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Modularity of minor-free graphs

Micha l Lasoń* and Ma lgorzata Sulkowska?

Abstract. We prove that a class of graphs with an excluded minor and with

the maximum degree sublinear in the number of edges is maximally modular,

that is, modularity tends to 1 as the number of edges tends to infinity.

1. Introduction

1.1. Modularity. Modularity is a well-established parameter measuring the
presence of community structure in the graph. It was introduced by Newman
and Girvan in 2004 ([19]). Nowadays it is widely used as a quality function for
community detection algorithms. The most popular heuristic clustering algorithms
(check Louvain [5] or Leiden [20]) find the proper partition trying to maximize
exactly this parameter. The definition of modularity is based on the comparison
between the density of edges inside communities one observes in the graph and the
density of edges one would expect if the edges of the graph were wired randomly
preserving degree sequence. We make it precise just below.

Consider a simple undirected graph G with |V (G)| = n and |E(G)| = m.
Whenever the context is clear we write V and E for V (G) and E(G), respectively.
For v ∈ V by deg(v) denote the degree of a vertex v in G. For a subset of vertices
S ⊆ V define E(S) to be the set of edges in G with both end-vertices within S and
let deg(S) =

∑
v∈S deg(v). The modularity of G is defined as follows.

Definition 1 (Modularity, [19]). Let G be a graph with at least one edge. For
a partition A of G into induced subgraphs define its modularity score on G as

modA (G) =
∑
A∈A

(
|E(A)|
|E(G)|

−
(

deg(V (A))

deg(V (G))

)2
)
.

Modularity of G is given by

mod(G) = max
A

modA (G).
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Conventionally, a graph with no edges has modularity equal to 0. For a

given partition A the value
∑
A∈A

|E(A)|
|E(G)| is called an edge contribution while∑

A∈A

(
deg(V (A))
deg(V (G))

)2

is a degree tax. A single summand of the modularity score

is the difference between the fraction of edges within A and the expected fraction
of edges within A if we considered a random multigraph on V with the degree
sequence given by G.

It is easy to check that 0 ≤ mod(G) < 1, and also that adding or deleting
isolated vertices from the graph does not impact its modularity.

In practice, the problem of community detection very often concerns complex
networks, i.e., graphs modeling real-life systems. Since most complex networks
are sparse, it is natural to investigate which classes of sparse graphs exhibit high
modularity. Our paper addresses exactly this question - modularity of commonly
considered subclasses of nowhere dense graphs, that is a class of graphs introduced
by Nešetřil and Ossona de Mendez in [18] as capturing the notion of sparsity.

1.2. Related work. For a concise, up to date summary of modularity of
various classes of graphs check the appendix of [16] by McDiarmid and Skerman
from 2020.

Here we focus on modularity of commonly considered subclasses of nowhere
dense graphs. First, recall the definition of maximally modular class of graphs.

Definition 2 (Maximally modular class of graphs). A class of graphs C is
maximally modular if for every ε > 0 there exists Mε such that whenever G is a
graph from C with m ≥Mε edges, then mod(G) > 1− ε.

It is not hard to show (consult [7]) that a maximally modular class of graphs has
the maximum degree sublinear in the number of edges. Hence, sublinear maximum
degree is a necessary condition for a class of graphs to be maximally modular.

In 2018 McDiarmid and Skerman formulated the following sufficient condition
for a class of graphs to be maximally modular. By ∆(G) and tw(G) we denote
respectively the maximum degree in G and the treewidth of G.

Corollary 3 ([15], Corollary 12). For m = 1, 2, . . . let Gm be a graph with
m edges. If tw(Gm) ·∆(Gm) = o(m) then mod(Gm)→ 1 as m→∞.

The above result is tight in a sense that o(m) can not be replaced by O(m).
To justify it McDiarmid and Skerman present two examples. First, let G be a star
K1,m (with treewidth 1 and maximum degree m). Then, tw(G) ·∆(G) = m and,
by [7], mod(G) = 0. Second, let G be a random cubic graph on n vertices (thus
with m = 3n/2 edges). Then, tw(G) · ∆(G) = O(m) and with high probability
mod(G) ≤ 0.79 (see [11, 15]).

Thus, what follows from Corollary 3 is that bounded treewidth in addition to
the maximum degree sublinear in the number of edges already guarantees that the
class of graphs is maximally modular. On the other hand the example of a random
cubic graph gives that classes of bounded degree graphs are not maximally modular.
These conclusions already lead to the classification presented in Figure 1.

By Corollary 3 one can obtain also some partial results for planar graphs and
for bounded genus graphs.

Indeed, the random planar graph Gn on n vertices has tw(Gn) = O(
√
n) (which

follows from the separator theorem for graphs of bounded genus [10] and a recent
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Figure 1. Maximally and non-maximally modular subclasses of

nowhere dense graphs. All classes of graphs are considered to have

the maximum degree sublinear in the number of edges. (Background

picture by Felix Reidl, source: https://tcs.rwth-aachen.de/∼reidl/.)

result by Dvorák and Norin [9] establishing the linear dependence between the
treewidth and the separation number for graphs of bounded genus). Next, with high
probability |E(Gn)| = Θ(n) and, by [14], with high probability ∆(Gn) = O(log n).
Thus, by Corollary 3 random planar graphs are maximally modular.

Similarly, again by [10, 9], for bounded genus graphs tw(Gm) = O(
√
m). Thus,

a class of bounded genus graphs with ∆(Gm) = o(
√
m) is maximally modular.

1.3. Our results. We prove the following.

Theorem 4. A class of graphs with an excluded minor and with the maximum
degree sublinear in the number of edges is maximally modular.

Since classes of graphs with bounded genus and the class of planar graphs
are subclasses of graphs with an excluded minor, the above theorem resolves, in
positive, all three questions marked in Figure 1 that remained unsolved. This
way we achieve a complete classification of maximally modular classes among all
commonly considered subclasses of nowhere dense graphs with sublinear maximum
degree.

Our proof uses tools of spectral graph theory, in particular so-called Cheeger’s
Inequality and a recent important result by Biswal et al. ([4]) for graphs with an
excluded minor.
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2. Proof

We begin by presenting tools of spectral graph theory and results for minor-free
graphs that will be used in this section.

Let G = (V,E) be a simple undirected graph. Denote by A its adjacency matrix
and by D its diagonal degree matrix. Recall that L = D−A is the Laplacian matrix
of G. When G has no isolated vertices, then L = D−

1
2LD−

1
2 is the normalized

Laplacian matrix of G. Let λi(L) and λi(L ) denote ith smallest eigenvalue of L
and L , respectively. We concentrate on the second smallest eigenvalues, λ2(L) and
λ2(L ), as they carry information about the connectivity of G.

We will need to justify the existence of sufficiently small and reasonably bal-
anced edge cuts in considered graphs. This will be done by Cheeger’s inequality,
which was first established for manifolds in 1970 by Cheeger [6], while the graph
version is due to Alon and Milman [1, 2].

Theorem 5 (Cheeger’s Inequality, [2]). When G has no isolated vertices, then

λ2(L )

2
≤ min
∅6=S(V

|E(S, V \ S)|
min{deg(S),deg(V \ S)}

≤
√

2λ2(L ),

where E(S, V \ S) denotes the set of edges in G between S and V \ S.

One of the first results for minor-free graphs shows that they have at most a
linear number of edges in terms of the number of vertices.

Theorem 6 ([13]). A class of graphs with an excluded minor has at most a
linear number of edges. That is, for every graph H there exists a constant cH such
that every graph on n vertices without a minor H has at most cHn edges.

A recent important result by Biswal et al. for minor-free graphs gives an upper
bound for the second smallest eigenvalue of the Laplacian matrix.

Theorem 7 ([4], Theorem 5.3). If G is Kh-minor-free and |V | ≥ c1h
2 log h,

then λ2(L) ≤ c2 ∆(G)h6 log h
|V | for some positive absolute constants c1, c2.

Remark 8. Notice that λ2(L ) ≤ λ2(L) for graphs without isolated vertices.

Proof. We have L = D−
1
2LD−

1
2 = (D−

1
2LD

1
2 )D−1 =: L′D−1. Matrices L

and L′ are similar, hence have the same spectrum. Recall that λ1(L ) = λ1(L) = 0,
so also λ1(L′) = 0. Now, we restrict linear maps L and L′ to the subspace, denoted

by ker⊥, orthogonal to the kernel of L and L′. Since D−1 is a shrinking linear
map (module of every eigenvalue less or equal to 1) we get that the module of
the smallest eigenvalue of L |ker⊥ is less or equal to the module of the smallest
eigenvalue of L′|ker⊥ . That is, since these eigenvalues are real and nonnegative,
λ2(L ) ≤ λ2(L′) = λ2(L). �

Proposition 9. A class of graphs with an excluded minor, the maximum degree
sublinear in the number of edges, and vertices weighted proportionally to their degree
has a sublinear weighted edge separator.

That is, for every graph H and ε > 0 there exists δ = δ(ε) > 0 such that the
following is true. Let G be a graph without minor H, with m edges, and maximum

degree at most δm. A weight w(v) = deg(v)
deg(V ) is assigned to every vertex v of G.

Then, there is a set of no more than εm edges in G whose deletion creates a graph
in which the total weight of every connected component is smaller than ε.
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Proof. Fix a graph H and ε > 0, and let h = |H|. Now, choose δ > 0 such

that ε
2

1
δ

1
cH
≥ c1h2 log h and (blog2

1
εc+ 2)2

√
2c2cH

2
εδh

6 log h < ε.

Suppose G(V,E) is a graph without minor H, with m edges, and maximum
degree at most δm. In particular, m ≥ 1

δ . We will show that the statement of the
proposition holds for G, ε, and δ. Notice that without loss of generality we may
assume that G does not have isolated vertices, as these do not impact weights.

Consider the following procedure which takes on input an induced subgraph
G′(V ′, E′) of G with 2|E′| = degG′(V ′) ≥ ε

2 deg(V ) = εm. Notice that by Theorem

6 we have |V ′| = |E′| |V
′|

|E′| ≥
ε
2m ·

1
cH
≥ ε

2
1
δ

1
cH
≥ c1h2 log h. Clearly, G′ is H-minor-

free, hence also Kh-minor-free, thus by Theorem 7 since |V ′| ≥ c1h2 log h, we have

that λ2(L′) ≤ c2
δm·h6 log h
|V ′| = c2

m
|V ′|δh

6 log h ≤ c2
|E′|
|V ′|

2
εδh

6 log h ≤ c2cH
2
εδh

6 log h.

Thus, by Theorem 5 and Remark 8, we get that for some proper subset S of V ′:

(1) |E′(S, V ′ \ S)| ≤ min{degG′(S),degG′(V ′ \ S)}
√

2c2cH
2

ε
δh6 log h.

The procedure deletes edges E′(S, V ′ \ S) from G′, and returns as output all con-
nected components of a resulting graph. These are also induced subgraphs of G.

Now, we begin a process starting with the set T consisting of the graph G and
repeatedly apply the above procedure to elements of T (that is, induced subgraphs
G′ of G) satisfying degG′(V ′) ≥ ε

2 deg(V ).
Notice that since the degree of each element of the output is smaller than the

degree of the input, the process has to end. Keep in mind that at any step of the
process vertices of elements of T form a partition of the set V . Moreover, after first
step of the process elements of T are connected induced subgraphs of G.

Suppose that at the end of the process the set T consists of connected induced
subgraphs G1, . . . , Gt. Denote by D the set of edges deleted during the process.

In order to count how many edges were deleted during the process in total,
assign in a single procedure that started with G′ edges E′(S, V ′ \ S) to vertices in
S proportionally to their G′-degree when degG′(S) ≤ degG′(V ′ \ S) and to V ′ \ S
otherwise. Now, by the inequality (1) in this single run of the procedure every

vertex v in S got assigned at most degG′(v)
√

2c2cH
2
εδh

6 log h deleted edges when

degG′(S) ≤ degG′(V ′ \ S) and 0 otherwise.
Notice that every single vertex v gets assigned nonzero deleted edges at most

blog 1
2

ε
2c+1 = blog2

1
εc+2 times. Indeed, it happens when the degree of the induced

subgraph to which v belongs gets at least halved. It starts from deg(V ) and ends
just after dropping below ε

2 deg(V ). Therefore, summing over all vertices, the total

number of deleted edges |D| is at most (blog2
1
εc+ 2)2m

√
2c2cH

2
εδh

6 log h < εm.

Now, connected components of the graph G \D are Gi’s. Every Gi has weight
equal to 1

deg(V ) degG(V (Gi)) ≤ 1
deg(V ) (degGi

(V (Gi)) + |D|) < ε
2 + ε

2 = ε. �

Remark 10. Alon, Seymour, and Thomas [3] generalized the planar vertex
separator theorem of Lipton and Tarjan [12] to minor-free graphs.

It is known (see [8] using a result of [17]) that a planar graph G has an edge

separator of size O(
√

∆(G)|V (G)|). It would be interesting to generalize this theo-
rem to minor-free graphs, as this would strengthen Proposition 9.
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Theorem 4. Let C be a class of graphs excluding a fixed minor H and with
the maximum degree sublinear in the number of edges – that is, for every δ > 0
there exists mδ such that if m ≥ mδ and G is a graph from C with m edges, then
∆(G) ≤ δm. Then, for every ε > 0 there exists Mε such that if m ≥ Mε and G is
a graph from C with m edges, then mod(G) ≥ 1− ε.

Proof. Fix a class of graphs C as in the assumption and fix ε > 0. Now,
choose δ := δ( ε2 ) such that the assertion of Proposition 9 holds. We will show that
if m ≥Mε := mδ and G is a graph from C with m edges, then mod(G) > 1− ε.

Indeed, then by Proposition 9 there is a set of no more than ε
2m edges in

G whose deletion creates a graph in which the total weight of every connected
component is less than ε

2 . Now, let A be the set of those connected components
and let D be the set of deleted edges.

Firstly, notice that∑
A∈A

|E(A)|
|E(G)|

=
|E(G)| − |D|
|E(G)|

≥ 1− ε

2
.

Secondly, we have∑
A∈A

(
deg(V (A))

deg(V (G))

)2

=
∑
A∈A

w(A)2 <
∑
A∈A

ε

2
w(A) =

ε

2
.

Concluding,

mod(G) ≥
∑
A∈A

(
|E(A)|
|E(G)|

−
(

deg(V (A))

deg(V (G))

)2
)
> 1− ε.

�
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