
HAL Id: hal-03462787
https://hal.science/hal-03462787

Submitted on 2 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Several HSMM training methods to estimate the health
of a system

Lestari Handayani, Pascal Vrignat, Frédéric Kratz

To cite this version:
Lestari Handayani, Pascal Vrignat, Frédéric Kratz. Several HSMM training methods to estimate the
health of a system. Congrès Lambda Mu 22 “ Les risques au cœur des transitions ” (e-congrès) -
22e Congrès de Maîtrise des Risques et de Sûreté de Fonctionnement, Institut pour la Maîtrise des
Risques, Oct 2020, Le Havre (e-congrès), France. �hal-03462787�

https://hal.science/hal-03462787
https://hal.archives-ouvertes.fr


 

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22                                        Le Havre 12-15 octobre 2020 

Several HSMM training methods to estimate the 

health of a system 

Qualification de HSMM pour estimer l’état de santé 

d’un système  
 

Lestari Handayani  

PRISME Laboratory, EA 4229,     

INSA-CVL,                                       

F18020, Bourges, France; 

Informatics Engineering 

UIN Suska Riau 

Pekanbaru, Indonesia 

lestari.handayani@insa-cvl.fr 

Pascal Vrignat 

PRISME Laboratory, EA 4229,     

Univ. Orléans, INSA-CVL,        

F45072, Orléans, France

Frédéric Kratz 

PRISME Laboratory, EA 4229,    

INSA-CVL,                                       

F18020, Bourges, France 

 

Abstract— This paper presents a measure of relevance based 

on HSMM similarity and information criteria. We created a 

reference model (verified by ACP) and put it in competition with 

three other models. This work involved several parameters and 

two training methods for the HSMM. 

Keywords—Hidden Semi Markov Model, information criteria, 

PCA, similarity, training method  

Résumé— Cet article présente une mesure de pertinence 

basée sur la similarité HSMM et des critères d'information. 

Nous avons créé un modèle de référence (vérifié par ACP) et 

l'avons placé en concurrence avec trois autres modèles. Ce 

travail a impliqué plusieurs paramètres et deux méthodes de 

formation pour le HSMM. 

Mots clés–modèle semi-markov caché, critères d'information, 

ACP, similitude, méthodes de formation 

I. INTRODUCTION  

One of the big challenges in the manufacturing industry of 
modern economic systems is increasingly producing with 
maximum results, low environmental risk, and worker safety. 
Current technology has brought increased performance, 
functionality, and complexity of equipment to achieve 
automation, condition monitoring, and error diagnosis 
produced. Another challenge was maintaining and optimizing 
the quality of services provided by the industrial objects 
throughout its life cycle. The way is by curative or preventive 
care [1]. However, the state of the equipment is often difficult 
to observe directly, only can be expressed from the symptoms 
of the output [2]. Most automated systems are almost 
impossible to identify and predict failure conditions at the 
right time. Many methods and tools [1], [2], [3] can be used to 
predict the value of the remaining useful life (RUL). Baruah 
and Chinnam [4] first demonstrated that a standard HMM 
could be applied in the prognosis field in the machining 
process. However, this HMM-based method has a weakness 
to estimate RUL of the durational modeling because HMM 
use exponential time durations, so the new HSMM method is 

derived by adding a temporal component [1], [2]. Thus, the 
HSMM is applied here to estimate the health of a system that 
allows arbitrary sojourn time distributions for the hidden 
process. 

Traditional health assessments based on HSMM usually 
require various machine operating data for different HSMM 
training models. However, the data needed can hardly be 
obtained in most situations. In the real case, it only has a few 
observations. Moreover, it doesn't know the topology, the 
initial values of the system model, and the maximum duration 
of each state. Therefore, we propose an HSMM based method 
that is trained can be used to measure the closeness of a system 
model to a real case.  

In this paper, we establish a reference HSMM that is 
controlled and suitable for real industrial processes. The 
sequence of observation symbols is produced by the reference 
model, using a normal emission distribution and several 
duration distributions. Our aim is to evaluate 3 different 
HSMM topologies (Fig. 10) that are used for training 
observational data from reference models where the output is 
the new HSMM parameter. The training uses two HSMM 
training methods [6, 7]. 

This paper contributes to the selection of the best HSMM 
model that considers sojourn time in each hidden state. It is 
used to estimate the health of a real case system. This paper 
discusses the measurement of the relevance of HSMM 
parameters based on the maximum likelihood criteria [8, 9]. 
We propose a similarity measurement HSMM modified using 
the similarity value [10] to measure the closeness of the model 
to the reference model. Following the observation generation 
process, we also used Principal Component Analysis (PCA) 
to verify the intrinsic characteristics of the HSMM [11]. The 
hypothesis will be obtained from a HSMM model that is 
similar to the reference model and has the optimal HSMM 
parameters.  
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This paper is organized as follows. In section II, explain 
HSMM theory and several HSMM training methods. Section 
III provides a relevance measurement detail of HSMM. We 
show the evaluation process, the results, and discussion in 
section IV. Finally, conclusions are formulated in section V.   

II. HIDDEN SEMI MARKOV MODEL 

Let {𝑆} be the states of a semi-Markov chain with finite-

state space {1, … , 𝑀}. The state sequence Q = {𝑆1, … , 𝑆𝑇} is 

denoted by 𝑆1:𝑇, where 𝑆𝑡 ∈ 𝑆 is the state at time 𝑡. And the 

observation sequence 𝑂 = {𝑂1, … , 𝑂𝑇}  by 𝑂1:𝑇  where 𝑂𝑡 ∈
𝑉 is the observation at time 𝑡 with 𝑉 = {𝑉1, … , 𝑉𝑘} is the set 

of observable values. This semi-Markov chain is defined by 

the following parameters: 

• Initial probabilities 𝜋 = {𝜋𝑚} where 𝜋𝑚 = 𝑃(𝑆1 =
𝑚) with ∑ 𝜋𝑚 = 1𝑚 ; 

• Transition probabilities 𝐴 = {𝑎𝑚𝑛}  where 𝑎𝑚𝑛 =
𝑃(𝑆𝑡+1 = 𝑛|𝑆𝑡 = 𝑚)  with ∑ 𝑎𝑚𝑛 = 1𝑚≠𝑛  and 
𝑎𝑚𝑚 = 0; 

• Observation or emission probabilities 𝐵 = {𝑏𝑚(𝑣𝑘)} 
where 𝑏𝑚(𝑣𝑘) = 𝑃(𝑂𝑡 = 𝑣𝑘|𝑞𝑡 = 𝑆𝑚) ; 

• Duration probabilities 𝐶 = {𝑝𝑚𝑑}  where 𝑝𝑚𝑑 =
𝑃(𝑆𝑡+1:𝑡+𝑑 = 𝑚|𝑆𝑡+1 = 𝑗)  where 𝑑 ∈ (1,2, … , 𝐷) 
and 𝐷 is maximum duration in state m. 

A reference HSMM for the industrial health system is 
defined as 𝑅 = (𝜋, 𝐴, 𝐵, 𝐶) . We refer to the degradation 
level of industrial processes [3]. There are a set of states 𝑆 =
{𝑆1, 𝑆2, 𝑆3, 𝑆4) with topology (Fig. 1). The process runs on 
𝑆2, 𝑆3, and 𝑆4. While 𝑆1 is used when the process is stopped 
(failure). We use explicit duration showed in the dotted circle, 
for example, 𝑆2  to 𝑆4  (where  𝑚 = 2, 𝑛 = 4). After state m 
ends at the 𝑡th time unit, it transits to state 𝑚 ≠ 𝑛 according 
to the transition probability 𝑎𝑚𝑛 and then selects its duration 
𝑑 according to the duration probability 𝑝𝑛𝑑 . State 𝑛 spends 𝑑 
time units and produces 𝑑  observations 𝑜𝑡+1, … , 𝑜𝑡+𝑑 with 
emission probability 𝑏𝑛(𝑜𝑡+1: 𝑜𝑡+𝑑). Each state has a variable 
duration, which is associated with the number of observations 
produced while in the state. 

Fig.  1. HSMM Reference 

 
Moreover, this reference model is designed to generate a 

sequence of observations. Afterward, we used two algorithm 
HSMM training for estimated new parameters and decoding 
through the topology given a specific observation sequence.  

A. Forward-Backward Algorithm 

A forward-backward algorithm for an explicit duration 
hidden Markov model obtained in [6]. The forward variables 
for HSMM are defined by:         

𝑡 = 1, … , 𝑇 ∶ 

𝛼𝑡|𝑡−1(𝑚, 𝑑) = 𝑆𝑡−1(𝑚) 𝑝𝑚(𝑑) +

                            𝑏𝑚( 𝑜𝑡−1|𝑡−2) 𝛼𝑡−1|𝑡−2(𝑚, 𝑑 + 1)                  (1) 

with the initial value  

 𝛼1|0(𝑚, 𝑑) = 𝜋𝑚𝑝𝑚(𝑑)                                                   (2) 

For convenience in the forward recursion, defined variables 
𝜀 𝑎𝑛𝑑 𝛿  are respect to the conditional probability of a state 
ending at 𝑡 given 𝑜1

𝑡 and that of a state starting at 𝑡 + 1 given 
𝑜1

𝑡, 

 𝜀𝑡(𝑚) = 𝛼𝑡|𝑡+1(𝑚, 1)𝑏𝑚
∗ (𝑜𝑡)         (3) 

 𝛿𝑡(𝑚) = ∑ 𝜀𝑡(𝑛)𝑛 𝑎𝑛𝑚                          (4) 

𝑏𝑚
∗ (𝑜𝑡) is the ratio of filtered probability 𝛼𝑡|𝑡(𝑚, 𝑑)  over the 

predicted 𝛼𝑡|𝑡−1(𝑚, 𝑑) by: 
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The backward variables by: 

𝑡 = 𝑇, … , 1 ∶ 

 𝛽𝑡(𝑚, 𝑑) = {
𝛿𝑡+1

∗ (𝑚)𝑏𝑚
∗ (𝑜𝑡),                 𝑑 = 1  

𝛽𝑡+1(𝑚, 𝑑 − 1)𝑏𝑚
∗ (𝑜𝑡),      𝑑 > 1  

       (6) 

For convenience in the backward recursion, denoted variables 
𝜀∗ and 𝛿∗ by: 

 𝜀𝑡
∗ = ∑ 𝑝𝑚(𝑑)𝛽𝑡(𝑚, 𝑑)𝑛                                                        (7) 

 𝛿𝑡
∗ = ∑ 𝑎𝑚𝑛𝜀𝑡

∗(𝑛)                                                 𝑛                  (8) 

The smoothed probability that a transition from state m to state 
n at t occurs, it is defined by: 

 𝜃𝑡(𝑚, 𝑛) = 𝜀𝑡−1(𝑚)𝑎𝑚𝑛𝜀𝑡
∗(𝑛)                                       (9) 

And the probability that state m is entered at t and lasts for d 
time units is: 

 𝜑𝑡(𝑚, 𝑑) = 𝛿𝑡−1(𝑚)𝑝𝑚(𝑑)𝛽𝑡(𝑚, 𝑑)                             (10) 

B. Viterbi Forward-Backward HSMM 

We used Viterbi forward backward based on [7]. The 
forward recursion is given by: 

𝑡 = 1, … , 𝑇 − 1 ∶ 

  )()(maxmax)()(
11

udobobt jvt

u

v m
tu

tmm −=
=  

          mmvtm

t

vnn tdobutmp  )1()()()(max +− −  (11) 

 



22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22                                       Le Havre 12-15 octobre 2020 

The backward recursion is given by: 

𝑡 = 𝑇 − 1, … ,1 ∶ 
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The smoothed probabilities are: 

 𝜃𝑡(𝑚, 𝑛) = 𝛼𝑡(𝑚)𝑎𝑚𝑛𝛽𝑡+1(𝑚)                                         (13) 

and 

 𝜑𝑡(𝑚, 𝑑) = 𝛼𝑡−1(𝑚)𝑝𝑚(𝑑)𝛽𝑡(𝑚, 𝑑)                             (14) 

The last is compute 𝛾𝑚(𝑡) = 𝛽𝑚(𝑡)𝛼𝑚(𝑡)                                (15) 

For numerical stability, we did a log transformation to all 
the model parameters. As a consequence, all the products are 
turned into sums in computer implementation. 

C. Estimation of states and parameter HSMM 

Given the workload data sequence 𝑜1:𝑇 , we can MAP 
estimation of the hidden states using Eq. (16). 

))(max(ˆ tQ mt =         (16) 

The re-estimation of the model parameters given below [5]: 
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III. RELEVANCE MEASUREMENT OF HSMM 

We used 3 different HSMM models and processed by two 
different HSMM training methods. This will be training data 
observations generated by reference models with several 
distribution laws. To find the best topology, first measured the 
similarity of the proposed topology with the reference model. 
Then analyze the new HSMM parameters and the new states 
of sequences generated from several training methods. We 
analyze using maximum likelihood and information criteria 
(Akaike information criterion (AIC), Bayesian information 
criterion (BIC), Hannan–Quinn information (HQC)). Finally, 
we validate the parameters using Principal component 
analysis (PCA). 

A. Similarity HSMM  

To compare the reference model with the new topology 

that we are proposing we use the HSMM similarity approach 

to define a distance measure between any pair of HSMM. We 

propose a similarity measurement HSMM modified using the 

similarity value [7]. 

Suppose there are two HSMM 
𝑅 = (𝜋𝑅 , 𝐴𝑅, 𝐵𝑅 , 𝐶𝑅) and 


𝑇 = (𝜋𝑇 , 𝐴𝑇 , 𝐵𝑇 , 𝐶𝑇), whose evaluated similarity. One way 

to evaluate is to consider the probability of HSMM will 

generate identical observations. 

HSMM similarity measure Sim(
𝑅||𝑇) can be computed 

in the following step: 

1)  Compute stationary distributions 𝜇𝑅 and 𝜇𝑇.  

2) Compute 𝐷(𝑏𝑚
𝑅 ||𝑏𝑚

𝑇 )  and 𝐷(𝑝𝑚
𝑅 ||𝑝𝑚

𝑇 )  for every pair of 

states using Symmetric KLD. [12] 

3)  Evaluate the similarity between states 𝑆𝑚
𝑅  and 𝑆𝑚

𝑇 , 

𝑆𝑒(𝑆𝑚
𝑅 ||𝑆𝑚

𝑇 ) = 1/𝐷(𝑏𝑚
𝑅 ||𝑏𝑚

𝑇 )  ∗ 1/𝐷(𝑝𝑚
𝑅 ||𝑝𝑚

𝑇 )          (21) 

4)  Estimate the state correspondence matrix Qe whose 
elements are a measure of the correspondence between 
two states 
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 𝐸𝑆(𝑅||𝑇) = ∑ ∑ 𝜇𝑚
𝑅 𝜇𝑚

𝑇 𝑆𝑒(𝑆𝑚
𝑅 ||𝑆𝑚

𝑇 )         ∀
𝑚𝑇∀

𝑚𝑅
    (23) 

5)  Compute the HSMM similarity measure 𝑆𝑖𝑚(𝑅||𝑇)  

𝑆𝑖𝑚(𝑅||𝑇) ≜
1

2
[

1

𝐿𝑅
∑ 𝐻(𝑟𝑖) +𝐿𝑅

𝑖=1
1

𝐿𝑇
∑ 𝐻(𝑐𝑗)𝐿𝑇

𝑖=1 ]       (24) 

where 𝑟𝑖 is the ith row of Qe, 𝑐𝑗 is the jth column of Qe, and 

𝐿𝑅 and 𝐿𝑇  respectively are the number of rows and columns 
of Qe. The function H(u) is a normalized sparsity measure for 
the vector u in [13]. 

B. Maximum likelihood 

The maximum likelihood (ML) is a method to estimate the 
parameters of a model and test hypotheses about those 
parameters. As before, we begin with discrete sample 𝑋 =
{𝑋1, . . . , 𝑋𝑛}  according to probabilities 𝑃𝜃 . Besides, 𝑓(𝑥|𝜃) 
will be used to denote the density function for the data when 

𝜃 is the true state of nature. Then, a choice of the estimator 𝜃̂ 
as the value for the parameter is maximum. 

 𝜃̂(𝑥) =  ∑ 𝑙𝑜𝑔(𝑃𝜃(𝑥𝑖)                                            𝑛
𝑖=1       (25) 

The most famous maximum likelihood criterion is 
Akaike’s information criterion (AIC) [14]. It is defined by 
adding a penalty term that expresses the complexity of the 
model for a negative twofold maximum log-likelihood. The 
family of log-likelihood-based information criteria (LLBIC) 
includes BIC [15] and HQC [16], ensure a better estimation 
by penalizing oversizing models. 

The relations between LLBIC and most well-known 
information criteria are as follows: 

 𝐴𝐼𝐶 = −2 𝑙𝑛 𝑉 + 2𝑘                                                         (26) 

 𝐵𝐼𝐶 = −2 𝑙𝑛 𝑉 + 2𝑘 ∗  𝑙𝑛(𝑛)                                        (27) 

 𝐻𝑄𝐶 = −2 𝑙𝑛 𝑉 + 2𝑘 ∗  𝑙𝑛(𝑙𝑛(𝑛)                                (28) 

Where k is the number of free parameters, V is the likelihood, 
and n is the number of data. The best model is the one that has 
the weakest AIC, the minimum value of BIC and HQC. 



22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22                                       Le Havre 12-15 octobre 2020 

C. Principal Component Analysis (PCA) 

PCA is a method included in the family of data analysis 
and more generally of multivariate statistics. This method 
consists in transforming variables linked to each other (called 
“correlated” in statistics) into new variables decorrelated from 
each other. These new variables are called "main 
components", or main axes. It allows the expert to reduce the 
number of variables and make the information less redundant. 
PCA formulation used to verify the HSMM reference in proof 
of the emission observation and state estimation. We adopt the 
PCA theory from the book [11]. It is a way of identifying 
patterns in data and expressing the data in such a way as to 
highlight their similarities and differences. The method of 
PCA as follows: 

Step 1. Get some data set (i.e. 𝑋 and Y), 

Step 2. Substract the mean from each of the data dimensions. 
The mean subtracted is the average across each dimension. 
(i.e. (𝑋 − 𝑋̅) 𝑎𝑛𝑑 (𝑌 − 𝑌̅)),  

Step 3. Calculate the covariance matrix, 

 ∑ = [
𝑉𝑎𝑟(𝑥) 𝐶𝑜𝑣(𝑥, 𝑦)

𝐶𝑜𝑣(𝑦, 𝑥) 𝑉𝑎𝑟(𝑦)
]           (29) 

Step 4. Calculate the eigenvectors and eigenvalues of the 
covariance matrix. We are provided with 2-dimensional 
vectors 𝑣1, 𝑣2 . If we apply a linear transformation 𝑇 to our 
vectors, we will obtain new vectors, called 𝑏1, 𝑏2. 

 𝑇𝑣1 = 𝑏1 

𝑇𝑣2 = 𝑏2                                                  (30) 

Those vectors are called eigenvectors, and the scalar which 
represents the multiple of the eigenvector is called eigenvalue. 

 𝑇𝑣1 = 1𝑏1                                                                (31) 

Step 5. Choosing components and forming a feature vector. 

 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟 = (1, 2)                                              (32) 

Step 6. Deriving the new data set. 

 𝐹𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎 = 𝑅𝑜𝑤𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟 × 𝑅𝑜𝑤𝐷𝑎𝑡𝑎              (33) 

IV. EVALUATION PROCESS 

We evaluate the best HSMM models by relevance 
measurement. We present the scenario simulation in Fig. 2. 
The boot process from creating a reference topology about the 
model to produce about 10.000 data events (symbol 
observations or emissions and states). This volume of data is 
significant to have a good quality of simulation. These 
symbols (observations) can act as a possible real case study.  

A. Simulated industrial 

We refer to paper [3] to understand these simulations in 

the industrial field. There are Computerized Maintenance 

Management System, which maintenance activities carried 

out on the industrial process. We took Table I. Symbolic 

coding system of maintenance activities. The symbols 

resulting from observations. This is grouped into two 

processes, namely “Run” and “Stop/Failure”. Process "Run" 

held on symbol number 2 until number 10. It happens when 

production units are running. On the other hand, the symbol 

process "Stop/Failure" is given by symbol “1(SP)”, it is a 

critical condition. 

 

Fig.  2. Flow chart of HSMM evaluation simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE I.  SYMBOLIC CODING SYSTEM OF MAINTENANCE ACTIVITIES 

No. Symbol 

(measurement 

data) 

Intervention Type Process 

status  

1 SP Troubleshooting/Stop production Stop 

2 SM Setting Machine Run 

3 OT Other Run 

4 OBS Observation Run 

5 PM Preventive maintenance 

(production not stopped) 

Run 

6 SEC Security Run 

7 PUP Planning upgrading Run 

8 CM Cleaning machine Run 

9 PMV Preventive maintenance visit Run 

10 NTR Nothing to report Run 

B. Reference Model 

We have set up a reference model that considers sojourn 
time in each hidden state. We used 4 states because it has 
good performance in maintenance activities [17]. Fig. 1 
describe the topology and matrix transition probability shown 
in Fig. 3. Each state has a duration before moving to another 
state. Sojourn time in this state has a maximum duration.  

Fig.  3. Matrix transition probability 
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1) Generate Observations 
 In generating observations, we have some settings with 
different and controlled specifications. These controlled 
specifications concern law of emission and distribution. For 
emission law, we used normal distribution. Symbols are 
distributed by modality as shown in Table. II. Value 1 is 
assigned to state corresponded, otherwise, value 0 is not 
assigned. For example, State 1 only has symbol “SP”, state 2 
could be assigned has symbol “SM”, “OT”, “OBS”, “PM”, or 
“SEC” etc. 

TABLE II.  MODALITY OF SYMBOLS 

State Symbol  
SP SM OT OBS PM SEC PUP CM PMV NTR 

1 1 0 0 0 0 0 0 0 0 0 

2 0 1 1 1 1 1 0 0 0 0 

3 0 0 0 1 1 1 1 1 0 0 

4 0 0 0 0 0 1 1 1 1 1 

 Furthermore, we adjust 4 duration laws that are Poisson, 
Gamma, Normal, and Weibull distribution. These laws are 
representative in a real context. So, we have 4 kinds of 
sequences observation below:  

O1: EmisssionNormal_DurationPoisson,   
O2: EmisssionNormal_DurationGamma, 
O3: EmisssionNormal_DurationNormal, 
O4: EmisssionNormal_DurationWeibull.   

Also, we provide a maximum duration value of the states 
(sojourn time) based on the duration distribution used. After 
obtained the data events visualized in Fig. 4 until Fig. 7, we 
can calculate the duration maximum of state, probability of 
emission, and distribution probability for our reference model 
HSMM.   

Fig.  4. The observations sequence example of O1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  5. The observations sequence example of O2 

 
 

 

 

 

 

 

 

 

 

 

Fig.  6. The observations sequence example of O3 

 

 

 

 

 

 

 

 

 

 

 

Fig.  7. The observations sequence example of O4 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Calculate Dmax 
Create a table of sojourn time from observed and states 

shown in Table. III. For each state, we calculate the maximum 
value of the sojourn time.  

 

 

 

 
(a) Observations sequence of O1 

 

 
(b)  3-D visualization of O1 

 

 
(c) Transition of States (i.e. 1200 data) 

 

 

 

 
(a) Observations sequence of O3 

 

 
(b) 3-D visualization of O3 

 

 

 

 

 
(a) Observations sequence of O4 

 

 
(b) 3-D visualization of O4 

 

 

 

 

 
(a) Observations sequence of O2 

 

 
(b) 3-D visualization of O2 
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TABLE III.  SOJOURN TIME TABLE OF O1 

Timeline State Sojourn Time 

1-11 4 11 

12-28 3 17 

29-33 2 5 

34-40 1 7 

… … … 

9992-9993 2 1 

9993-10000 4 7 

3) Calculate Emission and distribution probabilities 
We can calculate the probability of emission and 

distribution from the observations sequence. It will be defined 
as parameter 𝑏𝑅 and 𝑝𝑅 of the reference model. 

4) Analyze HSMM Reference using PCA  
We want to analyze the HSMM reference in order to be 

able to transpose later, that of modeling for a real case. We use 
PCA to see the correlation between variables and between 
signatures. However, in our scenario it created sequence 
observations as signatures which have symbol emissions and 
states. We did preprocessing before PCA processing.  

a) Preprocessing data: make a signature with 3 

symbols and it’s state. Then, collecting history data of 

emission symbol (E1: E10) link to the modality of symbol. The 

Table IV. shown a portion of preprocessing data of O1 for 

PCA process.  

TABLE IV.  PREPROCESSING TABLE OF O1 

Signature E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 

'10_8_7'4 0 0 0 0 0 11 172 1520 726 13 

'10_9_8'4 0 0 0 0 0 11 173 1521 727 14 

'1_1_1'1 351 0 0 0 0 0 0 0 0 0 

'1_1_2'1 315 0 0 0 0 0 0 0 0 0 

'1_2_2'2 0 120 151 196 141 121 0 0 0 0 

'1_6_6'2 0 126 160 204 148 129 0 0 0 0 

'2_1_1'1 325 0 0 0 0 0 0 0 0 0 

'4_5_6'2 0 124 159 201 144 124 0 0 0 0 

'4_5_6'3 0 0 0 127 1619 2201 1673 136 0 0 

…. … … … … … … … … … … 

b) Processing PCA: Input variables and label of 

observation. We select the Pearson correlation coefficients. 

We have 2 results. First, the label is the state and the variables 

are E1 to E10. The objective is to obtain the correlation 

between emission symbol and state. Second, we choose 

signature as label, and state as a variable. It aims to view the 

correlation between state and signature. 

c) PCA Result: the result of sequence observations O1 

shown in Fig. 8 and Fig. 9. The correlation of these figures 

are very good. 82,27% for correlation of states and emission 

symbol. And 99,98% is correlation of states and signatures. 

It’s mean that the sequence observations of O1 is strong and 

we can use it for simulation HSMM. 

Fig. 9 show that the observations actives with the 
signature. It has a possibility for emission symbols many 
state's estimations. For example, the signature ‘4_5_6’2 is 
emission symbol 5 in class 2.  This emission symbol appears 

in class 3 by signature ‘4_5_6’3 also. So, it fulfills the 
requirement of the modality of the symbol in Table II. 

Table V describes the PCA results of sequence 
observations. All values show that the correlation values of 
these simulations are high. We can use these sequence 
observations for HSMM evaluation. 

Fig.  8. Correlation of states and emission symbols of O1 

 

 

 

 

 

 

 

 

 

 

 

Fig.  9. Correlation of states and signatures of O1 

 

 

 

 

 

 

 

 

 

 

 

TABLE V.  THE PCA RESULTS OF 4 SEQUENCE OBSERVATIONS 

Sequence 

observation 

Correlation of state 

and emission 

symbol 

Correlation of state 

and signature 

O1 82,27 % 99,98 % 

O2 84,28 % 93,76 % 

O3 81,24 % 91,20 % 

O4 83,63 % 99,99 % 

C. HSMM Topology 

In the next step, we defined 3 different models that we 
evaluate. These models have different topology notice the 
maximum duration of the reference model.  
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Fig.  10. HSMM Topologies 

1) Training HSMM 
We used the forward-backward algorithm and Viterbi 

forward-backward as a training method. The input data is the 
observation sequences of the reference model. 

2) Estimate HSMM Parameter 
Re-estimate new parameters of HSMM could obtain by 

using formula (16) until (20). These values used for evaluation 
HSMM. 

D. Evaluation HSMM 

We tried to evaluate the Topology and Reference model 
by calculating similarity HSMM and maximum likelihood 
criterion. 

1) Calculate Similarity HSMM 
We obtain 4 types of sequence observations that some 

settings describe in Fig. 4 until Fig. 7 (O1, O2, O3, O4). Next, 
the model is trained by the forward-backward algorithm (BF) 
and the Viterbi forward-backward algorithm (Viterbi). The 
results of the HSMM similarity shown in Fig. 11. 

From Fig. 11, we show that the similarity value of the BF 
algorithm is often higher than the Viterbi algorithm. The 
topology who has the highest similarity value is topology 1 for 
O1, topology 3 for O2, topology 2 for O3, and topology 3 for 
O4. 

 

 

 

 

 

 

Fig.  11. Similarity value of HSMM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Calculate Criterion HSMM 
During the HSMM training process, it is possible to 

calculate the maximum likelihood. Then, we can calculate 
some criterions HSMM (AIC, BIC, HQC). Fig. 12 presents 
the results of the criterion values from the FB training for O1, 
O2, O3, and O4. These values are in the 10000s for the FB 
algorithm and 1E9 for the Viterbi algorithm. 

From Fig. 12, it appears that the values of AIC, BIC, and 
HQC have the same tendency. The best topology is that which 
has the highest value. Based on these criteria, we chose 
topology 1 is the best for O1, topology 3 for O3, topology 2 for 
O3, and topology 3 for O4.  

3) Estimate Health of System 
In this chapter, we detail the elements of competition 

between the different models. First, we select the best 
topology that has the highest similarity value and minimum 
criterion. The results of the evaluation simulation are shown 
in Table VI, and Table VII (i.e. sequence observations O1, we 
choose topology 1 which used FB training method).  

 

 

 

 

 
(a) Topology 1 

 

 
(b) Topology 2 

 

 
(c) Topology 3 

 

 
(a) O1: Normal emission and Poisson duration  

 

 
(b) O2: Normal emission and Gamma duration 
 

 
(c) O3: Normal emission and Normal duration 

 

 
(d) O4: Normal emission and Weibull duration 
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Fig.  12. Criterion value of HSMM using forward- backward Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE VI.  HSMM EVALUATION OF O1, AND O2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE VII.  HSMM EVALUATION OF O3, AND O4 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using this topology, we can predict the state of sequence 
observations. Fig. 13 shown that state row is the health 
estimation of the system. 

Fig.  13. Prediction of sequence observations 

 

 

 

 

V. CONCLUSION 

In this study, a method for measuring HSMM relevance 
is proposed. For this, we have created a benchmark HSMM. 
A sequence observation generator has been specifically 
developed for this model. We have successfully used the PCA 
method to obtain possible correlations in the HSMM. After 
testing randomly the other models from our reference model, 
we have applied all relevant measurements of HSMM. We 
have successfully applied this method for 3 different models 
in some settings of sequence observations and several HSMM 
training methods. The results of the method, proven that it 
could be used to choose the best topology. The highest 
similarity value and the minimum criterion provide the same 
topology. It also gives a conclusion about the HSMM training 
method. The Forward-backward algorithm is top on the 
graphic of HSMM similarity (it’s happened for all 
observation sequences types). This work is a first step to 
qualify an HSMM model. It will have to be consolidated later 
with real data.  
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