimate of the value of the expansion factor cor-
responding to the collapse time is essential when studying the
properties of the system at the shell-crossing and shortly after.
The curves generated in Appendix B.1 can be used for this pur-
pose, at two expansion times ai, i = 1, 2, supposed to be just
before and just after collapse. At both these times, we consider
the unique phase-space diagram segment portion S , one of the
ends of which is as close as possible to the origin and the other,
with abscissa xi, has vx > 0; the magnitude of the other coordi-
nate(s) of the velocity, in theory null, are as small as possible.
The latter condition excludes, in the axial-symmetric case, the
component(s) of the flow corresponding to simultaneous col-
lapse along the y or/and z direction, which has/have a non-zero
value of vy or/and vz. Once this segment is identified at both
times, corresponding to a1 and a2, a simple linear interpolation
is used to estimate the expansion factor at collapse:

asc ≃
a1x2 − a2x1

x2 − x1
. (B.1)

This formula does not require a1 and a2 to be just before and
after the collapse time to estimate asc, but, to provide sufficiently
accurate results, the times need to be sufficiently close to the
actual collapse time. A first guess of the collapse time is esti-
mated by using perturbation theory predictions extrapolated to
the infinite order (STC18), as listed in 5th column of Table 1.
Examination of Table 1 shows that the value a∞sc predicted this
way agrees extremely well with the measurements in the Vlasov
runs provided by Eq. (B.1), and shown in sixth column of the
table.

We note, however, that, beyond the approximate nature of the
linear approximation underlying Eq. (B.1), the collapse time esti-
mate – in addition to other estimates, as discussed in Sect. 3.2 –
can be significantly influenced by the force resolution, that is,
the value of ng. As discussed in detail in C21, decreasing force
resolution delays the collapse time; hence, to have an accurate
estimate of the collapse time, a sufficiently large value of ng
is required. We performed extensive force resolution tests for
the 3D simulation with ϵ3D = (3/4, 1/2). Our measurements of
asc with the above method provide asc = 0.02912 (in excellent
agreement with the predicted value a∞sc = 0.02911), 0.0292 and
0.0293 respectively for ng = 1024, 512 and 256. Our ng = 512
simulation thus provides, for this value of ϵ3D, an estimate of
the collapse expansion factor accurate at approximately the 10−4

level, and we expect this to apply as well to the quasi-1D case
ϵ3D = (1/6, 1/8). However, for the axial-symmetric case, ϵ3D =

(1, 1), the measured value might still overestimate the actual one
by an amount larger than ∼ 10−4 due to the high strength of the
singularity building up at the centre of the system. On the con-
trary, in the 2D case, given the high value of ng = 2048 used
to perform the simulations, we expect our estimates of collapse
time to be very accurate, at an order better than the 10−4 level,
but we did not test this explicitly.

B.3. Caustics

Caustics are regions where the determinant J of the Jacobian
matrix changes sign. At the linear order in the local description
of the phase-space sheet, geometrically this means that the ori-
entation of the simplex changes in configuration space, which
allows one to define unambiguously regions corresponding to the
intersections of simplices with J ≥ 0 and simplices with J < 0,
where the sign of J is directly estimated from the current ori-
entation of the simplex with respect to the original one. This is
actually performed during runtime by ColDICE, which can out-
put caustics directly when needed. In 2D, the phase-space sheet
is composed of a tessellation of triangles, and hence the caus-
tics estimated this way are given by sets of segments, the ends
of which are shown in Fig. 11. In 3D, the caustics are given by
sets of triangles, the intersection of which we compute with the
y = z = 0 plane to again get a set of segments; their extremi-
ties are shown in Fig. 12. Because we are using a leading order
approach, the caustic lines or surfaces are not necessarily smooth
but should trace accurately enough the actual caustics for the
purpose of this work (see also Sect. 3.2).

B.4. Radial profiles

To measure radial profiles in logarithmic bins, each simplex is
replaced with a large number of particles as explained for the
3D case in Appendix A2 of C21. We refer to this work for
the reader interested in the details of this procedure, which we
straightforwardly generalised to the 2D case.

B.5. Density field and vorticity: From linear to quadratic order

In this section we aim to compute the following five quantities:
(i) the Jacobian of the transformation between initial and final
positions, J(q), as defined in Eq. (7); (ii) the Lagrangian pro-
jected density, ρL(q), defined in Eq. (45); (iii) the total Eulerian
projected density, which stems from the superposition of one or
more folds of the phase-space sheet, as described by Eq. (47);
(iv) the Eulerian velocity field, given by Eq. (48); and (v) the
vorticity, ω2D and ω3D, defined in Eqs. (49) and (50). Again,
because the acceleration derives from a potential, local vortic-
ity on each phase-space sheet fold cancels. Only the non-linear
superposition of phase-space sheet folds contained in the first
term of these equations induces non-zero vorticity, while the sec-
ond term should not contribute, although we shall take it into
account in our numerical calculations.

In what follows, we explain how to compute the various
quantities defined above by exploiting the decomposition in sim-
plices of the phase-space sheet by ColDICE. In Sect. B.5.1 we
introduce barycentric coordinates, which are useful to define the
position of any point inside each simplex. In Sect. B.5.2 we show
how the barycentric coordinates can be used to perform calcula-
tions at the linear level inside each simplex, in particular partial
derivatives of a function, as already discussed for instance by
Hahn et al. (2015). In Sect. B.5.3 we generalise the procedure to
the case when a quadratic description of the phase-space sheet is
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available. Finally, in Sect. B.5.4 we describe the way we sample
various quantities described above on an high-resolution Carte-
sian grid, by using proper sets of sampling particles associated
with each simplex.

B.5.1. Barycentric coordinates

Since the phase-space sheet is sampled with simplices, it is use-
ful to define a well-known local system of coordinates on each
simplex. Given the positions Xk, k = 1, · · · ,Ns of the simplex
vertices, with Ns = D + 1 where D is the dimension of configu-
ration space, and a function g(X), one can define the following
linear interpolation:

glinear(X) =
Ns∑

k=1

ξkgk, (B.2)

for

X = Xlinear ≡

Ns∑
k=1

ξk Xk, (B.3)

where the barycentric coordinates ξk are positive quantities ver-
ifying ξk = 1, ξk′,k = 0, for X = Xk and

∑
k ξk = 1. When

working in Lagrangian space, the space of initial positions, the
phase-space sheet is flat and the linear interpolation,

Qlinear =

Ns∑
k=1

ξkQk, (B.4)

is exact. In what follows, we shall therefore use Eq. (B.4) to
define barycentric coordinates. With this definition of ξk, this
means that at given time t, Eq. (B.3) remains valid, but only at
the linear level, since dynamical evolution of the phase-space
sheet produces curvature.

B.5.2. Calculations of various quantities at the linear level

With the barycentric coordinate representation, any function
defined at vertices positions can be estimated locally at the linear
level using Eq. (B.2). The derivative of the function inside each
simplex can thus be written

∂g

∂xβ
=

Ns∑
k=1

gk
∂ξk
∂xβ
=

Ns∑
k=1

gk M−1
k,β+1, (B.5)

where M is the matrix of the partial derivatives of the vector
P ≡ (

∑
k ξk, X1, X2, X3) with respect to ξk, with X given by Eq.

(B.3). In other words,

M1,k = 1, (B.6)

Mα+1,k =
∂Xα
∂ξk
= Xk,α, (B.7)

with Xk,α the αth coordinate of kth vertex with position Xk. At
the linear level, the derivative defined by Eq. (B.5) is therefore
simply constant inside each simplex.

This calculation can be performed in Lagrangian space to
directly obtain the Jacobian of the transformation between the
initial and present position, Eq. (7), from the Jacobian matrix,

Jα,β ≡
∂Xα
∂Qβ

=

Ns∑
k=1

Mα+1,k W−1
k,β+1, (B.8)

where W is defined similarly as M but in Lagrangian space,

W1,k = 1, (B.9)

Wα+1,k =
∂Qα
∂ξk
= Qk,α, (B.10)

with Qk,α the αth Lagrangian coordinate of kth vertex with
Lagrangian position Qk.

This means that the linear description allows one to obtain
the Jacobian J(q) and the corresponding Lagrangian density
ρL(q) = 1/|J(q)| as constant quantities inside each simplex.
Unfortunately, this is not sufficient, since Eqs. (49) and (50)
involve partial derivatives of the projected density. Rigorously
speaking, this means that a representation of the simplices at the
quadratic level is required.

B.5.3. Calculations of various quantities at the quadratic level

Fortunately, ColDICE employs a quadratic description of the
phase-space sheet for performing local refinement of the tessel-
lation, by using tracers defined as mid-points of edges of the
simplices in Lagrangian space. For instance, the tracer associ-
ated with vertices (k, k′) corresponds to barycentric coordinates
ξk = ξk′ = 1/2, ξ j = 0 for j , k and j , k′.

This allows one to define in a unique way a quadratic hyper-
surface inside each simplex coinciding with vertices and tracers
belonging to it. We note that the second-order representation
preserves the continuity of the phase-space sheet but does not
warrant its smoothness at the differential level. Exploiting this
representation will nevertheless provide, in practice, sufficiently
accurate measurements of the vorticity.

In the quadratic representation, one defines the following
conventional shape functions Nk,

Nk(ξ) ≡ ξk(2ξk − 1), k ≤ Ns, (B.11)
≡ 4ξK(k) ξL(k), Ns < k ≤ Ns + Nt, (B.12)

where functions K(k) and L(k) are appropriately chosen to cover
all the combinations 1 ≤ K(k) < L(k) ≤ Ns, and where Ns = D +
1 is the number of simplices and Nt = D(D + 1)/2 is the number
of tracers, given D the dimension of space.

Then Eq. (B.2) becomes

gquad(X) =
Ns+Nt∑
k=1

Nk(ξ) gk, (B.13)

where gk is now also defined over tracers. This is true in
particular for quadratically interpolated positions,

X = Xquad =

Ns+Nt∑
k=1

Nk(ξ) Xk, (B.14)

while corresponding Lagrangian coordinates Q are still given
by the linear representation (B.4) since the phase-space sheet is
initially flat, which means that matrix W does not change.

From Eq. (B.14), we obtain the matrix Mquad of partial
derivatives of the vector P ≡ (

∑
k ξk, X1, X2, X3) with respect to

ξk, which replaces Eqs. (B.6) and (B.7):

Mquad
1,k = 1, (B.15)

Mquad
α+1,k =

∂Xα
∂ξk
=

Ns+Nt∑
k′=1

∂Nk′

∂ξk
Xk′,α, (B.16)
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with Xk′,α the αth coordinate of k′th vertex/tracer with position
Xk′ . While, at the linear level, this matrix was constant inside
each simplex, it now depends linearly on barycentric coordinates,
given the quadratic nature of the shape functions Nk.

The calculation of the Jacobian matrix exploiting the
quadratic representation then just consists in replacing matrix
M with Mquad in Eq. (B.8), since matrix W remains unchanged,
which allows us to compute J(q) in the quadratic representa-
tion. In particular, we can compute Jk = J(Qk) at each vertex
and tracer position to prepare it for the quadratic interpolation
procedure given by Eq. (B.13) (but staying aware of the fact that
this calculation is accurate only up to the linear order), which, in
addition to the phase-space coordinates themselves, is enough to
compute all the quantities we are interested in.

Once we have a scalar function g(x) defined at vertices and
tracers positions, its derivative is given from Eq. (B.13) by[
∂g

∂xβ

]
quad
=

Ns+Nt∑
k=1

gk

Ns∑
k′=1

∂Nk

∂ξk′

∂ξk′

∂xβ
(B.17)

=

Ns+Nt∑
k=1

gk

Ns∑
k′=1

∂Nk

∂ξk′
[Mquad(ξ)]−1

k′,β+1. (B.18)

This quantity depends in a non-linear way on barycentric posi-
tion and requires matrix Mquad to be invertible, so to be able to
have a finite estimate of the partial derivative, it is necessary to
avoid the subspace occupied by the caustics (or, more exactly, the
element of surface or curve approximating the actual caustics).

In particular, we estimate the partial derivatives of the
projected density as follows

∂ρ

∂xβ
= −

sign(J)
J2

∂J
∂xβ
, (B.19)

using Eq. (B.18) to estimate ∂J/∂xβ. Indeed, the Jacobian is a
smooth function of the Lagrangian coordinate. This is not the
case for function ρL(q) = 1/|J(q)|, which presents strong varia-
tions in the vicinity of caustics. Using the Jacobian instead of
the density to estimate derivatives allows us to capture better
asymptotic behaviours in the vicinity of the caustics.

B.5.4. Practical estimate: Particle representation and local
coarse graining

In order to compute any quantity at position x0, one has to com-
pute the intersection of the phase space sheet with the position
x = x0, or to resolve inside each simplex the equation X(ξ) =
x0. While this is a straightforward linear problem in the linear
representation of the phase-space sheet (Eq. B.3), it becomes
non-trivial in the quadratic case (Eq. B.14), for which some iter-
ative procedure seems necessary. Here, to simplify the approach
(and also to reduce effects of aliasing and divergences near caus-
tics), we adopt a forward point of view consisting in projecting
the tessellation on a Cartesian mesh of resolution nana in configu-
ration space, similarly as it is performed by ColDICE to compute
the projected density. This means that we apply additional coarse
graining over each pixel or voxel of the Cartesian mesh: Integrals
of the form∫

dDv g(x, u) f (x, u) (B.20)

become
1

vpixel/voxel

∫
pixel/voxel

dDx
∫

dDv g(x, u) f (x, u), (B.21)

with vpixel and vvoxel being respectively the area of the pixel and
the volume of voxel under consideration.

While Sousbie & Colombi (2016) use actual ray-tracing exact
to the linear order to compute such an integral, we replaced each
simplex with a large number of particles, which allows us to
give an account of the quadratic shape of the simplices in a very
simple way. However, employing particles introduces some dis-
crete noise. To reduce the noise, we used the cloud-in-cell (CIC)
interpolation procedure on the target Cartesian mesh (Hockney
& Eastwood 1988), that is to say, each particle is replaced by a
pixel (voxel) of the same small size as the pixels (voxels) of the
Cartesian mesh, and we associate a weight Winter with the parti-
cle proportional to the volume of intersection between the pixel
(voxel) associated with the particle and the pixel (voxel) of the
mesh. In addition, we do not place particles at random within the
simplex, but instead refine the simplex hierarchically in an homo-
geneous fashion ℓmax times, and then replace each sub-simplex
obtained this way with a particle corresponding to the centre of
the simplex in the barycentric representation. The calculation of
ℓmax is such that discreteness effects due to the projection inside
each voxel or pixel of the Cartesian mesh are kept under control:

ℓmax = max
{
⌊log2(S/∆) + 4 − D⌋, 0

}
, (B.22)

where D is the dimension of space, ∆ is the step of the Cartesian
mesh and

S = maxk,k′,α|Xk,α − Xk′,α|, (B.23)

with Xk,α the αth coordinate of kth vertex with position Xk and
likewise for Xk′,α.

In practice, prior to CIC interpolation, each particle p sam-
ples a small element of volume δVp in the spatial part of the
integral of right hand side of Eq. (B.21),

δVp = VL 2−Dℓmax Jp, (B.24)

where VL is the Lagrangian volume of the simplex and Jp the
Jacobian (quadratically) interpolated at position of the particle.
So, at the end, the contribution of each particle in right hand
integral of Eq. (B.21) is equal to δVp Winter g(Xp,Vp), where we
recall that Winter is the CIC weight defined previously and where
function g is estimated at particle phase-space position (Xp,Vp)
using the methods described in previous paragraphs.

We note that coarse graining due to the CIC interpolation is
expected to introduce defects or biases in regions where large
variations are expected, that is, in the vicinity of caustics. Obvi-
ously these effects become more dramatic when differentiating
quantities, so one expects the vorticity to be affected numerically
nearby the caustics, as can be noted in Figs. 15, 16, 17 and 18.

Appendix C: Perturbative treatment of quasi-1D
flow

In Sect. 4.2 we test theoretical predictions relying on the pertur-
bative treatment of a quasi-1D flow as proposed by RF17. In this
appendix, we briefly present this approach, focusing mainly on
three-sine-wave initial-condition configurations. Generalisation
to the two sine waves case is straightforward.

When the system is exactly 1D, the first-order LPT solution is
exact before the shell-crossing. This fact leads to an approximate
treatment in 3D space. We exploit the exact solution of the 1D
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problem along the x axis given by Zel’dovich approximation as
the unperturbed zeroth-order state:

Ψ
(0)
i (q, t) = D+(t)Ψini

x (qx) δi,x, (C.1)

with the subscript i = x, y for two sine waves and i = x, y, z for
three sine waves. The transverse fluctuations are considered as
small first-order perturbations to this set-up:

Ψ(1)(q, t) =
∞∑

n=1

Dn
+(t)Ψ(1,n)(q). (C.2)

In the case of the three sine waves, we assume the explicit form
of the functions Ψini

x and Ψ(1,1) to be

Ψini
x =

L
2π
ϵx sin

(
2π
L

qx

)
, (C.3)

Ψ(1,1) =


0

L
2π ϵy sin

(
2π
L qy

)
L
2π ϵz sin

(
2π
L qz

)
 . (C.4)

Then, substituting these initial conditions into the recursion
relations in Eqs. (21) and (22), we obtain

∇q ·Ψ
(1,n) = −Ψini

x,x
2n − 1
2n + 3

(
Ψ(1,n−1)
y,y + Ψ(1,n−1)

z,z

)
, (C.5)

∇q ×Ψ
(1,n) = −Ψini

x,x
n − 2

n


0

Ψ
(1,n−1)
x,z

−Ψ
(1,n−1)
x,y

 . (C.6)

By solving Eqs. (C.5) and (C.6), one can construct the Q1D first-
order solutions.

We further extend the Q1D treatment proposed by RF17 up
to the second order in the transverse fluctuations as described
below. On top of the zeroth- and first-order perturbations, we
define the second-order perturbation as

Ψ(2)(q, t) =
∞∑

n=2

Dn
+(t)Ψ(2,n). (C.7)

Again, using Eqs. (21) and (22), we obtain the following recur-
sion relation:

∇q ·Ψ
(2,n) = −Ψini

x,x
2n2 − 3n + 1
2n2 + n − 3

(
Ψ(2,n−1)
y,y + Ψ(2,n−1)

z,z

)
− εi jk εipq

n−1∑
m=1

2m2 + m − 3/2
2n2 + n − 3

Ψ
(1,n−m)
j,p Ψ

(1,m)
k,q

− Ψini
x,x εx jk εxqr

×

n−2∑
m=1

2m2 + m
2n2 + n − 3

Ψ
(1,n−m−1)
j,q Ψ

(1,m)
k,r , (C.8)

[
∇q ×Ψ

(2,n)
]
i
= Ψini

x,x
2n2 − 3n − 2

2n2 + n
εix jΨ

(2,n−1)
x, j

+

n−1∑
m=1

2m2 + m
2n2 + n

εi jk Ψ
(1,n−m)
l, j Ψ

(1,m)
l,k . (C.9)

The recursion is initialised by

∇q ·Ψ
(2,2) = −

3
14
εi jk εipqΨ

(1,1)
j,p Ψ

(1,1)
k,q , (C.10)

∇q ×Ψ
(2,2) = 0. (C.11)

Using the above recursion relations, the perturbative expansion is
then performed by keeping terms proportional to ϵny and ϵmz up to
the second order, n+m = 2, while keeping terms proportional to
ϵkx up to the tenth order, k = 10, as shown in Fig. 2. This approach
provides a very accurate description of the dynamics when the
system is initially quasi 1D (i.e. |ϵx| ≫ |ϵy,z|).

The results of the Q1D solution at the first order in the trans-
verse fluctuations are presented in RF17. In what follows we
show (for the first time) the Q1D solution at the second order
in the transverse fluctuations and up to the fifth order in the lon-
gitudinal direction in terms of the growth factor (i.e. Ψ(2,5)). We
use the same notations as in Appendix A.
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For the x-components of the Q1D solutions, we have

Ψ(2,2)
x = −

3ϵ2x
28π

sin(2πqx)
[
ϵ1 cos(2πqy) + ϵ2 cos(2πqz)

]
, (C.12)

Ψ(2,3)
x =

ϵ3x
2520π

sin(2πqx)
[
39ϵ1 cos(2π(qx − qy)) + 39ϵ1 cos(2π(qx + qy)) + 39ϵ2 cos(2π(qx − qz)) + 39ϵ2 cos(2π(qx + qz))

+ 80ϵ1ϵ2 cos(2π(qy − qz)) + 80ϵ1ϵ2 cos(2π(qy + qz)) − 3ϵ21 cos(4πqy) − 3ϵ22 cos(4πqz) + 75
(
ϵ21 + ϵ

2
2

)]
, (C.13)

Ψ(2,4)
x =

ϵ4x
2587200π

[
−10 sin(4πqx)

(
6010ϵ1ϵ2 cos(2πqy) cos(2πqz) + 1274ϵ21 cos(4πqy) + 1274ϵ22 cos(4πqz) + 2039

(
ϵ21 + ϵ

2
2

))
− 29015 sin(2πqx)(ϵ1 cos(2πqy) + ϵ2 cos(2πqz)) − 707 sin(6πqx)(ϵ1 cos(2πqy) + ϵ2 cos(2πqz))

]
, (C.14)

Ψ(2,5)
x =

ϵ5x
4088164080000π

[
4507471800ϵ1ϵ2 cos(2π(2qx − qy − qz)) + 4507471800ϵ1ϵ2 cos(2π(2qx + qy − qz))

+ 4507471800ϵ1ϵ2 cos(2π(2qx − qy + qz)) + 4507471800ϵ1ϵ2 cos(2π(2qx + qy + qz)) + 6377961315ϵ21 cos(4π(qx − qy))

+ 6377961315ϵ21 cos(4π(qx + qy)) + 5918165253ϵ1 cos(2π(qx − qy)) + 5918165253ϵ1 cos(2π(qx + qy))
− 379384005ϵ1 cos(2π(3qx + qy)) − 379384005ϵ1 cos(6πqx − 2πqy)

+ 33
(
193271555ϵ22 cos(4π(qx − qz)) + 179338341ϵ2 cos(2π(qx − qz)) + 815965150

(
ϵ21 + ϵ

2
2

))
+ 6377961315ϵ22 cos(4π(qx + qz)) + 5918165253ϵ2 cos(2π(qx + qz)) − 379384005ϵ2 cos(2π(3qx + qz))

− 379384005ϵ2 cos(6πqx − 2πqz) + 4142788650 cos(4πqx)
(
ϵ21 + ϵ

2
2

)
+ 48740003000ϵ1ϵ2 cos(2π(qy − qz))

+ 48740003000ϵ1ϵ2 cos(2π(qy + qz)) + 26823121050ϵ21 cos(4πqy) + 26823121050ϵ22 cos(4πqz)
]

sin (2πqx) . (C.15)

For the y-components of the Q1D solutions, we derive

Ψ(2,2)
y = −

3ϵ1ϵ2x
28π

[
sin(2πqy)(cos(2πqx) + ϵ2 cos(2πqz))

]
, (C.16)

Ψ(2,3)
y =

ϵ1ϵ
3
x

2520π

[
sin(2πqy)(2 cos(2πqx)(39ϵ1 cos(2πqy) + 80ϵ2 cos(2πqz)) − 3 cos(4πqx) + 75)

]
, (C.17)

Ψ(2,4)
y = −

ϵ1ϵ
4
x

7761600π

[
sin(2πqy)(60ϵ1(1274 cos(4πqx) + 2039) cos(2πqy)

+ 50ϵ2(571 cos(4πqx) + 4177) cos(2πqz) + 57015 cos(2πqx) − 9303 cos(6πqx))
]
, (C.18)

Ψ(2,5)
y =

ϵ1ϵ
5
x

4088164080000π

[
sin(2πqy)(33(−340ϵ1 cos(2πqx)(369227 cos(4πqx) − 6071163) cos(2πqy)

− 91(1297372 cos(4πqx) + 59485 cos(8πqx) − 3461625)) − 618800ϵ2 cos(2πqx)(19521 cos(4πqx) − 100109) cos(2πqz))
]
.

(C.19)

We note that the y-components and z-components are sym-
metric under the exchange of qy ↔ qz and ϵy ↔ ϵz in the above
expressions.

Appendix D: Asymptotic structure of the
singularity at collapse

In this appendix, we analytically investigate the dependence on
initial conditions of the logarithmic slopes of various profiles
expected at the shell-crossing and small radii, as discussed in
Sect. 4.3. The main results of this investigation are summarised
in Table 2. Since the extension to the 2D case is obvious by sim-
ply setting ϵz = 0, we present here the structure of the singularity
obtained from LPT to some order for the three sine waves case.
We note that the calculations presented in this appendix are con-
ceptually not new since singularity theory applied to cosmology
is already well known (see e.g. Arnold et al. 1982; Shandarin &
Zeldovich 1989; Hidding et al. 2014; Feldbrugge et al. 2018).

D.1. Taylor expansion around the singularity

To facilitate the analysis, we focus on the relation between
Eulerian and Lagrangian coordinates around the origin. Expand-
ing the relation (5) between the Eulerian coordinate x and the
Lagrangian coordinate q around the origin, we obtain, after
neglecting O(q4) and higher-order terms,

xi(q, t) = Ãia(t)qa +Ciabc(t) qa qb qc, (D.1)

with Ãi j(t) ≡ δi j + Ai j(t), where Ai j(t) is some function of time.
In these equations, we have exploited the symmetric nature of
the three-sine-wave initial conditions, which imply that Eulerian
coordinates around the shell-crossing point can be expanded in
terms of odd third-order polynomials of the Lagrangian coordi-
nates, that is, polynomial forms P that verify P(−q) = −P(q) (see
e.g. Colombi 2015; Taruya & Colombi 2017, for the 1D case).

The coefficients Ai j and Ci jkl are expressed in terms of par-
tial derivatives of the displacement field with respect to the
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Lagrangian coordinates at the origin as follows,

Ai j(t) = Ψi, j(0, t), Ci jkl(t) =
1
3!
Ψi, jkl(0, t). (D.2)

Using Eq. (D.1), the Jacobian matrix is given by

Ji j(q, t) = Ãi j(t) + 3Ci jab(t) qa qb. (D.3)

The shell-crossing time tsc is obtained by solving the equation
J(0, tsc) = 0, that is,

det Ã(tsc) = 0. (D.4)

Hereafter, the dependence on the collapse time tsc will be omitted
in the notations.

Using Eq. (D.3), the Jacobian is given by

J(q) =
3
2
εi jk εabc

[
Ãia Ã jb Ckcde qd qe

+ 3Ãia C jbde Ckc fg qd qe q f qg

+ 3Ciade C jb fgCkcmn qd qe q f qg qm qn

]
. (D.5)

Further simplifying the calculations, we noticed that, up to
the tenth order of the LPT development, for an initial displace-
ment field given by three orthogonal sine waves aligned with
each coordinate axis, the matrix Ãi j is diagonal and the matrix
Ci jkl verifies

Ciiii , 0,
Cii j j = Ci ji j = Ci j ji , 0 , i , j,
Ci jkl = 0 , otherwise. (D.6)

We did not find any simple way to demonstrate that these prop-
erties stand at any order, but the fact that they are verified up
to tenth-order LPT is a really convincing clue. In this case, the
shell-crossing condition, Eq. (D.4), is reduced to Ãxx Ãyy Ãzz = 0.
Prior to the shell-crossing, the Eulerian coordinates read

A(q) =
(
Ãxx qx δAx + Ãyy qy δAy + Ãzz qz δAz

)
+CAAAAq3

I +
∑

B

3 (1 − δAB) CAABB qA q2
B, (D.7)

for A, B = x, y, z, and the Jacobian

J(q) = 3
(
Ãxx ÃyyCzzde + Ãyy Ãzz Cxxde + Ãzz Ãxx Cyyde

)
× qd qe

+
9
2

(
εx jk εxbc Ãxx + εy jk εybc Ãyy + εz jk εzbc Ãzz

)
×C jbde Ckc fg qd qe q f qg

+
9
2
εi jk εabc Ciade C jb fgCkcmn qd qe q f qg qm qn. (D.8)

D.2. Asymptotic behaviour of the profiles at collapse

We now analyse the asymptotic behaviour of the profiles
around the origin. To this end, when we consider the follow-
ing scaling, x → s x, implying r → s r, we examine how the
Lagrangian coordinate changes. By doing so, we can under-
stand the behaviour of the scaling of the Jacobian in terms of
the Lagrangian coordinates, and thus reveal the behaviour of the
density profile at the origin.

It is important to note that this proof is somewhat simplified
and ignores details on the angular dependence when perform-
ing integrals over spherical shells to obtain the radial profiles.
Therefore, the proof given in this appendix is not mathematically
rigorous, but it leads to the same conclusions as the exact calcu-
lations in which proper form factors are estimated. The purpose
of this section is indeed to provide a simplified rephrasing of sin-
gularity theory already presented in a more rigorous fashion in
other works (see e.g. Arnold et al. 1982; Shandarin & Zeldovich
1989; Hidding et al. 2014; Feldbrugge et al. 2018).

First, we examine the case 0 = Ãxx , Ãyy , Ãzz, which
corresponds to the following sine waves initial conditions: Q1D-
2SIN, Q1D-3SIN, ANI-2SIN, and ANI-3SIN (i.e. 0 ≤ ϵ2D < 1 or
0 ≤ ϵ3D,i < 1 for i = 1, 2), as summarised in first line of Table 2.
This configuration corresponds to the shell-crossing along the x
axis.

When computing the radial profiles close to the centre of the
system, we consider spherical shells of radius r with r2 = x2 +
y2 + z2 ≪ 1. At leading order in q we have, at the shell-crossing,

x ≃ Cxxxx q3
x + 3Cxxyy qx q2

y + 3Cxxzz qx q2
z , (D.9)

y ≃ Ãyy qy, (D.10)

z ≃ Ãzz qz. (D.11)

Applying the scaling x→ sx implies

qy → s qy, qz → s qz. (D.12)

Then, applying the same scaling in Eq. (D.9) and taking the limit
s ≪ 1, we simply obtain

qx → s1/3qx. (D.13)

After exploiting the symmetries of matrix Ci jkl (Eq. D.6), the
Jacobian up at leading order in q is given by

J(q) ≃ 3Ãyy Ãzz

(
Cxxxx q2

x +Cxxyy q2
y +Cxxzz q2

z

)
. (D.14)

Using the scalings in Eqs. (D.12) and (D.13), we have

J(q)→ 3Ãyy Ãzz

(
Cxxxx s2/3q2

x +Cxxyy s2q2
y +Cxxzz s2q2

z

)
. (D.15)

Then, we have J ∝ s2/3 when s ≪ 1, resulting in ρ ∝ r−2/3.
Second, we consider the case 0 = Ãxx = Ãyy , Ãzz, which

corresponds to the initial condition SYM-2SIN (i.e. ϵ2D = 1 or
ϵ3D,1 = 1 and ϵ3D,2 < 1), as summarised in second line of Table 2.
This configuration corresponds to simultaneous shell-crossings
along x and y axes. In this case, the main contribution to Eulerian
coordinates reads, at the shell-crossing,

x ≃ C1q3
x + 3C2 qx q2

y + 3C3 qx q2
z , (D.16)

y ≃ C1q3
y + 3C2 qy q2

x + 3C3 qy q2
z , (D.17)

z ≃ Ãzz qz, (D.18)
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In this last expression, we did not exploit yet explicitly the sym-
metries on Ci jkl matrix. On the basis of these equations, we can
now investigate the slope of the density profile for the three
types of singularities we consider, depending on the values of
the eigenvalues of matrix Ãi j.
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where we have exploited the symmetry between x and y, which
implies Cxxxx = Cyyyy ≡ C1, Cxxyy = Cyyxx ≡ C2 and Cxxzz =
Cyyzz ≡ C3. Applying the same reasoning as above, the scaling
x→ sx implies

qz → s qz, (D.19)

which leads us, when applying the scaling to Eqs. (D.16) and
(D.17) and assuming s ≪ 1, to neglect the last term in these
equations, hence

s x ≃ C1q3
x + 3C2 qx q2

y, (D.20)

s y ≃ C1q3
y + 3C2 qy q2

x, (D.21)

which leads to the scalings

qx → s1/3qx, qy → s1/3qy. (D.22)

With Ãxx = Ãyy = 0, the first term in Eq. (D.8) vanishes, and the
second term becomes the leading contribution:

J(q) =
9
2
εz jk εzbc ÃzzC jbde Ckc fg qd qe q f qg. (D.23)

Exploiting Eq. (D.6) then allows us to write this term as

J(q) ≃
∑

i+ j+k=2

bi jk q2i
x q2 j
y q2k

z , (D.24)

where bi jk are constant coefficients. Using the scalings given by
Eqs. (D.19) and (D.22), we have

J(q)→
∑

i+ j+k=2

s2(i+ j)/3+k bi jk q2i
x q2 j
y q2k

z . (D.25)

The lowest power of s in Eq. (D.25) is s4/3 with i = j = 1 and
k = 0. Thus, we have ρ ∝ r−4/3.

Third, we consider the case Ãxx = Ãyy = Ãzz = 0, which cor-
responds in the three sine waves case to the SYM-3SIN (i.e.
ϵ3D = (1, 1)), as summarised in third line of Table 2. This con-
figuration corresponds to simultaneous shell-crossings along all
the axes. The approach is analogous to the previous case. The
Eulerian coordinates can be written as follows:

x ≃ C1q3
x + 3C2 qx q2

y + 3C3 qx q2
z , (D.26)

y ≃ C1q3
y + 3C2 qy q2

z + 3C3 qy q2
x, (D.27)

z ≃ C1q3
z + 3C2 qz q2

x + 3C3 qz q2
y, (D.28)

with, again C1 = Cxxxx = Cyyyy = Czzzz, C2 = Cii j j for i , j.
Equations (D.26)–(D.28) directly lead to the scaling of q:

qx → s1/3qx, qy → s1/3qy, qz → s1/3qz, (D.29)

Now, the first and second terms in Eq. (D.8) vanish, and we have

J(q) =
9
2
εi jk εabc Ciade C jb fgCkcmn qd qe q f qg qm qn, (D.30)

which reads, after exploitation of the symmetries (D.6),

J(q) ≃
∑

i+ j+k=3

bi jk q2i
x q2 j
y q2k

z . (D.31)

Using the scaling given by Eq. (D.29), we have

J(q)→
∑

i+ j+k=3

s2(i+ j+k)/3bi jkq2i
x q2 j
y q2k

z . (D.32)

The lowest power of s in Eq. (D.32) is s2. Thus, we have ρ ∝ r−2.
Finally, we focus on the velocity and pseudo phase-space

density profiles. Using Eq. (D.1), the velocity field up to leading
order in the Lagrangian coordinate is given by

vi(q, tsc) = a ˙̃Ai j(tsc) q j, (D.33)

where the dot denotes derivative with respect to the cosmic
time t. As can be seen from this relation, the velocity field is
proportional to the Lagrangian coordinate, irrespective of ini-
tial conditions, because the shell-crossing condition Ãi j(tsc) = 0
does not imply ˙̃Ai j(tsc) = 0. Since, according to the calculations
performed above, the leading contribution from the Lagrangian
vector always come from the scaling qi → s1/3qi when s ≪ 1,
it is fairly easy to convince oneself that the velocity profiles are
given, at small radii, by v2 ∝ r2/3, v2r ∝ r2/3, and −vr ∝ r1/3, from
which we can infer as well the logarithmic slope of the pseudo
phase-space density Q(r) through Eq. (41).
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