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ABSTRACT

We introduce MAGRATHEA-PATHFINDER, a relativistic ray-tracing framework that can reconstruct the past light cone of observers
in cosmological simulations. The code directly computes the 3D trajectory of light rays through the null geodesic equations, with the
weak-field limit as its only approximation. This approach offers high levels of versatility while removing the need for many of the
standard ray-tracing approximations such as plane-parallel, Born, or multiple-lens. Moreover, the use of adaptive integration steps and
interpolation strategies based on adaptive-mesh refinement grids allows MAGRATHEA-PATHFINDER to accurately account for the non-
linear regime of structure formation and fully take advantage of the small-scale gravitational clustering. To handle very large N-body
simulations, the framework has been designed as a high-performance computing post-processing tool relying on a hybrid paralleliza-
tion that combines MPI tasks with C++11 std::threads. In this paper, we describe how realistic cosmological observables can be
computed from numerical simulation using ray-tracing techniques. We discuss in particular the production of simulated catalogues and
sky maps that account for all the observational effects considering first-order metric perturbations (such as peculiar velocities, grav-
itational potential, integrated Sachs-Wolfe, time-delay, and gravitational lensing). We perform convergence tests of our gravitational
lensing algorithms and conduct performance benchmarks of the null geodesic integration procedures. MAGRATHEA-PATHFINDER
introduces sophisticated ray-tracing tools to make the link between the space of N-body simulations and light-cone observables. This
should provide new ways of exploring existing cosmological probes and building new ones beyond standard assumptions in order to
prepare for the next generation of large-scale structure surveys.
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1. Introduction

One of the main challenges of modern science is understand-
ing the dark sector of the Universe which dominates its energy
content (according to the cosmological concordance model).
Since the discovery of the accelerated expansion of our Universe
(Perlmutter et al. 1998; Riess et al. 1998), cosmologists have
for decades searched for new probes to understand its proper-
ties and have successfully confronted the ΛCDM model with
them (Planck Collaboration VI. 2020; Abbott et al. 2019; Scolnic
et al. 2018; Riess et al. 2019; Wong et al. 2019; Freedman et al.
2019; Alam et al. 2021). All of these probes share a common-
ality in that they consist in information coming from photons,
using which we can observe the Universe. It is only very recently
that we have begun to use other messengers such as gravita-
tional waves to get complementary information (Holz & Hughes
2005; Caprini & Tamanini 2016). Nevertheless, photons remain
our principal source of information, and one can ask how the
properties of light modify our perception of the Universe.

The propagation of photons in a non-homogeneous Uni-
verse leads to mainly two effects, which have received
a lot of attention over the years and are accounted for
to interpret observational data. First, gravitational lensing

(Schneider et al. 1992; Bartelmann & Schneider 2001) mod-
ifies the apparent position of sources but also alters their
observed properties (shape, luminosity) with respect to the case
where photons would propagate in a homogeneous Friedmann–
Lemaître–Robertson–Walker (FLRW) universe. Second, the
position of the emission lines of sources are shifted due to their
own motion, which in return leads to an error in estimating dis-
tances when assuming a fiducial cosmological model: this is
called redshift-space distortions (RSD, Kaiser 1987; Hamilton
1992). The image we have of our Universe is therefore altered
due to these two phenomena. However, these effects also leave
distinct imprints on various cosmological observables, which in
turn can help us infer the properties of the Universe. Various cur-
rent and future missions such as Euclid (Laureijs et al. 2011) or
DESI (DESI Collaboration 2016) aim at studying these effects
through the shape of distant galaxies or their observed spatial
distribution.

Due to the increasing quality of data, it is becoming
necessary to model the mapping from a statistically homo-
geneous and isotropic universe to the observed one more
accurately. This was done for example regarding the galaxy
number counts, accounting for all the effects at first order
in metric perturbations within linear theory (Yoo et al. 2009;
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Challinor & Lewis 2011; Bonvin & Durrer 2011). However, the-
oretical prescriptions are limited because they usually cannot
properly model the non-linear regime of structure formation.
Instead, the use of numerical simulations becomes mandatory
to fully understand the clustering of matter, from linear to
non-linear scales.

Numerical simulations and, more precisely, dark-matter
(DM) N-body simulations (Hockney & Eastwood 1988) have
been widely used in cosmology to study the large-scale struc-
ture of the Universe beyond analytical methods. A lot of work
has been done to develop optimised N-body codes (Kravtsov
et al. 1997; Couchman 1991; Knebe et al. 2001; Teyssier 2002;
Springel 2005; Bryan et al. 2014; Aubert et al. 2015; Garrison
et al. 2021) which allow us to have access to good spatial res-
olution (small scales) and beat cosmic variance (large scales),
while limiting shot noise. Cosmological N-body simulations run
on supercomputers and use high-performance computing (HPC)
techniques, so that today the largest numerical simulations reach
trillions of DM particles (Potter et al. 2017; Heitmann et al. 2019;
Ishiyama et al. 2021).

N-body simulations compute the evolution of the matter den-
sity field from initial perturbations at high redshift up to now.
However, it is not sufficient to accurately model what we actu-
ally observe as one still needs to construct past light cones for
some given observers and compute the trajectory of light. This
is usually done through the multiple lens formalism (Blandford
& Narayan 1986), and ray-tracing post-processing tools have
been developed mostly to model the effect of gravitational lens-
ing (Fluke et al. 1999; Jain et al. 2000; Fosalba et al. 2008;
Hilbert et al. 2009; Metcalf & Petkova 2014; Giocoli et al. 2015;
Fabbian et al. 2018; Gouin et al. 2019). However, these meth-
ods often compute the lens equation on 2D planes and rely
on multiple approximations. Alternatively, several authors have
developed ray-tracing algorithms which instead directly compute
the geodesic equations in 3D; however the applications are usu-
ally still restricted to gravitational lensing (Killedar et al. 2012;
Barreira et al. 2016) or distance measurements (Koksbang &
Hannestad 2015; Giblin et al. 2016).

Ideally, ray tracing should be general enough to accurately
reconstruct the past light cone of an observer and produce a
wide range of cosmological observables. This approach has
been gaining more and more attention recently (Reverdy 2014;
Borzyszkowski et al. 2017; Breton et al. 2019; Adamek et al.
2019; Lepori et al. 2020; Breton & Fleury 2021) as it allows for
an in-depth study of subtle effects which are currently neglected
but could play an important role in future surveys. As evidence of
this, Breton et al. (2019) used ray tracing to find the null geodesic
connecting an observer to various sources for the first time in
order to estimate the impact of relativistic effects on the cluster-
ing of haloes. These authors found that the dipole of the correla-
tion function could be used to probe their gravitational potential
in next-generation surveys (Saga et al. 2022) and therefore test
the nature of gravity (Bonvin & Fleury 2018; Saga et al. 2021).

The goal of this paper is to present the MAGRATHEA-
PATHFINDER framework initially developed in Reverdy (2014)
and further developed in several directions since then. It is
designed to model the observed Universe as accurately as possi-
ble. To this end, we developed ray-tracing techniques that allow
us to construct various cosmological observables beyond stan-
dard assumptions. In this article, we briefly present the basics of
MAGRATHEA-PATHFINDER (Reverdy 2014) and focus on recent
developments and code validation. In Sect. 2, we review the
main features of our ray-tracing code. In Sect. 3, we perform
convergence tests and conclude in Sect. 4.

2. Numerical methods

MAGRATHEA-PATHFINDER is a post-processing numerical
framework1 to propagate photons throughout light cones pro-
duced by N-body astrophysics simulations. The framework is
built on top of MAGRATHEA (Multi-processor Adaptive Grid
Refinement Analysis for THEoretical Astrophysics), a high-
performance library developed to provide highly optimised
building blocks for the construction of AMR-based astrophysics
applications (Reverdy 2014). More specifically, the ray-tracing
framework leverages MAGRATHEA’s generic N-dimensional
hyperoctree abstraction and the associated numerical meth-
ods to simplify the handling of the adaptive mesh refinement
while ensuring the highest level of performance. Internally, the
adaptive-mesh refinement (AMR) structure is flattened, each cell
being associated with a unique binary index that encodes infor-
mation about its exact location in the tree. All canonical hyper-
octree operations such as finding parents, children, or neighbour
cells as well as calculating inter-cell distances are implemented
in terms of bit manipulation operations. Each cell is also associ-
ated with a data tuple to store the physics quantities attached to
a particular location. One of the key features of MAGRATHEA is
the heavy use of C++ template metaprogramming approaches to
guide the compiler through the optimisation process and ensure
the highest level of performance regarding the manipulation of
indices and physics data (Reverdy & Alimi 2015). In that sense,
MAGRATHEA acts as an active library running at compile-time
to pre-process MAGRATHEA-PATHFINDER’s code. The exact
implementation of the hyperoctree and low-level numerical algo-
rithms can be found in Reverdy (2014) and will be presented in
more details in an upcoming paper focusing on the MAGRATHEA
library. For the present paper, we focus on the ray-tracing algo-
rithms in MAGRATHEA-PATHFINDER made possible by the
above-mentioned library.

2.1. From simulations to MAGRATHEA octree

As ray-tracing simulations are performed as an independent and
subsequent phase of dynamic cosmological simulations, it is
possible to leverage the particular geometry of the problem to
optimise parallelization schemes and minimise inter-node com-
munications. In practice, the very first step consists in generating
a 3D light cone containing all the information relative to the
gravitational field and converting it into MAGRATHEA’s 3D-
octree data structure. Usually, the light cone is built from an
N-body simulation. If the simulation uses a particle-mesh (PM)
method, then the identification between the cells of the simula-
tions and that of MAGRATHEA can be trivially achieved through
the conversion of Cartesian positions into MAGRATHEA indices.
The same applies to AMR-based simulation. However, when
cosmological simulations rely on another method to compute
the gravitational field one has to first interpolate the gravita-
tional information available at particle locations onto a fixed
or adaptive grid that can then be processed by MAGRATHEA’s
hyperoctree engine.

Once the light cone is converted into MAGRATHEA’s octree
format, geometrical inconsistencies are checked to ensure that
the ray-tracer can work on clean data. One typical problem that
may arise during concentric shell extraction happening at the
cosmological simulation level is the production of sparse AMR
cells at the boundary of two shells. In this case, the geometrical

1 Available at https://github.com/vreverdy/magrathea-
pathfinder
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checker adds cells interpolated from a coarser level to build a full
tree with either zero or eight children per cell that preserves the
original gravitational information. The operation is repeated at
every level, from the coarsest to the most refined.

Because the light cone of high-resolution simulations can
reach several terabytes of data, it is often not possible to load it
on a single node. In this case, a conic domain decomposition of
the light cone with overlaps is performed which allows photons
to be propagated almost without the need of cross-node commu-
nications for the most part of the ray-tracing phase. On top of the
conic domain, every computational node gets a copy of a small
spherical region centered on the observer to ensure proper inde-
pendent propagation at very low redshift. The hybrid MPI/C++
thread parallelization approach of MAGRATHEA allows to the
user maximise the size of geometrical subdomains and minimise
the total size of overlaps while still ensuring a maximal exploita-
tion of computational resources with many threads working at
the same time on the same shared memory, each one of them
taking care of a particular photon. Once the octree containing all
the relevant gravitational information is built, checked, and dis-
tributed across computational nodes, the main ray-tracing phase
can begin.

2.2. Geodesic integration and light propagation

MAGRATHEA-PATHFINDER propagates photons on the null
geodesics of the weakly perturbed FLRW metric in Newtonian
gauge

ds2 = a2(η)
[
−

(
1 + 2

Φ

c2

)
c2dη2 +

(
1 − 2

Φ

c2

)
dx2

]
, (1)

where η and x are respectively the conformal time and comoving
coordinates, a(η) is the scale factor, Φ the gravitational potential,
and c the speed of light. The null geodesic equations are
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where a prime denotes a derivative with respect to conformal
time, and λ is an affine parameter. We perform backward ray
tracing, meaning that we start the propagation of the photons at
the observer today towards the past. The geodesic equations are
solved using a fourth-order Runge-Kutta integrator (RK4) with
N steps per AMR cell (N = 4 in common settings), where the
photons are initialised using kνkν = 0 (with kν = dxν/dλ) given
the initial direction of the photon ki, and k0 = 1, meaning that at
the observer conformal time and affine parameter coincides.

To compute Eqs. (2) and (3), we have access to η, xi, k0 and
ki that are given by the integrator, a(η) and a′(η) by external
pre-computed tables in the fiducial cosmology of the simulation
given η, and ∂Φ/∂xi by the simulation itself. The last subtlety
lies in the use of dΦ/dλ or ∂Φ/∂η, knowing that these terms are
simply related by

dΦ

dλ
=
∂Φ

∂x
dx
dλ

+
∂Φ

∂y

dy
dλ

+
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∂z
dz
dλ

+
∂Φ

∂η

dη
dλ
. (4)

Usually, N-body simulations do not provide ∂Φ/∂η and therefore
it is easier to rewrite the geodesic equations in terms of dΦ/dλ

only, because it can be estimated by differentiating between two
steps of the integration as

dΦi

dλ
=

Φi − Φi−1

λi − λi−1 , (5)

where the superscripts refer to the integration step. The main
drawback of this method is that it strongly depends on the
procedure used to build the light cone. For example, if one
uses the onion-shell method (Fosalba et al. 2008), then some
artefacts will appear on dΦ/dλ at the crossing between shells.
It is important to note that these subtleties are only impor-
tant when studying very small effects (such as ISW or time
delay).

Ideally, ∂Φ/∂η should be provided by the simulation. It is
the case for example with the RayGal simulations (Rasera et al.
2021) where the authors use a double-layer strategy, meaning
that two light cones slightly shifted in time are stored. In this
case, the time derivative of the potential can be straightforwardly
computed for every cell using

∂Φ

∂η
=

Φ2 − Φ1

a2 − a1

da
dη
, (6)

where the subscripts denote which light cone is used. The main
advantage of this method is that it is non-perturbative and there-
fore accurate even at non-linear scales. Last, we note that in
practice ∂Φ/∂η could also be computed from the density and
velocity fields (Cai et al. 2010).

All of the components needed to compute the geodesic equa-
tions are available at the location of cells. This means that we
need to interpolate them at the photon position at each step
(and each sub-step in the RK4 integrator), while accounting for
the AMR structure of the light cone. We implemented three
different interpolation schemes, namely the nearest-grid point
(NGP), cloud-in-cell (CIC), and triangular-shaped cloud (TSC)
interpolations, of which the first two were already present in
Reverdy (2014). For consistency, the interpolation scheme must
be the same as the one used to produce the gravity grid (see
Sect. 2.1). The weighting functions associated to NGP, CIC, and
TSC are

WNGP(ri) =

{
1 for |ri| < 0.5,
0 otherwise, (7)

WCIC(ri) =

{
1 − |ri| for |ri| < 0.5,
0 otherwise, (8)

WTSC(ri) =


0.75 − r2

i for |ri| < 0.5,
(1.5 − |ri|)2 /2 for 0.5 < |ri| < 1.5,
0 otherwise,

(9)

where r is the separation between a cell and the location at which
we interpolate, normalised by the cell size.

For NGP, the interpolation is trivial as we take the grav-
ity information from the most refined cell which contains the
photon. For CIC and TSC, the interpolation procedure is as
follows:

1. Estimate the refinement level of the most refined cell
containing the photon;

2. Check if there are 8 (27) neighbouring cells to perform the
CIC (TSC) interpolation in three dimensions;
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Fig. 1. Illustration of the TSC interpolation scheme at a given location
in an AMR grid in 2D. Red points refer to some locations on the grid
(which can be for example the position of a photon during its propa-
gation) and the cells used to perform the interpolation are highlighted
in blue. The interpolation is done at fixed level, meaning that when the
interpolation level is set, we do not use the information from coarser or
finer cells.

3. If all the neighbouring cells exist in the octree, compute
the interpolation;

4. If at least one of the neighbouring cells does not exist in
the octree, repeat the full procedure at a coarser level;

5. If there are not enough neighbours even at coarse level
(meaning that we reach the edges of the numerical light cone),
the integration is stopped.

We illustrate this procedure in Fig. 1. In the top left panel,
we see that there are the nine neighbouring cells to perform the
2D TSC interpolation. In this case the gravity information is eas-
ily interpolated at the photon location to compute the geodesic
equations. The photon location is updated in the top right panel,
where there are also enough neighbours at coarse level. Here,
even if the top-right cell also contains more refined cells, they do
not contribute to the interpolation and we rather use the coarser
cell. In the middle left panel, the photon is in a more refined cell
than previously. The code tries to interpolate at this finer level,
but cannot find the associated neighbouring cells. It therefore
performs the interpolation at a coarser level, where all the neigh-
bours exist in the grid. In the middle right panel, the photon is
in a new cell at the same level as previously, the only difference
being that now there are enough neighbouring cells to perform
the interpolation at this finer level. The bottom panels show a
similar behaviour as previously but with more refinement. The
CIC procedure is similar to that of TSC, except for the fact that
in this case we need four neighbouring cells in two dimensions.
A nice feature about TSC compared to CIC is that for the lat-
ter, the neighbours depend on the position of the photon within
a cell, while for the former it is not the case. We take advantage
of this by keeping in memory all the neighbours of a given pho-
ton at each step, and if the next step of the photon is in the same
cell and the TSC interpolation performed at the same level, then

we do not have to search again for the neighbouring cells in the
octree and therefore gain in performance. It should be noted that
this interpolation procedure does not prevent discontinuities at
the crossing between AMR levels; however we expect this effect
to be very faint, especially for the commonly used CIC and TSC
interpolation schemes, as we show in Sect. 3.2.

At each step of the propagation, we keep in memory the step
number, scale factor, conformal time, comoving position, affine
parameter, redshift, wavevector kν, level of the most refined cell,
density, gravitational potential and its derivatives with respect
to conformal time, affine parameter, and comoving coordinates
(i.e. the force). It is also possible to estimate these quantities
along the propagation of an unperturbed light ray (this is the so-
called ‘Born approximation’) by setting the gravity to zero in the
geodesic equations.

Now that we have seen the methodology to propagate pho-
tons on null geodesics within the 3D AMR structure of the light
cone, we shall turn to the implementation of gravitational lensing
and simulated catalogues.

2.3. Distortion matrix and gravitational lensing

One direct consequence of light propagation in an inhomoge-
neous universe is the modification of the apparent position of a
source, as well as the modification of its properties (shape and
observed luminosity). To derive these properties, we start from
the lens equation

β= θ − α, (10)

where β and θ are the comoving and observed angular position
on the sky of a source, and α the deflection angle. We note
that θ is the photon direction at the observer which is directly
given by ki at this location. The relevant information for weak
gravitational lensing is encoded in the Jacobian matrixA which
describes the mapping from d2β to d2θ. This gives

A=
d2β

d2θ
=

(
cos(ω) − sin(ω)
sin(ω) cos(ω)

) (
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
, (11)

where κ, γ= γ1 + iγ2 , and ω are respectively the convergence,
shear, and rotation of an image. The magnification µ is the
change in observed flux and size of an image (due to the con-
servation of surface brightness), and is defined as the inverse
determinant ofA.

Usually, ray-tracing codes are designed to compute κ and
γ (and sometimes µ). However, these often make use of sev-
eral approximations such as Born, plane-parallel, and multiple
lens. We now show how to implement the computation of weak-
lensing quantities using the 3D propagation on null geodesics
described in Sect. 2.2. To do so, we use two methods which we
refer to as ‘infinitesimal’ and ‘finite’ beams.

2.3.1. Infinitesimal light beams

First, we consider the usual definition of the distortion matrix,
which describes the behaviour of infinitesimal light beams.
Formally, Eq. (11) is given by

Aab = δab − 2
c2

∫ χs

0
dχ

(χs − χ)χ
χs

∇a∇bΦ[η(χ), x(χ)], (12)

where the subscripts refer to the angular coordinates, δab is
the Kronecker delta, χ is the comoving distance of the pho-
ton during its propagation, and χs is the distance at the source.
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We note that here the derivatives are performed along angu-
lar spherical coordinates. Because spherical derivatives are not
straightforward to compute, we find it easier to first perform
derivatives along the 3D Cartesian coordinates, and then rewrite
them in terms of spherical ones. At any location on the light
cone, we have access to the gravitational field −∇iΦ(x) ≡
Fi(x) = {Fx(x), Fy(x), Fz(x)}. It is possible to compute its Carte-
sian derivatives by differentiating as

−∇i∇ jΦ(x) =
F j(x + hei) − F j(x − hei)

2h
, (13)

where ei = {ex, ey, ez} is a unit vector, and h is the derivation step.
We found that choosing a derivation step equal to the size of the
most refined AMR cell (and therefore highest AMR level) the
photon is in, that is h = 2−level, is the optimal choice to compute
these derivatives (see also Sect. 3.5). From a numerical perspec-
tive, ∇i∇ j , ∇ j∇i when i , j. However, the difference is so small
that we consider them equal so as to avoid the costly computa-
tion of all the possible permutations. The last step is to go from
Cartesian to spherical derivatives. Our method is similar to that
of Barreira et al. (2016), except that we do not resort to the Born
approximation and we compute ray-tracing as post-processing.
The components of the Laplacian in Eq. (12) are given by

∇1∇1Φ = sin2 ϕ ∇x∇xΦ + cos2 ϕ ∇y∇yΦ − sin 2ϕ ∇x∇yΦ, (14)

∇2∇2Φ = cos2 ϕ cos2 ϑ ∇x∇xΦ + sin2 ϕ cos2 ϑ ∇y∇yΦ
+ sin2 ϑ ∇z∇zΦ + sin 2ϕ cos2 ϑ ∇x∇yΦ
− sinϕ sin 2ϑ ∇y∇zΦ − cosϕ sin 2ϑ ∇x∇zΦ, (15)

∇1∇2Φ = cosϑ cosϕ sinϕ (∇y∇yΦ − ∇x∇xΦ)

+ (cos2 ϕ − sin2 ϕ) cosϑ ∇x∇yΦ
+ sinϕ sinϑ ∇x∇zΦ − cosϕ sinϑ ∇y∇zΦ, (16)

where (ϕ, ϑ) is the angular position of the photon in spherical
coordinates at each step. Last, we use ∇1∇2Φ =∇2∇1Φ, mean-
ing that we consider that there is no rotation of the image. We
note that the option to use the Born approximation has been
implemented by using this method along an FLRW trajectory.

2.3.2. Finite beams

In reality, sources are not infinitesimal but are rather extended.
The usual weak-lensing formalism is therefore an approxima-
tion of the more accurate finite-beam formalism (Fleury et al.
2017, 2019a,b). In this case we can compute the lensing distor-
tion matrix by launching a beam composed of several close-by
light rays which are all integrated on null geodesics indepen-
dently. The idea to consider several rays to characterise a light
beam is similar to the ‘ray-bundle method’ proposed by Fluke
et al. (1999) and Fluke & Lasky (2011). First, we launch a ref-
erence photon in the direction in which we want to compute
the lensing matrix. This photon is used as a reference to know
where to stop the beam. For example, we might want to know the
lensing quantities at some parameter p0 where p = {a, η, χ, z, λ}
(see Sect. 2.2), but we still have the choice to stop the beam
light rays at some other parameter p̃0 = p̃(p0) for the reference
photon. We note that all of the parameters are equivalent in an
FLRW universe, but this is no longer true when accounting for
inhomogeneities.

To compute the distortion matrix, we therefore need
to know p0, ε, which is the beam semi-aperture, and
θ= (θ1, θ2), which is the photon direction at the observer.

In Cartesian coordinates, the direction of the target is
r̂ = (cos θ1 sin θ2, sin θ1 sin θ2, cos θ2) where a hat denotes a unit
vector. We can define a screen perpendicular to this direc-
tion with two orthogonal vectors e1 = (− sin θ1, cos θ1, 0) and
e2 = (− cos θ1 cos θ2,− sin θ1 cos θ2, sin θ2). Now we can launch
four rays denoted A, B, C, and D (see also Fig. 5 in Breton &
Fleury 2021), with initial directions

r̂A = r̂ + tan(ε) e1 × u, (17)
r̂B = r̂ − tan(ε) e1 × u, (18)
r̂C = r̂ − tan(ε) e2 × u, (19)
r̂D = r̂ + tan(ε) e2 × u, (20)

where u = (ex, ey, ez). Each ray is propagated on the light cone
until p̃0 so that their final position is given by ξA, ξB, ξC and
ξD. To compute the lensing distortion matrix, we differentiate
between the positions of the light rays of the beam. Taking
advantage of the fact that the beam is supposed to be small, we
can write ∆β= ∆ξ/χ0 = Â∆θ, where χ0 is the comoving dis-
tance of the reference ray at p0 and Â the finite-beam distortion
matrix.

A last subtlety is the choice of screen onto which
we compute the finite differences. From Eq. (11), a nat-
ural choice for this screen is the one orthogonal to
β= (β1, β2), defined as ẽ1 = (− sin β1, cos β1, 0) and
ẽ2 = (− cos β1 cos β2,− sin β1 cos β2, sin β2). Alternatively,
it is possible to use the more physically motivated Sachs
screen, which is orthogonal to the central (reference) photon
direction. In this case, the screen is defined with ẽ1 =
(− sin ζ1, cos ζ1, 0) and ẽ2 = (− cos ζ1 cos ζ2,− sin ζ1 cos ζ2, sin ζ2),
with ζ1 = arctan(k̂y/k̂x) and ζ2 = arccos(k̂z), where k̂ ≡ k̂(p0) =
(kx, ky, kz) is the direction of the central photon at p0. Finally,
the lensing distortion matrix is computed as

Â ≡ 1
2χ0 tan(ε)

[
(ξA − ξB) × ẽ1 (ξC − ξD) × ẽ1
(ξA − ξB) × ẽ2 (ξC − ξD) × ẽ2

]
. (21)

Moreover, instead of stopping the light rays of the beam at p̃0,
we also implemented the possibility to stop them directly on the
screen of interest.

Using finite beams to compute the Jacobian matrix allows
us to make an accurate treatment of extended sources, which
smooths the effect of gravitational lensing on the scale of the
beam (Fleury et al. 2017, 2019a,b). This impacts the convergence
and shear angular power spectra with respect to the infinitesi-
mal case. A nice agreement between theoretical prediction and
numerical estimation was found in Breton & Fleury (2021) (see
also Appendix B for a visualisation of the finite-beam effect on
convergence maps).

As this method is purely geometrical and depends on the dif-
ferential deflection of photons within a beam, we cannot adapt
it with the Born approximation. Also, this method does not
assume that the off-diagonal terms of the Jacobian matrix are
equal, meaning that we have access to the image rotation. Hav-
ing implemented the tools to propagate photons and compute
the weak gravitational lensing quantities, we now turn to the
production of cosmological observables: maps and simulated
catalogues.

2.4. Producing Healpix maps

First, we consider ‘direction-averaged’ observables (Kibble &
Lieu 2005), which relate to observations in random directions
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of the sky that are especially relevant for the cosmic microwave
background. Usually, ray tracing is performed in a pencil beam
where all the photons propagate almost in parallel towards the
pixels of a plane. In MAGRATHEA-PATHFINDER, all the photons
start from the observer and in this case we find that the most nat-
ural frame to homogeneously sample the sky is to use Healpix
(Górski et al. 2005). Given a resolution level Nside

2, Healpix
gives the position of the centre of the pixels. These positions
are then used to initialise the photon direction ki at the observer.

In practice, we first assign the pixels to the different MPI sub-
domains (see Sect. 2.1) to ray-trace the different parts of the sky
in parallel. Within one MPI task, we use C++11 std::thread
multithreading to propagate light rays towards the pixels simul-
taneously. The user must then specify z_stop_min (minimum
redshift), z_stop_max (maximum redshift), and nb_z_maps
(number of redshifts at which we compute the maps), which sets
(roughly) the redshifts zn of the output maps. More precisely,
the maps are computed at some iso-parameter p surfaces (using
the keyword stop_ray, see also Sect. 2.3.2), and evaluated at
pn = p(zn), where pn is the stop criterion computed by launching
an FLRW light ray in a very refined homogeneous grid.

Now, we need to specify which quantities we want to esti-
mate. In map_components, the user can write a list of keywords
to output several maps containing the following information:

– lensing: The code computes the weak-lensing quanti-
ties κ, γ1, γ2 and 1/µ using either the infinitesimal method
(jacobiantype = infinitesimal, see Sect. 2.3.1) or the
finite-beam method (jacobiantype = bundle, see Sect. 2.3.2).
For the latter, an additional map is written which contains the
image rotation, and one must specify the stop criterion of bundle
(that is, p̃, see Sect. 2.3.2) using stop_bundle.

– lensing_born: Here we propagate an FLRW light ray in
the pixel directions. We then use the infinitesimal method along
these trajectories to estimate the weak-lensing quantities.

– deflection: The deflection angle, computed as α= θ − β,
where θ is given by Healpix and β by the photon position at the
map.

– dens: The density (computed in the N-body solver) inter-
polated at the iso-p surfaces.

– dens_max: The maximum density probed by the photon
during its trajectory until the maps.

– phi: The gravitational potential interpolated at the iso-p
surfaces.

– isw: Integrated Sachs-Wolfe/Rees-Sciama maps.
– steps: The number of integration steps for the photon.
– Relative differences with respect to their FLRW counter-

part for various quantities: χ, λ, η, a, z, with the keywords dr,
dl, dt, da, dz respectively.

These are the map types currently implemented in
MAGRATHEA-PATHFINDER, and in the future this number will
be easily expanded to add more functionalities. The only limita-
tion regarding the number of map components and redshifts at
some Healpix resolution is the memory available.

Last, there is one subtlety regarding the computation of the
redshift: as we estimate the redshift of the photon at each step
of integration, we only perturb the redshift with gravity infor-
mation (local and integrated terms). Indeed, we do not have
access to the velocity which is only available at the position of
DM particles (or haloes). However, by adding the compile flag
-DVELOCITYFIELD, MAGRATHEA-PATHFINDER computes the
velocity field at the position of the AMR grid by interpolating
(using either CIC or TSC) the velocity from all the particles

2 The total number of pixels on the full sky is Npix = 12×N2
side.

available in the light cone shells around zn in the subdomain of
interest. This means that we need to add data slots on the octree
to store {vx, vy, vz} at each cell, which produces a heavier octree.
This is interesting in particular when we want to compute a map
at some constant-redshift surface, where the redshift is notably
impacted by the Doppler contributions.

2.5. Geodesics finder and relativistic catalogues

Alternatively, we can produce ‘source-averaged’ observables:
these are simulated catalogues which relate to observations at
the direction of sources on the sky (such as galaxy or supernovae
surveys). As we observe sources thanks to photons that propa-
gated between their emission location and us, we must reproduce
the same procedure numerically to construct realistic simulated
catalogues. MAGRATHEA-PATHFINDER already integrates the
trajectory of light rays on null geodesic; the only remaining
element is to find the appropriate initial condition to link the
observer to sources on the light cone.

As described in Breton et al. (2019), we start from the comov-
ing position of a source r, with comoving angular position β. The
goal is to find θ so that the photon angular position at the comov-
ing distance of the source is very close to β. To do so, we iterate
over θ and use a Newton-like method to find the null geodesic
which connects the observer to the source. This reads

θi+1 = θi −A−1(βi − β), (22)

where the subscripts refer to the iteration of the root-finding
method, and βi is the photon angular position at χ with initial
direction at the observer θi. To avoid any problems due to the
system of coordinates, we make all the calculations on a screen
orthogonal to θi. We consider that our method has converged
when |βi −β| < ε, with ε being the convergence criterion set with
the keyword cat_accuracy. To speed up the calculation, for the
first three iterations we impose A=I, with I being the iden-
tity matrix. This should be a good enough approximation when
there are no large gravitational fields along the photon trajectory.
If the iterations do not converge, we then estimate A with the
infinitesimal method (which is faster than the finite-beam one)
for two iterations. If convergence is still not achieved, we use a
finite-beam method to compute the Jacobian matrix. If after ten
iterations convergence is still not achieved (which in our tests
represents about one part per million), the sources are saved in
some separate files, which we can decide to use if |βi − β| is
small enough, or we can run an alternative root finder where we
re-run the ray tracing on sources with higher resolution. In this
case, we launch photons in the direction of a regular grid cen-
tred on θ10, and compute θ11 from the grid pixel which gives
the best agreement. We repeat this process until we achieve the
desired accuracy. The size of the grid decreases at every itera-
tion of this procedure. While this last method is slow, it should
in the end converge for all the remaining sources. We note that
our root-finder algorithm stops whenever one image per source
is detected, which corresponds to the weak-lensing regime. For
multiply imaged sources, the principal image is likely to be the
one to be detected first, and we plan to develop a multiple-image
finder in the future to study strong-lensing in more detail.

Finally, for each source we therefore have β, θ,A (computed
when θ is known) using either the infinitesimal (with or without
the Born approximation) or finite-beam method, as well as var-
ious redshifts containing local and integrated terms, depending
on the contributions we are interested in. These read

z0 =
a0

a
− 1, (23)

A114, page 6 of 12



M.-A. Breton and V. Reverdy: MAGRATHEA-PATHFINDER: an AMR ray-tracing code

z1 = z0 +
a0

a
[Φo − Φs]

c2 , (24)

z2 = z1 +
a0

a
[(us − uo) × n]

c
, (25)

z3 = z2 +
1
2

a0

a

[
|us|2 − |uo|2

]
c2 , (26)

z4 = z3 − 2a0

c2a

∫ ηo

ηs

∂Φ

∂η
dη, (27)

z5 =
(gµνkµuν)s

(gµνkµuν)o
− 1, (28)

where z0 is the FLRW redshift, and z1 to z4 contain the
added contribution of the gravitational potential, Doppler effect,
Transverse Doppler effect, and ISW. The scale factor today
is given by a0, the subscripts ‘o’ and ‘s’ refer to evalu-
ations at the observer and at the source respectively, and
gµνkµuν =−ak0

[
1 + Φ/c2 + u × n/c + 1

2 |u|2/c2
]
. In practice, z5

is the true observed redshift (at first order in metric pertur-
bations), while the redshift decomposition from z0 to z4 is
particularly interesting to study these effects either in isolation
or in combination (see also Breton et al. 2019 for an analysis
of these effects on the dipole of the correlation function). For
example, by combining z0, z1, and z2 we can infer a measure of
redshift that is only perturbed by peculiar velocities, which is the
usual framework for RSD studies.

2.6. Light-ray statistics

Last, we implemented the possibility to propagate light rays and
bundles in random directions on the sky, and save several rel-
evant statistics along their trajectories. In each subdomain, the
user sets the number of trajectories (i.e. the number of lines
of sight). For each trajectory, MAGRATHEA-PATHFINDER ray
traces a light bundle which contains one central ray, and N pho-
tons in a circular beam around it. The photons of the beam are
evenly spaced on the circle, with semi-aperture set by the user,
and each photon propagates on null geodesics independently.
From this, MAGRATHEA-PATHFINDER can either output the full
trajectory for all the photons (see Sect. 2.2 to see which kind of
information is saved) or summary statistics for each subdomain
or for the full light cone. Saving the full trajectories of all the
bundles is interesting for a detailed study of what happens dur-
ing light propagation at each step of integration, and the bundle
method proposed here is more general than that of Sect. 2.3.2
which consists in only four surrounding rays. Furthermore, using
a spherical bundle with an arbitrary number of photons in prin-
ciple enables us to study higher order effects of gravitational
lensing such as flexion with high accuracy.

3. Tests and convergence study

In this section we describe several tests that we used to check
the convergence of the numerical methods described in Sect. 2.
To this end, we used MAGRATHEA-PATHFINDER on the RayGal
simulation3 (Rasera et al. 2021) which is based on the PM-AMR
RAMSES code (Teyssier 2002). This simulation has evolved
40963 particles (and as many coarse cells) in a (2.625 h−1 Gpc)3

volume, with the ΛCDM, WMAP-7 year data best-fit parame-
ters (Komatsu et al. 2011). The RayGal simulation outputs three
light cones using the onion-shell method: a full-sky light cone

3 https://cosmo.obspm.fr/public-datasets/

Table 1. Ray-tracing run-time for a single integration step, averaged
over 100 realisations of the same trajectory and depending on the type
of interpolation.

Integration Time per step (µs)

FLRW 0.55
NGP 1.10
CIC 6.0
TSC 14.6

Notes. We consider a photon trajectory with 4 steps per AMR cell on
the narrow light cone of the RayGal simulation until z = 10. The total
number of integration steps is roughly 5× 104.

and two narrow cones with 2500 and 400 deg2 aperture which
reach a maximum redshift of z = 0.5, 2 and 10 respectively.

3.1. Performance tests

First, we estimated the run-time performance of MAGRATHEA-
PATHFINDER when propagating photons within the AMR struc-
ture of the RayGal light cone. As the MPI and multithread-
ing parallelizations are almost ‘embarrassingly parallel’, that is
there is little to no communication between tasks, we expect
MAGRATHEA-PATHFINDER to scale almost linearly with the
number of cores. Furthermore, the number of steps per photon
depends on the stop criterion, the size of the light cone, and the
number of integration steps per AMR cell chosen by the user.
Therefore, the relevant quantity to estimate the performances of
MAGRATHEA-PATHFINDER is the time needed to perform a sin-
gle integration step. This run-time depends on the integrator (we
implemented the Euler integration as well as RK4, however only
the latter is used) but also on the type of integration. We can
identify four types of trajectories, which will give different run
times:

– FLRW: At any photon location, we assign the gravitational
field of an FLRW universe to compute the geodesic equations.

– NGP, CIC, TSC: We use the NGP, CIC, and TSC interpo-
lation schemes to estimate the gravitational field from the AMR
grid.

To perform our tests, we run MAGRATHEA-PATHFINDER
on the French supercomputer Irene, on the Skylake partition
composed of Intel Xeon Platinum 8168 processors. We propa-
gate a photon in a given direction of the narrow light-cone of
RayGal (with 400 deg2 aperture and maximum redshift z = 10)
using a single CPU (and single thread). We show the results in
Table 1. For an FLRW trajectory, MAGRATHEA-PATHFINDER
takes roughly 0.55 µs. As we do not need to estimate the grav-
itational field, the run-time is mainly that needed to compute
the geodesic equations in Sect. 2.2 with the RK4 integrator. For
NGP, we see that it takes 1.10 µs, which is twice the time of
FLRW. The additional time is that needed to obtain the index of
the most refined cell the photon is in, find it in the octree, and
get the associated data. We note that we search for an index in a
sorted vector, meaning that in principle, the larger the octree vec-
tor, the longer it takes to find the index (in our case the octree of
the subdomain we consider contains roughly 3× 108 elements).
When using CIC, MAGRATHEA-PATHFINDER takes 6 µs to
perform one integration step. It is expected that the CIC interpo-
lation schemes takes more time than NGP, and at first one could
have expected 9× 0.55 = 5 µs to compute the geodesic equations
and find the eight neighbouring cells. The slight discrepancy can
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Fig. 2. Gravitational potential and AMR level along a photon trajectory, as a function of the comoving distance for different interpolation schemes.
The right panel is a zoom onto the second potential well seen in the left panel around 2910 h−1 Mpc. The potential minima coincide with a higher
clustering of matter, which refines the AMR grid (as seen in the subplots).

be explained by the fact that for CIC (and TSC) we need to per-
form the interpolation at some fixed level, and we loop over the
coarser levels if an insufficient number of neighbours are found
(see Sect. 2.2), which adds some additional run-time. Finally,
we see that TSC takes 14.6 µs, which is less than an optimistic
expected run-time of 28× 0.55 + 1 = 16.4 µs from the 27 neigh-
bouring cells (instead of 8 for CIC). This comes from the fact
that we keep the neighbouring cells in memory, so that we do
not need to find them again when the photon is in the same cell
and we perform the interpolation at the same level as previously.

Last, we need to estimate how many steps Ntot are needed to
reach a given comoving distance χ. Using the ΛCDM light cones
of RayGal, with coarse cell size xcoarse and nsteps the number of
steps per AMR cell (set by the user), we find that the total number
of integration steps as a function of the distance is well fitted by

Ntot(χ) ≈
[
1.33 − 2.37× 10−5 χ

] nsteps

xcoarse
χ, (29)

between z = 0.1 and z = 10, where χ and xcoarse are in
units of h−1Mpc. If there was no AMR, we would expect
Ntot(χ) = nsteps χ/xcoarse, which is different from Eq. (29). This
difference comes from grid refinement (AMR), especially at
low redshift where the late-time small-scale clustering is more
important.

3.2. Accuracy of the interpolation schemes

One of the main features of AMR is the fact that we have access
to very non-linear scales of structure formation in high-density
regions. As our ray-tracing procedure adapts to the AMR level of
the simulation light cone, we might wonder how well we recover
the gravitational potential in these regions, and how it depends
on the interpolation schemes described in Sect. 2.2. We use the
methods in Sect. 2.6 to save the full trajectory of a single light
ray for a given line of sight, with the three interpolation schemes
previously described by setting the compile option, -DORDER =
0, 1, and 2 for NGP, CIC, and TSC, respectively. We note that
RayGal uses a TSC version of RAMSES to compute the poten-
tial, which means that for consistency we should use the same
interpolation scheme. However, it can be interesting to visualise

the differences between these different types of interpolation and
how it behaves with AMR.

In Fig. 2, we show the gravitational potential at the photon
position for each integration step as a function of the comoving
distance to the observer. Additionally, we also show the AMR
level of the most refined cell at the photon location. In the left
panel, we see two potential wells around 2887 and 2910 h−1 Mpc,
which is roughly z ≈ 1.3 in the fiducial cosmology of the sim-
ulation. These potential wells reach roughly −2.5× 10−5, which
is slightly less than 10 km s−1 (the order of the gravitational red-
shift for galaxies and cluster). We can clearly see the difference
between NGP and the other two interpolation schemes, as the
former shows some sharp ‘jumps’ when the photon goes in a
different cell while the others seem to exhibit a much smoother
behaviour. At the same time, we see that the AMR level fol-
lows a similar pattern as the gravitational potential, starting
from level 12 (which is the coarse level), and increases when
the photon enters the potential wells. This is logical, because
these potential wells come from small-scale clustering of matter,
which also causes the N-body solver to refine the grid in these
high-density regions. In particular, we see that for the second,
deeper, and sharper potential well, the AMR level goes to 16
(while for the first well it only reaches level 14). The right panel
shows a zoom of the second potential well in order to better visu-
alise the differences between the interpolation schemes in these
high-density regions. We indeed see the ‘stair’ behaviour of the
NGP interpolation, while the CIC interpolation is very smooth.
However, we can see that CIC seems to give a potential which
linearly evolves by parts along the trajectory. This is expected,
because CIC is a tri-linear interpolation and we use four steps
per AMR cell. This means that the value of a field estimated by
the same eight neighbours of the CIC scheme necessarily evolves
linearly along any direction. Last, we see that the TSC scheme
agrees very well with CIC far from the trough, while at the min-
imum of the potential it seems much smoother and would give
better results when estimating its derivatives (which is important
because weak lensing is sensitive to the second derivative of the
gravitational potential) compared to CIC. This is also expected
because TSC is higher order.

As a final note, we can see that although our method does
not necessarily prevent discontinuities at the crossing between
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Fig. 3. Convergence power spectra with AMR (red) and without (blue)
at z = 0.45, using Healpix with Nside = 2048. The black line is the theo-
retical prediction computed using NICAEA (Kilbinger et al. 2017) with
HALOFIT (Smith et al. 2003) parameters fitted on our simulation. When
AMR is accounted for, we have a nice agreement between the numerical
results and theoretical prediction. When it is not, the power spectrum
experiences a damping at small angular scales (high `), where the
discrepancy becomes large already at ` ≈ 300.

AMR levels, we do not see sharp cuts in the gravitational poten-
tial when using either CIC or TSC. This suggests that our
methodology should give good results even for very small scales.

3.3. The importance of AMR

Because most of the gravitational lensing power lies in small
scales, we already expect AMR to be an important aspect of
the ray-tracing procedure. In Fig. 3, we quantify its impact
through the estimation of the angular power spectrum of the
convergence computed with ANAFAST on the full-sky light cone
at z = 0.45, between `min = 10 and `max = 2000 (because in that
case `max ∼ Nside, which should give sufficient accuracy). First,
we note that the angular power spectrum computed with AMR
is in excellent agreement with the theoretical prediction. This
validates our methodology (in the present case, that of the finite-
beam method) to compute the lensing distortion matrix. Second,
we see that the angular power spectrum without AMR (i.e.
we only consider the coarse level for the ray tracing) departs
early (around ` ∼ 200–300) from the AMR case and exhibits
a strong damping at small scales. A similar trend was noted by
Lepori et al. (2020). This shows that AMR is extremely impor-
tant for recovering the correct statistical properties of gravita-
tional lensing when modelling light propagation in a PM N-body
simulation.

3.4. Propagation and number of steps per AMR cell

We now verify the appropriateness of our choice of making four
integration steps per AMR cell. It was first shown in Reverdy
(2014) that using four steps was ideal for correctly recovering
the redshift up to double precision with respect to an analytical
calculation when propagating an FLRW light ray with an RK4
integrator until z = 25 in the DEUS-Full Universe Run simula-
tions (Alimi et al. 2012; Rasera et al. 2014; Bouillot et al. 2015).

Fig. 4. Relative difference in the angular power spectrum of the con-
vergence as a function of the number of steps per AMR cell during
the propagation. The reference for the relative difference is taken as
the angular power spectrum with eight steps per AMR cell. The conver-
gence is computed using an infinitesimal method on a Healpix map with
Nside = 4096 at z = 1.5. We see that we achieve numerical convergence
when using four steps per AMR cell.

However, it is unclear whether or not this choice is still relevant
when accounting for an inhomogeneous universe.

In Fig. 4, we show the impact of taking one, two, or four steps
on the convergence angular power spectrum with respect to the
very conservative case where we use eight steps per AMR cell.
To do so, we used a narrow light cone with 2500 deg2 aperture,
and produced Healpix maps (see Sect. 2.4) of the convergence
at z = 1.5 with different values of nsteps. To correctly estimate
the power spectrum with a mask we use PolSpice (Szapudi et al.
2001; Chon et al. 2004). We see that the effect here is very small
(at most a few percents). When taking one step per AMR cell, we
see a roughly 0.5% bias at large angular scales, which increases
up to 2% at `= 5000. For two steps, the angular power spectrum
departs from the reference one around ` ≈ 1000 to reach 0.5%
at most. Finally, we find that the convergence angular power
spectrum with four steps is indistinguishable from its eight-steps
counterparts. This is further evidence that there is no need to use
more than four steps per AMR cell to propagate light rays.

We note that if subpercent precision is not needed, then two
steps per AMR cell is sufficient. This should decrease the run-
time by a factor of two and hence be very interesting for HPC. In
any case, the user can decide to use an arbitrary number of steps
by using the keyword nsteps.

3.5. Infinitesimal case, choice of the derivation step

Now we turn to the estimation of the lensing distortion matrix
with the infinitesimal method as described in Sect. 2.3.1. The
reason we only study the convergence of the infinitesimal method
and not that of the finite-beam one is that the former depends
on an arbitrarily chosen derivation step, while the latter does
not depend on any arbitrary choice (except for the beam aper-
ture at the observer, which is a parameter set by the user and
is physically motivated, with its impact clearly understood from
a theoretical perspective; see Fleury et al. (2019a); Breton &
Fleury (2021).
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Fig. 5. Relative difference on the convergence angular power spectrum
depending on the derivation step used in the infinitesimal method (see
Sect. 2.3.1) to compute the lensing distortion matrix at z = 1.9, using
Healpix with Nside = 4096. Using a larger derivation step considerably
biases the estimation of the power spectrum, while smaller steps mostly
affect the very small scales. Our choice for h seems ideal as it is stable
for ` < 103 and should not lead to any large bias at smaller scales.

The Laplacian of the gravitational potential along the line
of sight in Eq. (12) is computed using finite differences of the
force. To compute these differences, we need a derivation step h
in Eq. (13), which is set to the size of the most refined cell the
photon is in. In Fig. 5, we show the impact of the derivation step
on the estimation of the convergence angular power spectrum.
We multiplied the size of our step choice by a factor 8, 4, 2,
1/2, 1/4, and 1/8 to clearly test our method. For a derivation step
smaller than our reference choice, we see that there is a large
bias (several orders of magnitude larger than in Sect. 3.4) on
the angular power spectrum even at linear scales (small `), and
then at damping at small scales (high `). For derivation steps
larger than the reference one, there is no noticeable difference
at ` < 103, while at ` > 103 the angular power spectrum seems
to be over-estimated with increasing h′. This overall behaviour
shows that we find a ‘sweet spot’ when setting h = 2level. This
choice was also shown to lead to very good agreement with the-
oretical predictions from CLASS (Lesgourgues 2011) in Rasera
et al. (2021).

3.6. Mean convergence and the Born approximation

Here, we estimate the impact of the commonly used Born
approximation on weak-lensing quantities, and more precisely
on the mean convergence. A standard test of the Born approx-
imation with respect to real ray-tracing is to compute the con-
vergence angular power spectrum and estimate the differences in
both cases. In this particular configuration, the Born approxima-
tion is known to give results that are extremely close to real ray
tracing (Hilbert et al. 2020), but this should be taken with caution
as it can be deceiving when considering galaxy surveys. Indeed,
to compute the angular power spectra, it is common to propagate
light rays in the direction of homogeneously distributed pixels
on a map (or plane). However, this procedure gives the same
weight to each pixel, which is not what really happens in galaxy
surveys where solid angles on the sky are magnified. This is
the difference between direction-averaging and source-averaging

Fig. 6. Mean convergence on the deep narrow cone of RayGal (400 deg2

aperture) as a function of redshift, when evaluating the distortion matrix
along null geodesics (black) or using the Born approximation in the
direction of sources (β, red) or images (θ, blue). The black solid line
shows the expected value of the mean convergence when using null
geodesics, that is 〈κ〉 = 1

2 (〈µ〉−1)−2 〈κ〉2, where the averaged quantities
are numerically evaluated. The error bars contain Poisson and super-
sample variance (Breton & Fleury 2021). The red and black points are
consistent with the expectation values for direction and source averag-
ing procedures, respectively. The blue points, which come from a hybrid
prescription, seem to lie between the former two.

(Kibble & Lieu 2005; Bonvin et al. 2015; Kaiser & Peacock
2016; Breton & Fleury 2021). When propagating light rays in
random (or statistically isotropic) directions, it is expected that
the Born approximation should give overall similar results to real
ray tracing (Breton & Fleury 2021). In particular, in both cases,
we expect 〈κ〉 = 0 (which also implies 〈µ〉 > 1 at second order),
because photons evenly sample the sky. However, when we com-
pute the null geodesics between the observer and sources, it is
known that 〈µ〉 = 1 (Weinberg 1976) and κ < 0. Indeed, photons
tend to propagate in more under-dense regions between two fixed
points for several realisations of the matter density field.

In Fig. 6, we compute the distortion matrix for a given simu-
lated halo catalogue and estimate the averaged convergence in
tomographic redshift bins. In any case, we use the infinitesi-
mal method in Sect. 2.3.1, and distinguish three different types
of trajectories: first we consider the null geodesics between the
observer and sources; then we use the Born approximation where
photons propagate in straight lines between the observer and the
sources or the source images. We note that the last case is strictly
theoretical, because to the best of our knowledge it is not neces-
sarily used nor discussed, but is interesting from a pedagogical
point of view to cover all the possible scenarios. We see that
for the standard Born approximation, that is when photons prop-
agate in straight lines in the source direction (β), the average
convergence is consistent with zero within error bars, which is
expected. For null geodesics, we find that the mean convergence
is indeed negative and closely follows the theoretical prediction.
Interestingly, when we use the Born approximation in the direc-
tion of images, the result seems to lie in between the first two
cases.

There are two main implications of this result: first, a precise
theoretical modelling of weak-lensing observables might need to
account for the fact that 〈κ〉 , 0 for galaxy surveys. Secondly
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(and more importantly), one should take the distortion matrix
evaluated using the Born approximation with caution when con-
structing realistic simulated catalogues, because in this case, the
mean magnification is superior to unity (while in reality it should
be strictly equal before the flux cut), and furthermore the magni-
fication probability density function is that of the null-geodesic
case multiplied by µ (this was also discussed in Takahashi et al.
2011). When emulating a flux-limited survey, one has to mag-
nify the fluxes (or magnitude) with the magnification; however,
if one uses the Born approximation, the final number count on
the flux-limited sample will be larger than it should realistically
be in comparison to observations.

3.7. Relativistic effects and galaxy clustering analyses

Last, we discuss the importance of the global relativistic treat-
ment for light propagation. While ray-tracing codes usually only
allow gravitational lensing studies, MAGRATHEA-PATHFINDER
offers a unified framework which accounts for both gravitational
lensing and redshift perturbations. For the latter, we imple-
mented all the corrections at first order in metric perturbations
(as seen in Sect. 2.5). This allows in particular to study the
impact of relativistic effects for galaxy clustering analysis. The
full relativistic number count was analytically estimated within
linear theory by Yoo et al. (2009), Bonvin & Durrer (2011), and
Challinor & Lewis (2011), and it was shown by Bonvin et al.
(2014) that the dipole of the correlation function could be very
sensitive to the gravitational potential and could therefore be
a useful probe to test the nature of gravity (Bonvin & Fleury
2018). Breton et al. (2019) found a nice agreement at large scale
with linear-theory-based predictions, which shows the accuracy
of our method. However, it was noted that the small scales are
completely dominated by the gravitational potential, which is far
beyond the expectation from linear theory. This was later analyt-
ically modelled using non-linear prescriptions (Di Dio & Seljak
2019; Saga et al. 2020, 2022; Beutler & Di Dio 2020). The dipole
of the correlation function of galaxies is expected to be detected
with a high signal-to-noise ratio for next-generation galaxy sur-
veys (Saga et al. 2022), for which it will be mandatory to perform
a full relativistic treatment of light propagation.

4. Conclusion

In this paper, we present MAGRATHEA-PATHFINDER, a ray-
tracing framework which post-processes numerical simulations
to accurately rebuild the past light cone of an observer from lin-
ear to non-linear scales. This framework propagates light rays
in the AMR structure of a simulation light cone by solving
the null geodesic equations of a perturbed FLRW metric in the
Newtonian gauge and does not resort to any further approxi-
mation. Moreover, MAGRATHEA-PATHFINDER is optimised for
HPC and has already been run on very large N-body simulations
such as DEUS- Full Universe Run (Alimi et al. 2012) and RayGal
(Rasera et al. 2021).

Our code produces relativistic simulated catalogues (where
the null geodesic between the observer and sources are identi-
fied), Healpix maps, and various light-ray statistics along their
propagation. By accounting for all the effects at first order in met-
ric perturbations, MAGRATHEA-PATHFINDER opens up a wide
range of possible applications, some of which have already been
studied in the literature:

– Weak gravitational lensing: Rasera et al. (2021) studied
the impact of relativistic effects on various lensing-matter

angular power spectra. In particular, they emphasised the
importance of peculiar velocities and magnification bias
beyond linear order. Furthermore, the weak gravitational
lensing properties of light beams with finite extension is
different from those of an infinitesimal beam. This effect
was successfully confronted to theoretical predictions for the
convergence and shear angular power spectra in Breton &
Fleury (2021).

– Galaxy clustering and relativistic effects: The simulated cat-
alogues produced by MAGRATHEA-PATHFINDER contain
both the comoving and apparent angular position, as well
as the full redshift decomposition for a given source. From
this, one can perform galaxy clustering analysis beyond stan-
dard assumptions (distant observer, redshift only perturbed
by peculiar velocities, etc.). In particular, in Breton et al.
(2021) the authors studied the impact of gravitational lensing
(also known as magnification bias) on the estimation of the
growth rate of structure when performing a standard RSD
analysis and found that if lensing is not accounted for in the
modelling, this leads to an underestimation of fσ8. These
catalogues also enabled for the first time the study of rel-
ativistic effects on the dipole of the correlation function at
all scales (Breton et al. 2019; Taruya et al. 2020; Saga et al.
2020), which will be detectable in next-generation surveys
with high signal-to-noise ratios (Saga et al. 2022). Using
the same data, Beutler & Di Dio (2020) performed a similar
analysis on the power spectrum dipole.

– Distance measures: Distance measures are crucial to inter-
preting observational data and cosmological inference.
When it comes to the Hubble diagram, the average distance
is often modelled by that of an FLRW universe. Breton &
Fleury (2021) carried out a detailed study of the pertur-
bations on the distance–redshift relation for a wide range
of redshifts. They numerically tested Weinberg’s conjecture
(Weinberg 1976), which states that the area of constant red-
shift is unaffected by inhomogeneities in the matter density
field and showed that even a full non-linear treatment gives
similar results to the theoretical predictions of Kaiser &
Peacock (2016) regarding possible biases.

– Integrated Sachs-Wolfe effect: Adamek et al. (2020) used
MAGRATHEA-PATHFINDER on the DEUS- Full Universe
Run simulations up to z = 25 to study the ISW angular power
spectra for various scenarios such as ΛCDM, phantom dark
energy, and modified gravity. In any case, the authors found
good agreement with theoretical predictions.

These works show the importance of an exhaustive modelling of
the light cone in order to correctly interpret future surveys, which
will probe the Universe at the largest scales with unprecedented
precision. In particular, with increasing data accuracy, omissions
in the model might lead to biases in the inference of cosmo-
logical parameters. The methods developed in MAGRATHEA-
PATHFINDER will be useful, in coordination with theoretical
predictions and observations, for refining existing probes and
constructing new ones in order to shed light on the true nature of
our Universe.
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