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INTRODUCTION

A. Industrial context

The operation and maintenance (O&M) EDF R&D project supports the engineering teams with innovative solutions to optimize performances and extend power plants components lifetime. This project focuses on inspection techniques, structural components lifetime assessment and tools for O&M optimization, also known as "asset management". O&M represents a large activity for the international EDF Group, it can be optimized by improving components lifetime estimation and adjusting cost effective spare parts stocks.

Roughly speaking, the power plants of interest here can be divided into structural elements and main components. This paper focuses on the main components lifetime assessment and their spare parts management. Since accurate physical models of the main components are not available, data-based statistical methods will be used to estimate their lifetime.

Since the facilities are located all around the world and their ownership may change regularly, available lifetime information on components tends to be partial, generating censored data that requires specific techniques to be correctly studied. However, the energy field studied presents two advantages in terms of data collection for lifetime assessment. Firstly, the operating components are relatively recent, therefore, their information systems are recent and connected. In our case, an important effort has been made on data collection processes and data management systems. Secondly, the number of equipment installed is quite important which is in favor of using statistical methods to estimate the main components lifetime. However, the tools currently used by the O&M engineers to process the lifetime data require multiple manual operations that might generate mistakes when repeated a big number of times.

B. Objectives

O&M is one of the key activity of the EDF Group. Its spare parts management tends to be mutualized between sites to share the risk associated with spare parts investments. The spare parts management dilemma is buying too many spare parts and risking useless investments or buying too little and risking equipment unavailability in case of failures. This paper presents an automated workflow developed to help O&M engineers assess probabilistic indicators to optimize spare parts management. A software prototype has been developed and is divided into four main steps:  Select and import, from a remote database or a local file, historical feedback data, composed of lifetime censored data observed on the components fleet. These data may contain different sub-groups of components (different manufacturers, technologies, operating conditions…): in that case, the analyst must ensure by his own their homogeneity so that the retained data can be considered as independent and identically distributed from a statistical point of view.  Fit different families of probabilistic parametric models on the lifetime data using reliability analysis (also called survival analysis). The goodness of fit of the resulting models are compared using a statistical information criterion.  Simulate randomly with a Monte Carlo process the running components lifetimes using the best lifetime parametric model previously fitted.  Build a discrete distribution of the number of failures for the running components during a period of time to let the analyst conduct a riskinformed assessment of the spare parts and maintenance policy. This software prototype aims to automate these steps and improve the numerical calculations by using high performance tools. The integrated "Lifelines" Python library presented in [START_REF] Davidson-Pilon | Lifelines: survival analysis in Python[END_REF] provides different tools well suited for statistical fitting on truncated and censored data and gives confidence intervals (CI) for the distribution, allowing easy guidance of future sensitivity analysis. For the components lifetimes stochastic simulation, the "OpenTURNS" Python library provides powerful probabilistic objects and methods (see [START_REF] Baudin | OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation[END_REF]).

An important functionality is to allow the user to change a failed component by new one from a different technology, thus with a different lifetime distribution. In the simulation step, the reliability model is used to simulate the failure dates of the components. After the first failure, the components are either replaced by identical components as good as new or by new components with a different reliability model. The result of this Monte Carlo simulation process is post-processed to deliver probabilistic indicators, which help the user decide the most cost-effective spare parts purchase planning for the upcoming years.

The entire workflow takes into account uncertainties at each step and provides probabilistic indicators for decision making regarding asset management. This paper will illustrate the whole methodology on a fictitious but realistic use case of a power plant major component.

II. METHOD

A. Notations and hypothesis

 is the continuous and positive random variable representing the lifetime of component . The cumulative distribution function (CDF) of will be denoted and its probability density function (PDF)

 The truncated random variable derived from with a lower bound is in [START_REF] Openturns | TruncatedDistribution distribution[END_REF] defined as:

(1)

B. Historical feedback data

In order to give more flexibility to the user, the historical feedback data can be imported into the prototype from a MS Excel file or the reliability database using HTTP requests. Since the lifetime data in the energy industry are often partial, it is defined as censored data. Four types of censoring exist in survival analysis assuming the current date is and is a realization of the random variable for the component with and :

 Right censoring (type 0): (component is still running at , and it will fail in the future).

 Failure observation (type 1):

(no censoringwe exactly know when failed).

 Left censoring (type 2):

(the failure occurred in the past and we do not precisely know the associated age of component

).

 Interval censoring (type 3):

(the failure occurred between the two dates and without further information).

As described in Table I, each row (representing a component from the fleet) of the imported historical feedback dataset contains a censoring type and the corresponding lifetime, a component sub-group tag and a site tag. In the future, non-parametric approaches (such as Kaplan-Meier survival function estimation) could be implemented as a visual tool applied on each sub-group to check how identically distributed the data are. Then, the data can be filtered and partitioned by components group presenting technological variations or by site with different environmental conditions. Once the lifetime data imported and sorted, the parametric survival analysis can start.

C. Lifetime parametric model fit

The parametric modeling of the lifetime data is realized using maximum likelihood estimation method. To introduce it, let us take the non-censored lifetime data of components . The likelihood function describes the goodness of fit between the dataset and a probabilistic parametric model with a set of parameters belonging to a parametric space . It is mathematically defined as:

(2) Fig. 1 illustrates the fit of two Weibull distributions with two different sets of parameters on a lifetime sample. The likelihood of the model would be the product of all the red vertical. Since the likelihood of the model is greater than the likelihood of the model, the model fits better the data. The maximum likelihood estimation (MLE) returns the combination of parameters maximizing the likelihood of the parametric model and data :

(

For censored data, the likelihood can be generalized with one term per censoring type Our implementation of the lifetime parametric model fit is supported by the "Lifelines" Python library [START_REF] Davidson-Pilon | Lifelines: survival analysis in Python[END_REF]. For a given distribution family, also called fitter, the library applies the ML method to the censored lifetime data. Different "Lifelines" methods then return the parameters , the corresponding cumulative distribution function and its associated CI at 95%. The software prototype applies four different fitters to the imported historical feedback data: Exponential, Weibull, Log-Normal and Log-Logistic distributions parametrized as described in Table II, with the CDF of a standard Gaussian random variable.

The "Lifelines" library also returns the log-likelihood of the lifetime data and the estimated parametric model. In order to compare the goodness of fit between different distribution families, the Bayesian Information Criterion (BIC) is used. Reference [START_REF] Saporta | Probabilités, Analyse de données et Statistique[END_REF] defines this indicator as: [START_REF] Saporta | Probabilités, Analyse de données et Statistique[END_REF] The software prototype ranks the results by this criterion. The best estimated parametric model to describe the data has the lowest BIC. 

D. Lifetime simulation

Once the parametric reliability model has been determined, it can be used to simulate realizations of the associated random lifetime variable

The fleet of components is defined by all the running components from the imported data. We define thedimensional continuous random vector of the failure ages of with all its marginal as independent. The joint PDF is defined as:

(5)

Since we know the current ages of the running components fleet , the random lifetime vector of the first failures of our fleet is a collection of conditional random variables denoted with independent marginal PDF defined [START_REF] Fessart | Optimisation d'un programme d'investissements : méthode IPOP®[END_REF] We use these distributions to simulate the first failure time for each component. Then, it is assumed that a perfect corrective maintenance is carried out (at each failure the reliability is reset as good as new). Moreover, no preventive maintenance is considered for the moment in the prototype. Therefore, the next random lifetime vectors of our components fleet are no more conditional. We define the lifetime random vector with the independent marginal PDF defined (7)

The lifetime random matrix is built as: (8)

An example for a one component fleet is illustrated in Fig. 2 different in case of a change of technology after the first failure.

Fig. 2. Simulation diagram for a one component fleet "OpenTURNS" is an open source Python library for treatment of uncertainties described in [START_REF] Baudin | OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation[END_REF]. It is developed in collaboration between multiple companies including EDF R&D. In fact, its back end is developed in C++, which guaranties a high performances solution with a Python API. The second advantage of this library is to provide advanced probabilistic objects and methods useful in our situation to deliver a reliable software prototype.

To create matrix defined above (8), is the number of running components in the imported data and parameter is the number of failure times to be simulated for each component of the fleet. This last parameter is tunable by the user and set arbitrarily by default to ten.

Once the random lifetime matrix built, a crude Monte Carlo sized sample is simulated using the "OpenTURNS" random generator. The random seed of the generator can either be time dependent or fixed to allow the user to find the exact same simulations. The sample is saved in a multi-index object filled of failure times with the following structure. The Monte Carlo simulations indexes are denoted and the realizations of the random vector are contained in the vector denoted Once the failure times drawn, the following steps are executed:

 Let us take a failure age: and .  Then build a failure date for component by applying a cumulative sum: .  Then apply the indicator function of the positive interval of dates : . (9)  And finally count all the failures happening between dates and for all the components:

The result of these operations is a set of number of failures on the components fleet happening between dates and corresponding to the Monte Carlo simulations. A discrete distribution can be built afterwards. In future developments, some tools will allow the analyst to verify the convergence of the output distribution.

III. RESULTS

A. Software prototype structure

The software is composed of three explicit Python classes: LifetimeMultiMLE, FailureDateGenerator and FailureResultPostProcessor.

Fig. 6 gives an example of how compact the script defining the workflow is. The classes purposes are explained below.

1) LifetimeMultiMLE class

The imported historical feedback data can either be a MS Excel local data or a HTTP request to get remote data. This importation functions could be completed in the future by data filtering methods and tools to check how independent and identically distributed the data are. The different methods return:  A lifetime MLE result table ranked by BIC (e.g.

Table III). The MLE on censored data is carried out using the "Lifelines" library.  A plot of the best estimated reliability model CDF and its bilateral CI built using the "Lifelines" library (e.g. Fig. 3). This graph also includes a histogram of the observed failures (failures without censoring) giving a visual indication about the goodness fit (unless the dataset contains a majority of censored data, then the model won't visually match the observed failures histogram).  A figure of all the reliability models CDF estimated by ML method using the "Lifelines" library. This graph gives a visual comparison of the four candidate family distributions (e.g. Fig. 4).

2) FailureDateGenerator class

Two reliability models are parameters that offer the option to change the reliability of the component after the first simulated failure. This functionnality was requested to take into account possible change of technology for the components. By default, the two reliability models are both set to the best reliability model returned by the LifetimeMultiMLE class. The number of Monte Carlo simulations and the number of failures to be simulated must be set by the user. In the future, the class could offer indicators of convergence of the indicator of interest estimator. The different methods return:  failure ages multi-index matrix (with the structure defined previously).

3) FailureResultPostProcessor class

This class takes as an input the previous failure ages matrix and builds a distribution of the numbers of failures between two dates. The different methods return:  A plot of the discrete probability density function of the number of failures between two dates (e.g. Fig. 5). This figure is built by an "OpenTURNS" object called the UserDefinedDistribution, allowing us to get its mean value, a bilateral confidence interval at 90% and various graphical methods.

 A summary table of the yearly number of failures distribution for the five upcoming calendar years. The table includes the mean and the quantiles at 5% and 95% of the distribution drawn by Monte Carlo simulations. Box-plots could be an interesting way of representing these yearly distributions. Table III is an example of this output.

B. Lifetime parametric model fit

To illustrate the functionalities of the software prototype, a simulated dataset including each censoring type was generated. It is made of fifty censored realizations from a distribution. Ten elements of this dataset are right censored data, which defines a fleet of running components. Fig. 3 and Fig. 4 prove that 1) the MLE fits correctly and takes into account the censored data and 2) the BIC is a efficient discriminating criterion. The CI around the resulting cumulated distribution function in Fig. 3 gives an indication on the trust to be given to this estimated distribution. In this case, the confidence interval is relatively narrow for a dataset of fifty elements.

C. Build the distribution of number of failures in the fleet on a period of time

This part relies on the "OpenTURNS" library to build random vectors of the fleet, and generate Monte Carlo realizations of them. From a generated matrix of failure ages such as (8), a filter applied in (9) allows the construction of a discrete distribution of the number of failures occurring in an interval of dates . Fig. 5 presents the discrete PDF of the number of failures occurring between and years from now on. The distribution built in Fig. 5 results from consecutive failure times each simulated times for each of the components of the fleet. The generation of these realizations last less than second on a standard personal computer.

On the same matrix of failure ages generated previously, we can apply a series of one year filters. The resulting Table III is an estimation of the yearly number of failures in the fleet for the five upcoming calendar years. It contains not only the mean values, but also the 90% CI to get an idea of the distributions shapes. Table III matches the usual accounting time period to easily build expenses plans. For distributions with a specific date interval, the user can build a PDF such as in Fig. 5. The user can then visualize how likely a number of failures is for a studied fleet and date interval. All together, these probabilistic tools allow the user to conduct a risk-informed optimization of the spare parts management. IV. CONCLUSION

The developed prototype offers the following functionalities. The historical feedback censored data can either be imported from MS Excel files or by HTTP requests to a remote database. The MLE of four distribution families are then being assessed and ranked with the BIC. Using the best estimated reliability parametric model, the prototype generates stochastic lifetime simulations using a Monte Carlo process, which allows to build a distribution of the number of failures for a fleet within an interval of dates. This probabilistic object gives to the analyst a measure of the risks associated with his spare parts optimization. The prototype will be first deployed to O&M analysts though a simple client interface. In the meantime, multiple improvements to this prototype can be considered: to verify the imported historical feedback data homogeneity, the Kaplan-Meier survival function estimation of each components sub-group would be a good visual tool; clustering on operating and maintenance conditions could help to refine the lifetime datasets; a statistical test could be conducted to ensure that the best chosen model fits the data; to take into account the estimation uncertainty on the reliability model for the assessment of the number of failures distribution (using for instance the delta method); for the post-processing of the stochastic lifetime simulation, boxplots of the yearly number of failures distributions could be added; and finally current probabilistic indicators could be completed by financial indicators, such as the Net Present Value of a spare parts investment. Applying similar methods to the ones used in [START_REF] Fessart | Optimisation d'un programme d'investissements : méthode IPOP®[END_REF] could lead to build an optimal spare parts purchase planning. 
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 3 Fig. 3. Lifetime CDF of the best MLE model
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TABLE I .

 I 

			Censoring	Sub-group	Site
			type		
				version 2	
	0.	6.54	2	version 1 Model A -	Site 2
	14.01	15.83	3	version 2 Model A -	Site 2
		Fig. 1. Likelihood illustration	
						LIFETIME DATA EXAMPLE
						Censoring	Sub-group	Site
						type
					14.98	14.98	1	version 2 Model A -	Site 1
					11.2	+inf	0	Model A -	Site 1

TABLE II

 II 

		Distribution family
	.	DISTRIBUTIONS PARAMETERS
	Distribution family
		:

: :

  . The first failure age is drawn following a reliability model truncated by the component current age. The following failure ages drawn follow a non-truncated reliability model since the failed component is replaced by a new component. This second reliability model can be the same as the first (without the truncation) or completely

	1 st failure age drawn	2 nd failure age drawn	failure age drawn
	-	-	-
	reliability model A	reliability model B not	reliability model B not
	truncated by the current	truncated.	truncated.
	age of		

TABLE III .

 III Results table for the yearly number of failures

		[today,	[2021,	[2022,	[2023,	[2025,
		2021]	2022]	2023]	2024]	2025]
	Mean	0.32	0.45	0.44	0.43	0.42
	CI 90%	[0, 1]	[0, 2]	[0, 2]	[0, 2]	[0, 2]