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Abstract. Taking online decisions is a part of everyday life. Think of buying a
house, parking a car or taking part in an auction. We often take those decisions
publicly, which may breach our privacy - a party observing our choices may learn
a lot about our preferences. In this paper we investigate the online stopping algo-
rithms from the privacy preserving perspective, using a mathematically rigorous
differential privacy notion.
In differentially private algorithms there is usually an issue of balancing the pri-
vacy and utility. In this regime, in most cases, having both optimality and high
level of privacy at the same time is impossible. We propose a natural mechanism
to achieve a controllable trade-off, quantified by a parameter, between the accu-
racy of the online algorithm and its privacy. Depending on the parameter, our
mechanism can be optimal with weaker differential privacy or suboptimal, yet
more privacy-preserving. We conduct a detailed accuracy and privacy analysis of
our mechanism applied to the optimal algorithm for the classical secretary prob-
lem. Thereby the classical notions from two distinct areas - optimal stopping and
differential privacy - meet for the first time.

Key words: privacy preserving algorithm, optimal stopping, differential privacy,
secretary problem

1 Introduction

We make online decisions every day - buying a house, trading stock options or park-
ing a car. The choices we make are mostly based on our knowledge and experience.
Those decisions are most often publicly visible and it raises concern about the internal
information on which the choice was based. Namely, our choices may somewhat leak
that information, which we consider as sensitive. Someone could observe our choices
and deduce our preferences or domain knowledge of our algorithmic trading company.
In this paper we consider the security of such information in case of optimal stopping
algorithms.

The optimal stopping algorithms are widely known and thoroughly researched. One
of the most classical models in this area is the secretary problem. We have a set of n
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linearly ordered candidates and a selector would like to choose the best candidate from
that set. The caveat is that the candidates appear online one by one in some random
order. I.e., the selector cannot see all of them at once and simply pick the best one. He
has only one choice and has to make it online. The decision must be based on an incom-
plete knowledge gathered by comparing the current candidate with the previously seen
ones, and it is irreversible, as the candidate cannot be hired after he or she was rejected.
There is a known, optimal solution to that problem which gives the asymptotic probabil-
ity of 1/e for choosing the best candidate (consult [1]). The problem was popularized
in 1960 by Martin Gardner in Scientific American column under the name of googol
game and the optimal solution was first written down by Lindley in [1]. For a historical
overview of the secretary problem consult Ferguson’s survey [2]. Many generalizations
of this classical version were considered later on. Stadje was the first one who replaced a
linear order of candidates with the partial order (poset) and aimed at choosing any max-
imal element [3]. An account of research considering threshold strategies for posets
was given by Gnedin in [4]. Optimal strategies for a particular posets as well as univer-
sal algorithms for the whole families of posets have been featured in [5,6,7,8,9]. The
problem was investigated even on much more general structures, like matroids (consult
[10]). Other interesting extensions consider different payoff functions. A natural refor-
mulation of the classical case is to aim at minimizing the expected rank of the candidate
instead of at selecting just the best one. This model was introduced by Lindley in [1]
but fully solved by Chow et al. in [11]. In [12] the authors present the stopping prob-
lem in the auction setting where the seller has a multidimensional objective function
with only a partial order among the outcomes. Even though formulated probably in the
mid-1950s, the secretary problem with its generalizations is still vivid and attracts the
attention of theoretical computer science community, see the latest results in [13,14,15].

In this paper we investigate the optimal stopping algorithms from a privacy-protection
perspective, which, to the best of our knowledge, has not been done so far. Assuming
that the online choice we make is publicly visible, it may leak some information about
our preferences. Note that if the choice was possible offline, i.e., we could first see all
the candidates and then pick the best one, the leakage would be unavoidable, as the
chosen candidate would simply be our best one. But when the choice has to be made in
an online regime (we pick or reject the candidates on the fly, without the possibility of
revisiting the rejected ones) then on one hand the outcome is not perfectly accurate but
on the other our preferences are not that visible. The optimal stopping algorithms can be
used for example in algorithmic trading. One might care whether the visible action on
the market (e.g., closing an American option position) leaks something about an inter-
nal knowledge. Hereby we try to answer the question whether the inherent uncertainty
of the online stopping algorithms is enough to sufficiently hide our preferences.

Our analysis of privacy is based on differential privacy notion commonly considered
as the only state-of-the-art approach. Its idea was introduced by Dwork et al. in [16],
however its precise formulation in the widely used form appeared in [17]. Differential
privacy is mathematically rigorous and formally provable in contrary to the previous
anonymity-derived privacy definitions (for a comprehensive study check [18] and ref-
erences therein). Informally, the idea behind differential privacy is as follows: for two
"similar" inputs, a differentially private mechanism should provide a response chosen
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from a very similar distributions. In effect, judging by the output of the mechanism one
cannot say if a given individual was taken into account for producing a given output, as
it cannot distinguish two outputs produced from two data sets differing with only one
user. This is mostly done by adding an auxiliary randomness (e.g., a carefully calibrated
noise) to data. Vast majority of the fundamental papers (e.g. [19,20,21]) consider cen-
tralized model as is assumed in our contribution. In this model a trusted party (called
curator) holds a database. He is entitled to gather and process all participants’ data. Cu-
rator also releases the computed statistics to a wider (possibly untrusted) audience. Such
approach to the privacy-preserving protocols can be used to give a formal guarantee for
privacy resilient to any form of post-processing. Analysis of the protocols based on dif-
ferential privacy is usually technically much more involved comparing with previous
approaches, but they give immunity against various linkage attacks (see e.g. [22,23]).

1.1 Results

We can think of two extremes while making an online decision - one is to act according
to the known, optimal algorithm and the other is to act completely randomly. Obviously,
the first approach yields the best possible chance to make a correct pick but leaks inter-
nal information while the latter does not leak anything but selects a candidate only at
random. Depending on the nature of the problem and the importance of information to
be hidden we have to make a trade-off.

In this paper we present a natural algorithm that is such a trade-off. It has a steering
parameter p ∈ [0, 1]: by p = 1 it is optimal, and by p = 0 it hides preferences per-
fectly. We analyze its effectiveness and privacy properties. Subsequently, we apply it to
the classical secretary problem. It turns out that already the optimal secretary algorithm
itself ensures some privacy, but rather only in weak metrics. Our approach, basing on
adding a randomized perturbation, is common in privacy mechanisms. This intuitively
obvious algorithm turned out to be surprisingly difficult to analyze. This work can be
seen as the first step to tackle privacy and information hiding in the optimal stopping
algorithms so we focused only on the classical model.

Main results

• We introduce the definition of a differentially private stopping time (see Definition 5
in Section 2) with a metric defined on a set of orderings representing selector’s
preferences (see Definition 6 in Section 2).
• In Theorem 1 we show a fundamental lower bound for the possibility of construct-

ing privacy preserving algorithms that are close to optimal.
• We propose a natural mechanism transforming any optimal stopping time for a

linearly ordered set of candidates into an algorithm preserving accuracy at a con-
trollable level and having better information hiding properties. Formulation of the
algorithm is presented in Section 4. General results concerning its accuracy and
differential privacy are stated in Section 4.1 (see Fact 5 and Theorem 3).
• We conduct a detailed analysis of our mechanism applied to the optimal stopping

algorithm for the classical secretary problem. The results on its accuracy and dif-
ferential privacy are stated in Section 4.2 (see Fact 6 and Theorem 4). In particular,
we obtain privacy properties of the optimal algorithm for the secretary problem.
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In order to obtain the privacy results for our mechanism applied to the secretary prob-
lem we had to prove a series of collateral properties of the optimal algorithm for the
secretary problem (see the Appendix).

2 Formal model

2.1 Stopping time

Let C = {C1, C2, . . . , Cn} be the set of n candidates. Let Sn be the set of all permuta-
tions of elements from C, |Sn| = n!. We interpret a single permutation σ from Sn as the
ordering of candidates with respect to their qualifications, i.e., σ = (σ1, σ2, . . . , σn) =
(Cσ1 , Cσ2 , . . . , Cσn) refers to the ordering Cσ1 > Cσ2 > . . . > Cσn (in particular, it
means that the candidate Cσ1 has the best and the candidate Cσn has the worst qualifi-
cations from the whole group C). These orderings are called the qualification orderings.

Let Tn be also the set of all permutations of the elements from C, just this time we
interpret τ ∈ Tn as the sequence giving the order in which the candidates appear in
some online game (τ = (τ1, τ2, . . . , τn) means, in particular, that the candidate Cτ1
appeared as the first one and the candidate Cτn as the last one in our online game).
These orderings are called the time orderings.

Throughout this paper we refer to the following model of an online stopping prob-
lem. Fix σ (choose a particular qualification ordering on the set of candidates). Note
that, in fact, σ is a preference which we want to hide. Assume that τ is chosen uni-
formly at random from Tn. The player knows σ but he does not know τ . Candidates
from C appear one by one following the order given by τ . At time t, i.e., when t candi-
dates appeared, the player observes the qualification order induced by {τ1, τ2, . . . , τt}.
That is, he knows the relative ranks of the candidates seen so far but he does not know
their total ranks. At each time step he has to decide whether to continue the game and
reveal the next element or to stop the game meaning that he selects the element τt. If
he decides to reveal another element, he is not allowed to come back to the previous
steps of the game. His task is to maximize (or ensure relatively high) probability that
the selected candidate belongs to some previously defined set (e.g. is maximal in the
whole set C).

Formally, we define a probability space (Tn,P,P), where P is the set of all subsets
of Tn and the probability measure is defined by P[{τ}] = 1/n! for any τ ∈ Tn. A
stopping time is a function M : Sn × Tn → {1, 2, . . . , n} such that its value, say
t = M(σ, τ), depends only on information the player gathered up to time t, which is
the qualification order induced by {τ1, τ2, . . . , τt}. The value can not depend on any
future events. We give a strict formal definition of a stopping time below.

Definition 1 Let P1 ⊆ P2 ⊆ . . . ⊆ Pn ⊆ P be a sequence of σ-algebras (such a
sequence is called a filtration). A random variable M : Sn × Tn → {1, 2, . . . , n} is a
stopping time with respect to a filtration (Pt)nt=1 if, truncating M to any σ ∈ Sn, we
have that (M |σ)−1(t) ∈ Pt for all t ≤ n.

In our case the sets A in Pt are those with the following property. Fix σ ∈ Sn. If
τ = (τ1, τ2, . . . , τn) ∈ A then for every τ̃ ∈ Tn such that the orders of candidates
induced by τ and τ̃ are identical up to time t we have τ̃ ∈ A.
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The expression M(σ, τ) = t means that the algorithm M stopped at time t, thus
selected the candidate Cτt . Notation for a candidate returned by M while playing on
the time ordering τ is τM(σ,τ). We will often refer to the probability that a candidate
returned by M belongs to some subset S of the set of all candidates C, i.e. P[τM(σ,τ) ∈
S]. In order to clarify notation we introduce a notion CM(σ, τ) for τM(σ,τ).

Definition 2 LetM denote the set of all stopping times. We say thatMopt is an optimal
stopping time if

Mopt = argmaxM∈MP[τM ∈ D],

where D ⊆ C is a set of previously defined candidates and τ is chosen uniformly at
random from Tn.

The set {1, 2, . . . , n} will be denoted by [n]. We write f(n) ∼ g(n) whenever
limn→∞ f(n)/g(n) = 1.

2.2 Secretary problem

From now on M∗ always denotes the optimal stopping time for the classical secretary
problem. In the secretary problem the player aims at maximizing the probability of
selecting the candidate which is the best from the whole C. That is, for a particular
σ ∈ Sn, the set D from Definition 2 is given by D = {σ1}. A full solution to this
problem (the optimal algorithm and its probability of success) is well known, consult
[1] or [2]. The asymptotic results are also established. We present them below.

Definition 3 Let σ ∈ Sn be the qualification ordering of the elements from C. Let
the value tn be a so-called threshold of the algorithm. The optimal algorithm M∗ for
the secretary problem (the one maximizing P[τM = σ1] over M ∈ M) is defined as
follows. For any τ ∈ Tn we have M∗(σ, τ) = k if and only if

(1) k > tn − 1 and
(2) τk is the maximal element in the qualification ordering induced by {τ1, τ2, . . . , τk}

and
(3) for i ∈ {tn, . . . , k − 1} the element τi is not maximal in the qualification ordering

induced by {τ1, . . . , τi}.

If τ is such that the above three conditions are never altogether satisfied, thenM∗(σ, τ) =
n.

Fact 1 The threshold tn of the optimal algorithm M∗ for the classical secretary prob-
lem with n candidates is defined as the smallest integer t for which

1

t
+

1

t+ 1
+ . . .+

1

n− 1
6 1.

We have tn ∼ n/e (consult [1]).
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Fact 2 Fix σ ∈ Sn. The probability that the optimal algorithm M∗ selects the kth best
candidate is given by

P[CM∗(σ, τ) = σk] =
tn − 1

n

(
n−k+1∑
i=tn

(
n−k
i−1
)(

n−1
i−1
) 1

i− 1
+

1

n− 1

)
,

where tn is the threshold from Fact 1 (consult [24] or see Theorem 5 in the Appendix).
In particular, the probability that it wins (selects the best candidate) is

P[CM∗(σ, τ) = σ1] =
tn − 1

n

n∑
i=tn

1

i− 1

n→∞−−−−→ 1/e ≈ 0.37.

In general, when k is a constant or a function of n such that k(n) = o(n)

P[CM∗(σ, τ) = σk] ∼
1

e

∞∑
s=k

1

s

(
1− 1

e

)s
(consult [24] or see Theorem 6 in the Appendix).

2.3 Differential privacy

In this subsection we recall the definition of differential privacy and present the pri-
vacy model used throughout the paper. For more details about differential privacy see
e.g. [18].

We assume that there exists a trusted curator who holds data of individuals in the
database. A privacy mechanism is an algorithm, used by the curator, that takes as an
input a database and produces an output (a release) using randomization. By X we
denote the space of all possible rows in a database (each row consits of data of some in-
dividual). The privacy mechanism has a domain N|X | representing the set of databases.
Thus each database is represented as an |X |-tuple (n1, n2, . . . , n|X |), where nk is inter-
preted as the number of rows of kind k in this database. If x = (n1, n2, . . . , n|X |) then
n1 + n2 + . . . + n|X | is the number of rows in x. The goal is to protect data of every
single individual, even if all the users except one collude with the Adversary to breach
the privacy of this single, uncorrupted user.

Definition 4 (Differential Privacy, [18]) A randomized algorithm M with the domain
N|X | is (ε, δ)-differentially private, if for all S ⊆ Range(M ) and for all x, y ∈ N|X |
such that ‖x− y‖1 6 1 the following condition is satisfied:

P[M(x) ∈ S] 6 eε · P[M(y) ∈ S] + δ,

where the probability space is over the outcomes of M and ‖·‖1 denotes the standard
l1 norm.

The intuition behind the (ε, δ)-differential privacy is that if we choose two consecutive
databases (that differ exactly on one record), then the mechanism is very likely to return
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indistinguishable values. Speaking informally, it preserves privacy with high probabil-
ity, thus the outcome could be distinguishable, thus not privacy-preserving, only with
probability at most δ.

In this paper we consider the optimal stopping algorithms and by the database we
understand a permutation of the set of n choices (e.g., candidates in the secretary prob-
lem). Rather than hiding the participation of a candidate in a stopping game, we wish to
hide the preferences of the selector. Indeed it is the preference that is sensitive, not the
participation itself. For example, in financial markets the set of candidates is publicly
known (say, the prices of a stock). On the other hand, our reaction to that set based on
the underlying assumptions and the domain knowledge, which are connected with the
preferences permutation, is sensitive and needs protection.

Below we present a differential privacy definition reformulated for our purposes.

Definition 5 Let (Sn, d) be a metric space. A randomized algorithm M with the do-
main Sn × Tn is an (ε, δ)-differentially private stopping time w.r.t. metric d if for all
S ⊆ Range(M ) and for all σ, ρ ∈ Sn such that d(σ, ρ) 6 1 we have

P[CM(σ, τ) ∈ S] 6 eεP[CM(ρ, τ) ∈ S] + δ,

where τ is chosen uniformly at random from Tn.

Since we assume a uniform distribution on Tn, all the probabilities are calculated
with respect to the fact that τ is chosen uniformly at random from Tn. From now on, for
short, we sometimes write (ε, δ)-DP for an (ε, δ)-differentially private stopping time.

We introduce a definition of a parametrized metric on Sn.

Definition 6 For l ∈ {1, 2, . . . , n− 1} let dl : Sn ×Sn → [0,∞). We say that dl is an
l-distance between the permutations σ, ρ ∈ Sn if

dl(σ, ρ) = min{k : σ = π1 ◦ π2 ◦ . . . ◦ πk ◦ ρ},

where πi ∈ Sn and each πi is a transposition of the elements being at most l apart in
the permutation πi+1 ◦ . . . ◦ πk ◦ ρ.

Example 1 Let σ = (C1, C2, C3, . . . , Cn−1, Cn) and ρ = (Cn, C2, C3, . . . , Cn−1, C1).
We have d1(σ, ρ) = 2n− 3 since we need to make at least 2n− 3 swaps of the neigh-
boring elements in order to obtain σ from ρ:

σ = (Cn Cn−1) . . . (Cn C3) ◦ (Cn C2) ◦ (C1 Cn) . . . (C1 Cn−2) ◦ (C1 Cn−1) ◦ ρ.

However, dn−1(σ, ρ) = 1 since we need just one swap of the elements n − 1 apart in
order to obtain σ from ρ:

σ = (C1 Cn) ◦ ρ.

Fact 3 Let l ∈ {1, 2, . . . , n− 1}. It is easy to show that (Sn, dl) is a metric space.

Note that dn−1 is the strongest metric as it treats two permutations with any pair
of swapped elements as neighboring. On the other hand we have d1 (here permutations
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are neighboring only if it is a pair with the neighboring elements swapped). From the
privacy perspective point of view these metrics significantly differ. A privacy mecha-
nism using dn−1, intuitively, hides our preferences completely. It should e.g. output a
similar outcome even for the qualification orderings σ and σ̃, where σ̃ swaps in σ the
best candidate with the worst one. In general, dl metric hides preferences for up to l
distance. I.e., say that a picked candidate was in reality k-th on the full preference list.
Then from the Adversary perspective he or she could have been between k− l and k+ l
on the preference list.

Note that if an algorithm is private in a stronger metrics, the Adversary cannot
really guess the preferences of the selector, despite knowing the picked candidate. Intu-
itively, constructing such an algorithm having a high probability of success seems hard
to achieve, as then the final choice should say almost nothing about the selector’s pref-
erences. Indeed, in the next section we prove that achieving a reasonable differential
privacy parameters (ε and δ) and a constant probability of success in case of metrics dl
such that l = l(n)

n→∞−−−−→∞ is impossible.

3 General results

In this section we present two general results for the (ε, δ)-DP stopping times with
the metric dl. In the first one we refer to the problem of choosing the best candidate,
thus for a fixed σ ∈ Sn the set D from Definition 2 is given by D = {σ1}. This
result tells that by l = l(n)

n→∞−−−−→ ∞ it is impossible to construct an algorithm with a
constant probability of success having reasonable privacy parameters. The second result
constitutes the lower bound for ε for a given optimal stopping time and δ.

Theorem 1. Fix σ ∈ Sn and let δ ≥ 0. Consider a metric space (Sn, dl) for l =

l(n)
n→∞−−−−→ ∞. Then, for every stopping time M such that P[CM(σ, τ) = σi] > 0 for

all i ∈ {1, 2, . . . , n}, if M is (ε, δ)-DP w.r.t. dl, then P[CM(σ, τ) = σ1]
n→∞−−−−→ 0 or

ε
n→∞−−−−→∞.

Remark 1. Here we assume that δ is significantly smaller than P[CM(σ, τ) = σ1], i.e.
that the difference between δ and P[CM(σ, τ) = σ1] tends to some positive constant
with n→∞.

Proof. Assume by contradiction that l = l(n)
n→∞−−−−→∞ and the stopping algorithm M

is such that P[CM(σ, τ) = σ1] is a positive constant and M is (ε, δ)-DP w.r.t. dl with a
constant ε. Consider the following qualification orderings, all being at distance 1 from
σ w.r.t. dl:

ρ2 = (σ1 σ2) ◦ σ = (σ2, σ1, σ3, . . . , σn),

ρ3 = (σ1 σ3) ◦ σ = (σ3, σ2, σ1, σ4, . . . , σn),

. . .

ρl+1 = (σ1 σl+1) ◦ σ = (σl+1, σ2, . . . , σl, σ1, σl+2, . . . , σn).

Let P[CM(σ, τ) = σj ] = qj,n. Note that for j = 2, 3, . . . , l + 1

P[CM(ρj , τ) = σ1] = qj,n.
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Since M is (ε, δ)-DP w.r.t. dl the following system of l inequalities is satisfied

ε ≥ ln
q1,n − δ
q2,n

, ε ≥ ln
q1,n − δ
q3,n

, . . . , ε ≥ ln
q1,n − δ
ql+1,n

(consider S = {σ1} in Definition 5). We infer that since q1,n is a constant and ε is
a constant, the probabilities qj,n for j = 2, 3, . . . , l + 1 are also constant. Now, since
l = l(n)

n→∞−−−−→ ∞ we get q1,n + q2,n + . . .+ ql+1,n
n→∞−−−−→ ∞ which contradicts the

fact that
∑n
j=1 qj,n = 1.

Therefore throughout the rest of the paper we always assume that l is a constant.

Theorem 2. Consider a metric space (Sn, dl). Let δ ≥ 0 and let M be a stopping
algorithm which is (ε, δ)-DP w.r.t. dl. For a given σ ∈ Sn let

P[CM(σ, τ) = σi] = qi,n ∈ (0, 1), i = 1, 2, . . . , n.

If there exists at least one pair i, j ∈ [n] such that i 6= j, |i − j| 6 l, qi,n > qj,n and
δ < qi,n − qj,n then

ε > max
16i,j6n
|i−j|6l

ln

{
qi,n − δ
qj,n

}
.

Otherwise ε ≥ 0. The inequalities are tight.

Remark 2. In this paper most of the time we find ourselves in the first situation. Usually
δ will be already significantly smaller than |q1,n − q2,n|.

Proof. Since M is (ε, δ)-DP w.r.t. dl, the following inequality has to be satisfied for all
S ⊆ C and for all ρ ∈ Sn such that dl(σ, ρ) = 1

P[CM(σ, τ) ∈ S] 6 eεP[CM(ρ, τ) ∈ S] + δ. (1)

Equivalently, we will work with the inequality

eε >
P[CM(σ, τ) ∈ S]− δ
P[CM(ρ, τ) ∈ S]

(2)

assuming that P[CM(ρ, τ) ∈ S] 6= 0. (When P[CM(ρ, τ) ∈ S] = 0 the inequality (1)
holds with any ε > 0.) Thus let us investigate what is the maximal value that the right-
hand side of the inequality (2) may attain. Since dl(σ, ρ) = 1, let us express ρ as

ρ = (σi σj) ◦ σ = (σ1, . . . , σi−1, σj , σi+1, . . . , σi, . . . , σn),

where i, j ∈ [n], i 6= j and |i− j| 6 l. For k ∈ [n] \ {i, j} we have

P[CM(ρ, τ) = σk] = P[CM(σ, τ) = σk] = qk,n.

In the remaining cases P[CM(ρ, τ) = σi] = qj,n and P[CM(ρ, τ) = σj ] = qi,n.
Note that whenever S neither contains σi nor σj , the probabilities P[CM(σ, τ) ∈ S]
and P[CM(ρ, τ) ∈ S] are equal and the above inequality holds with any ε > 0. The
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situation is analogous whenever S includes both, σi and σj . Thus let us consider S such
that σi ∈ S and σj /∈ S (the symmetric case with σj ∈ S and σi /∈ S is analogous). We
can write

P[CM(σ, τ) ∈ S] = qi,n + q and P[CM(ρ, τ) ∈ S] = qj,n + q,

where q = P[CM(σ, τ) ∈ S \ {σi}] = P[CM(ρ, τ) ∈ S \ {σi}]. We have

P[CM(σ, τ) ∈ S]− δ
P[CM(ρ, τ) ∈ S]

=
qi,n + q − δ
qj,n + q

=: f(q).

Note that f ′(q) =
qj,n−qi,n+δ
(q+qj,n)2

. Thus whenever qi,n > qj,n and δ < qi,n − qj,n the
function f is decreasing. In the remaining cases f is weakly increasing. Therefore if
qi,n > qj,n and δ < qi,n − qj,n we get

P[CM(σ, τ) ∈ S]− δ
P[CM(ρ, τ) ∈ S]

6
qi,n − δ
qj,n

which means that we maximize the expression setting q = 0 (i.e., setting S = {σi}).
The right-hand side of the above inequality is greater than or equal to 1. In the remaining
cases (when qi,n > qj,n and δ > qi,n − qj,n or when qj,n > qi,n) we get

P[CM(σ, τ) ∈ S]− δ
P[CM(ρ, τ) ∈ S]

6
1− qj,n − δ
1− qi,n

which means that we maximize the expression setting q = 1− qi,n − qj,n (i.e., setting
S = C \ {σj}). Note that the right-hand side of the above inequality is smaller than or
equal to 1. Thus in this case the inequality (2) holds for ε ≥ 0.

We conclude that whenever there exists at least one pair i, j ∈ [n] such that i 6= j,
|i− j| 6 l, qi,n > qj,n and δ < qi,n − qj,n then

ε > max
16i,j6n
|i−j|6l

ln

{
qi,n − δ
qj,n

}
.

Otherwise ε ≥ 0. Note that in the proof in both cases we have indicated S realizing the
maximum. Therefore the bounds are tight. ut

4 Hiding preferences

Each optimal stopping algorithm is (ε, δ)-differentially private at some level, i.e., for
some values of ε and δ. These values will be often too high to meet user’s expectations.
What the user can do is to resign from the optimality of the algorithm (however try to
keep the accuracy of the algorithm at some acceptable level) gaining a higher level of
privacy. It can be achieved by a careful modification of the distribution of the outcome
of the algorithm. Analyzing the definition of differential privacy one can deduce that
the closer this distribution to the uniform one is, the smaller the values of ε and δ in the
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definition of differential privacy may become. E.g., below in Fact 4 we explain that the
algorithm with uniform outcome is (0, 0)-differentially private regardless of the metric.
Thus what the user should do in order to achieve the desired privacy level is to modify
the algorithmMopt such that the distribution of its outcome comes in some sense closer
to the uniform distribution.

In this section we analyze a natural mechanism transforming an arbitrary optimal
stopping time Mopt into the algorithm meeting stricter privacy requirements, yet pre-
serving some level of accuracy. It is equipped with a parameter p ∈ [0, 1] controlling
the smooth transition between optimality and (0, 0)-DP.

Definition 7 Let M
′′

and M ′ be two online stopping algorithms for the same stopping
problem. A p-mix on M

′′
and M ′ is defined as follows. We toss a coin that comes down

heads with probability p. If it comes down heads, we play according to M
′′

. If it comes
down tails, we play according to M ′.

Definition 8 We call the algorithm M̃ a blind choice if for a fixed σ ∈ Sn and for any
τ ∈ Tn it always stops at τ1, i.e., CM̃(σ, τ) = τ1, equivalently M̃(σ, τ) = 1.

Fact 4 A blind choice M̃ is (0, 0)-differentially private regardless of the metric we use.

Proof. Note that for a fixed σ and any C ∈ C we have P[CM̃(σ, τ) = C] = 1/n.
Indeed, the candidate C will be selected by M̃ if and only if it is the first candidate in
the time ordering τ . Time ordering τ is chosen uniformly at random from Tn, thus the
probability that it starts with C is 1/n. In particular, for S ⊆ C we get P[CM̃(σ, τ) ∈
S] = |S|/n (this probability is independent of σ). Thus for fixed σ, ρ ∈ Sn and for any
S ⊆ C we always get P[CM̃(σ, τ) ∈ S] = P[CM̃(ρ, τ) ∈ S] = |S|/n thus

P[CM̃(σ, τ) ∈ S] 6 e0P[CM̃(ρ, τ) ∈ S] + 0.

ut

Note that if we consider a p-mix on Mopt and M̃ (i.e., a p-mix on an optimal
algorithm and a blind choice) then we get a controllable by p algorithm being a trade-
off between two extremes. One of them is optimality (the case when p = 1) and the
other one is (0, 0)-differential privacy (the case when p = 0). Setting higher p means
relaxing the requirements for (ε, δ)-differential privacy but at the same time obtaining
a larger probability of choosing the proper candidate. Setting smaller p we resign from
the high accuracy of the algorithm but we gain a higher level of privacy.

Some general results on the accuracy and the privacy of a p-mix algorithm are given
in Section 4.1. The detailed analysis of a classical case, i.e., of a p-mix on the optimal
algorithm for the secretary problem and a blind choice, is given in Section 4.2.

4.1 Accuracy and differential privacy of a p-mix M

In this section we formulate some general results on the accuracy and the privacy of
a p-mix algorithm. We start with a simple fact about the minimum level to which the
accuracy of this algorithm may drop.



12 Krzysztof Grining, Marek Klonowski, Małgorzata Sulkowska

Fact 5 Fix σ ∈ Sn. Let D ⊆ C be the set of the desired candidates from Definition 2.
Let Mopt be the optimal stopping time and M ′ any other stopping algorithm for this
problem. Let p ∈ [0, 1] and M be the p-mix on Mopt and M ′. Then

P[CM(σ, τ) ∈ D] > p · P[CMopt(σ, τ) ∈ D].

Proof. Obviously, by the definition of a p-mix algorithm we get

P[CM(σ, τ) ∈ D] = p · P[CMopt(σ, τ) ∈ D] + (1− p) · P[CM ′(σ, τ) ∈ D]

> p · P[CMopt(σ, τ) ∈ D].

ut

Assume that the optimal algorithm for some stopping problem is (ε, δ) - differen-
tially private. The following theorem explains how differential privacy improves (i.e.,
how parameters ε and δ drop) if we mix this optimal algorithm with a strategy whose
outcome distribution is uniform.

Theorem 3. Fix σ ∈ Sn. Let Mopt be some optimal stopping algorithm. Consider a
metric space (Sn, dl). Assume that Mopt is (ε, δ)-differentially private w.r.t. metric dl.
Let M ′ be the algorithm whose outcome distribution is uniform, i.e., for all k ∈ [n]
P[CM ′(σ, τ) = σk] = 1/n (e.g., it may be a blind choice M̃ ). Then the p-mix M on

Mopt and M ′ is
(
ln
(
eε − (1−p)(eε−1)

n

)
, p · δ

)
-differentially private w.r.t. metric dl.

Proof. The algorithm Mopt is (ε, δ)-differentially private w.r.t. metric dl thus for all
ρ ∈ Sn such that dl(σ, ρ) 6 1 and for all S ⊆ C we have

P[CMopt(σ, τ) ∈ S] 6 eεP[CMopt(ρ, τ) ∈ S] + δ.

Moreover, by the definition of a p-mix for every π ∈ Sn we get

P[CM(π, τ) ∈ S] = p · P[CMopt(π, τ) ∈ S] + (1− p) · P[CM ′(π, τ) ∈ S].

Hence for all ρ ∈ Sn such that dl(σ, ρ) 6 1 and for all S ⊆ C such that S 6= ∅ (if S = ∅
then the differential privacy inequality for M holds for any ε ≥ 0 and any δ ≥ 0)

P[CM(σ, τ) ∈ S] = p · P[CMopt(σ, τ) ∈ S] + (1− p) · P[CM ′(σ, τ) ∈ S]
6 p · eε · P[CMopt(ρ, τ) ∈ S] + p · δ + (1− p) · P[CM ′(σ, τ) ∈ S]
= eε(P[CM(ρ, τ) ∈ S]− (1− p) · P[CM ′(ρ, τ) ∈ S])
+ p · δ + (1− p) · P[CM ′(σ, τ) ∈ S]

= eεP[CM(ρ, τ) ∈ S] + p · δ − (1− p)(eε − 1)
|S|
n

6

(
eε − (1− p)(eε − 1)

n

)
P[CM(ρ, τ) ∈ S] + p · δ.

(3)

ut
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4.2 Trade-off between optimality and differential privacy in the secretary
problem

This section is an analytical discussion about the optimal stopping algorithm for the
classical secretary problem in the context of differential privacy. Below we present a
detailed analysis of the accuracy and differential privacy of a p-mix on M∗ and M̃ ,
where M∗ is the optimal solution for the secretary problem, and M̃ is the blind choice.
Recall that in the secretary problem one aims at choosing only the best out of all n
candidates (i.e., for a fixed σ ∈ Sn at selecting σ1). Any other choice is interpreted as a
loss. Let us start with a simple fact about the accuracy of the p-mix on M∗ and M̃ .

Fact 6 Fix σ ∈ Sn. Let M be a p-mix on M∗ and M̃ , where M∗ is the optimal algo-
rithm for the secretary problem, and M̃ is the blind choice. Then

P[CM(σ, τ) = σ1] = p · P[CM∗(σ, τ) = σ1] +
1− p
n
∼ p

e
.

Proof. The result follows straight from the definition of a p-mix and Fact 2. ut

Before we move on to analyzing differential privacy of the classical p-mix on M∗

and M̃ , let us introduce some simplifications in notation. Throughout this section p ∈
[0, 1] is always a constant and M is always a p-mix on M∗ and M̃ . (The case p = 0
when M is just a blind choice was already discussed thus we will often assume p ∈
(0, 1].) We also introduce a shorter notation for the probabilities that M∗ or M select
the kth best candidate, namely, for σ ∈ Sn

rk,n = P[CM∗(σ, τ) = σk] and qk,n = P[CM(σ, τ) = σk].

By this notation, following Definition 7, we can write

qk,n = p · rk,n +
1− p
n

. (4)

Therefore, by Theorem 6 (see the Appendix), we formulate the following corollary.

Corollary 1. Let σ ∈ Sn, let p ∈ [0, 1] be a constant and let M be a p-mix on M∗ and
M̃ . Then for k > 1 being a constant or a function of n such that k(n) = o(n)

qk,n ∼
p

e
·
∞∑
s=k

1

s

(
1− 1

e

)s
, in particular q1,n ∼

p

e
.

For transparency of notation let also

ak =

∞∑
s=k

1

s

(
1− 1

e

)s
.

Note that the above sum always converges, in particular a1 = 1 and a2 = 1/e. By Fact 2
and Corollary 1 for k > 1 being a constant or a function of n such that k(n) = o(n) we
can simply write

rk,n ∼
1

e
· ak and qk,n ∼

p

e
· ak.
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In Theorem 4 and the two following corollaries we give constraints for ε, δ and p
which guarantee that a p-mixM is (ε, δ)-differentially private with respect to metric dl.
Recall that we always assume that l is a constant (consult Theorem 1). The following
two technical lemmas will be helpful by proving the main theorem.

Lemma 1. Fix σ ∈ Sn. The sequence {qk,n}k∈[n] is non-increasing in k.

Proof. By Corollary 4 (see the Appendix) we know that the sequence {rk,n}k∈[n] is
non-increasing in k. By (4) we have

qk,n − qk+1,n = p · (rk,n − rk+1,n) > 0.

ut

Lemma 2. Fix σ ∈ Sn. Let l > 1 be a constant. Let δ ∈ [0, 1]. For any k ∈ [n− 1], if
n > 7 then

q1,n − δ
ql+1,n

>
qk,n − δ
qk+l,n

.

Proof. First, we are going to show that for k > 2

lim
n→∞

q1,n
ql+1,n

> lim
n→∞

qk,n
qk+l,n

. (5)

By (4) and by Fact 2 we have

lim
n→∞

q1,n
ql+1,n

= lim
n→∞

r1,n
rl+1,n

=
1

al+1
and lim

n→∞

qk,n
qk+l,n

= lim
n→∞

p · rk,n + 1−p
n

p · rk+l,n + 1−p
n

.

By Theorem 7 (see the Appendix) we know that for k > 2 we have limn→∞
rk,n

rk+l,n
<

1
al+1

. Thus for sufficiently large n (one can verify that n > 7 is enough) we can write
rk,n <

rk+l,n

al+1
and thereby get (note that al+1 < 1)

p · rk,n + 1−p
n

p · rk+l,n + 1−p
n

<
p · rk+l,n

al+1
+ 1−p

n

p · rk+l,n + 1−p
n

n→∞−−−−→


p· c

al+1
+1−p

p·c+1−p < 1
al+1

for rk+l,n = c · 1/n+ o(1/n),

1 < 1
al+1

for rk+l,n = o(1/n).

Whenever rk+l,n = ω(1/n) we also have rk,n = ω(1/n) (indeed, by Corollary 4 the
sequence rk,n is non-increasing in k) and again by Theorem 7 (see the Appendix) we
get

lim
n→∞

p · rk,n + 1−p
n

p · rk+l,n + 1−p
n

= lim
n→∞

rk,n
rk+l,n

<
1

al+1
.

We conclude that for any k ∈ [n − 1] and sufficiently large n (again n > 7 is
enough) we get q1,n

ql+1,n
> qk,n

qk+l,n
and, by Lemma 1,

q1,n − δ
ql+1,n

=
q1,n
ql+1,n

− δ

ql+1,n
>

q1,n
ql+1,n

− δ

qk+l,n
>

qk,n
qk+l,n

− δ

qk+l,n
=
qk,n − δ
qk+l,n

.

ut
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Theorem 4. Fix σ ∈ Sn. Consider a metric space (Sn, dl) for l > 1 being a constant.
Let p ∈ (0, 1] and δ ∈ [0, 1]. If n > 7 and

ε >

{
ln
(
q1,n−δ
ql+1,n

)
∼ ln

(
p−δ·e
al+1·p

)
for δ < q1,n − ql+1,n

0 for δ > q1,n − ql+1,n,

then the p-mix M is (ε, δ)-differentially private. The bounds are tight.

Proof. By Theorem 2 we know that if there exists at least one pair i, j ∈ [n] such that
i 6= j, |i− j| 6 l, qi,n > qj,n and δ < qi,n − qj,n then

ε > max
16i,j6n
|i−j|6l

ln

{
qi,n − δ
qj,n

}
.

Otherwise ε ≥ 0. Consequently, by Lemma 1 and Lemma 2 we get

ε >

{
ln
(
q1,n−δ
ql+1,n

)
for δ < q1,n − ql+1,n

0 for δ > q1,n − ql+1,n.

Additionally, by Corollary 1 we get

ln

(
q1,n − δ
ql+1,n

)
∼ ln

(
p− δ · e
al+1 · p

)
.

ut

Figure 1 shows the shape of the asymptotic region of pairs (ε, δ) for which the p-mix
M is (ε, δ)-differentially private.

ln p-δe
al+1 p

(1-al+1)p/e
δ

ln(1/al+1)

ϵ

Fig. 1: Shaded area is an asymptotic region in which the p-mixM is (ε, δ)-differentially
private.

Figure 2 shows how the boundaries of the asymptotic regions in which the p-mix
M is (ε, δ)-differentially private change with p for a given l. Figure 3 shows how the
boundaries of an asymptotic region in which the p-mixM is (ε, δ)-differentially private
change with l for a given p.
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p=1/4

p=1/2

p=3/4

p=1

(1-al+1)/4e (1-al+1)/2e 3(1-al+1)/4e (1-al+1)/e
δ

ln(1/al+1)

ϵ

Fig. 2: Boundaries of the asymptotic re-
gions in which the p-mix M is (ε, δ)-
differentially private for a given l and vari-
ous values of p.

l=1

l=2

l=3

l=4

p(1-a2)/e p(1-a5)/e
δ

1

ln(1/a3)

ln(1/a4)

ln(1/a5)

ϵ

Fig. 3: Boundaries of the asymptotic re-
gions in which the p-mix M is (ε, δ)-
differentially private for a given p and var-
ious values of l.

Corollary 2. Fix σ ∈ Sn. Consider a metric space (Sn, dl) for l > 1 being a constant.
Let p ∈ (0, 1] and ε > 0. If n > 7 and

δ >

q1,n − e
εql+1,n ∼ p

e (1− al+1e
ε) for ε < ln

(
q1,n
ql+1,n

)
0 for ε > ln

(
q1,n
ql+1,n

)
,

then the algorithm M is (ε, δ)-differentially private.

Proof. Note that the inequality δ > q1,n − eεql+1,n is equivalent to the inequality

ε > ln
(
q1,n−δ
ql+1,n

)
from Theorem 4 and by Corollary 1 we get q1,n − eεql+1,n ∼

p
e (1− al+1e

ε).

Corollary 3. Fix σ ∈ Sn. Consider a metric space (Sn, dl) for l > 1 being a constant.
Let δ ∈ [0, 1] and ε > 0. If n > 7 and

p 6

{
δ+ 1

n (eε−1)
r1,n−eεrl+1,n+

1
n (eε−1) ∼

e·δ
1−eεal+1

for δ < r1,n − eεrl+1,n

1 for δ > r1,n − eεrl+1,n,

then the p-mix M is (ε, δ)-differentially private.

Proof. By Corollary 2 we know that for ε > 0 the p-mix M is (ε, δ)-differentially
private if only δ > q1,n − eεql+1,n. By (4) we can rewrite it as

δ > p · r1,n +
1− p
n
− eε

(
p · rl+1,n +

1− p
n

)
which is equivalent to

p 6
δ + 1

n (e
ε − 1)

r1,n − eεrl+1,n + 1
n (e

ε − 1)
∼ e · δ

1− eεal+1
,

where asymptotics follows from Fact 2.
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Fig. 4: Privacy parameter ε of the p-mix
M for δ = 0.01.

Fig. 5: Privacy parameter δ of the p-mix
M for ε = 0.5.

Fig. 6: Parameter p of the p-mix M for
δ = 0.05.

Below we present also a few explicit examples of the relations between the param-
eters ε, δ and p. All the examples consider asymptotic results w.r.t. metric d1. When
needed the parameters were set to ε = 0.5, and δ = 0.01 or δ = 0.05 commonly used
in the analysis of differential privacy offered by a wide range of mechanisms (see e.g.
[25,18]). Note however that the calibration of ε, δ parameters depends strongly on the
considered scenarios. In a one-shot response mechanism such values may be adequate,
however, if a given mechanism is assumed to be used many times or combined with
other sources of knowledge by the adversary we often need to consider much lower val-
ues ([26]). Figure 4 shows the parameter ε as a function of p for which the p-mix M is
(ε, 0.01)-differentially private. Note that here ε does not exceed 1 even for p = 1, thus
when the selector plays simply the optimal algorithm. Figure 5 shows the parameter δ
as a function of p for which the p-mix M is (0.5, δ)-differentially private. Note that if
we demand δ to be at most 0.05, then p has to be around 0.35. Figure 6 shows how
small the parameter p has to be for the p-mix M to obtain (ε, 0.05)-differential privacy.
Note that if we accept ε ≈ 0.85 or higher, then already p = 1 (thus simply the optimal
strategy) is sufficient.

5 Conclusions and Future Work

In this paper we have investigated the optimal stopping algorithms from the information
hiding perspective. We have proposed a natural mechanism constructing a suboptimal
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stopping algorithms but giving better privacy properties. We have analyzed its effec-
tiveness and privacy, and applied it to the classical secretary problem. This work can be
seen as the first step towards the differentially private stopping algorithms.

The problem we consider might, at the first glance, resemble the differentially pri-
vate auction problem (see [27]). Note however, that here we do not have the scores, the
preferences are given by the permutation and they are only comparable, not quantifi-
able, so the exponential mechanism cannot be used. Moreover, due to the online nature
of the problem, we cannot have a full knowledge during the whole procedure. We also
have to define a metric of similarity for inputs.

Here we have concentrated on the classical secretary problem. Nevertheless, the
optimal stopping literature offers the whole variety of different models. One could, e.g.,
analyze the algorithm that optimizes the expected rank of the candidate (intuitively,
we do not necessarily require the best candidate but at least ’good enough’). It may
have better information hiding properties inherently. One could consider Gusein-Zade
models with parameter k in which we win when the selected candidate is in top k. It
would be challenging to work on models with different ordering, e.g., using partially
ordered sets instead of linear order as a qualification ordering. However, in this case it is
unclear whether a reasonable metric for the similarity of preferences could be proposed.

Our approach was to keep the final algorithm simple, so we based it on known, opti-
mal one. Elseways, one might propose an entirely different algorithm, that is not optimal
but has better information hiding properties or is more effective for given privacy pa-
rameters. Note also that essentially we have focused on hiding the information about
preferences, not the participation of a specific candidate. Another venue of research
could be investigating whether participation hiding is feasible in such circumstances.
Even if not for all candidates, maybe it could be possible for the majority of them.

We believe that this paper opens an interesting new research area lying at the cross-
roads of online algorithms and differential privacy.

Acknowledgements This research was partially supported by Polish National Science
Centre Grant 2018/29/B/ST6/02969.

References

1. Lindley, D.: Dynamic programming and decision theory. Appl. Stat. - J. Roy. St. C 10(1)
(1961) 39–51

2. Ferguson, T.S.: Who solved the secretary problem? Statist. Sci. 4(3) (1989) 282–289
3. Stadje, W.: Efficient stopping of a random series of partially ordered points. Multiple Criteria

Decision Making Theory and Application. Lecture Notes in Economics and Mathematical
Systems 177 (1980) 430–447

4. Gnedin, A.V.: Multicriteria extensions of the best choice problem: Sequential selec- tion
without linear order. Contemp. Math. 125 (1992) 153–172

5. Morayne, M.: Partial-order analogue of the secretary problem the binary tree case. Discret.
Math. 184(1-3) (1998) 165–181

6. Garrod, B., Morris, R.: The secretary problem on an unknown poset. Random Struct. Algor.
43(4) (2013) 429–451

7. Preater, J.: The best-choice problem for partially ordered objects. Oper. Res. Lett. 25(4)
(1999) 187–190



What Do Our Choices Say About Our Preferences? 19

8. Kozik, J.: Dynamic threshold strategy for universal best choice problem. Proceedings of
21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the
Analysis of Algorithms (2010) 439–452

9. Freij, R., Wästlund, J.: Partially ordered secretaries. Electron. Commun. Prob. 15 (2010)
504–507

10. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and online mech-
anisms. In Bansal, N., Pruhs, K., Stein, C., eds.: Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana,
USA, January 7-9, 2007, SIAM (2007) 434–443

11. Chow Y.S., Moriguti S., R.H., S.M., S.: Optimal selection based on relative rank (the “sec-
retary problem”). Isr. J. Math. 2 (1964) 81–90

12. Kumar, R., Lattanzi, S., Vassilvitskii, S., Vattani, A.: Hiring a secretary from a poset. In
Shoham, Y., Chen, Y., Roughgarden, T., eds.: Proceedings 12th ACM Conference on Elec-
tronic Commerce (EC-2011), San Jose, CA, USA, June 5-9, 2011, ACM (2011) 39–48

13. Janson, S.: The hiring problem with rank-based strategies. Electron. J. Probab. 24 (2019)
1–35

14. Kaplan, H., Naori, D., Raz, D.: Competitive analysis with a sample and the secretary prob-
lem. In Chawla, S., ed.: Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, SIAM (2020) 2082–2095

15. Correa, J., Cristi, A., Feuilloley, L., Oosterwijk, T., Tsigonias-Dimitriadis, A.: The secretary
problem with independent sampling. In: Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021, SIAM (2021) 2047–2058

16. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private
data analysis. In: TCC. Volume 3876., Springer (2006) 265–284

17. Dwork, C.: Differential privacy. In: Automata, Languages and Programming, 33rd Interna-
tional Colloquium, ICALP 2006. (2006) 1–12

18. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science 9(3-4) (2014) pp. 211–407

19. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: Privacy
via distributed noise generation. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer (2006) 486–503

20. Dwork, C., Lei, J.: Differential privacy and robust statistics. In: STOC. Volume 9. (2009)
371–380

21. Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under continual ob-
servation. In: Proceedings of the forty-second ACM symposium on Theory of computing,
ACM (2010) 715–724

22. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: Security and Privacy,
2009 30th IEEE Symposium on, IEEE (2009) 173–187

23. Narayanan, A., Shmatikov, V.: Myths and fallacies of personally identifiable information.
Commun ACM 53(6) (2010) 24–26

24. Rogerson, P.: Probabilities of choosing applicants of arbitrary rank in the secretary problem.
J. Appl. Probab. 24(2) (1987) 527–533

25. Zhu, T., Li, G., Zhou, W., Yu, P.S.: Differential Privacy and Applications. Volume 69 of
Advances in Information Security. Springer (2017)

26. Haeberlen, A., Pierce, B.C., Narayan, A.: Differential privacy under fire. In: 20th USENIX
Security Symposium, San Francisco, CA, USA, August 8-12, 2011, Proceedings, USENIX
Association (2011)

27. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’07), IEEE (2007) 94–103



20 Krzysztof Grining, Marek Klonowski, Małgorzata Sulkowska

Appendix

The Appendix contains the technical results on the probabilities that the optimal stop-
ping algorithm for the secretary problem selects the kth best candidate. The proofs of
Theorems 5 and 6 (however in slightly different formulations) can be found in [24].

Theorem 5. Let M∗ be the optimal stopping algorithm for the secretary problem. Fix
σ ∈ Sn. Let k ∈ [n]. The probability that M∗ selects the kth best candidate is given by

rk,n = P[CM∗(σ, τ) = σk] =
tn − 1

n

(
n−k+1∑
i=tn

(
n−k
i−1
)(

n−1
i−1
) 1

i− 1
+

1

n− 1

)
,

where tn is the threshold from Fact 1.

Lemma 3. Let rk,n be defined as in Theorem 5. Then for k ∈ [n− 1]

rk+1,n = rk,n −
tn − 1

n
· 1
k
·
(
n−tn+1

k

)(
n−1
k

) .

Proof. Since (n−k−1
i−2 )
(n−2
i−2)

=
(n−i
k−1)
(n−2
k−1)

we have

rk,n − rk+1,n =
tn − 1

n

n−k+1∑
i=tn

(
n−k
i−1
)
−
(
n−k−1
i−1

)(
n−1
i−1
) 1

i− 1

=
tn − 1

n

n−k+1∑
i=tn

(
n−k−1
i−2

)(
n−1
i−1
) 1

i− 1
=
tn − 1

n

n−k+1∑
i=tn

(
n−k−1
i−2

)(
n−2
i−2
) i− 1

n− 1

1

i− 1

=
tn − 1

n

1

n− 1

n−k+1∑
i=tn

(
n−i
k−1
)(

n−2
k−1
) =

tn − 1

n

1

n− 1

(
n−tn+1

k

)(
n−2
k−1
) =

=
tn − 1

n
· 1
k
·
(
n−tn+1

k

)(
n−1
k

) .

Corollary 4. The sequence rk,n is non-increasing in k.

Proof. By Lemma 3 we get

rk,n − rk+1,n =
tn − 1

n
· 1
k

(
n−tn+1

k

)(
n−1
k

) > 0.

Theorem 6. Let k > 1 be a constant or a function of n such that k(n) = o(n). Let rk,n
be defined as in Theorem 5. Then

rk,n ∼
1

e

(
1−

k−1∑
s=1

1

s

(
1− 1

e

)s)
=

1

e

∞∑
s=k

1

s

(
1− 1

e

)s
.
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Lemma 4. Let rk,n be defined as in Theorem 5. Let k = k(n) 6 n be a function linear
in n. Then

rk,n ∼
1

e
· 1
n
.

Proof. Recall that

rk,n =
tn − 1

n

n−k+1∑
i=tn

(
n−k
i−1
)(

n−1
i−1
) 1

i− 1
+
tn − 1

n

1

n− 1
.

Note that if k > n− tn + 1 then

n−k+1∑
i=tn

(
n−k
i−1
)(

n−1
i−1
) 1

i− 1
= 0

and by Fact 1

rk,n =
tn − 1

n

1

n− 1
∼ 1

e
· 1
n
.

Hence assume that k 6 n − tn + 1. Since tn−1
n ∼ 1

e and tn−1
n

1
n−1 ∼

1
e ·

1
n ,

we need to show that
∑n−k+1
i=tn

(n−k
i−1)
(n−1
i−1)

1
i−1 is asymptotically smaller than 1

n . Seeing that

(n−k
i−1)
(n−1
i−1)

=
(n−i
k−1)
(n−1
k−1)

and that the function f(i) = (n−i
k−1)
(n−1
k−1)

1
i−1 is decreasing in i we have

n−k+1∑
i=tn

(
n−k
i−1
)(

n−1
i−1
) 1

i− 1
=

n−k+1∑
i=tn

(
n−i
k−1
)(

n−1
k−1
) 1

i− 1
6
n− tn − k + 2

tn − 1

(
n−tn
k−1

)(
n−1
k−1
)

=
n− tn − k + 2

tn − 1

n

n− tn + 1

(
n−tn+1

k

)(
n
k

) .

(6)

Since k(n) = c · n for some constant c we get

n− tn − k + 2

tn − 1

n

n− tn + 1
∼ e(1− c)− 1

1− 1/e

and at the same time(
n−tn+1

k

)(
n
k

) =

(
1− k

n− tn + 2

)
. . .

(
1− k

n

)
6

(
1− k

n

)t−1
∼ (1− c)n/e−1 = o(1/n).

Lemma 5. Let rk,n be defined as in Theorem 5. For k ∈ [n− 2]

lim
n→∞

rk,n
rk+1,n

> lim
n→∞

rk+1,n

rk+2,n
.
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Proof. First note that when k = k(n) is a function linear in n, by Lemma 4 we obtain

lim
n→∞

rk,n
rk+1,n

= lim
n→∞

rk+1,n

rk+2,n
= 1.

Hence assume that k is either a constant or k(n) = o(n). Let ak =
∑∞
s=k

1
s

(
1− 1

e

)s
.

By Theorem 5 we can write
rk,n
rk+1,n

∼ ak
ak+1

and
rk+1,n

rk+2,n
∼ ak+1

ak+2
.

Let βk = 1
k

(
1− 1

e

)k
. Thus we have to prove ak

ak−βk
> ak−βk

ak−βk−βk+1
which is equiva-

lent to ak > β2
k

βk−βk+1
. Let f(k) = β2

k

βk−βk+1
. We need to show that

∞∑
s=k

1

s

(
1− 1

e

)s
> f(k). (7)

One can easily verify that for all s > 1

1

s

(
1− 1

e

)s
> f(s)− f(s+ 1).

Summing both sides of the above inequality over s > k we obtain
∞∑
s=k

1

s

(
1− 1

e

)s
>
∞∑
s=k

(f(s)− f(s+ 1)) = f(k),

where the last equality follows from the fact that f(n) n→∞−−−−→ 0.

Theorem 7. Let l > 1 be a constant and let k ∈ {2, . . . , n− l}. Let rk,n be defined as
in Theorem 5 and let also al =

∑∞
s=l

1
s

(
1− 1

e

)s
. Then

lim
n→∞

rk,n
rk+l,n

<
1

al+1
.

Proof. By Lemma 5 we have

lim
n→∞

rk+1,n

rk+l,n
= lim
n→∞

rk+1,n

rk+2,n
· lim
n→∞

rk+2,n

rk+3,n
. . . lim

n→∞

rk+l−1,n
rk+l,n

6 lim
n→∞

r2,n
r3,n
· lim
n→∞

r3,n
r4,n

. . . lim
n→∞

rl,n
rl+1,n

= lim
n→∞

r2,n
rl+1,n

.

Additionally, for k > 2, by Theorem 5 and Lemma 5

lim
n→∞

rk,n
rk+1,n

< lim
n→∞

r1,n
r2,n

.

Together, by Theorem 5, it gives

lim
n→∞

rk,n
rk+l,n

= lim
n→∞

rk,n
rk+1,n

· lim
n→∞

rk+1,n

rk+l,n

< lim
n→∞

r1,n
r2,n

lim
n→∞

r2,n
rl+1,n

= lim
n→∞

r1,n
rl+1,n

=
1

al+1
.
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