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Study of Prey-Predator models with Allee effect for the Predator in presence of multiple interior equilibria

We consider prey-predator models with allee effect for the predator population. We first prove the existence of multiple equilibria of the models. In presence of multiple interior equilibria, we then study the dynamics of the models using the Conley connection matrix theory and establish analytically the results (namely the stability exchange bifurcation, Hopf bifurcations and homoclinic bifurcations) obtained by numerical simulations in previous studies. Some other results (including the global convergence of interior flows to the boundary) are also presented here.
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Introduction

We consider the following prey predator models with allee effect for the predation population

x ′ = xg(x) -yp(x) y ′ = y[δp(x)( y h+y ) -ϵ 1 -ϵ 2 y], (1) 
with g(x) = r(1 -x K ), and p(x) = αx 1+βx or p(x) = αx 1+βx+γy , where x(t) and y(t) are the prey and predator population density at time t, respectively with x(0), y(0) ≥ 0. g(x) is the per capita growth rate of the prey in absence of the predator. p(x) is the Holling type II functional response for the predaror, or p(x) is of Beddington De-Angelis form. ϵ 1 + ϵ 2 y is the density dependent death rate of the predator. δ, h, K, α, β, γ, ϵ 1 , ϵ 2 are positive constants. Out of a number of studies of prey-predator models in which the predator population is a subject to a component allee effect for reproduction (see the references in [START_REF] Aj | Predator-prey models with component Allee effect for predator reproduction[END_REF]), we mainly focus on the papers by Terry [START_REF] Aj | Predator-prey models with component Allee effect for predator reproduction[END_REF] and Verdy [START_REF] Verdy | Modulations of predator-prey interactions by the Allee effect[END_REF]. In [START_REF] Aj | Predator-prey models with component Allee effect for predator reproduction[END_REF] Terry extended the definitions of demographic and component allee effects for single species models to predators in prey-predator models while the prey population does not change. The models [START_REF] Franzosa | The connection matrix theory for Morse decomposition[END_REF] can have multiple two species fixed points. By numerical simulation analysis Verdy [START_REF] Verdy | Modulations of predator-prey interactions by the Allee effect[END_REF] showed the dynamics of models with γ = ϵ 2 = 0 in presence of two interior fixed points. By changing the values of the carrying capacity K the author [START_REF] Verdy | Modulations of predator-prey interactions by the Allee effect[END_REF] has shown the changes of dynamics of his models, namely, the existence of multiple equilibria, their stability and the occurence of a stable limit cycle, and finally the convergence of the system to the extinction equilibrium for sufficiently large value of K. Terry considered the models (1) in [START_REF] Aj | Predator-prey models with component Allee effect for predator reproduction[END_REF] and studied numerically the dynamics of the models in presence of two or three interior equilibria. Through numerical analysis the author established the existence of fixed points, the existence of a stable limit cycle in one of the models and the coexistence of trapping regions. In this paper we first prove the existence of interior fixed points. In presence of multiple fixed points we then study the dynamics of the models using the Conley connection matrix theory and obtained analytically the results shown by Verdy [START_REF] Verdy | Modulations of predator-prey interactions by the Allee effect[END_REF] and Terry [START_REF] Aj | Predator-prey models with component Allee effect for predator reproduction[END_REF]. Some other results (which are not possilbe by simulations) are also presented in this paper. Computing the connection matrices for models with γ = ϵ 2 = 0, we prove Hopf bifurcations, homoclinic bifurcations and global convergence of the system to the extinction equilibrium. For models with γ ̸ = 0, ϵ 2 ̸ = 0, we prove a result which shows the global convergence of the system to the extinction fixed point state. At the extinction equilibrium, only the prey population settles at the carrying capacity and the predator dies out. All of our results are given in section 2.

Assumptions and Results:

From Lemma 1 of Terry [START_REF] Aj | Predator-prey models with component Allee effect for predator reproduction[END_REF] we know that the solutions of the models (1) are unifomly bounded. From the prey and predator equations and the Jacobian matrix of the models (1) we get (i) the trivial equilibrium M (0) = (0, 0), which always exists, is stable along the y axis and unstable along the x axis, and (ii) the axial equilibium M (K) = (K, 0) which always exists and is asymptotically stable (stable along the both x, y axises). Regarding the existence of interior fixed points we need two definitions. An equilibrium of a system of ecological equations

x ′ = xf (x) (x ∈ R n + ) is called unsaturated (resp. saturated) if its eigenvalue along the orthogonal direction is positive (resp negative). A point x ∈ U ⊂ R n , (where U is bounded open subset) is called regular if detD x f ̸ = 0. Next the result.
Lemma 1 For models [START_REF] Franzosa | The connection matrix theory for Morse decomposition[END_REF], there exist either no, two or four interior fixed points in the positive quadrant Proof : In model (1) the boundary equilibrium M (k) is always saturated with index (+1) and M (0) is nonsaturated with index (-1). Solutions are bounded. The sum of indices of the saturated regular equilibria of model ( 1) in (-1) 2 = 1, by Theorem 1 in [START_REF] Hofbauer | The Theory of Evolution and Dynamical System[END_REF] (INDEX theorem for ecological equations). Thus there exist either no equilibrium (if the prey and predator isoclines do not intersect) giving the sum +1 or two or four equilibria M (x i ) = (x i , ȳi ) for i = 1, 2 or 1, 2, 3, 4 (if the isoclines intersect at (x i , ȳi )) giving the sum +1. If i = 1, 2, then one of the two must be a saddle point with index -1 and the rest is either source or sink with index +1. If i = 1, 2, 3, 4, then two of them are saddle points with total indices -2 and the rest two are sinks or sources with total indices +2. □

We study models (1) by considering γ = ϵ 2 = 0, (MODEL 1), ϵ 2 = 0 (MODEL 2) and γ ̸ = 0, ϵ 2 ̸ = 0 (MODEL 3). MODEL 1 with γ = ϵ 2 = 0,

The isoclines x ′ = y ′ = 0 intersect at two equilibria M (x i ), i = 1, 2. We consider that M (x 2 ) is saddle and M (x 1 ) is either sink or source, whenever x 1 < x 2 < K. Moreover, for our analysis purpose we assume (H) If K < x 1 < x 2 , then M (x 1 ) saddle and M (x 2 ) is sink and the connection orbit M (x 1 ) → M (K) is unique and also M (x 1 ) → M (x 2 ) is unique. These bounded orbits lie outside the closure of the positive quadrant and they lie above the line y = L for some positive L. We define (i) S = {bounded solutions of Model 1} and (ii) π be the minimal isolated invariant set of the positive quadrant containing all periodic solutions of S. Then we have the followings.

Proposition 1 a. H * (h(S), Z 2 ) ≈ (0, 0, 0....); h(S) is the Conley index of S and H * (h(S), Z 2 ) is the homologies of the index over Z 2 . b. H * (M (0)) ≈ (0, Z 2 , 0, 0....) for all K > 0. c. H * (M (K)) ≈ (Z 2 , 0, 0, 0, .....) d. H * (M (x 1 )) ≈ (0, Z 2 , 0, 0, .....) if K < x 1 (Z 2 , 0, 0, 0, ....) if x 1 < K. e. H * (M (x 2 )) ≈ (Z 2 , 0, 0, 0, .....) if K < x 1 < x 2 (0, Z 2 , 0, 0, ....) if x 1 < x 2 < K. f. If H * (M (x 1 )) ≈ (Z 2 , 0, 0, 0, .....), then H * (π) ≈ (0, 0, ......) or (0, Z 2 , Z 2 , 0, 0, ...) g If H * (M (x 1 )) ≈ (0, 0, Z 2 , ...), then H * (π) ≈ (0, 0, ......) or (Z 2 , Z 2 , 0, 0, ....) h If (x 1 , π) is an attracting interval, then H * (x 1 π) ≈ (Z 2 , 0, 0, 0...).
Here we denote M (x i ) by only x i .

Proof: (a) See [START_REF] Mischaikow | A Predator-Prey System involving Group Defence: a Connection matrix approach[END_REF] (b) -(e) These follows from the linear analysis of the critical points and assumption (H).

(f ) -(h) See [START_REF] Mischaikow | A Predator-Prey System involving Group Defence: a Connection matrix approach[END_REF].□

A finite set P with a strict partial order > satisfying i) i > i never holds, ii) if i > j and j > k, then i > k for all i, j, k ∈ P, is a partially ordered set, (P, >).

An interval is a subset I ⊂ P, for which i, j ∈ I and i < k < j imply k ∈ I. The set of intervals is denoted by I(>). I ∈ I(>) is called an attracting interval if i ∈ I and i > j, then j ∈ I. (Also see [START_REF] Franzosa | The connection matrix theory for Morse decomposition[END_REF][START_REF] Mischaikow | A product theorem for connection matrices and the structure of connecting orbits[END_REF][START_REF] Mischaikow | A Predator-Prey System involving Group Defence: a Connection matrix approach[END_REF][START_REF] Mischaikow | Existence of generalised homoclinic orbits for one pareter families of flows[END_REF][START_REF] Reineck | A connection matrix analysis of ecological models[END_REF]) A Morse decomposition M(S) = {M (i) | i ∈ (P, >)} of S is a collection of mutually disjoint isolated invariant subsets of S, indexed by (P, >) and given x ∈ S either x ∈ M (i) for some i, or there exists i, j ∈ P, such that i > j with ω(x) ∈ M j and α(x) ∈ M i . ω(x) and α(x) denote the omega limit set and alpha limit set of x. For our MODEL 1, P = {O, x 1 , x 2 , K, π} is the index set for a Morse decomposition ( if not M (π) = ∅)). The possible partial orders on P are given below Proposition 2

(i) If K < x 1 < x 2 , then > 1 is 0 > 1 p, x 1 > 1 K, x 1 > 1 x 2 . (ii) If x 1 < x 2 < K, then > 2 is 0 > 2 p, x 2 > 2 K, x 2 > 2 π, π > 2 x 1 . (iii) If x 1 < x 2 < K, then > 3 is 0 > 3 p, x 2 > 3 K, π > 3 x 2 , π > 3 x 1 . (iii) If x 1 < x 2 < K, then > 4 is 0 > 4 p, x 2 > 4 K, x 2 > 4 π, x 1 > 4 π. (iii) If x 1 < x 2 < K, then > 5 is 0 > 5 p, x 2 > 5 K, π > 5 x 2 , x 1 > 5 π.
where p ∈ P and {0, K}, {x 1 , π} ∈ I(> j ) for all j.

Proof: The origin M (0) is stable along the y axis, hence there are no connecting orbits from 0 to any other Morse sets of P. So 0 > p for p ∈ P. M (0) is stable along the x axis, thus {0, K} ∈ I(>). M (K) is stable and there are no connecting orbit from M (K) to any other set, thus p > K, for all values of p ∈ P \ {M (K)}. If γ be the inner most periodic orbit (or the outer most periodic orbit) in M (π) (if exists), then only M (x 1 ) belongs to the compact region Γ bounded by γ. Thus {x 1 , π} ∈ I(>). As a saddle point M (x 2 ) does not belons to Γ.□ Every Morse decomposition of S has at least one conncetion matrix. (See [START_REF] Franzosa | The connection matrix theory for Morse decomposition[END_REF]). We denote A i be the connection matrix in repsect to the Morse decomposition M(S) = {0, K, x 1 , x 2 , π | p ∈ (P, > i )}. The connection matrix is a degree (-1) maps and upper triangular matrix.

The Connection Matrix A 1 for order > 1 from Proposition 2

It is of the form

H 0 (K) H 0 (x 2 ) H 1 (x 1 ) H 1 (0) A 1 = H 0 (K) H 0 (x 2 ) H 1 (x 1 ) H 1 (0)        0 0 1 1 0 0 1 ⋆ 0 0 0 0 0 0 0 0       
By assumption (H) the entries ∆(x 1 , K) = 1 and ∆(x 1 , x 2 ) = 1. The condition that A 2 1 = 0 and rankA 1 = 2 gives the value of the unknown entry ⋆ is 0.

The Connection Matrix A 2 for order > 2 from Proposition 2

It is of the form

H 0 (K) H 0 (x 1 π) H 1 (x 2 ) H 1 (0) A 1 = H 0 (K) H 0 (x 1 π) H 1 (x 2 ) H 1 (0)        0 0 1 1 0 0 1 ⋆ 0 0 0 0 0 0 0 0       
By Proposition 1h, H * (x 1 π) = (Z 2 , 0, 0, ....). Similiar to A 1 the value of the unknown entry ⋆ is zero.

The Connection Matrix A 3 for order > 3 from Proposition 2

It is of the form

H 0 (K) H 0 (x 1 ) H 1 (0) H 1 (x 2 ) H 1 (π) H 2 (π) A 3 = H 0 (K) H 0 (x 1 ) H 1 (0) H 1 (x 2 ) H 1 (π) H 2 (π)               0 0 1 a b 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0              
That the rankA 3 = 3 gives a = 0. A 2 3 = 0 forces two connection matrices from A 3 , as A ′ 3 with b = 1, and A ′′ 3 with b = 0. That is in this case connection matrix is not unique. Two or more possible connection matrices will not make any problem to our latter analysis. We need only the existence of a connection matrix for a Morse decomposition with a particular partial ordering.

The Connection Matrix A 4 for order > 4 from Proposition 2

It is of the form The Connection Matrix A 5 for order > 5 from Proposition 2

H 0 (K) H 0 (π) H 1 (π) H 1 (0) H 1 (x 2 ) H 2 (x 1 ) A 4 = H 0 (K) H 0 (π) H 1 (π) H 1 (0) H 1 (x 2 ) H 2 (x 1 )               0 0 0 1 a 0 0 0 0 b c 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0               Using A 2 4 =
It is of the form

H 0 (K) H 1 (0) H 1 (x 2 ) H 2 (x 1 ) H 0 (K) H 1 (0) H 1 (x 2 ) H 2 (x 1 )        0 1 * 0 0 0 0 * 0 0 0 * 0 0 0 0        M (x 1 ) is source, π > 5 x 2 , thus H * (π) ≈ 0.
Using square matrix zero and rank of the matrix two we get the following connection matrix

H 0 (K) H 1 (0) H 1 (x 2 ) H 2 (x 1 ) A 5 = H 0 (K) H 1 (0) H 1 (x 2 ) H 2 (x 1 )        0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0       
After establishing the possible connection matrices for the MODEL 1 we get the following result with respect to the values of the carrying capacity K for the prey.

Theorem 1

(a) There exists a unique value of K for which exchange of stability bifurcation of two species fixed points occur through the existence of the connection matrix from A 1 to A 2 .

(b) There exist unique values of K for which Hopf bifurcations occur through the change of connection matrices from A 2 to A 4 and from A 3 to A 5 .

(c) There exist unique values of K for which homoclinic bifurcations occur through the changes from A 2 to A 3 and from A 4 to A 5 .

(d) (After getting the connction matrix A 5 ) system admits a 2-disc of connecting orbits from M (x 1 ) to M (K).

Proof: (a) For small values of K, i.e, for K < x 1 < x 2 , from connection matrix A 1 we note that all interior solutions of the model converges to the M (K) (except the orbit from M (x 1 ) to M (x 2 ) but this orbit does not lie in the positive quadrant). Now the parameter K is increased i.e, for x 1 < x 2 < K, we obtain the connection matrix from A 1 to A 2 and this change indicates that as K is increased stability exchange bifurcation of euilibria happens and M (x 1 ) and M (x 2 ) appear in the positive quadrant. M (x 1 ) becomes the attractor and M (x 2 ) is a saddle point. (b)By the existence of the connection matrcies A 2 and A 4 it shows that there exist a Hopf bifurcation for some unique value of K due to the change from A 2 to A 4 . Similarly Hopf bifurcation results in a change of A 3 to A 5 . (c) Since the connection matrices change from A 2 (or A 3 ) to A 4 (or A 5 ) there exists a transition matrix T satisfying the equation (see Theorem 3.8 [4])

A 2 T + T A 4 = 0 [ or A 3 T + T A 5 = 0 ]
and T is a degree 0 map and it takes the form

H 0 (K) H 0 (x 1 ) H 1 (0) H 1 (x 2 ) H 1 (π) H 2 (π) T = H 0 (K) H 0 (x 1 ) H 1 (x 2 ) H 1 (0)        a b 0 0 0 0 c d 0 0 0 0 0 0 e f g 0 0 0 h i j 0       
The above equations (taking matrix A ′′′ 4 ) will be satisfied if the following set of equations are satisfied

a + f + i = 0, b + g + j = 0, c + f = 0, g + d = 0
Then it is possible to get the value of f is equal to zero, i.e, ∆(x 2 , x 2 ) = 0. By Corollary 4.4 of [START_REF] Mischaikow | Existence of generalised homoclinic orbits for one pareter families of flows[END_REF], it follows that there exists a homoclinic orbit to M (x 2 ). The other result follows by similiar argument.

(c)From A 5 we get a 2-disc of connecting orbits from M (x 1 ) to M (K) and this follows from Theorem 3.2 [START_REF] Mischaikow | A product theorem for connection matrices and the structure of connecting orbits[END_REF]. Moreover the boundary of this disc are the connecting orbits from M (x 2 ) to M (K) and from M (x 1 ) to M (0). That is the extinction equilibrium M (K) becomes globally stable, though there are two coexistence equilibria M (x 2 ) and M (x 1 ) in the positive quadrant. □ Remark 1 The region for the 2-disc of connecting orbits along with the boundary orbits from M (x 2 ) to M (K) and from M (x 1 ) to M (0) may be the trapping region of interior flows and from this region then interior orbit can move to the extinction state of the system Remark 2 For parameter values K 4 and K 5 (of K) for which there are A 4 and A 5 connection matrices and K 4 < K 5 .

MODEL 2 with ϵ 2 = 0,

The prey and predator isoclines x ′ = y ′ = 0, in this model intersect at two interior fixed points (see equation (39) of Terry [START_REF] Aj | Predator-prey models with component Allee effect for predator reproduction[END_REF]) by Lemma 1. One of two fixed points is a saddle and the rest is either sink or source and there exists periodic solutions also in the positive quadrant, hence we will get the same result as Theorem 1. In addition, there may exists a homoclinic orbit to the saddle point and after increasing K sufficiently large one may have global convergence of interior solutions to the extinction state M (K) (not reported in [START_REF] Aj | Predator-prey models with component Allee effect for predator reproduction[END_REF] but this may happen as it is forced by the connection matrix in Theorem 1). MODEL 3 with γ ̸ = 0, ϵ 2 ̸ == 0, From x ′ = 0 and y ′ = 0 (see equation 37 in [START_REF] Aj | Predator-prey models with component Allee effect for predator reproduction[END_REF]) we have four two species fixed points M (x i ), i = 1, 2, 3, 4. We consider that M (x 1 ) and M (x 3 ) are sink, and M (x 2 ) and M (x 4 ) are saddle points. We form a Morse decompostion with M (x i ), i = 1, 2, 3, 4, M (0), M (K), and the partial ordering x 1 < x 2 < x 3 < x 4 < K (thus excluding the priodic orbits in the positive quadrant). Then the connection matrix will be of the form

H 0 (K) H 0 (x 1 ) H 0 (x 3 ) H 1 (0) H 1 (x 2 ) H 1 (x 4 ) C = H 0 (K) H 0 (x 1 ) H 0 (x 3 ) H 1 (0) H 1 (x 2 ) H 1 (x 4 )               0 0 0 1 a b 0 0 0 c d e 0 0 0 f g h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0              
From C we get three possible connection matrices using C 2 = 0 and rankC = 3, namely, C i , i = 1, 2, 3; From C 1 (this is actually with the given partial ordering), one can get the same result what Terry [START_REF] Aj | Predator-prey models with component Allee effect for predator reproduction[END_REF] obtained by numerical simulation (see Fig. 4 [7]). Thus the existence of C 1 confirms the result of Terry [START_REF] Aj | Predator-prey models with component Allee effect for predator reproduction[END_REF] for MODEL 3. Moreover, there are also other possible connection matrices, namely C 2 and C 3 , through which other pattern of the interior flows can be obtained (these are not reported in [START_REF] Aj | Predator-prey models with component Allee effect for predator reproduction[END_REF]).

Remark 3 We attempt to get a saddle-saddle connection from M (0) to M (x 2 ) through forming a transition matrix from connection matrices C 2 to C 1 ( or C 3 to C 1 ) for the product flow (see [START_REF] Reineck | A connection matrix analysis of ecological models[END_REF]), but this does not occur. This is because that there are periodic orbits around the sink M (x 1 ) and a homoclinic orbit to M (x 2 ) which does not allow the formation of such saddle-saddle connection.

We consider another Morse decomposition containing M (x 1 ) (source), M (x 3 ) (sink), M (x 2 ) (saddle), M (x 4 ) (saddle), M (0), and M (K). and form the connection matrix of the form

H 0 (K) H 0 (x 3 ) H 0 (0) H 1 (x 2 ) H 1 (x 4 ) H 2 (x 1 ) D = H 0 (K) H 0 (x 3 ) H 0 (0) H 1 (x 2 ) H 1 (x 4 ) H 2 (x 1 )               0 0 1 * 1 0 0 0 * * 1 0 0 0 0 0 0 1 0 0 0 0 0 * 0 0 0 0 0 * 0 0 0 0 0 0               RankD = 3 forces ∆(x 2 , K) = 0 and ∆(x 2 , x 3 ) = 0. D 2 = 0 implies ∆(x 1 , 0) = 0, ∆(x 4 , K) = 0, ∆(x 1 , x 2 ) = 1 and ∆(x 1 , x 4 ) = 0.
Then one possible connection matrix is given below (there may be many others).

H 0 (K) H 0 (x 3 ) H 0 (0) H 1 (x 2 ) H 1 (x 4 ) H 2 (x 1 ) D 1 = H 0 (K) H 0 (x 3 ) H 0 (0) H 1 (x 2 ) H 1 (x 4 ) H 2 (x 1 )               0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0              
In D there is a connection M (x 1 ) → M (0) but the zero in D 1 indicates there is a double M (x 1 ) → M (0) connections. Thus if we consider the subset {M (K), M (0), M (x 1 )}, by Theorems 3.1 and 3.2 in [START_REF] Mischaikow | A product theorem for connection matrices and the structure of connecting orbits[END_REF] we get a 2-discs of connecting orbits connecting M (x 1 ) to M (K). That is, interior solutions converge to M (K) in presence of other three interior fixed points (see Fig. 1). From the connection matrices C and D, we get our next partial result Proposition 3 (a) For MODEL 3 the connection matrix C indicates the existence of four states where the system can coexist and (b) The connection matrix D 1 shows a 2-disc of connecting orbits in the interior of the positive quadrant so that interior orbits can converge to the boundary.

In addition to the above two cases, one may consider periodic orbits in the positive quadrant for MODEL 3, then other many types of connection matrices will exist and accordingly other types of dynamics of MODEL 3 will emerge (that may differ from the results of this study).

Conclusion

In our analysis we need only that (i) solutions of the models are uniformly bounded and (ii) the existence of equilibria (or periodic orbits) and their local stability structure. From this knowledge we are able to obtain the results shown by Verdy [START_REF] Verdy | Modulations of predator-prey interactions by the Allee effect[END_REF] and Terry [START_REF] Aj | Predator-prey models with component Allee effect for predator reproduction[END_REF] through numerical analysis. By computing connection marices we show the occurence of stability exchange bifurcation of equilibria, the occurence of Hopf bifurcations and homoclinic bifurcations for MODEL 1. Further, for all models we also show the existence of a 2-disc of connecting orbits which allows the global convergence of interior flows to the boundary. Thus our study support the views of ecologists that the mathematical modeling of allee effects (what the Lotka-Volterra models ignore) in prey-predator systems greatly increases the likelihood of local and global extinction. 
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 1 Figure legend: Fig. 1 This figure shows the existence of a 2-disc of connecting orbits from M (x 1 ) to M (K). From region N interior solutions can converge to M (K).
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