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ABSTRACT

In this study, the effectiveness of Super Resolution (SR) methods
based on Convolutional Neural Network (CNN) in low bitrate video
coding, with a focus on the Versatile Video Coding Standard (VVC),
is investigated. Video transmission over networks with limited band-
width is a common challenge for different applications. One solution
is to adopt SR methods where the main principle is to spatially down-
sample the input sequence prior to the encoding, then up-sampling the
decoded sequence before displaying it. For a fixed target bandwidth,
a finer quantization is applied on the low-resolution sequence com-
pared to high-resolution, so that the high quality reconstructed pixels
help in retrieving the lost information. However, most CNN-based SR
methods are designed for single images and merely focus on the orig-
inal input signal. Therefore, their trained networks lack understand-
ing of compression artifacts. In this study, we test a hypothesis that
training CNN-based SR methods with compressed sequences outper-
forms training with uncompressed ones. The assumption is that such
training allows the SR methods to learn compression artifacts and
differentiate them from actual texture information. To this end, state-
of-the-art CNN-based SR methods are tested with compressed and
uncompressed training set. Experiments show that the use of com-
pressed training data brings, on average, an additional bitrate saving
of 6%, in terms of BD-Rate.

Index Terms— Convolutional Neural Networks, Super Resolu-
tion, Low Bitrate Video Coding

1. INTRODUCTION

With evergrowing applications of video transmission, the task of
retaining a high quality displayed video under the network limita-
tions has recently become more trendy. On the one hand, compressed
videos are sent under stricter bandwidth constraints which limits the
amount of transmitted information and makes the compression arti-
facts such as blurriness or blockiness more evident in received videos.
On the other hand, receiver devices are usually powerful enough to
afford complex post-processing steps to perform texture restoration.
Therefore, there is a chance to achieve video quality levels that are
currently inaccessible in specific low bitrate applications, such as
telesurgery, monitoring systems [1,2], etc.

A key to this goal is to adopt artificial intelligence techniques to
learn compression loss patterns. In particular, the Convolutional Neu-
ral Network (CNN) based Super Resolution (SR) algorithms properly
fit the requirements of the compression artifact restoration task [3].
The SR algorithms aim at generating a high-resolution signal from a
given low-resolution one. In its basic form, the large amount of miss-
ing information in the low-resolution images makes generating the
high-resolution image challenging. However, a variety of advanced
SR methods are proposed to overcome this problem [4-8]. Partic-
ularly, CNN-based algorithms have shown impressive performance
compared to traditional methods [9-12].

Despite the potentials, the use of SR methods on compressed
videos is sparsely studied in the literature [13—-15]. Particularly that,
recently, video transmission methods involving sub-sampling input
signal have become very popular. For instance, a standardization ac-
tivity is currently ongoing to release a video codec, called Low Com-
plexity Essential Video Coding (LCEVC), which addresses the same
issue by down-sampling, coding and transmitting meta-data [16].
Also, AV1 codec also adopts resolution adaptation at both encoder
and decoder with pre-defined up-sampling filters [17]. Finally, the
concept of Reference Picture Resampling (RPR), which has recently
been adopted for VVC, benefits from a similar methodology [18].

In this study, first a general framework for integrating SR meth-
ods within a coding system is described. Then, for a set of selected SR
methods, the impact of training with compressed dataset is compared.
In particular, the objective of this paper is to demonstrate how differ-
ently CNN-based SR methods perform on reconstructed video signals
when they are trained with compressed or uncompressed datasets.
The importance of this work is perceiving the image super resolu-
tion subject rather from a video coding point of view for exploring its
potentials.

The rest of this paper is organized as follows. In Section 2, an
SR-based video transmission framework is described to integrate the
selected SR methods along with the VVC codec. Section 3 describes
the characteristics of the experiments. Section 4 presents the details
of performance evaluation with discussions and finally, Section 5 con-
cludes this paper.

2. SR-BASED VIDEO CODING FRAMEWORK

A general framework for low bitrate video transmission using SR
is described. This configurable framework is used by some broad-
casters to adapt their content to low bandwidth and/or low complex-
ity constraints. There are three main steps in the SR framework: first,
the input sequence is down-sampled prior to the coding. Second, the
down-sampled sequence is coded with VVC, using an adjusted Quan-
tization Parameter (QP). Third, an up-sampling step is performed on
the reconstructed image using an SR method. Once all the above three
steps are performed, the output is comparable to the regular coding
scheme, where no down/up-sampling steps are used. Fig. 1 compares
the two coding schemes. In addition to possible coding efficiency
gains in the low bitrate range, experiments of this study show that the
use of the SR framework saves between 40% to 80% encoding time.

2.1. QP adjustment with respect to down-sampling factor

The Quantization Parameter (QP) is a mean to apply user-
specified level of distortion to the compression and has two main
functionalities in a codec: 1) determining the quantization step size
of residual coefficients, and 2) making a trade-off between rate and
distortion of different coding decisions. The combination of these
two roles guarantees that under a given rate constraint, the distortion
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Fig. 1: Comparison of the regular coding scheme and CNN-based SR
framework

per pixel will remain below a threshold [19]. The fact that the SR
framework reduces the resolution of the input sequence should not
impact this distortion. Therefore, to accommodate a lower resolution,
a QP adjustment parameter AQP<O0 is added to the input QP value
to apply a finer quantization. The principle of computing AQP as
a function of the scale factor, described in [20], is adopted in the
current work. Based on this method, a QP adjustment of AQP = -6 is
applied for the used scale factor 2 on width and height.

2.2. Scope of the performance

The SR framework of Fig. 1 and its internal modules are flexible
in terms of functionality. More precisely, one can adjust the following
settings depending on target application:

e Scale factor
e SR method for up-sampling
e Training dataset in case of CNN-based SR

The use of the SR framework becomes justifiable when properly
tuned. For more efficient deployment, one should first understand
when this framework can be beneficial. In terms of rate-distortion-
complexity measurement, the SR framework can potentially have the
following impacts:

e Rate:

— Rate per sample may increase, since the QP adjustment
causes finer residual quantization.

— Rate per frame may decrease, since the down-sampling step
reduces the number of coded samples in each frame.

e Distortion:

— Distortion per frame may increase, since the down-sampling
step throws away majority of samples, and this information
loss may not be fully retrieved by the up-sampling step.

— Distortion per frame may decrease, since the up-sampling
step, in particular the CNN-based ones, are supposedly smart
and able to retrieve a high amount of the lost information.

— Distortion per sample may decrease, since a finer quantizer is
applied on the down-sampled input.

o Complexity:

— May decrease at the encoder side, since the number of coded
samples is reduced due to the down-sampling.

— May increase at the decoder side, since the up sampling mod-
ules are added.

The overall trade-off between all above impacts determines
whether or not a specific setting of the SR framework provides de-
sired bandwidth saving and/or complexity reduction over the regular
coding scheme. In other words, the use of the SR framework is
preferable when the combination of the rate-distortion-complexity
results in a better global performance.

2.3. Problem statement

In this paper, we investigate the impact of alternative training
for SR methods. More precisely, we test a hypothesis: given that
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Fig. 2: Compression artifacts (e.g. blockiness, blurriness) in tex-
tures coded at very low bitrate (i.e. 100-500kbps for 1920x 1080p
sequence).

a CNN-based SR method is to be used for up-sampling the decoded
sequences, involving compression artifacts in the training process of
the SR method will improve its up-sampling performance.

The assumption is that observing compression artifacts during
the training phase helps SR methods differentiate those artifacts from
actual texture information during inference. Fig. 2 presents examples
of actual texture information and compression artifacts.
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Fig. 3: Spatial Index (SI) and Temporal Index (TI) of test sequences.

2.4. Selected CNN-based SR methods

Two CNN-based SR methods are selected. These methods rep-
resent relatively simple and complex CNN architectures for SR. It is
important to note that the selected methods are not supposed to be
compared to each other in terms of performance. Instead, the goal is
to compare each method with itself, under different training condi-
tions.

Efficient Sub-Pel Convolutional Neural Network (ESPCN): ES-
PCN is composed of three CNN layers [10]. The two first layers are
used for the feature maps extraction and the last layer, which is a sub-
pixel convolutional layer, is responsible for aggregating the feature
maps from low-resolution space and constructing the high-resolution
image. Using the sub-pixel convolutional layer, as an up-sampler in
the last layer, decreases the computational time and increases the net-
work flexibility in learning different down-sampling kernels. For the
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Fig. 4: Rate-PSNR curves corresponding to different coding schemes: EDSR in the uncompressed and compressed settings, the bicubic and
the VTM. In order to clarify the improvement due to the use of compressed training set, the critical bitrates with respect to the VTM are shown

with dashed lines.

training, ESPCN uses L2 loss which maximizes PSNR. The design of
this method is considered as a relatively simple network architecture.
Enhanced Deep Super Resolution Network (EDSR): EDSR uses
a residual network architecture for solving the SR problem [11]. In
this network, the original architecture of the ResNet [21,22] has been
modified to increase the performance for this specific task. The mod-
ifications make the network lighter to be trained and to capture the
proper features for constructing the best super resolved image. Ex-
perimental results show that EDSR outperforms most state-of-the-art
SR networks. Moreover, the use of residual-based building blocks
enables EDSR to learn missing high frequency information in dif-
ferent scaling factors. EDSR uses L1 loss for training, which gives
better convergence than L2 loss. Compared to the ESPCN network,
the architecture of the EDSR network is noticeably more complex.

3. EXPERIMENTS DESCRIPTION

3.1. SR framework setting

Test-train sequences: The experiments of this paper are focused
on full High Definition (HD) video sequences with sample resolution
of 1920x1080. As training sequence set, we used the DIV2K [23]
and Flickr2K datasets. The test sequence set is composed of 10 se-
quences from the Common Test Condition (CTC) of JVET and JCT-
VC [24]. In order to further extend the list of test sequences, five Ultra
HD (UHD) sequences from the CTC are also down-sampled into HD
and used. Fig. 3 quantifies the motion and texture characteristics of
these test sequences. For this purpose, Spatial Index (SI) and Tem-
poral Index (TI) are used [25], where higher values indicates more
complex texture and motion characteristics, respectively.

Down-sampling: The down-sampling step of the SR framework
is shared between the training and test phases. In both cases, the
bicubic filter, implemented in FFMPEG, has been used. As we only
focus on 1920x 1080 resolution in the conducted experiments, only
the scaling factor of 2 is used for down-sampling.

Coding schemes: Four coding schemes have been compared. The
two CNN-based SR methods presented in Section 2.4; the non-CNN
bicubic SR scheme; and the VVC test Model (VIM) coding scheme
in the context of regular coding of Fig. 1. The two latter schemes, the
bicubic and VTM, are served as anchors for the former CNN-based
SR methods.

3.2. Training of CNN-based SR methods

Ground truth: In the SR framework, the ultimate goal is to be as
similar as possible to the original high-resolution sequence. There-
fore, this signal is used as the ground-truth for both training settings.

Down-sampled dataset: Two down-sampled training datasets are
used: uncompressed and compressed. In the uncompressed setting,
the training data is simply provided by down-sampling the original
sequences. While, in the compressed setting, the same down-sampled
sequences are compressed prior to the training.

Coding artifacts: To produce the training dataset of the com-
pressed setting, the VVC Test Model (VTM-5) has been used. It
was assessed that the QP-independent training of the CNN-based
SR methods results in a poor performance. This is due to the fact
that coding artifacts have various characteristics in different bitrates.
Therefore, we divided the QP range of 22-63 into 6 equal intervals,
as a compromise between the performance and number of networks.
For each interval, the QP value in the middle has been selected to
learn the compression artifacts of that interval. This design choice
results in six trained networks for each CNN-based SR scheme.

4. RESULTS

4.1. Coding efficiency performance

Table 1 presents the performance of various coding schemes and
their different settings. In order to conduct performance comparisons,
two metrics are used:



Table 1: Performance of ESPCN and EDSR methods trained with compressed and uncompressed datasets. Bitrate saving values of the
compressed setting, presented in terms of BD-Rate (%), are calculated against the bicubic SR method and the uncompressed setting. Moreover,
the critical bitrates of compressed and uncompressed settings are computed against the VITM and presented in terms of “kbps”.

CNN-based SR method

ESPCN EDSR
Sequence Uncompressed Compressed BD-Rate Uncompressed Compressed BD-Rate
BD-Rate Critical BD-Rate Critical Compr. vs. BD-Rate Critical BD-Rate Critical Compr. vs.
vs. Bicubic bitrate vs. Bicubic bitrate Uncompr. vs. Bicubic bitrate vs. Bicubic bitrate Uncompr.
BasketballDrive -43% 150 kbps -46% 175 kbps -3% -50% 240 kbps -59% 380 kbps -9%
BQTerrace -19% 90 kbps -24% 102 kbps -5% -26% 110 kbps -33% 165 kbps -1%
Cactus -11% 180 kbps -14% 200 kbps -3% -14% 180 kbps -22% 320 kbps -8%
CampFire 2% 490 kbps -5% 630 kbps -3% -19% 2650 kbps -23% 3700 kbps -4%
CatRobot -8% 170 kbps -11% 190 kbps -3% -16% 200 kbps -24% 455 kbps -8%
DayLight -5% 240 kbps -8% 290 kbps -3% -9% 260 kbps -15% 371 kbps -6%
FoodMarket +6% 570 kbps +4% 730 kbps 2% -2% 1850 kbps -6% 2000 kbps -4%
MarketPlace 0% 350 kbps -3% 430 kbps -3% -7% 540 kbps -12% 963 kbps -5%
ParkRunning -5% 1000 kbps -8% 1250 kbps -3% -12% 3200 kbps -16% 4550 kbps -4%
RitualDance +2% 450 kbps -1% 600 kbps -3% -12% 1400 kbps -17% 2471 kbps -5%
Average -8.5% 293 kbps -11.6% 460 kbps -3.1% -16.7% 1063 kbps -22.7% 1538 kbps -6%

1) Bjgntegaard Delta Rate (BD-Rate): This metric is computed
between different SR methods. The negative BD-Rate value is inter-
preted as the percentage of bitrate saving in the same level of quality
based on Peak Signal-to-Noise Ratio (PSNR) [26].

2) Critical bitrate: This term is used to denote the maximum bi-
trate of a sequence where the use of the SR framework still outper-
forms the regular coding [27]. Obviously, the larger values of critical
bitrate indicate that the use of the SR framework can be justified in a
wider range of applications. For a better comparison, Fig. 4 shows
the Rate-PSNR curves of the EDSR method for a selection of test
sequences, with their critical bitrate.

4.2. Observations and discussions

Training set: With no exception, the use of compressed training
set outperforms the uncompressed one. This is reflected in three as-
pects. First, there are coherent BD-Rate gains with the compressed
setting compared to the uncompressed setting, which are -3.1% and
-6% for the ESPCN and EDSR methods, respectively. Second, the
critical bitrate of the SR framework significantly moves towards the
higher bitrates, when the compressed setting is used instead. Third, it
was assessed that the amount of BD-Rate gain due to the compressed
setting seems to be consistent and content-independent.

The QP-dependent network training in the compressed setting is
critical. As mentioned earlier, the preliminary experiments of this
study showed that when the compressed setting was trained with a
dataset composed of all range of QPs, the results are significantly
worse than the QP specific compressed setting. This means that the
statistics of coding artifacts vary in different ranges of low bitrate.
Therefore, in order to be able to restore low bitrate artifacts, one
should expose the CNN learning to the appropriate training samples,
representing the right type of artifacts. In conclusion, all these ev-
idences show that the proper use of compressed training set signifi-
cantly improves the performance of the SR framework.

The SR framework: The performance of the SR framework de-
grades in higher bitrates. The critical bitrates metrics of Fig. 4 prop-
erly demonstrate this fact. This figure shows that after certain bitrate,
the SR framework becomes significantly poorer than the regular cod-
ing with VTM. One possible reason for this behavior is the nature of
artifacts that are specific for very low bitrates, (e.g. blockiness and
blurriness). More precisely, restoring these artifacts might be suit-
able for neural-network based solutions, while avoiding them at these

bitrates is very difficult for the VTM. It is also asserted that the perfor-
mance of the SR framework is highly content-dependent. As can be
seen in Table 1, in some sequences such as ParkRunning, CampFire
and RitualDance, the use of compressed train data moves the critical
bitrate about 1Mbps. According to Fig. 3, all these sequences have
relatively complex spatial and temporal characteristics.

SR methods: The BD-Rate improvement of using compressed
training set with EDSR is significantly larger than that of ESPCN. As
mentioned earlier, the ESPCN architecture is relatively simpler than
EDSR. Therefore, this result loosely concludes that simple network
structures might not be powerful enough to differentiate between
compression artifacts and actual texture information during training.
Testing this hypothesis with more network examples is left as future
work. Another observation is that the sequences with the highest
improvement due to the use of compressed dataset, are BQTerrace,
Cactus and CatRobot. According to Fig. 3, all these sequences
have relatively low temporal complexity. Interestingly, in all three
sequences, the performance of the SR framework against the VIM
anchor is among the poorest ones. The interpretation can be that
when the SR framework performs poorly compared to the VIM,
the use of compressed dataset can make a bigger change. Finally,
the results show that the CNN-based SR methods do not necessarily
perform better than simple SR methods, in all sequences. Examples
like FoodMarket, RitualDance and MarketPlace, where the bicubic
method outperforms ESPCN, prove that a bad choice of CNN-based
SR method can easily deteriorate the SR framework.

5. CONCLUSION

In this study, the impact of adding compressed videos to the train-
ing set for CNN-based SR methods has been investigated. A coding
framework is introduced in which different SR methods can serve
for up-sampling. It was assessed that training CNN-based SR meth-
ods compressed training set significantly outperforms uncompressed
training sets. This impact improves the global coding efficiency of
the SR framework and justifies its use in a wider range of bitrates.
Furthermore, it was observed that to boost the performance increase
of using compressed training set, complex network architectures are
preferred over simple ones, since they are more capable of learning
common coding artifacts in low bitrates.
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