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Abstract

We consider prey-predator models with allee effect for the predator population.
We first prove the existence of multiple equilibria of the models. In presence of mul-
tiple interior equilibria, we then study the dynamics of the models using the Conley
connection matrix theory and establish analytically the results (namely the stability
exchange bifurcation, Hopf bifurcations and homoclinic bifurcations) obtained by
numerical simulations in previous studies. Some other results (including the global
convergence of interior flows to the boundary) are also presented here.
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1. Introduction

We consider the following prey predator models with allee effect for the pre-
dation population

x′ = xg(x)− yp(x)

y′ = y[δp(x)( y
h+y

)− ϵ1 − ϵ2y],
(1)

with g(x) = r(1− x
K
), and p(x) = αx

1+βx
or p(x) = αx

1+βx+γy
,

where x(t) and y(t) are the prey and predator population density at time t,
respectively with x(0), y(0) ≥ 0. g(x) is the per capita growth rate of the prey in
absence of the predator. p(x) is the Holling type II functional response for the
predaror, or p(x) is of Beddington De-Angelis form. ϵ1 + ϵ2y is the density de-
pendent death rate of the predator. δ, h,K, α, β, γ, ϵ1, ϵ2 are positive constants.
Out of a number of studies of prey-predator models in which the predator
population is a subject to a component allee effect for reproduction (see the
references in [7]), we mainly focus on the papers by Terry [7] and Verdy[8]. In
[7] Terry extended the definitions of demographic and component allee effects
for single species models to predators in prey-predator models while the prey
population does not change. The models (1) can have multiple two species
fixed points. By numerical simulation analysis Verdy[8] showed the dynamics
of models with γ = ϵ2 = 0 in presence of two interior fixed points. By changing
the values of the carrying capacity K the author [8] has shown the changes
of dynamics of his models, namely, the existence of multiple equilibria, their
stability and the occurence of a stable limit cycle, and finally the convergence
of the system to the extinction equilibrium for sufficiently large value of K.
Terry considered the models (1) in [7] and studied numerically the dynamics
of the models in presence of two or three interior equilibria. Through numeri-
cal analysis the author established the existence of fixed points, the existence
of a stable limit cycle in one of the models and the coexistence of trapping
regions.
In this paper we first prove the existence of interior fixed points. In presence
of multiple fixed points we then study the dynamics of the models using the
Conley connection matrix theory and obtained analytically the results shown
by Verdy [8] and Terry [7]. Some other results (which are not possilbe by sim-
ulations) are also presented in this paper. Computing the connection matrices
for models with γ = ϵ2 = 0, we prove Hopf bifurcations, homoclinic bifurcations
and global convergence of the system to the extinction equilibrium. For mod-
els with γ ̸= 0, ϵ2 ̸= 0, we prove a result which shows the global convergence of
the system to the extinction fixed point state. At the extinction equilibrium,
only the prey population settles at the carrying capacity and the predator dies
out. All of our results are given in section 2.
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2. Assumptions and Results:

From Lemma 1 of Terry [7] we know that the solutions of the models (1) are
unifomly bounded. From the prey and predator equations and the Jacobian
matrix of the models (1) we get (i) the trivial equilibrium M(0) = (0, 0), which
always exists, is stable along the y axis and unstable along the x axis, and (ii)
the axial equilibium M(K) = (K, 0) which always exists and is asymptotically
stable (stable along the both x, y axises). Regarding the existence of interior
fixed points we need two definitions. An equilibrium of a system of ecological
equations x′ = xf(x) (x ∈ Rn

+) is called unsaturated (resp. saturated) if its
eigenvalue along the orthogonal direction is positive (resp negative). A point
x ∈ U ⊂ Rn, (where U is bounded open subset) is called regular if detDxf ̸= 0.
Next the result.

Lemma 1 For models (1), there exist either no, two or four interior fixed
points in the positive quadrant

Proof : In model (1) the boundary equilibrium M(k) is always saturated with
index (+1) and M(0) is nonsaturated with index (−1). Solutions are bounded.
The sum of indices of the saturated regular equilibria of model (1) in (−1)2 = 1,
by Theorem 1 in [2] (INDEX theorem for ecological equations). Thus there
exist either no equilibrium (if the prey and predator isoclines do not intersect)
giving the sum +1 or two or four equilibria M(xi) = (x̄i, ȳi) for i = 1, 2 or 1, 2, 3, 4
(if the isoclines intersect at (x̄i, ȳi)) giving the sum +1. If i = 1, 2, then one of
the two must be a saddle point with index −1 and the rest is either source
or sink with index +1. If i = 1, 2, 3, 4, then two of them are saddle points with
total indices −2 and the rest two are sinks or sources with total indices +2. □

We study models (1) by considering γ = ϵ2 = 0, (MODEL 1), ϵ2 = 0 (MODEL
2) and γ ̸= 0, ϵ2 ̸= 0 (MODEL 3).

MODEL 1 with γ = ϵ2 = 0,
The isoclines x′ = y′ = 0 intersect at two equilibria M(xi), i = 1, 2. We

consider that M(x2) is saddle and M(x1) is either sink or source, whenever
x1 < x2 < K. Moreover, for our analysis purpose we assume
(H) If K < x1 < x2, then M(x1) saddle and M(x2) is sink and the connection or-
bit M(x1) → M(K) is unique and also M(x1) → M(x2) is unique. These bounded
orbits lie outside the closure of the positive quadrant and they lie above the
line y = L for some positive L.
We define (i) S = {bounded solutions of Model 1} and (ii) π be the minimal
isolated invariant set of the positive quadrant containing all periodic solutions
of S. Then we have the followings.
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Proposition 1

a. H∗(h(S),Z2) ≈ (0, 0, 0....); h(S) is the Conley index of S and H∗(h(S),Z2) is
the homologies of the index over Z2.

b. H∗(M(0)) ≈ (0,Z2, 0, 0....) for all K > 0.

c. H∗(M(K)) ≈ (Z2, 0, 0, 0, .....)

d. H∗(M(x1)) ≈
{

(0,Z2, 0, 0, .....) if K < x1

(Z2, 0, 0, 0, ....) if x1 < K.

e. H∗(M(x2)) ≈
{

(Z2, 0, 0, 0, .....) if K < x1 < x2

(0,Z2, 0, 0, ....) if x1 < x2 < K.

f. If H∗(M(x1)) ≈ (Z2, 0, 0, 0, .....), then H∗(π) ≈ (0, 0, ......) or (0,Z2,Z2, 0, 0, ...)

g If H∗(M(x1)) ≈ (0, 0,Z2, ...), then H∗(π) ≈ (0, 0, ......) or (Z2,Z2, 0, 0, ....)

h If (x1, π) is an attracting interval, then H∗(x1π) ≈ (Z2, 0, 0, 0...). Here we
denote M(xi) by only xi.

Proof: (a) See [4]
(b) - (e) These follows from the linear analysis of the critical points and as-
sumption (H).
(f) - (h) See [4].□

A finite set P with a strict partial order > satisfying i) i > i never holds, ii)
if i > j and j > k, then i > k for all i, j, k ∈ P, is a partially ordered set, (P,>).
An interval is a subset I ⊂ P, for which i, j ∈ I and i < k < j imply k ∈ I. The
set of intervals is denoted by I(>). I ∈ I(>) is called an attracting interval if
i ∈ I and i > j, then j ∈ I. (Also see [1, 3, 4, 5, 6]) A Morse decomposition
M(S) = {M(i) | i ∈ (P,>)} of S is a collection of mutually disjoint isolated
invariant subsets of S, indexed by (P,>) and given x ∈ S either x ∈ M(i) for
some i, or there exists i, j ∈ P, such that i > j with ω(x) ∈ Mj and α(x) ∈ Mi.
ω(x) and α(x) denote the omega limit set and alpha limit set of x. For our
MODEL 1, P = {O, x1, x2, K, π} is the index set for a Morse decomposition ( if
not M(π) = ∅)). The possible partial orders on P are given below

Proposition 2

(i) If K < x1 < x2, then >1 is 0 >1 p, x1 >1 K, x1 >1 x2.

(ii) If x1 < x2 < K, then >2 is 0 >2 p, x2 >2 K, x2 >2 π, π >2 x1.

(iii) If x1 < x2 < K, then >3 is 0 >3 p, x2 >3 K, π >3 x2, π >3 x1.

(iii) If x1 < x2 < K, then >4 is 0 >4 p, x2 >4 K, x2 >4 π, x1 >4 π.

(iii) If x1 < x2 < K, then >5 is 0 >5 p, x2 >5 K, π >5 x2, x1 >5 π.
where p ∈ P and {0, K}, {x1, π} ∈ I(>j) for all j.
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Proof: The origin M(0) is stable along the y axis, hence there are no con-
necting orbits from 0 to any other Morse sets of P. So 0 > p for p ∈ P. M(0)
is stable along the x axis, thus {0, K} ∈ I(>). M(K) is stable and there are
no connecting orbit from M(K) to any other set, thus p > K, for all values
of p ∈ P \ {M(K)}. If γ be the inner most periodic orbit (or the outer most
periodic orbit) in M(π) (if exists), then only M(x1) belongs to the compact
region Γ bounded by γ. Thus {x1, π} ∈ I(>). As a saddle point M(x2) does not
belons to Γ.□

Every Morse decomposition of S has at least one conncetion matrix. (See
[1]). We denote Ai be the connection matrix in repsect to the Morse decom-
position M(S) = {0, K, x1, x2, π | p ∈ (P,>i)}. The connection matrix is a degree
(−1) maps and upper triangular matrix.

The Connection Matrix A1 for order >1 from Propo-
sition 2
It is of the form

H0(K) H0(x2) H1(x1) H1(0)

A1 =

H0(K)

H0(x2)

H1(x1)

H1(0)


0 0 1 1

0 0 1 ⋆

0 0 0 0

0 0 0 0


By assumption (H) the entries ∆(x1, K) = 1 and ∆(x1, x2) = 1. The condition
that A2

1 = 0 and rankA1 = 2 gives the value of the unknown entry ⋆ is 0.

The Connection Matrix A2 for order >2 from Propo-
sition 2
It is of the form

H0(K) H0(x1π) H1(x2) H1(0)

A1 =

H0(K)

H0(x1π)

H1(x2)

H1(0)


0 0 1 1

0 0 1 ⋆

0 0 0 0

0 0 0 0


By Proposition 1h, H∗(x1π) = (Z2, 0, 0, ....). Similiar to A1 the value of the un-
known entry ⋆ is zero.

The Connection Matrix A3 for order >3 from Propo-
sition 2
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It is of the form

H0(K) H0(x1) H1(0) H1(x2) H1(π) H2(π)

A3 =

H0(K)

H0(x1)

H1(0)

H1(x2)

H1(π)

H2(π)



0 0 1 a b 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0



That the rankA3 = 3 gives a = 0. A2
3 = 0 forces two connection matrices from

A3, as A
′
3 with b = 1, and A

′′
3 with b = 0. That is in this case connection matrix

is not unique. Two or more possible connection matrices will not make any
problem to our latter analysis. We need only the existence of a connection
matrix for a Morse decomposition with a particular partial ordering.

The Connection Matrix A4 for order >4 from Propo-
sition 2
It is of the form

H0(K) H0(π) H1(π) H1(0) H1(x2) H2(x1)

A4 =

H0(K)

H0(π)

H1(π)

H1(0)

H1(x2)

H2(x1)



0 0 0 1 a 0

0 0 0 b c 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



Using A2
4 = 0 and rankA4 = 3 we get four connection matrices from A4; A

′
4

with a = 0, b = c = 1, A
′′
4 with a = 1, b = 1, c = 0, A

′′′
4 with a = 0, b = 0, c = 1, A

′′′′
4

with a = 1, b = 0, c = 1,

The Connection Matrix A5 for order >5 from Propo-
sition 2
It is of the form
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H0(K) H1(0) H1(x2) H2(x1)

H0(K)

H1(0)

H1(x2)

H2(x1)


0 1 ∗ 0

0 0 0 ∗

0 0 0 ∗

0 0 0 0



M(x1) is source, π >5 x2, thus H∗(π) ≈ 0. Using square matrix zero and rank
of the matrix two we get the following connection matrix

H0(K) H1(0) H1(x2) H2(x1)

A5 =

H0(K)

H1(0)

H1(x2)

H2(x1)


0 1 1 0

0 0 0 1

0 0 0 1

0 0 0 0



After establishing the possible connection matrices for the MODEL 1 we
get the following result with respect to the values of the carrying capacity K
for the prey.

Theorem 1

(a) There exists a unique value of K for which exchange of stability bifurca-
tion of two species fixed points occur through the existence of the connection
matrix from A1 to A2.

(b) There exist unique values of K for which Hopf bifurcations occur through
the change of connection matrices from A2 to A4 and from A3 to A5.

(c) There exist unique values of K for which homoclinic bifurcations occur
through the changes from A2 to A3 and from A4 to A5.

(d) (After getting the connction matrix A5) system admits a 2-disc of con-
necting orbits from M(x1) to M(K).

Proof: (a) For small values of K, i.e, for K < x1 < x2, from connection
matrix A1 we note that all interior solutions of the model converges to the
M(K) (except the orbit from M(x1) to M(x2) but this orbit does not lie in the
positive quadrant). Now the parameter K is increased i.e, for x1 < x2 < K, we
obtain the connection matrix from A1 to A2 and this change indicates that as
K is increased stability exchange bifurcation of euilibria happens and M(x1)
and M(x2) appear in the positive quadrant. M(x1) becomes the attractor and
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M(x2) is a saddle point.
(b)By the existence of the connection matrcies A2 and A4 it shows that there
exist a Hopf bifurcation for some unique value of K due to the change from
A2 to A4. Similarly Hopf bifurcation results in a change of A3 to A5.
(c) Since the connection matrices change from A2 (or A3 ) to A4 (or A5 ) there
exists a transition matrix T satisfying the equation (see Theorem 3.8 [4])

A2T + TA4 = 0 [ or A3T + TA5 = 0 ]

and T is a degree 0 map and it takes the form

H0(K) H0(x1) H1(0) H1(x2) H1(π) H2(π)

T =

H0(K)

H0(x1)

H1(x2)

H1(0)


a b 0 0 0 0

c d 0 0 0 0

0 0 e f g 0

0 0 h i j 0



The above equations (taking matrix A′′′
4 ) will be satisfied if the following

set of equations are satisfied

a+ f + i = 0, b+ g + j = 0, c+ f = 0, g + d = 0

Then it is possible to get the value of f is equal to zero, i.e, ∆(x2, x2) = 0. By
Corollary 4.4 of [5], it follows that there exists a homoclinic orbit to M(x2).
The other result follows by similiar argument.

(c)From A5 we get a 2-disc of connecting orbits from M(x1) to M(K) and
this follows from Theorem 3.2 [3]. Moreover the boundary of this disc are the
connecting orbits from M(x2) to M(K) and from M(x1) to M(0). That is the
extinction equilibrium M(K) becomes globally stable, though there are two
coexistence equilibria M(x2) and M(x1) in the positive quadrant. □

Remark 1 The region for the 2-disc of connecting orbits along with the
boundary orbits from M(x2) to M(K) and from M(x1) to M(0) may be the
trapping region of interior flows and from this region then interior orbit
can move to the extinction state of the system

Remark 2 For parameter values K4 and K5 (of K) for which there are A4

and A5 connection matrices and K4 < K5.

MODEL 2 with ϵ2 = 0,

The prey and predator isoclines x′ = y′ = 0, in this model intersect at two
interior fixed points (see equation (39) of Terry[7 ]) by Lemma 1. One of two
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fixed points is a saddle and the rest is either sink or source and there exists
periodic solutions also in the positive quadrant, hence we will get the same
result as Theorem 1. In addition, there may exists a homoclinic orbit to the
saddle point and after increasing K sufficiently large one may have global con-
vergence of interior solutions to the extinction state M(K) (not reported in
[7] but this may happen as it is forced by the connection matrix in Theorem 1).

MODEL 3 with γ ̸= 0, ϵ2 ̸== 0,

From x′ = 0 and y′ = 0 (see equation 37 in [7]) we have four two species fixed
points M(xi), i = 1, 2, 3, 4. We consider that M(x1) and M(x3) are sink, and M(x2)
and M(x4) are saddle points. We form a Morse decompostion with M(xi), i =
1, 2, 3, 4,M(0),M(K), and the partial ordering x1 < x2 < x3 < x4 < K (thus
excluding the priodic orbits in the positive quadrant). Then the connection
matrix will be of the form

H0(K) H0(x1) H0(x3) H1(0) H1(x2) H1(x4)

C =

H0(K)

H0(x1)

H0(x3)

H1(0)

H1(x2)

H1(x4)



0 0 0 1 a b

0 0 0 c d e

0 0 0 f g h

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


From C we get three possible connection matrices using C2 = 0 and rankC =

3, namely, Ci, i = 1, 2, 3;
(i) C1 with a = e = f = 0 and b = c = d = g = h = 1.
(ii)C2 with a = c = e = f = 0 and b = d = g = h = 1.
(iii)C3 with a = c = e = f = g = 0 and b = d = h = 1.

From C1 (this is actually with the given partial ordering), one can get the
same result what Terry [7] obtained by numerical simulation (see Fig. 4 [7]).
Thus the existence of C1 confirms the result of Terry [7] for MODEL 3. More-
over, there are also other possible connection matrices, namely C2 and C3,
through which other pattern of the interior flows can be obtained (these are
not reported in [7]).

Remark 3 We attempt to get a saddle-saddle connection from M(0) to M(x2)
through forming a transition matrix from connection matrices C2 to C1 (
or C3 to C1) for the product flow (see [6]), but this does not occur. This is
because that there are periodic orbits around the sink M(x1) and a homoclinic
orbit to M(x2) which does not allow the formation of such saddle-saddle
connection.
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We consider another Morse decomposition containing M(x1) (source), M(x3)
(sink), M(x2) (saddle), M(x4) (saddle), M(0), and M(K). and form the connec-
tion matrix of the form

H0(K) H0(x3) H0(0) H1(x2) H1(x4) H2(x1)

D =

H0(K)

H0(x3)

H0(0)

H1(x2)

H1(x4)

H2(x1)



0 0 1 ∗ 1 0

0 0 ∗ ∗ 1 0

0 0 0 0 0 1

0 0 0 0 0 ∗

0 0 0 0 0 ∗

0 0 0 0 0 0



RankD = 3 forces ∆(x2, K) = 0 and ∆(x2, x3) = 0. D2 = 0 implies ∆(x1, 0) = 0,
∆(x4, K) = 0, ∆(x1, x2) = 1 and ∆(x1, x4) = 0. Then one possible connection
matrix is given below (there may be many others).

H0(K) H0(x3) H0(0) H1(x2) H1(x4) H2(x1)

D1 =

H0(K)

H0(x3)

H0(0)

H1(x2)

H1(x4)

H2(x1)



0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0



In D there is a connection M(x1) → M(0) but the zero in D1 indicates
there is a double M(x1) → M(0) connections. Thus if we consider the subset
{M(K),M(0),M(x1)}, by Theorems 3.1 and 3.2 in [3] we get a 2-discs of con-
necting orbits connecting M(x1) to M(K). That is, interior solutions converge
to M(K) in presence of other three interior fixed points (see Fig. 1). From
the connection matrices C and D, we get our next partial result

Proposition 3

(a) For MODEL 3 the connection matrix C indicates the existence of four
states where the system can coexist and

(b) The connection matrix D1 shows a 2-disc of connecting orbits in the
interior of the positive quadrant so that interior orbits can converge to the
boundary.
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In addition to the above two cases, one may consider periodic orbits in
the positive quadrant for MODEL 3, then other many types of connection
matrices will exist and accordingly other types of dynamics of MODEL 3 will
emerge (that may differ from the results of this study).

Conclusion

In our analysis we need only that (i) solutions of the models are uniformly
bounded and (ii) the existence of equilibria (or periodic orbits) and their lo-
cal stability structure. From this knowledge we are able to obtain the results
shown by Verdy [8] and Terry [7] through numerical analysis. By computing
connection marices we show the occurence of stability exchange bifurcation
of equilibria, the occurence of Hopf bifurcations and homoclinic bifurcations
for MODEL 1. Further, for all models we also show the existence of a 2-disc
of connecting orbits which allows the global convergence of interior flows to
the boundary. Thus our study support the views of ecologists that the math-
ematical modeling of allee effects (what the Lotka-Volterra models ignore)
in prey-predator systems greatly increases the likelihood of local and global
extinction.
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Figure legend:
Fig. 1 This figure shows the existence of a 2-disc of connecting orbits from
M(x1) to M(K). From region N interior solutions can converge to M(K).
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