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Abstract. The number of embeddings of a partially ordered set S in a partially ordered set
T is the number of subposets of T isomorphic to S. If both, S and T , have only one unique
maximal element, we de�ne good embeddings as those in which the maximal elements of S and T
overlap. We investigate the number of good and all embeddings of a rooted poset S in the family
of all binary trees on n elements considering two cases: plane (when the order of descendants
matters) and non-plane. Furthermore, we study the number of embeddings of a rooted poset S
in the family of all planted plane trees of size n. We derive the asymptotic behaviour of good
and all embeddings in all cases and we prove that the ratio of good embeddings to all is of the
order Θ(1/

√
n) in all cases, where we provide the exact constants. Furthermore, we show that

this ratio is asymptotically non-decreasing with S. Finally, we comment on the case when S is
disconnected.

1. Introduction

This paper studies the number of embeddings of a given rooted tree in the family of (plane
and non-plane) binary trees, as well as planted plane trees. Here, the notion of embedding is
wider than just a copy. We assume the investigated structures to be partially ordered sets (in
short: posets) and by saying that there exists an embedding of S into T we understand (in the
non-plane case) that a poset S is a subposet of T . We distinguish between good embeddings in
which the roots of S and T overlap and bad embeddings in which they do not. The number of
good and bad embeddings of a rooted structure in a complete binary tree was �rst investigated by
Morayne [35]. His research was motivated by optimal stopping problems. The ratio of the number
of good embeddings to the number of all embeddings and its monotonicity properties were used
in estimates of conditional probabilities needed to obtain an optimal policy for the best choice
problem considered on a complete (balanced) binary tree. This and similar results �rst served just
as tools but soon became interesting questions about the structural features of posets on their
own and resulted in a series of self-standing papers [27, 28, 20]. Counting chains and antichains in
trees took a special place in this pool [31, 32, 29].

In this paper we present a follow-up and generalization of the results obtained by Kubicki et
al. [27, 28] and Georgiou [20]. We give the asymptotic behaviour of the number of good and all
embeddings of a rooted tree S in the family of plane (when the order of descendants matters)
and non-plane binary trees, as well as planted plane trees, on n vertices. We prove that the ratio
of the number of good embeddings to the number of all embeddings is of the order Θ(1/

√
n) in

all cases and provide the exact constants. Furthermore, we show that this ratio is asymptotically
non-decreasing in S. We comment also on the case where S is disconnected, i.e. a forest. In order
to obtain those results we use tools of analytic combinatorics that have not been used before in
the aforementioned papers.

The results of our paper may also be put into the framework of counting patterns in large
structures. This is a vast �eld where many di�erent types of structures have been considered. We
only mention subgraph avoidance (and characterizing whole graph classes like series-parallel or
planar graphs in that way) or subgraph counts in random graphs (see [25, 1]), pattern avoidance
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in permutations (see [4]) or in trees (see [9]), or pattern avoidance in lattice paths and words,
where many particular patterns have been treated separately (see [8] or the introduction of [2] for
a survey) and eventually put under a unifying umbrella in [2].

The closest to the present work is pattern counting in trees. One of the earliest investigations of
this kind was [38], where the enumeration of given stars as subgraphs in trees (equivalently nodes
of �xed degree) was treated. Later generalizations are found in [10, 36] (multivariate setting),
in [33] (distinct patterns) or [22] (large patterns of that type). A method to deal with general
contiguous patterns in trees by means of generating functions was developed in [5], which was
partially generalized to planar maps recently [12, 6, 11]. Pattern avoidance in trees was the topic
of [39], where also the concept of Wilf equivalence was dealt with, which was adopted from pattern
avoidance in permutations.

Except for permutations, where most of the patterns that have been studied so far are non-
contiguous, the considered patterns in other domains are typically contiguous. To our knowledge,
the �rst work considering non-contiguous patterns in trees is [7]. In the present paper, the tree
which is embedded becomes in general a collection of (partially) non-adjacent nodes in the tree
where it is embedded. It can therefore be seen as a non-contiguous pattern occurring in that tree.
Thus, our paper deals with certain enumeration problems for non-contiguous patterns in trees.

The paper is organized as follows. Section 2 introduces basic de�nitions and notation. Section 3
provides possible applications of our results in optimal stopping problems. In Section 4 we obtain
generating functions for the number of good and the number of all embeddings of a rooted tree
in the family of all plane binary trees with a given number of vertices. Section 5 is devoted to the
asymptotics of this number when the size of the underlying tree is tending to in�nity. Moreover, we
investigate the asymptotics as well as the asymptotic monotonicity of their ratio. In Section 6 we
brie�y discuss the case when the embedded structure is disconnected, i.e. it is a forest. Section 7
deals with the non-plane binary case and in Section 8 the problem is extended to planted plane
trees. A discussion of the obtained results as well as an outlook into some related future problems
is given in Section 9.

2. Definitions and notation

By Bn we denote the family of (unlabelled) plane binary trees with n nodes. A binary tree is a
tree in which each node has either 0 or 2 descendants and by plane we understand that the order
of subtrees of a given node matters, i.e. we distinguish between the di�erent embeddings of a tree
in the plane. It is commonly known that for odd n the cardinality |Bn| of Bn satis�es |Bn| = C n−1

2
,

where Ck is the k-th Catalan number given by Ck = 1
k+1

(
2k
k

)
. Note that all binary trees have odd

sizes and thus, for even n the cardinality |Bn| is zero. All plane binary trees of size 5 are shown
in Figure 1. We assume also that all edges are directed towards the descendants. Therefore, the
in-degree of the root, as well as the out-degree of each leaf, is always 0. A vertex is said to be d-ary
if its out-degree equals d. Subsequently, the root of a tree T will be denoted by 1T .

By Vn we denote the family of non-plane binary trees with n nodes. By non-plane we understand
that the subtrees of a given node are treated as a set of subtrees, i.e. there is no ordering. E.g.,
there is only one non-plane binary tree of size 5, see Figure 1. Again for even n the cardinality
|Vn| is zero. For odd n the values |Vn| are known as Wedderburn-Etherington numbers and do not
have a closed form (|V1| = 1, |V3| = 1, |V5| = 1, |V7| = 2, |V9| = 3, . . .).

Planted plane trees (also known as Catalan trees) are rooted plane trees where each internal
node can have arbitrarily many descendants. We denote the family of planted plane trees of size
n by Tn. For all n the cardinality of Tn satis�es |Tn| = Cn−1.

This paper concentrates on investigating the number of embeddings of any rooted tree (or a
forest of rooted trees - a disconnected graph whose components are rooted trees) in all trees from
either family Bn, Vn or Tn. An embedding of a rooted tree S into another rooted tree T can be
seen as a kind of generalized pattern occurrence of S in T , de�ned as follows, where we distinguish
between the plane and the non-plane case.
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T1 T2

Figure 1. The family B5 = {T1, T2} of plane binary trees is of size |B5| = C2 = 2, while the
family V5 = {T1} of non-plane binary trees has the size |V5| = 1.

De�nition 1 (non-plane embedding). Let S and T be two non-plane rooted trees. When inter-
preting T as the cover graph of a partially ordered set (poset), rooted at the root of T , i.e. at
the single maximal element of the poset, then an embedding of S into T can be de�ned as any
subposet of T isomorphic to S.

Remark 1. Note that there exists a non-plane embedding of a binary tree S into a binary tree T
if and only if S is a minor of T .

Remark 2. Instead of starting from a tree as combinatorial structure and then interpreting it as a
poset, we may also start from posets and then de�ne a tree poset as a poset P which has exactly
one maximal element and such that any Hasse diagram of P looks like a (combinatorial) tree.
This is equivalent to the de�nition of a tree poset given in [17].1 Likewise, an embedding of a tree
poset S into another tree poset T , as de�ned in [17], matches exactly the de�nition of a non-plane
embedding given above.

De�nition 2 (plane embedding). Let S and T be two plane rooted trees. If we interpret T to be
a Hasse diagram of a poset, then an embedding of S into T can be de�ned as any subposet of T
isomorphic to S in which the left-to-right order of the children of each node of S is inherited from
T (thus, a plane version of a subposet).

Remark 3. So, in the plane case S and T can be interpreted as Hasse diagrams of posets, and
whenever S can be embedded in T it follows that S is a subposet of T . However, note that the
respective posets can possibly be represented as di�erent Hasse diagrams in such a way that no
embedding of the corresponding trees is possible.

We say that an embedding of S into T is good if it contains the root of T . Otherwise we call it a
bad embedding. If there exists at least one embedding of S into T , we write S ⊆ T . All embeddings
of a cherry, (i.e. a tree composed only of a root and its two children) in a given binary tree of size
5 are given in Figure 2. Four of them are good and the last one is bad.

Subsequently the size of the tree S will always be denoted bym, while the size of T is consistently
denoted by n. Thus, for the asymptotic analysis of the number of embeddings of a tree S into a
class of trees of size n, the quantity m is considered to be a constant, while n tends to in�nity.

For S, the structure that we embed, we de�ne its degree distribution sequence as dS =
(d0, d1, . . . , dm−1), where di is the number of vertices in S with out-degree equal to i. Note that d0

is simply the number of leaves, which will be, interchangeably, denoted by l (i.e. l = d0). Similarly,
d1 is the number of unary nodes, which will be, interchangeably, denoted by u (i.e. u = d1). The
number of all embeddings of a given tree S in T will be denoted by aT (S) and the number of its
good embeddings in T by gT (S). The number of all embeddings of S in a family F = {F1, . . . , FN}
will be denoted by aF (S) and understood as the cumulative number of embeddings of S into all

elements of F , i.e. aF (S) =
∑N
i=1 aFi(S). Analogously, we de�ne the number of good embed-

dings of S in F : gF (S) =
∑N
i=1 gFi(S). For S being a cherry and B5 = {T1, T2}, we obtain

aT1
(S) = aT2

(S) = 5, gT1
(S) = gT2

(S) = 4, thus aB5
(S) = 10 and gB5

(S) = 8 (compare Figure 2).
Notations for Vn and Tn are analogous.

1For the sake of better distinction from a combinatorial tree, we use the term �tree poset� for what is simply
called �tree� in [17].
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S:

Figure 2. All �ve embeddings of a cherry S in a given plane binary tree of size 5. Or all four
embeddings of a cherry S in a given non-plane binary tree of size 5, since in the non-plane case
the two rightmost pictures in the upper row represent the same embedding (they can easily be
mapped onto each other via a simple automorphism that changes the order of the two leftmost
leaves).

Throughout this paper we use the standard notation f(n) ∼ g(n) if limn→∞
f(n)
g(n) = 1.

Also [zn]f(z) denotes the coe�cient of zn in the formal power series f(z) =
∑
n≥0 fnz

n, i.e.

[zn]
(∑

n≥0 fnz
n
)

= fn.

3. Applications in optimal stopping problems

The most prominent problem in the area of optimal stopping is the so-called �secretary problem�
(consult [34, 13, 15, 40]), where one assumes a linear order on the applicants for a secretary position
concerning their quali�cations. The applicants are interviewed in a random order and the decision
whether to hire an applicant has to be made immediately after the interview - a rejected applicant
cannot be hired at a later point. Thus, if we interview all the candidates, we have to hire the
last applicant. The goal is to �nd the optimal stopping strategy to hire the best applicant. Thus,
we want to stop at the time maximizing the probability that the present applicant is the best
one overall, i.e. the maximum element in the linear order. It has been proved (see for example
[34, 21]) that for a large number of applicants it is optimal to wait until approximately 37% (more
precisely 100

e %) of the applicants have been interviewed and then to select the next relatively
best one. This optimal algorithm returns the best applicant with asymptotic probability of 1/e.
The secretary problem has been extended and generalized in many di�erent directions. One of
these is the extension to partially ordered sets, possibly with more than one maximal element,
see [41, 23]. Optimal strategies for particular posets were investigated among others in [35, 26].
Versions for unknown poset, when the selector knows in advance only its cardinality, were presented
in [37, 16, 18]. Another interesting generalization was to replace the underlying poset structure
by a directed graph. This version was �rst considered on directed paths by Kubicki and Morayne
in [30] and later extended to other families of graphs and di�erent versions of the game (consult
[42, 24, 3]).

In the remainder of this section we give examples of stopping problems in which either the
value aVn(S) or the ratio gVn(S)/aVn(S) (both investigated in this paper) plays a crucial role in
estimating the conditional probabilities needed to obtain the optimal policy. One can consider
analogous examples for the families Bn or Tn as well.

Let us think about elements of Vn as of Hasse diagrams of posets. Consider the following process.
Elements (i.e. nodes) of some T from Vn appear one by one in a random order (all permutations
of elements of T are equiprobable). At time t, i.e. when t elements have already appeared, the
selector can see a poset induced on those elements. He knows that the underlying structure is
drawn uniformly at random from Vn.

Example (Best choice problem for the family of binary trees). The selector's task is to stop
the process maximizing the probability that the element that has just appeared is the root of the
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underlying structure. He wins only if the chosen element is indeed 1T . Note that it neither pays o�
to stop the process when the induced structure is disconnected nor when the currently observed
element is not the maximal one in the induced poset. The selector wonders whether to stop only
if the emerged element at time t is the unique maximal element in the induced structure. In order
to take a decision whether to stop at time t, he needs to know the probability of winning if he
stops now. Let Wt denote the event of winning when stopping at time t, St the event that at time
t he observes a certain structure S with degree distribution sequence dS and Ri denote the event
that Ti has been drawn as the underlying structure, where we use the notation Vn = {T1, . . . , TN}
with N = |Vn|. Then the probability of winning if he stops at time t is given by

P[Wt|St] =

N∑
i=1

P[Wt|St ∩Ri]P[Ri|St] =

N∑
i=1

gTi(S)

aTi(S)

P[St|Ri]P[Ri]

P[St]
.

Since P[Ri] = 1/N , P[St|Ri] = aTi(S)/
(
n
t

)
and

P[St] =
N∑
i=1

P[St|Ri]P[Ri] =

N∑
i=1

aTi(S)(
n
t

) 1

N
=
aVn(S)

N
(
n
t

)
we get

P[Wt|St] =

N∑
i=1

gTi(S)

aTi(S)

aTi(S)(
n
t

) 1

N

N
(
n
t

)
aVn(S)

=
gVn(S)

aVn(S)
.

Example (Identifying complete balanced binary trees). The selector has to identify whether
the underlying structure is a complete balanced binary tree or not. The payo� of the game, if he
stops the process at time t, is n − t if he guesses correctly and 0 otherwise. He has to maximize
the expected payo�. At moment t he observes a structure S, which is not necessarily connected.
Again, in order to make a decision whether to stop, he needs to know what is the probability that
the currently observed structure is a subposet of a complete balanced binary tree. For a rooted
tree S this probability is given by

aTb(S)

aVn(S)
,

where Tb ∈ Vn denotes the complete balanced binary tree of size n.

4. Generating functions for the number of embeddings in Bn
In this section we derive generating functions for the sequences aBn(S) and gBn(S), where S is

a given rooted plane tree of size m. In order to do so, we use the symbolic method (consult [14]).

Theorem 1. Consider a rooted tree S with degree distribution sequence dS = (l, u, d2, . . . , dm−1).
The generating function AS(z) of the sequence aBn(S), which counts the number of all embeddings
of S into all trees of the family Bn is given by

AS(z) =

(
1

1− 2zB(z)

)m+l−1

zl+u−1 B(z)l+u 2u
m−1∏
i=3

(Ci−1)di ,

where B(z) is the generating function of the family of plane binary trees, i.e.

B(z) =
1−
√

1− 4z2

2z
= C0z + C1z

3 + C2z
5 + C3z

7 + . . . .

Remark 4. Note that AS(z) depends only on the degree distribution sequence dS , not the particular
shape of S. Thus, as long as dS1 and dS2 are the same, AS1(z) and AS2(z) coincide even if S1 and S2

are not isomorphic. However, we use the subscript S to provide a transparent notation. Moreover,
note that AS(z) does also depend on the tree class Bn in which we embed the tree S. In order to
avoid a large number of indices we will omit to indicate this dependence and just emphasize at
this point that the generating functions AS(z) may di�er according to the underlying tree classes.
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Proof. First let us recall that the class B of plane binary trees can be speci�ed by

B = {•}+ {•} × B × B,
since every node is either a leaf or a binary node with two attached binary trees. By means of the
symbolic method (see [14]) we can directly translate this speci�cation into a functional equation
that de�nes the generating function B(z) of binary trees where z marks the number of nodes,
which gives

B(z) = z + zB(z)2.

Solving this equation for B(z) yields the explicit formula that is given in the theorem. Now, we
start the proof of the expression of AS(z) with the case where S is a Motzkin tree, i.e. a tree where
each internal node has either one or two children. The speci�cation of the class M of Motzkin
trees is

M = {•}+ {•} ×M+ {•} ×M×M (1)

and thereby we must distinguish between the three cases whether S is a single node, or the root
of S is a unary node, or a binary node, and hence falling into the respective subclass ofM among
the subclasses that we �nd as summands on the right-hand side of (1). The generating function
AS(z) for the number of embeddings of S into the family Bn can then be recursively de�ned by

AS(z) =


zB′(z) if S = •,

2zB(z)
1−2zB(z)AS̃(z) if S = (•, S̃),

z
(1−2zB(z))2ASL(z)ASR(z) if S = (•, SL, SR),

(2)

where the three cases correspond to the cases described above. The �rst case, which yields a factor
zB′(z), corresponds to marking a node in the underlying tree T (i.e. pointing at a node), because
obviously a single vertex can be embedded in every node. We can also interpret it as counting the
number of pairs (T,E) where E is an embedding of S into T .

leaf

B

zB′

unary node

S̃

AS̃ B

2zB
1−2zB

AS̃

binary node

SL SR

ASL ASR

z
(1−2zB)2

ASLASR

auxiliary binary node

SL SR

ASL ASR

z
1−2zB

ASLASR

=

B

B

B

B

1
1−2zB

Figure 3. Sketch of the recursive construction of the generating function AS(z): When S
is a Motzkin tree consisting of more than one vertex (plane binary case), then the �rst three
cases above can appear. Here B each time refers to an abstract object representing any tree
from family Bn. If S contains vertices with three or more children, then auxiliary vertices occur.
They are embedded according to the fourth picture above and depicted as red squares.

Now we show how an embedding of S into T can be constructed in a recursive way - see
Figure 3 for a visualization of the used approach. We start with the case that the root of S is a
unary node. This root has to be embedded at some point in the tree T . The part of T that is
above the embedded root of S can be expressed as a path of left-or-right trees, which contributes
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a factor 1
1−2zB(z) . The embedded root of S itself yields a factor z, since the generating function

of an object of size one is given by z. To the embedded root we have to attach an additional tree
T in order to create a binary structure, yielding a factor B(z), as well as the remaining tree that

contains the embedding of S̃. The factor 2 that appears in the coe�cient in the second case of (2)

indicates that we work with plane trees - the substructure S̃ can be embedded either in the left
or in the right subtree of the unary vertex.

The third case of (2), where S starts with a binary node, is similar to the previous case.
Thus, the factor 1

(1−2zB(z))2 corresponds to two consecutive paths of left-or-right trees, which are

separated by the embedded root which itself gives the additional factor z. At some point the lower
path splits into two subtrees containing the embeddings of the subtrees SL and SR.

By simple iteration one can see that in case of embedding a Motzkin tree S, the generating
function AS(z) reads as

AS(z) =

(
z

(1− 2zB(z))2

)l−1(
2zB(z)

1− 2zB(z)

)u
(zB′(z))l, (3)

where l denotes the number of leaves and u the number of unary nodes in S. The exponent l − 1
in (3) arises from the fact that a Motzkin tree with l leaves has l − 1 binary nodes, and for each
of these nodes we get the respective factor.

Finally, we consider the general case where S is an arbitrary plane tree without any restrictions
on the degree distribution sequence. Then we proceed as follows. Every d-ary node with d ≥ 3
together with its d children is replaced by a binary tree having d leaves, which are then replaced
by the successors of the original d-ary node. There are exactly Cd−1 possible ways to construct
such a binary tree. Unary and binary nodes stay unaltered. Applying this for all nodes results in
constructing a Motzkin tree, called S′, and the number of Motzkin trees that can be constructed
in that way is

∏m−1
i=3 Cdi

i−1. These Motzkin trees are then embedded with the approach described
above.

S:

B B B B

B

B

B B

Figure 4. Sketch of the principle of embedding an arbitrary plane tree (plane binary case).
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But note that replacing a d-ary node v with d ≥ 3 by a binary tree (with more than 1 internal
nodes) introduced further vertices into S. In particular, v becomes a binary node, and as there were
d successors before, the binary tree arising from v must have d− 1 internal nodes, thus giving rise
to d−2 auxiliary vertices. Since S has m vertices, S′ has therefore m+

∑m−1
i=3 (i−2)di = 2l+u−1

vertices.
Furthermore note that the auxiliary vertices have to be embedded into T , but they do not belong

to S. This causes a special treatment (see Figure 4 for an illustration). Consider two subtrees S1

and S2 of S′ whose last common ancestor (in S′) is an auxiliary vertex, say w, and let v be the
predecessor of w in S′. Of course, any vertex on the path from v to w may serve as auxiliary vertex
instead of w. But as w does not belong to S, its actual position is unimportant. Hence, for the
sake of not overcounting, the auxiliary vertices are always placed at the last possible position, see
Figures 3 and 4. This eventually yields a factor z/(1− 2zB(z)) for each binary auxiliary node. As
there are 2l + u−m− 1 auxiliary nodes and m− l − u other binary nodes, this gives altogether

AS(z) =

(
z

1− 2zB(z)

)2l+u−m−1(
z

(1− 2zB(z))2

)m−l−u(
2zB(z)

1− 2zB(z)

)u
(zB′(z))l

m−1∏
i=3

(Ci−1)di

=
2uzl+u−1B(z)u

(1− 2zB(z))m−1
(zB′(z))l

m−1∏
i=3

(Ci−1)di .

Using the identity zB′(z) = B(z)
1−2zB(z) , which holds for plane binary trees, yields the desired result.

�

Corollary 1. Let S be a rooted tree. The generating function of the sequence gBn(S), which counts
the number of good embeddings of S into all trees of the family Bn is given by

GS(z) = (1− 2zB(z))AS(z).

Proof. The corollary follows immediately, as the only di�erence in the case of good embeddings is
that the root of S is always embedded in the root of the underlying tree. Thus, we have to omit
the path of left-or-right trees in the beginning. This corresponds to a multiplication by the factor
(1− 2zB(z)). �

5. Asymptotics of the number of embeddings in Bn
In this section we investigate the asymptotics of aBn(S) and gBn(S), as well as monotonicity of

their ratio when S is a rooted tree. As a tool we use singularity analysis which provides a relation
between the behaviour of a generating function near its dominant singularities (i.e. its singularities
on the circle of convergence) and the asymptotics of its coe�cients. The following lemma will be
helpful later on.

Lemma 1 (Compare Theorems VI.4 and VI.5 in [14]). De�ne

∆0 = {z ∈ C||z| < ρ+ ε, z 6= ρ, |arg(z− ρ)| > ν}

for some ρ > 0, ε > 0, 0 < ν < π
2 . Let r ≥ 0, ρj = ρeiφj , for j = 0, 1, . . . , r with φ0 = 0 and

φ1, . . . , φr ∈ (0, 2π). Consider T (z) =
∑
n≥0 Tnz

n to be an analytic function in ∆ :=
⋂r
j=0 e

iφj∆0

and satisfying for each j = 0, . . . , r

T (z) ∼ Kj

(
1− z

ρj

)−αj
, as z → ρj in ∆,

where αj /∈ {0,−1,−2, . . .} and the Kj are constants. Then

[zn]T (z) ∼
r∑
j=0

Kj
nαj−1

Γ(αj)
ρ−nj , as n→∞.

Remark 5. Note that the assumptions of Lemma 1 imply that {ρ0, ρ1, . . . , ρr} is exactly the set
of all singularities of the power series

∑
n≥0 Tnz

n on its circle of convergence.
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Theorem 2. Consider a rooted tree S with degree distribution sequence dS = (l, u, d2, . . . , dm−1).

Let C =
∏m−1
i=3 (Ci−1)di . The asymptotics of the number of all embeddings of S into Bn is given

by

aBn(S) ∼ C · 2 5−m−3l
2

Γ(m+l−1
2 )

· 2n · n
m+l−3

2

for n being odd and aBn(S) = 0 for n being even. The asymptotics of the number of good embeddings
of S into Bn is given by

gBn(S) ∼

 C·2
6−m−3l

2

Γ(m+l−2
2 )

· 2n · nm+l−4
2 if m+ l − 2 > 0

√
2·2n√
πn3

if m+ l − 2 = 0

for n being odd and gBn(S) = 0 for n being even.

Proof. Recall that aBn(S) = [zn]AS(z). The function AS(z) has two dominant singularities at
ρ0 = 1/2 and ρ1 = −1/2. Expanding AS(z) into its Puiseux series at z → ρ0 = 1/2 gives

AS(z) = C · 2
3−m−3l

2 ·
(

1− z

ρ0

)−m+l−1
2

(
1 +O

((
1− z

ρ0

)1/2
))

.

Note that m+ l− 1 ≥ 1, since always l ≥ 1 and m ≥ 1. Expanding AS(z) into a Puiseux series at
z → ρ1 = −1/2 gives

AS(z) = −C · 2
3−m−3l

2 ·
(

1− z

ρ1

)−m+l−1
2

(
1 +O

((
1− z

ρ1

)1/2
))

.

By Lemma 1 we get

[zn]AS(z) ∼ C · 2 3−m−3l
2

Γ(m+l−1
2 )

· (ρ0)−n · n
m+l−3

2 − C · 2 3−m−3l
2

Γ(m+l−1
2 )

· (ρ1)−n · n
m+l−3

2

=

{
C·2

5−m−3l
2

Γ(m+l−1
2 )

· 2n · nm+l−3
2 if n is odd,

0 if n is even.

The asymptotic analysis for the number of good embeddings is analogous. Again, gBn(S) =
[zn]GS(z) and GS(z) has two dominant singularities at 1/2 and −1/2. For m + l − 2 > 0 we
obtain

[zn]GS(z) ∼

{
C·2

6−m−3l
2

Γ(m+l−2
2 )

· 2n · nm+l−4
2 if n is odd,

0 if n is even.

The case m+ l − 2 = 0 needs to be treated separately. Note that then m = 1 and l = 1, thus the
structure S that we embed is a single vertex. Therefore the number of good embeddings is just

the cardinality of Bn, i.e. gBn(S) = C n−1
2
∼
√

2·2n√
πn3

. (Note also that for S being a single vertex

aBn(S) = nC n−1
2
∼
√

2·2n√
πn

.) �

Corollary 2. Consider a rooted tree S with degree distribution sequence dS = (l, u, d2, . . . , dm−1).
Let k = m+l−2

2 and let n be odd. The asymptotic ratio of the number of good embeddings of S into
Bn to the number of all embeddings into Bn is given by

gBn(S)

aBn(S)
∼

{
Γ(k+1/2)

Γ(k)

√
2√
n

if k > 0,

1/n if k = 0.

Proof. The corollary follows immediately from Theorem 2. �

Kubicki et al. [27] proved that if T is a complete balanced binary tree of arbitrary size and S1,
S2 are rooted trees in which each node has at most 2 descendants (i.e. S1 and S2 are Motzkin

trees) and S1 ⊆ S2, then
gT (S1)
aT (S1) ≤

gT (S2)
aT (S2) . They also conjectured that the ratio gT (S)

aT (S) is weakly

increasing with S for S being any rooted tree. One year later in [28] they also stated an asymptotic
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result for the ratio gT (S)
aT (S) when S is an arbitrary rooted tree and T a complete binary tree of size

n. They showed that limn→∞
gT (S)
aT (S) = 2l−1 − 1 where l is the number of leaves in S. Thereby

they proved that for any rooted tree S the asymptotic ratio gT (S)
aT (S) is non-decreasing with S (the

function 2l−1 − 1 increases with l and if S1 ⊆ S2 then the number of leaves of S2 equals at least
the number of leaves of S1).

The conjecture from [27] was disproved by Georgiou [20] who chose speci�c ternary trees as
embedded structures to construct a counterexample. He also generalized the underlying structure
to a complete k-ary tree and considered strict-order preserving maps instead of embeddings. In

this setting he proved that a correlation inequality (corresponding to
gTn (S1)
aTn (S1) ≤

gTn (S2)
aTn (S2) ) already

holds for S1, S2 being arbitrary rooted trees such that S1 ⊆ S2.
Referring to the asymptotic result from [28], we show below and in the subsequent sections that

in our case the asymptotic ratios
√
n gBn (S)
aBn (S) ,

√
n gTn (S)
aTn (S) and

√
n gVn (S)
aVn (S) are all weakly increasing

with S for S being an arbitrary rooted tree. Using this asymptotic result we show later that also

the ratios
gBn (S)
aBn (S) ,

gTn (S)
aTn (S) and

gVn (S)
aVn (S) (unlike in the case from [27]) are eventually weakly increasing

with S for su�ciently large n. In order to do so, we use Gautschi's inequality given in the following
lemma.

Lemma 2 (Gautschi's inequality, [19]). Let x be a positive real number and let s ∈ (0, 1). Then

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ 1)1−s.

Theorem 3. Let S1, S2 be rooted trees such that S1 ⊆ S2. Then

lim
n→∞

√
n
gBn(S1)

aBn(S1)
≤ lim
n→∞

√
n
gBn(S2)

aBn(S2)
.

Proof. Let dS1 = (l1, u1, . . .), dS2 = (l2, u2, . . .), k1 = m1+l1−2
2 , k2 = m2+l2−2

2 (where mi denotes
the size of Si) and k1 > 0 (the case when k1 = 0 is trivial). By Corollary 2 we have

lim
n→∞

√
n
gBn(S1)

aBn(S1)
=

√
2 · Γ(k1 + 1/2)

Γ(k1)
and lim

n→∞

√
n
gBn(S2)

aBn(S2)
=

√
2 · Γ(k2 + 1/2)

Γ(k2)
.

Note that the values k1, k1 + 1/2, k2 and k2 + 1/2 all belong to the set { 1
2 , 1,

3
2 , 2,

5
2 , . . .}. First, we

are going to show that the function f(k) = Γ(k+1/2)
Γ(k) is increasing in k for k ∈ { 1

2 , 1,
3
2 , 2,

5
2 , . . .}.

Indeed, applying twice Gautschi's inequality (Lemma 2) we get for k > 1/2

f(k + 1/2)

f(k)
=

Γ(k + 1)

Γ(k + 1/2)

Γ(k)

Γ(k + 1/2)
> k1/2(k + 1/2)1/2.

Thus, for k >
√

17−1
4 ≈ 0.78, we obtain f(k+1/2)

f(k) > 1. For k = 1/2 we also have f(k+1/2)
f(k) = π

2 > 1.

Now, it su�ces to show that whenever S1 ⊆ S2, then k1 ≤ k2 (equivalently m1 + l1 ≤ m2 + l2).
Of course, m1 ≤ m2. Next, observe that if S1 ⊆ S2, then also l1 ≤ l2. Indeed, the number of leaves
in a tree is the cardinality of its largest antichain. If S1 has l1 leaves and S1 ⊆ S2, then S2 needs
to contain an antichain of cardinality l1 as a subposet, which means that its number of leaves has
to satisfy l2 ≥ l1. Together we get m1 + l1 ≤ m2 + l2. �

Theorem 4. Let S1, S2 be rooted trees such that S1 ⊆ S2. Then for su�ciently large n

gBn(S1)

aBn(S1)
≤ gBn(S2)

aBn(S2)
.

Proof. Let dS1 = (l1, u1, . . .), dS2 = (l2, u2, . . .), k1 = m1+l1−2
2 , k2 = m2+l2−2

2 . Aiming for a
contradiction, assume that S1 ⊆ S2 and that there is an increasing sequence n0 < n1 < n2 < . . .

such that
gBn (S1)
aBn (S1) >

gBn (S2)
aBn (S2) for all n ∈ {ni | i ∈ N}. Then by Theorem 3

lim
n→∞

√
n
gBn(S1)

aBn(S1)
= lim
n→∞

√
n
gBn(S2)

aBn(S2)
=

√
2 · Γ(k1 + 1/2)

Γ(k1)
=

√
2 · Γ(k2 + 1/2)

Γ(k2)
.



COUNTING EMBEDDINGS OF ROOTED TREES INTO FAMILIES OF ROOTED TREES 11

Recall that the function f(k) = Γ(k+1/2)
Γ(k) is increasing in k for k ∈ { 1

2 , 1,
3
2 , 2,

5
2 , . . .} thus the above

equality implies k1 = k2, or equivalently m1 + l1 = m2 + l2. By S1 ⊆ S2 we have l1 ≤ l2 and
m1 ≤ m2 (see the proof of Theorem 3), therefore we get l1 = l2 and m1 = m2. Thus S1 and S2

are isomorphic and
gBn (S1)
aBn (S1) =

gBn (S2)
aBn (S2) which is a contradiction. �

6. Embedding disconnected structures in Bn
In this section we brie�y discuss the case of embedding disconnected structures in Bn. Note that

in this case all the embeddings must be bad (the underlying structure T has only one maximal
element 1T ; as long as the induced structure is disconnected, we can be sure that it does not
contain the root 1T ).

Assume that S is a forest, i.e. a set of rooted trees S1, S2, . . . , Sr (r ≥ 2) with the degree
distribution sequence dS = (l, u, d2, . . . , dm−1). The underlying structure T is connected, thus
S1, S2, . . . , Sr always have a common parent in T . Let σ = (σ1, σ2, . . . , σr) be a permutation of
the set {1, 2, . . . , r}. De�ne S(σ) to be a structure constructed as shown in Figure 5 - we add an
additional vertex 1S(σ) to S, which is a common parent of S1, S2, . . . , Sr appearing in the order
given by σ. Now, instead of counting the number of embeddings of S into T we can simply count
the numbers of good embeddings of S(σ) in T for all permutations σ generating non-isomorphic
structures S(σ) and sum them up. Thus,

aBn(S) =
∑
σ∈Σ

gBn(S(σ)),

where Σ is a set of permutations of {1, 2, . . . , r} such that whenever σ, τ ∈ Σ and σ 6= τ then S(σ)

and S(τ) are not isomorphic. Moreover, whenever τ is a permutation of {1, 2, . . . , r} and τ /∈ Σ
then there exists σ ∈ Σ such that S(σ) and S(τ) are isomorphic.

1S(σ)

vv || �� "" ((
Sσ1 Sσ2 . . . . . . Sσr

Figure 5. The structure of S(σ), σ = (σ1, σ2, . . . , σr).

Note that the asymptotics of gBn(S(σ)) is the same for all σ ∈ Σ since the degree distribu-

tion sequence of S(σ) is the same for all σ ∈ Σ. It is given by dS(σ) = (d̃0, d̃1, . . . , d̃m−1) =
(l, u, . . . , dr−1, dr + 1, dr+1, . . . , dm−1). Therefore, by Theorem 2

aBn(S) ∼

{
m!

k1!k2!...k`!
C̃·2

6−m−3l
2

Γ(m+l−2
2 )

· 2n · nm+l−4
2 if n is odd,

0 if n is even

where ` is the number of equivalence classes of the set {S1, S2, . . . , Sr} with respect to the equiv-
alence relation of being isomorphic and k1, k2, . . . , k` are the cardinalities of those classes. Here

C̃ =
∏m−1
i=3 (Ci−1)d̃i . (Note that here we do not consider the case m+ l − 2 = 0 from Theorem 2,

because by r ≥ 2 we always have m+ l − 2 > 0.)

7. Non-plane case - embeddings in Vn
In this section we explain how to take advantage of the results obtained for the plane case in

order to infer about the asymptotics of good and all embeddings of a rooted tree S in the family
of non-plane binary trees Vn.
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Theorem 5. Consider a rooted tree S with degree distribution sequence dS = (l, u, d2, . . . , dm−1).
The generating function AS(z) of the sequence aVn(S), counting the number of all embeddings of
S into the family Vn, is given by

AS(z) =

(
1

1− zV (z)

)m+l−1

zl+u−1 V (z)l+u CS (1 + o(1)) as z → ±ρ (4)

where CS is a constant dependent on the structure of S and V (z) is the generating function of the
family of non-plane binary trees, satisfying

V (z) = z +
z

2
(V (z)2 + V (z2)), (5)

which has its dominant singularities at z = ±ρ ≈ ±0.6346.

Remark 6. Note that the value for ρ does not coincide with the one given in [14, Chapter VII],
since there the size of a tree corresponds to the number of internal nodes, while we count the
total number of nodes. This is the reason why in our model the coe�cients Vn are zero for even n,
which yields a periodicity in the generating function that results in the presence of two dominant
singularities. However, the generating function N(z) of non-plane binary trees where z solely
marks the number of internal vertices can easily be connected with our generating function V (z)
via V (z) = zN(z2). Thus, with the result from [14] that

N(z) ∼ 1

σ
− a
√

1− z

σ
, as z → σ

with σ ≈ 0.4027 and a ≈ 2.8062, we immediately know that there are two dominant singularities
of V (z) = zN(z2) at z = ±

√
σ and we get

V (z) = zN(z2) ∼ ±
√
σ

(
1

σ
− a
√

2

√
1∓ z√

σ

)
, as z → ±

√
σ.

Finally, by setting ρ =
√
σ ≈ 0.6346 and b = a

√
2σ ≈ 2.5184 we have

V (z) ∼ ±
(

1

ρ
− b
√

1∓ z

ρ

)
, as z → ±ρ.

Proof. Throughout this proof we write S1
∼= S2 whenever the structures S1 and S2 are isomorphic.

This time we introduce a bivariate generating function, where z still marks the total number of
vertices of a tree, while u is associated with classes of vertices. Two vertices v, w are meant to
belong to the same class whenever there exists an isomorphism f : T → T such that f(v) = w.
From [33] we have

V (z, u) = zu+
zu

2
(V (z, u)2 − V (z2, u2) + 2V (z2, u)). (6)

By Vu(z, u) we denote the derivative of V (z, u) with respect to u, i.e. Vu(z, u) = ∂V (z,u)
∂u . We

proceed as in the plane case and start with recursively de�ning the generating function AS(z) for
the number of embeddings of S into the family Vn, when S is a Motzkin tree:

AS(z) =


Vu(z, 1) if S = •
zV (z)

1−zV (z)AS̃(z) if S = (•, S̃)
z

(1−zV (z))2ASL(z)ASR(z) if S = (•, SL, SR) and SL 6∼= SR
z

(1−zV (z))2
1
2 (ASL(z)2 +ASL(z2)) if S = (•, SL, SR) and SL ∼= SR

.

The idea of setting up this recursive de�nition for AS(z) is similar to the plane case with the
following di�erences. In the �rst case, corresponding to embedding a single node, we can mark
an arbitrary vertex class, instead of an arbitrary vertex, since there might be some non-trivial
isomorphisms that would lead to multiple countings of the same embedding. Furthermore, the
paths of left-or-right trees from the previous section, yielding a factor 1

1−2zB(z) , are now replaced

by paths of trees where we do not distinguish between the left-or-right order, since we are in the
non-plane setting. Thus, these paths give a factor 1

1−zV (z) . Finally, in the case when the Motzkin
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tree starts with a binary root, we have to distinguish between the cases whether the two attached
trees are isomorphic or not. The non-isomorphic case works analogously to its plane version, while
in the isomorphic case we have to eliminate potential double-countings by using the same idea as
for Equation (5). We do not have to solve the recursion for AS(z) explicitly, since we are solely
interested in the asymptotic behaviour of its coe�cients and it is easy to see that asymptotically
the contribution of the term ASL(z2) is negligible. Since ρ < 1 the function AS(z2) is analytic
at z = ρ. Thus, [zn]AS(z2) < (ρ+ε)−n, which is exponentially smaller than Cρ−nnβ = [zn]AS(z).

Thus, by iterating we obtain

AS(z) ∼
(

z

(1− zV (z))2

)l−1

Vu(z, 1)l
(

zV (z)

1− zV (z)

)u(
1

2

)s
, as z → ρ,

where l denotes the number of leaves, u the number of unary nodes and s the number of symmetry
nodes in S (a symmetry node is a parent of two isomorphic subtrees). An analogous expansion
holds for z → −ρ (only the 1− zV (z) in the denominators must be replaced by 1 + zV (z)).

In the general case where S is an arbitrary non-plane tree, i.e. a Pólya tree, we proceed as in
the previous section and consider the embeddings of all non-plane unary-binary trees obtained by
replacing d-ary nodes with d ≥ 3 together with their children by binary trees with d leaves. Thus,
again taking into account that there are m − l − u binary nodes that were already there before
the replacement (as binary or d-ary nodes with d ≥ 3) and 2l + u−m− 1 auxiliary binary nodes
that were introduced by the replacement, we get

AS(z) ∼
(

z

1− zV (z)

)2l+u−m−1(
z

(1− zV (z))2

)m−l−u
Vu(z, 1)l

(
zV (z)

1− zV (z)

)u
CS , as z → ρ,

(7)

and the analogous expansion for z → −ρ. The constant CS arises from the isomorphisms and
reads as

CS =
∑
t∈MS

s symmetry node of t

(
1

2

)s
, (8)

where MS denotes the set of all non-plane unary-binary trees obtained from S by replacing the
d-ary nodes with non-plane binary trees with d leaves for d ≥ 3. Di�erentiating Equation (6) with
respect to u and plugging u = 1 yields

Vu(z, 1) =
V (z)

1− zV (z)
.

Finally, substituting this expression for Vu(z, 1) in Equation (7) yields the desired result. Note
that the asymptotic equivalence (7), or (4) respectively, is also true for the case when S is a single
node, i.e. l = 1 and u = s = 0. �

Theorem 6. Consider a rooted tree S with degree distribution sequence dS = (l, u, d2, . . . , dm−1).
The asymptotics of the number of all embeddings of S into Vn is given by

aVn(S) ∼ 2CSb
−m−l+1ρ−m−l

Γ(m+l−1
2 )

· ρ−n · n
m+l−3

2

for n being odd and aVn(S) = 0 for n being even. The asymptotics of the number of good embeddings
of S into Vn is given by

gVn(S) ∼

{
2CSb

−m−l+2ρ−m−l+1

Γ(m+l−2
2 )

· ρ−n · nm+l−4
2 if m+ l − 2 > 0

b√
π
· ρ−n · n−3/2 if m+ l − 2 = 0,

for n being odd and gVn(S) = 0 for n being even. Here b ≈ 2.5184, ρ ≈ 0.6346 and the constant
CS, given in (8), depends on the structure of S.
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Proof. First, note that V (ρ) ∼ 1
ρ , which was already outlined in Remark 6. Therefore, the dominant

part of the asymptotics of the coe�cients of AS(z) comes from the factors 1
1−zV (z) , which give

1

1− zV (z)
∼ 1

ρb
√

1− z
ρ

for z → ρ.

The result for aVn(S) follows immediately by use of Lemma 1. As in the plane case, the generating
function GS(z) for the good embeddings just di�ers from AS(z) by a factor (1− zV (z)) and thus,
the asymptotic behaviour of its coe�cients can be determined analogously. Recall thatm+l−2 = 0
represents the case where S is a single vertex. The number of good embeddings is therefore just
the cardinality of Vn (see Remark 6). �

Now we can formulate a corollary analogous to Corollary 2 from the plane case.

Corollary 3. Consider a rooted tree S with degree distribution sequence dS = (l, u, d2, . . . , dm−1).
Let k = m+l−2

2 and let n be odd. The asymptotic ratio of the number of good embeddings of S into
Vn to the number of all embeddings into Vn is given by

gVn(S)

aVn(S)
∼

{
Γ(k+1/2)

Γ(k)
bρ√
n

if k > 0,

1/n if k = 0.

Theorem 7. Let S1, S2 be rooted trees such that S1 ⊆ S2. Then

lim
n→∞

√
n
gVn(S1)

aVn(S1)
≤ lim
n→∞

√
n
gVn(S2)

aVn(S2)
.

Proof. By Corollary 3 we get that for any S with dS = (l, u, d2, . . . , dm−1)

lim
n→∞

√
n
gVn(S)

aVn(S)
=

Γ(k + 1/2)

Γ(k)
bρ

where k = m+l−2
2 > 0. The rest of the proof is then analogous to the proof of Theorem 3. �

Corollary 4. Let S1, S2 be rooted trees such that S1 ⊆ S2. Then for su�ciently large n

gVn(S1)

aVn(S1)
≤ gVn(S2)

aVn(S2)
.

(Compare Theorem 4 and its proof.)

Now, let us comment on embedding disconnected structures in a non-plane case. Let S be a
forest, i.e. a set of rooted trees S1, S2, . . . , Sr, r ≥ 2. Again, instead of counting all embeddings of
S into Vn, we can count the good embeddings of S̃ in Vn, where S̃ is a forest S with an additional
common parent that clips together all Si's. Note that in the non-plane case the order of Si's does
not matter, thus we simply have

aVn(S) = gVn(S̃).

8. Planted plane case - embeddings in Tn
In this section we extend the results from plane binary trees to planted plane trees, i.e. to

rooted trees where each internal node can have arbitrarily many child-nodes and the order of the
subtrees is important. The structures that we embed are as well planted plane trees, and therefore
every such a tree S is of the form S = (•, S1, . . . , Sk), where the Si's denote the subtrees that are
attached to the root. The following lemma contains the construction of the generating function
AS(z) of all embeddings of the tree S in the family Tn of planted plane trees of size n.
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Lemma 3. The generating function AS(z) of all embeddings of S = (•, S1, . . . , Sk) into the family
Tn of planted plane trees of size n can be recursively speci�ed as

AS(z) =



zT ′(z) =
T (z)(1− T (z))

1− 2T (z)
if k = 0

T (z)

1− 2T (z)
AS1

(z) if k = 1

T (z)2

(1− 2T (z))2(1− T (z))
AS1

(z)AS2
(z) if k = 2

T (z)

(1− 2T (z))2

(
1− 2T (z)

1− T (z)
AS1(z)AS2,k

(z)

+
T (z)(1− 2T (z))

(1− T (z))2
AS1,k−1

(z)ASk(z)

+

(
1− 2T (z)

1− T (z)

)2 (
AS1,2(z)AS3,k

(z) + . . .+AS1,k−2
(z)ASk−1,k

(z)
))

if k > 2

(9)

where T (z) denotes the generating function of the family of planted plane trees, i.e.

T (z) =
1−
√

1− 4z

2
= C0z + C1z

2 + C2z
3 + . . . ,

and Si,j denotes the tree Si,j = (•, Si, . . . , Sj) that consists of a root to which the j− i+ 1 subtrees
Si, . . . , Sj are attached (in that order).

Proof. The case k = 0 is equivalent to the binary cases, and corresponds to marking an arbitrary
node in the tree T . Di�erentiating both sides of the speci�cation T (z) = z

1−T (z) of planted plane

trees with respect to z and solving for T ′(z) yields the equality

zT ′(z) =
z

1− 2T (z)
=
T (z)(1− T (z))

1− 2T (z)
.

Now, let us continue with the proof of the recurrence for the case k > 2. In order to do so let us
observe Figure 6 that visualizes how an embedding of a tree S in a tree T can be constructed.
We start with a path of left-or-right plane trees, followed by the embedded root node. Attached
to the root node there is another such path, ending with the so-called �splitting node�. To the
left and the right of this second path there can of course be several planted plane trees attached
to the embedded root node, which themselves do not contain any embedded vertices. The two

paths that are separated by the embedded root node contribute a factor

(
1

1− z
(1−T (z))2

)2

, which

can be simpli�ed to
(

1−T (z)
1−2T (z)

)2

by means of the functional equation T (z) = z
1−T (z) . The root

node together with the two sequences of planted plane trees that can be attached to the left or to

the right of the path give a factor z
(1−T (z))2 = T (z)

1−T (z) .

The splitting node can as well have a sequence of plane trees attached, that do not contain any
embedded nodes, yielding a factor 1

1−T (z) , but at some point there has to appear the �rst plane

tree that contains some embedded nodes (pictured in blue in Figure 6). All subtrees attached to
the splitting node that are to the right of this blue one are comprised in one plane tree (pictured in
green in Figure 6). Now we have to distinguish between the cases where a di�erent number of the
subtrees S1, . . . , Sk are embedded in the left (i.e. the blue) subtree, while the remaining ones are
embedded in the right (i.e. the green) tree. These case distinctions give rise to the recursion (9)
for the generating function. The �rst two summands of the last case in (9), i.e. the case k > 2,
represent the cases where one of the Si's is embedded in a separate subtree:
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Seq (Seq(T )× {•} × Seq(T ))

Seq(T )× { } × Seq(T )

Seq(T )

S1, . . . , Si

Si+1, . . . , Sk

splitting node

Figure 6. Sketch of the principle of embedding a plane tree S = (•, S1, . . . , Sk) into the
family of planted plane trees. Here the class Seq(T ) indicates that this part of the structure
belongs to this class, i.e., it stands for a sequence of planted plane trees. Likewise, Seq(Seq(T )×
{•} × Seq(T )) represents a path of left-or-right planted plane trees.

• Solely S1 is embedded in the left tree. In this case we count all embeddings of S1 in the left
subtree, giving a factor AS1

(z), while in the right subtree we count exclusively the good
embeddings of S2,k = (•, S2, . . . , Sk), since the splitting node has to be the embedded root
of S2,k in order to prevent multiple embeddings of the root. We already know that the
generating function of good embeddings is obtained from the generating function of all

embeddings by multiplication with 1−2T (z)
1−T (z) (corresponding to 1 divided by the generating

function of the starting path) and thus we get the factor 1−2T (z)
1−T (z) AS2,k

(z).

• Solely Sk is embedded in the right tree. Here we count the good embeddings of S1,k−1 in
the left tree, as this is general necessary for all cases where we consider more than just one
of the Si's to be embedded in the same subtree. However, in this case we have to count only
the bad embeddings of Sk in the right tree, since no node of S can be embedded into the
splitting node, except the root of S, but then the embedding of Sk is still a bad embedding

into the green tree. Altogether this yields the factor 1−2T (z)
1−T (z)

T (z)
1−T (z)AS1,k−1

(z)ASk(z).

In all other cases where we embed at least two of the subtrees S1, . . . , Sk in both the left and
the right (i.e. the blue and the green) subtree, we consider good embeddings for both subtrees
(the blue and the green one, which are then becoming two trees where we embed S1,i and Si+1,k,

respectively) yielding a factor
(

1−2T (z)
1−T (z)

)2

. Together with the factors from the two paths, the

embedded root and the sequence of plane trees we get the desired coe�cients.
The cases k = 1 and k = 2 can be treated in the exact same way as we just did for k > 2.

However, note that in the case k = 1 the green (i.e. the right) tree and two of the sequences
of planted plane trees are merged such that we end up with one path, the embedded root of S
together with its two sequences of planted plane trees and �nally the attached blue tree that
contains the embedding of the only subtree S1. This yields the factor

1− T (z)

1− 2T (z)

T (z)

1− T (z)
AS1

(z).

In the case k = 2 we have the pre-factor T (z)
(1−2T (z))2 that covers the two paths, the embedded root

node with its attached sequences of plane trees and the sequence of plane trees that is attached
to the splitting node. Now there is just one splitting option: S1 has to embedded in the left tree,
where we consider all embeddings, and S2 has to be embedded in the right tree, where we solely
count the bad embeddings of S2, since the splitting node must not be an embedded node. It is
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easy to verify that this case gives the factor

T (z)2

(1− 2T (z))2(1− T (z))
AS1

(z)AS2
(z). �

Remark 7. Note that for the cases k = 0, 1, 2 the generating function AS(z) of all embeddings of
S = (•, S1, . . . , Sk) into the family Tn of planted planes trees of size n given in (9) is of the form
fk(T ) · AS1

(z) . . . ASk(z), where fk(T ) is a function that depends only on T (z) and on the size k
of S, but not on the speci�c shape of S. We want to emphasize that, by digging into the structure
of S and by recursive application of the formulas given in (9), it follows that AS(z) is in fact of
the form

AS(z) = f(T ) ·AS1
(z) · · ·ASk(z),

for arbitrary S = (•, S1, . . . , Sk).

Now, we are in the position to obtain the asymptotic number of all and good embeddings of a
given plane tree S in the family of planted plane trees.

Theorem 8. Consider a rooted tree S of size m with degree distribution sequence dS =
(l, d1, d2, . . . , dm−1). Let C =

∏m−1
i=1 (Ci−1)di . The asymptotics of the number of all embeddings of

S into Tn is given by

aTn(S) ∼
C · ( 1

2 )m+l

Γ(m+l−1
2 )

· 4n · n
m+l−3

2 .

The asymptotics of the number of good embeddings of S into Tn is given by

gTn(S) ∼
2C · ( 1

2 )m+l

Γ(m+l−2
2 )

· 4n · n
m+l−4

2 .

Proof. Triggered by the observation in Remark 7, let us set

f1(z) =
1

2(1− 2T (z))
, and fk(z) =

AS(z)∏k
i=1ASi(z)

for k > 1. (10)

Then (9) immediately gives f2(z) = T (z)2/((1− 2T (z))2(1− T (z))).
Next, consider the last equation of (9) (the case k ≥ 3) and observe that all generating functions

on the right-hand side which are associated with a composite structure are of the form ASi,j (z),

where the root of Si,j has degree at least two. Thus, dividing the equation by
∏k
i=1ASi(z) (and

cancelling out all single ASj (z)) yields only quotients which can be readily turned into f`(z) with
suitable choices of `, because the case ` = 1 does not appear here. A straight-forward simpli�cation
then gives

fk(z) =
T (z)

(1− T (z))2

k−1∑
j=1

fj(z)fk−j(z) for k ≥ 3. (11)

Both sides of this equation tend to in�nity, as z → 1/4, and we need their singular behaviour for
our analysis of AS(z). Hence, we set gk(z) = (1− 2T (z))kfk(z) for k ≥ 1. Plugging this into (11)
we observe that gk(z) satis�es the same recurrence as fk(z), but with the initial values g1(z) = 1/2
and g2(z) = T (z)2/(1 − T (z)). As T (1/4) = 1/2, the functions gk(z) are regular at z = 1/4. By
evaluating the recurrence at z = 1/4 and setting hk := 2gk(1/4), we get a recurrence for hk, which
is in fact already valid for k ≥ 2:

h1 = 1 and hk =

k−1∑
j=1

hjhk−j for k ≥ 2.

This is exactly the recurrence for the Catalan numbers, and thus, hk = Ck−1.
Hence, for z → 1/4 and k ≥ 2 we have

fk(z) ∼ 1

2
Ck−1(1− 4z)−k/2,
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which implies that as z → 1/4 we have

AS(z) ∼ Ck−1

2
(1− 4z)−k/2AS1(z) . . . ASk(z) =

(
m−1∏
i=1

(
Ci−1

2
(1− 4z)−i/2

)di)
(A•(z))

l
,

where S = (•, S1, . . . , Sk), di denotes the number of nodes with out-degree i, l denotes the number
of leaves, i.e. l = d0, and the equation follows from recursively going into the subtrees S1, . . . , Sk
and using (10) until one encounters a leaf of S. Then each leaf yields a factor A•(z). Using the
equality A•(z) = zT ′(z) ∼ 1

2 (1 − 4z)−1/2, which follows from (9) and the singular expansion of

T (z), we get for z → 1
4

AS(z) ∼

(
m−1∏
i=1

(
Ci−1

2

)di)
(1− 4z)−(l+

∑m−1
i=1 idi)/2

(
1

4

)l
. (12)

Note that
∑m−1
i=1 idi = m− 1, since every vertex with out-degree i is counted exactly i times and

thus, we simply obtain the total number of nodes with in-degree greater than zero (i.e. all nodes

except for the root). We also have
∑m−1
i=1 di = m− l thus (recall that C =

∏m−1
i=1 (Ci−1)di)(

1

4

)l
·
m−1∏
i=1

(
Ci−1

2

)di
= C

(
1

2

)m+l

.

Finally, Lemma 1 gives

aTn(S) ∼
C · ( 1

2 )m+l

Γ(m+l−1
2 )

· 4n · n
m+l−3

2 .

The generating function of the number of good embeddings can be derived from the generating

function AS(z) by multiplication by the factor 1−2T (z)
1−T (z) . This factor is responsible for getting rid

of the path of trees which could appear above embedded root of S when we were considering all

embeddings. Thus we have GS(z) = 1−2T (z)
1−T (z) AS(z). Noticing that

1− 2T (z)

1− T (z)
= 2

√
1− 4z

1 +
√

1− 4z
,

using (12) and applying Lemma 1 yields the desired result. �

Corollary 5. Consider a rooted tree S of size m with l leaves. The asymptotic ratio of the number
of good embeddings of S into Tn to the number of all embeddings in Tn is given by

gTn(S)

aTn(S)
∼

{
2Γ(m+l−1

2 )

Γ(m+l−2
2 )

√
n

if m > 1,

1/n if m = 1.

Theorem 9. Let S1, S2 be rooted trees such that S1 ⊆ S2. Then

lim
n→∞

√
n
gTn(S1)

aTn(S1)
≤ lim
n→∞

√
n
gTn(S2)

aTn(S2)
.

Proof. By Corollary 5 we get that for any S with dS = (l, u, d2, . . . , dm−1)

lim
n→∞

√
n
gTn(S)

aTn(S)
=

2Γ(k + 1/2)

Γ(k)
.

where k = m+l−2
2 > 0. The rest of the proof is then analogous to the proof of Theorem 3. �

Corollary 6. Let S1, S2 be rooted trees such that S1 ⊆ S2. Then for su�ciently large n

gTn(S1)

aTn(S1)
≤ gTn(S2)

aTn(S2)
.

(Compare Theorem 4 and its proof.)
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9. Discussion

We proved that the ratio of the number of good embeddings to the number of all embeddings
of a given tree S = (•, S1, . . . , Sk) into the families of trees Bn,Vn, Tn is asymptotically of the
same order for all the three considered families of trees, namely plane binary trees, non-plane
binary trees and planted plane trees. Thereby we extended the results of Kubicki et al. [27, 28]
and Georgiou [20]. We expect that this result will also hold for the family of Pólya trees, which
are the closest counterpart to posets that admit a (rooted) treelike shape, i.e. they have a single
maximal element. In principle, the approach that we used within this paper works for embeddings
into the family of Pólya trees as well. However, one would have to consider all possible parti-
tions of S1, . . . , Sk, as any collection of isomorphic subtrees within S1, . . . , Sk admits non-trivial
isomorphisms between the Si's, which can get rather involved and is therefore omitted in this
work.
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