
HAL Id: hal-03462530
https://hal.science/hal-03462530

Preprint submitted on 1 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A probabilistic hierarchical sub-modelling approach
through a posteriori Bayesian state estimation of finite

element error fields
J P Rouse, Pierre Kerfriden, M Hamadi

To cite this version:
J P Rouse, Pierre Kerfriden, M Hamadi. A probabilistic hierarchical sub-modelling approach through
a posteriori Bayesian state estimation of finite element error fields. 2021. �hal-03462530�

https://hal.science/hal-03462530
https://hal.archives-ouvertes.fr


A probabilistic hierarchical sub-modelling approach through

a posteriori Bayesian state estimation of finite element error

fields.

J.P. Rouse*1, P. Kerfriden2,3, and M. Hamadi4

1Gas Turbine and Transmission Research Centre (G2TRC), University of
Nottingham, Nottingham, Nottinghamshire, NG7 2RD, UK

2Cardiff University, School of Engineering, Cardiff, UK
3Centres des Matériaux, Mines ParisTech/PSL University, France

4Airbus, Toulouse, France

Abstract

The present work considers two challenges arising from common multiscale approaches and provides
a non-intrusive solution for error estimation. Firstly, the quality of the global mesh/solution and
its effect on state estimations at local features is considered. Zhu-Zienkiewicz goal oriented error
estimates are used to approximate errors in global deformation fields. These are then propagated
across region of interest boundaries to local models and distributions in key parameters are de-
termined. The second challenge follows the observation that local models/features may well appear
at several locations in a global model. Furthermore, these locations and the details of the local
models may evolve during the design process. The global model remains applicable in all cases,
however without some form of interpolation scheme it is not possible to use known error estimates
to inform confidence bounds at new feature locations. Gaussian process models that make use of
a stochastic differential equation interpretation of the Matérn prior are used to recover the full
error field, thereby allowing movement of the local model at marginal expense. The application of
goal orientated error estimates and Gaussian processes in multiscale problems of this kind is novel,
general, and powerful.
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Introduction

Structural analysis, utilised to answer many key questions in the design process of complex engin-
eering systems, often requires the abstraction of features at many different length scales. Without
some level of length scale limit in model development practical analysis problems would quickly be-
come intractable and solutions would not be furnished at a rate required by the iterative design pro-
cess. Geometric features, material property definitions, and discretisation particulars (i.e. element
formulations and refinement) will commonly be varied over the different length scales. Broadly
speaking, large, coarse (“macro scale”) models will be solved to address questions relating to
“general” stiffness of a structure and to inform unknown driving boundary conditions for smaller
scale, detailed (“micro scale”) models that represent localisations where gradient quantities (likely
stresses and strains) are of interest. Much has been written about the various approaches adopted
for these multiscale problems (a brief summary is given later). All involve the transfer for inform-
ation (stiffness and boundary conditions in most cases) between macro and micro models, either
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in a strongly coupled sense (where information flow is bidirectional) or in an weakly coupled sense
(where information flow is unidirectional). The present work concerns itself mainly with weakly
coupled multiscale problems (however extensions to strongly coupled problems are clear) and asks
what are the ramifications of “error” in macro models? Bearing in mind the practical limitations
associated with large scale analyses, how can error estimates in large scale models be generated
quickly and used to their greatest effect, such that uncertainties can be propagated to local micro
models? In the present work, we motivate, propose, and demonstrate a full error field recovery
approach that utilises a small number of goal orientated error estimate (GOEE) observations in
combination with a Gaussian Process state estimation framework. Importantly, a guided model
order reduction technique, enabled by stochastic partial differential equation (PDE) representa-
tions of the prior, is proposed that alleviates computational bottlenecks in the Gaussian process
steps, thereby expediting full error field estimation (in line with industry requirements).

Full field error estimation, that is to say the estimation of a continuous error field over an entire
domain rather than at several discrete locations, is now motivated through a simple aerospace
example. Consider a large airframe assembly, such as the fuselage “barrel” section of civil aircraft.
It is clear that the real assembly will consist of a multitude of components, from large skin, stringer,
and stabiliser components that are vital in the approximation of stiffness, to small features such as
holes, rivets, and fillet sections, which are prime failure initiation sites that must be given careful
consideration if a safe design is to be produced. An approximation of global stiffness of the barrel
section may well be required in order to anticipate the outcome of wing bend tests (among others).
Clearly, small scale features (holes, rivets, and through thickness sections, for example) add little to
global stiffness, justifying their omission from large scale models. Micro models, where small scale
features (holes and composite material laminates, for example) are explicitly represented, may be
used to answer concerns over the potential for premature failure. Let us consider a hole feature
in a laminate material section by way of example. Discretisation is refined in this micro models
to provide better approximation of terms related to gradients in the displacement field. The hole
micro model will, of course, be much smaller than the macro barrel model, and it is highly unlikely
that any loads or boundary conditions will be known for the hole model a priori, meaning that they
will need to be extracted from the barrel model. One may ask, if the barrel model is coarse (and
presumably relatively inaccurate in terms of local deformation fields), can the hole model which
is driven by it be trusted? Confidence in micro model results could (conceptually) be gained by
performing error estimation around the region of interest (RoI) in the barrel model and propagating
the uncertainty in driving degrees of freedom (DoFs) to the hold model. This observation alone
does not prompt full error field estimation, as it assumes the RoI in the barrel model is well defined.
In reality, there will be many hole features in the barrel model at a multitude of locations and
analysts may well be unsure as to which holes are critically important. Performing error analysis
on all RoI boundaries would be both prohibitively time consuming and wasteful. Each GOEE
observation demands its own simulation and, in many cases, observations that are close to one
another will, conceivably, be very similar. The additional computation effort associated with this
simplistic error field recovery process greatly limits its applicability and the method is not sensitive
to the iterative design process. In practice, hole model positions and geometries may change as
the design progresses (as refine cable routes are determined, for example). Given that the holes
are not represented in the barrel model, it is justifiable to drive the new design hole models from
the original barrel model. A brute force approach would be to repeat error estimation at the new
RoI boundaries, however this is unsatisfying and impractical. In the present work, we resolve
this challenge by considering potential RoI boundaries (to drive the placement of error estimate
observations), however we recover a full error field, statistically with confidence intervals, such
that any potential RoI boundary or micro model can be considered. Further discussion on the
relationship between macro and micro models in aerospace design can be found in the authors’
previous work [1]. A treatment of error estimation in mixed element (i.e. “shell” macro model
to “continuum” micro model) multiscale problems is also presented in the author’s previous work,
however readers should note that this does not impact the novelty of the present work. Previous
work was concerned with error estimation for a particular set of element formulations, whereas the
present work takes a small set of these observations and considers how a stress analyst could use
them effectively in practical multiscale problems.

The present work considers error estimation in finite element (FE) problems, as FE is by far
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the most commonly employed approach for engineering stress analysis. Approximation errors are
the inaccuracies which are inherent to the discretisation methods that are required in order to
approximate the solutions to mathematical models. This contrasts with modelling error, which
is a measure of how well an abstract model approximates real physical phenomena. Estimates
of approximation error may be termed a priori estimates or a posteriori estimates [2], with the
former utilising the problem definition and the discretisation to estimate error and the latter
using the solution approximation itself to estimate error. A further distinction may also be made
between the approximation of error bounds and the estimation of error itself [3]. The former
can be guaranteed but may be inaccurate. Error bounds may be large, for example, although
it is important to note that this is not always the case and bounds may be sufficiently narrow
that they function as estimates. The latter is usually not guaranteed but the range of values
associated with it will typically be narrower than for error bounds. Grätch and Blathe note that
error estimates should possess several properties [3]. In addition to accuracy, error estimates
should asymptotically tend to zero as the discretisation density increases, produce tight bounds
for the error, be computationally inexpensive, be applicable in a wide range of potentially non-
linear applications, and inform mesh refinements such that approximate solution processes can
be optimised. At present, no one estimator can satisfy all of these requirements however, for the
applications considered in the present work, several relevant methods can be found in the literature
(as will be discussed later).

Multiscale modelling methods allow for the transfer of information across many length and time
scales in structural analysis problems [4, 5]. They are particularly effective in cases where there
are multiple physical phenomena of interest (that span a range of length/time scales) and that
cannot be practically rationalised in a single model. Multiscale methods can be viewed as a set of
approaches which homogenise the heterogeneity observed in all real structures at some length scale.
Multiscale modelling techniques have been applied to a wide variety of fields, including aerospace
[6, 7, 8], marine [9], and civil [10].

Many different multiscale methods can be found in the literature and several characterisation
schemes have been proposed. Weinan bisects the field and categorises multiscale problems as either
Type A, in which there are local defects/singularities that require a locally micro-scale model in an
otherwise coarser global model, or Type B, which have micro-scale features throughout and require
fine-scale modelling everywhere (with some form of computational homogenisation, for example)
[5]. Other authors, such as Geers in [11], have used similar categorisations but under different
names. In [11], Type A methods are called “Hierarchical” methods while Type B methods are
called “Concurrent” methods. There is inevitably some overlap between the techniques applicable
to Type A and Type B problems, for example Kim and Swan used adaptive refinement of voxel
meshes of representative volume elements within their numerical homogenisation approaches [12].
Type A approaches include “classical” sub-modelling [13], domain decomposition [14, 15], and local
mesh refinement including adaptive mesh refinement. The procedures used within the CleanSky2
project MARQUESS, wherein a pre-computed database of solutions enables a single sub-model
to be applied to multiple instances of a recurring feature on a global FE model of a composite
component, are particularly relevant to the present work [16]. In the apporach, pre-computed
sub-models are utilised in a bottom-up and top-down approach to identify local failure locations
[17, 18, 19, 1]. The methodology is particularly useful as the superposition principle used enables
rapid approximation of micro model states. Displacements from the global model can be extracted
and used to estimate local stress fields in the micro model by weighting pre-computed solutions
that represent particular deformation modes. Type A sub-modelling approaches are the primary
concern of the present work. As will be shown later, full error fields will be developed across
a macro model that describe uncertainties in driving DoFs. These distributions will in turn be
sampled to develop possible loading conditions for local micro models.

An example of a Type B problem is the multiscale modelling of complex fibre architectures,
such as 3D woven textile composites. Many techniques can be identified for tackling this type of
problem. Computational homogenisation, for example, attempts to determine equivalent properties
via representative volume elements within a periodic displacement field. The FE2 approach, on
the other hand, utilises a fine mesh discretization linked to the Gauss points of a coarser mesh.
The multiscale FE method (MsFEM) uses a fine mesh substructure to replace each element in the
global model [5, 20]. Examples from the recent literature include Liang et al.s use of voxel models
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(generated using the well-known TexGen software) to analyse woven textile composites with each
element being assigned to a particular material component [21]. Shi et al. use a three-scale model
involving representative volume elements at the micro and meso-scales to model the fracture of
braided composites [22]. Liu et al. use a variant of a voxel FE mesh termed the inhomogeneous
FE mesh to model a woven textile composite, with the material varying from integration point to
integration point rather than with material boundaries being assumed to follow the mesh [23].

The approximation of errors in elliptical partial differential equations (PDEs), such as those
which govern linear elastic stress analysis, has received a great deal of attention [24, 25, 26, 27]. In
many cases, error measures are utilised to drive mesh refinement through, for example, polytree
decomposition algorithms [25, 28, 29, 30, 31]. Error estimates have been developed for a wide
range of solution approximation methods. In addition to “conventional” FE, error estimates have
been derived for boundary element methods [29], immersed surface methods [32], multigrid and
composite FEA methods [28, 33, 34], extended FE (XFEM) [2, 35], and stress singularity problems
[36]. Oden and Prudhomme’s [37] and Larson and Runesson’s [28] contributions are particularly
relevant to the present work due to its treatment of error estimation in multiscale problems. The
interested reader may also refer to our previous work on submodelling based on Oden’s work
[38, 39] and to [40] for a contribution related to the so-called multiscale FE method (MsFEM).
Numerous reviews of a priori and a posteriori error estimators are available in the literature [2, 3].
In most cases, error estimators are categorised as energy norm based (including element residual,
subdomain residual methods and the constitutive relation error) or recovery based estimators. The
latter includes the well know Babuska and Rheinboldt estimator, the Kelly, Gage, Zienkiewicz and
Babuska estimator, and the Zienkiewicz-Zhu patch recovery technique [2]. In the present work
GOEEs are utilised as, rather than providing a general indication of approximation error, they
allow for the quantification of error in a specific quantity of interest (QoI) [41, 3]. GOEEs were
proposed in the 1990’s [42] in the work of Prudhomme, Oden, and Ainsworth, [41, 2, 43], Ladevéze
[44, 45], Bathe [3], and Cirak [46] to name a few of the most influential authors in this prolific area
of research. In many cases, the GOEE approach has been used to represent the uncertainty in a
physically relevant quantity that may be turned into an error on a failure criterion [47, 48, 49, 50].
In the multiscale setting, a posteriori error estimates have been applied to Type A problems in the
work of Tirvaudey et al. [51], wherein a weighted residual based GOEE is applied in non-intrusive
sub-modelling problems. A posteriori error estimates for MsFEM problems have been developed in
the work of Chung and Chamoin [52, 53]. In the context of the present work, QoIs are driving DoFs
extracted from macro models. If meaningful error estimates for those quantities can be derived,
it is the straightforward to sample from the resulting distributions and propagate uncertainties to
continuum element sub-models. The statistical recovery process alluded to here is the focus and
novelty of the present work. The methods introduced here allows an analyst to compute corrected
microscopic solutions by propagating the effect of driving DoFs corrections - the error estimates -
from macroscopic to microscopic scales.

The present work concerns itself with an industry relevant problem. We seek to evaluate
the influence of macroscopic mesh quality onto the solution of microscopic problem. The solution
developed here is non-intrusive in terms of remeshing at the macroscale, as this is typically not feas-
ible in real problems. Furthermore, the solution should allow for redefinition of microscale models
and should minimise computational expense. The resolution proposed here uses Zhu-Zienkiewicz
(ZZ) error estimates to calculate errors in macroscopic deformation fields at a limited number of
locations. Gaussian processes are then trained using a stochastic differential equation interpret-
ation of the Matérn prior [54] to interpolate between different observations of the error, i.e. the
ZZ estimates are seen as partial measurements of the full error field in a state estimation frame-
work [55, 56]. Computational bottle necks in the generation of the Matérn prior are circumvented
though a GOEE model order reduction method that makes use of hierarchical clustering (enabled
through k-medoids type approaches). Novelty in the work is derived from the application of ZZ
error estimates in the multiscale setting, the use of ZZ evaluated adjoint problems in the GOEE
setting for assessing the quality of local deformations, the use of functional Gaussian processes in
multiscale problems, and the model order reduction approaches to make the process tractable in
the industrial setting.
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1 Problem setting and Formulation

1.1 Linear elasticity

We begin with a general setting for linear problems we will consider in the present work. Let
us consider the linear elasticity problem over domain Ω ∈ Rd, with d ∈ {2, 3} (only two dimen-
sional problems will be considered in the present work, however extensions to three dimensions are
trivial and the authors’ previous work considers “shell” element formulations [1]). We look for a
displacement field u ∈ U = H1(Ω), the space of fields of Rd with values in Rd whose derivative
are square-integrable in Ω. The solution is assumed to satisfy homogeneous Dirichlet boundary
conditions u = 0 on ∂Ωu, which is of non-zero measure. The complementary part of boundary
∂Ω, over which Neumann boundary conditions are applied, is denoted ∂Ωt. The weak form of the
problem of elasticity is as follows. We look for u ∈ U such that

∀v ∈ U , a(u, v) = l(v) (1)

In the previous equation, bilinear form a is defined by

a(u, v) :=

∫
Ω

∇su : C : ∇sv dΩ (2)

where ∇s is the symmetrised gradient operator, C is the fourth-order Hooke tensor corresponding
to isotropic elasticity, and linear form l is defined by

l(v) :=

∫
Ω

f · v dΩ +

∫
∂Ωt

T · v dΓ (3)

where f is a known source field, and T is a known field of prescribed boundary tractions.

1.2 Finite element approximation

We now introduce the usual “P1” Lagrange FE method to approximately solve the elasticity
problem introduced above. Domain Ω is decomposed into a set Th of non-overlapping simplexes. We
assume for simplicity that this decomposition is error-free. We now look for FE field uh ∈ Uh ⊂ U
such that

∀vh ∈ Uh, a(uh, vh) = l(vh) (4)

Uh is the space of continuous, piecewise linear FE displacement fields that satisfy the homogeneous
Dirichlet conditions. Mathematically

Uh =

uh(x) ∈ U | ∃U ∈ RN , uh(x) =

N̂∑
i=1

d∑
j=1

(φi(x)ej)U(i−1)d+j =

N∑
i=1

ψi(x)Ui

 (5)

where the N̂ = N/d shape functions φi defined over Ω and with values in R are the standard
piecewise linear “hat” functions associated with the vertices of tessellation Th, and ej is the jth

canonical vector of Rd. In the previous expression, only the hat functions that vanish over Dirichlet
boundary ∂Ωd are considered so that the homogeneous boundary conditions are automatically
enforced.

The FE model may be written in matrix form as follows

KU = F (6)

where Kij = a(ψi, ψj) is an element of the stiffness matrix K and Fi = l(ψi) is an element of the
force vector F.

Finite element error. The FE error eh = u− uh ∈ U satisfies the weak form

∀v ∈ U , a(eh, v) = r(v) := l(v)− a(uh, v) (7)

and verifies Galerkin orthogonality condition

∀vh ∈ Uh, a(eh, vh) = 0 (8)
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1.3 Hierarchical local submodelling

We now consider a sub-modelling approach which draws on the global model solution to provide
more comprehensive results in some RoI. For the present work, sub models (or micro models) are
considered to possess sufficiently fine mesh densities such that, compared to the global model, they
are error free. In practice, the GOEE approach developed here can easily be applied to micro
models as well as macro models, however this is omitted in the present work as to limit tangents
that do not add to reader comprehension. It should also be noted that, in practice, an analyst
has far greater control over micro models that macro models. In the aerospace example, many
engineers across multiple departments may be called upon to produce a global aircraft model.
Remeshing in such a case would be unacceptable and the degree of discretisation may be limited
by computational resources. Local feature models may well be generated by single analyst however,
thereby providing capacity for refinemnt.

An RoI ΩI ⊂ Ω is to be re-analyzed using a finer local model (e.g. nonlinear, time-dependent
model, 3D extrusion of a global plate/shell model). To achieve this, the displacements computed
using the coarse FE model are extracted from ∂ΩI , and are subsequently applied to the boundary
of the submodel (see e.g. [41, 57]). In our examples, the model kinematics and FE meshes are
compatible at the interface ∂ΩI . This is not a restriction of the approach but one of our current
implementation of the proposed methodology (see Figure 2 for further details on this aspect). A
continuous error field will be developed in the following sections, meaning ΩI can be located without
restriction within Ω. Our goal is to estimate the error in the boundary field to be transferred from
the coarse to the fine model, and propagate this error though the chosen sub-modelling technique.

2 Goal oriented error estimation

2.1 Gradient-recovery-based error estimation

We wish to estimate ‖eh‖a =
√
a(eh, eh) (error in energy norm) without computing too expensive

an estimate for exact error field eh. The ZZ recovery-based estimate of ‖e‖a is the following [58]

ν2
zz =

∫
Ω

(ε? −∇suh) : C : (ε? −∇suh) dΩ (9)

where ε? is a continuous, smoothed recovered strain field that is obtained by post-processing the
discontinuous, piecewise constant tensor field ∇suh. One may simply average the values of the
strain tensor corresponding to all the elements connected to a node, for each node of the mesh,
and use the FE shape functions to obtain a continuous strain field. More advanced techniques
include the super-convergent patch recovery approach (SPR) [59], or equilibrium-informed recovery
procedures [60, 61, 62].

2.2 Error estimates for engineering quantities of interest

The energy is not necessarily the only quantity whose accuracy is of interest to the FE practi-
tioner. In the present context of multilevel modelling, we are interested in a limit-states quantities
in hierarchically-defined solution enrichment (i.e. structural zooms), such as maximum stress
measures. To address the limitation of a−norm error estimation, the classical GOEE methodology
starts by formulating the adjoint (or dual) problem.

We begin by reformulating the original FE problem. We look to find z ∈ U such that

∀v ∈ U , a(v, z) = Q(v) (10)

The linear functional Q : U → R extracts one of the QoIs from an arbitrary solution field v ∈ U .
Many different forms of Q(u) can of course be chosen and the most appropriate choice will depend
on which QoIs relate to the analyst’s objectives. For instance, Q(u) = 1

|ΩI |
∫

ΩI
e1 · u dΩ is the

average of u in the first spatial dimension, in region ΩI ⊂ Ω. Q(u) = 1
|ΩI |

∫
ΩI

Σ : C : ∇su dΩ

extracts a weighted average of the component of the stress field in ΩI . For the present work,
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we look to define errors in driving DoFs in a multiscale problem setting, therefore QoIs will be
weighted averaged extractions of components of u. Now, we have that

∀v ∈ V, a(e, z) = Q(e) = Q(u)−Q(uh) = r(z) (11)

The adjoint field z (the influence function in the work of Prudhomme and Oden [63]) is unknown
and must be approximated by using the FE method. We will look for FE field zh ∈ Uh such that

∀v ∈ Uh, a(v, zh) = Q(v) (12)

We can therefore write

Q(e) = a(e, zh) + a(e, z − zh) = r(zh) + a(e, ez) (13)

The residual term vanishes due to Galerkin orthogonality. The second term contains both exact
errors (in the direct and adjoint problems), and may be evaluated by a ZZ-type recovery-based
error estimate, as follows

Q(u)−Q(uh) ≈ Q̂h −Q(uh) :=

∫
Ω

(ε? −∇suh) : C : (ε?z −∇szh) dΩ (14)

where Q̂h is an estimate of the QoIs, recovered from the FE field, that approximates the QoI
Q(u). If error analyses were limited to a single RoI with a small number of driving DoFs, the
above treatment would be sufficient for error propagation. Pointwise QoIs, evaluated using a Dirac
delta function for the development of Q(u), could be established along the boudnary of the RoI in
the macro model and GOEE terms calcualted. In the present work, it is assumed that either no
such restriction on the placement of ajoints in Ω exists, or that the number of ajoints required to
sufficiently constrain all driving DoFs at all possible RoI boundaries is so high that implementing
all of them would be prohibitively expensive. As a resolution to this challenge, we will now present
a reconstruction of the macroscopic error field by training a Gaussian field using a sparse number of
GOEE observations. The resulting probabilistic representation will yield a statistical microscopic
error distribution wherever needed.

3 Full error field reconstruction through Bayesian state es-
timation

3.1 “Truth” reconstruction of finite element error fields using the goal
oriented error estimation approaches

We now introduce a corrected model

ûh(x) =

N∑
i=1

ψi(x)Ûi (15)

where
Û = U + ê (16)

In the previous expression, ê is a vector of FE DoF values corresponding to a FE representation
of the exact error field eh = u − uh. This is to be understood in the sense that the corrected
FE displacement should yield QoIs that are closer to that delivered by an infinitely refined FE
model. That means that we aim to estimate the pollution error, whilst the interpolation error
itself is assumed to be small enough to be ignored, or is to be estimated by other means (this will
be discussed later on for the specific case of hierarchical local sub-modelling).

Two relevant FE representations come to mind for correction field ûh(x)−uh(x) =
∑N
i=1 ψi(x)êi

• the FE interpolant Iheh of the exact error field eh in Uh,

• the L2(Ω)-projection of the exact error field eh onto Uh.
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It seems appropriate at this stage to require ê to be the vector of nodal values of the L2(Ω)-
projection of the exact error field onto the FE space. Indeed, any FE functional of the exact error,
i.e Q(e) =

∫
Ω
ξh · e dΩ, where ξh is a vector-valued FE field of Uh, has the following property∫

Ω

ξh · eh dΩ =

∫
Ω

ξh · πhL2
eh dΩ (17)

where πhL2
is the L2(Ω)-projector and the above equality stems from standard operations on pro-

jectors. Hence, the above observation of the exact error is also an observation of its L2 projection.
As a consequence, it is possible to construct a ZZ-based approximation of the L2 projection of the
exact error onto the FE space by noting that:

∀i ∈ J1 NK,
∫

Ω

ψi · eh dΩ = ci
T
Mê (18)

where:

Mij =

∫
Ω

ψi · ψj dΩ (19)

and ci is the ith canonical vector of Rd. Hence, knowing these N GOEE ZZ estimates, an inversion
of the mass matrix M gives access to ê. A similar conclusion can be made if only part of the error
field is to be reconstructed from GOEE.

Of course, computing N GOEE ZZ estimates is out-of-the question in all but simplest of
demonstrative models. We will instead proceed by Gaussian Process functional regression [64, 65],
to statistically estimate these N quantities based on the availability a selected few of them.

3.2 Bayesian reconstruction of finite element errors fields from sparse
functional observations

3.2.1 Linear state estimation

Bayesian state estimation setting. We assume that we have calculated an array of M ZZ es-
timates of errors in scalar QoIs. These estimates are seen as noisy observations of the corresponding
exact error in QoI, which reads as

∀i ∈ J1,MK, di = QiT ê + εi = ∆Qi + εi (20)

where ∆Qi ≈ (Qi(πhL2
u) − Qi(uh)) is the true error in the ith QoI. It is vital to note that this

is unavailable at this stage and will be given a probability distribution later on in this section,
following Bayesian modelling of lack of knowledge. Above, εi ∼ N (0, σi) is a white noise that
allows us to represent the fact that the error estimate is not exact (we have, after all, used the
ZZ estimate to this end). We will set σi = |∆Qi|2, which qualitatively encodes the fact that “the
typical error in the error estimate is of the order of the error estimate itself” 1.

We define the vector of errors in QoIs as

d = ∆Q + ε =


∆Q1

∆Q2

...
∆QM

+ ε =


Q1T

Q2T

...

QMT

 ê + ε = Hê + ε (21)

where ε ∼ N (0,Σε) is a M -dimensional random vector containing the errors in ZZ-estimated
errors in QoI, ∆Q is a M -dimensional vector containing the true errors in QoIs, and H is a M
by N linear observation operator. In our examples, we will use FE shape functions as extractor of

quantities of interest. In this case, QiT = cI(i)TM, as shown in the previous section.

1This can be seen as a maximum likelihood statement. The true error in QoI is a Gaussian with zero mean,
centered on the ZZ estimate. The distance between the FE estimate of the QoI and the ZZ estimate then provides
one data point from which the variance of this Gaussian distribution may be estimated, resulting in the methodology
described previously.
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We further assume that the unknown error vector ê is zero-mean and Gaussian distributed, as
follows

ê ∼ N (0,Σ) (22)

which, together with the distribution of ε, encodes all prior knowledge about epistemic sources of
uncertainty in our state estimation problem.

Posterior distributions. We can now look for the posterior probability distribution of ê, given
its M noisy and partial measurements. Following standard techniques in Gaussian processes infer-
ence, the distribution of the state and the noisy observations is jointly and consistently Gaussian,
summarised by (

d
ê

)
∼ N

((
0
0

)
,

(
HΣHT + Σε HΣ

ΣHT Σ

))
(23)

The posterior probability of ê is simply obtain by Gaussian conditioning2 , i.e.

ê|d ∼ N (e?,Σ?) (25)

where
e? = ΣHT (HΣHT + Σε)

−1d

Σ? = Σ−ΣHT (HΣHT + Σε)
−1HΣ

(26)

The marginal posterior distribution of any set of linear combinations of the state vector is given
by

Eê|d ∼ N (Ee?,EΣ?ET ) (27)

where prediction operator E is of size ne by N . In this paper in particular, we are interested in
restriction operators, i.e. Boolean rectangular matrices with a single non-zero element per line.
In practice, this amounts to predicting the components of the error vector corresponding to a
particular subset of the FE DoFs, for instance all the DoFs corresponding to a subdomain ΩI ⊂ Ω,
or to the boundary of this subdomain in the context of the Dirichlet hierarchical sub-modelling
introduced previously.

3.2.2 Prior covariance structure

Great care is required when choosing the prior covariance. Computational tractability is of course
vitally important, however it is key to note that the form of prior covariance will of course dictate
how observations are propagated into the posterior distribution. If unrepresentative correlations
are utilised across the domain it is entirely likely meaningless posterior distributions will be real-
ised. In the context of structural modelling, a simple distance based prior may well suggest strong
correlation between two neighbourhoods that, while physically close, are not mechanically connec-
ted and thus should not greatly influence one another. A simple example of this challenge is a ”U”
channel section, wherein the top edges of the section may be relatively close to one another but
this proximity does not (necessarily) suggest strong correlation. What follows is a brief discussion
of Matérn prior structures. Standard (kernel based) and random process based formulations are
introduced, with the latter being utilised in the remainder of the work.

Kernel-based covariance. A standard choice is to use Kernels to define the covariance matrix,
i.e.

Cov(ciT ê, cj
T
ê) = k

(
Pd i

d e
, Pd jd e

)
δ

(
i

d
− b i

d
c, j
d
− b j

d
c
)

(28)

2The bayesian conditioning may also be expressed as a Kalman update

e? = 0−G(∆Q−H 0)
Σ? = (I−GH)Σ ,

(24)

where the Kalman gain is defined as G = ΣHT (HΣHT + Σε)−1.
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where ci is the ith canonical vector of RN and Pk ∈ Rd is the position of the FE vertex associated
with the kth linear shape function. For instance, the Whittle-Matérn Kernel reads as

k (Pi, Pj) = α2

(
‖Pi − Pj‖2

l

)ν
Kν

(
‖Pi − Pj‖2

l

)
(29)

where Kν is the modified Bessel function of second kind of order ν, and α and l are hyperparameters
of the Gaussian process 3.

Random-process-based covariance In this paper, we define the prior for uncertain state ê
using a stochastic partial differential equation approach [54, 66]. The distribution of ê is implicitly
defined through the solution of stochastic linear system(

M + β2K
)
ê = α

√
MW (30)

which we rewrite as

Aê = b with A =
(
M + β2K

)
and b = α

√
MW (31)

In the previous expressions, taken from the work of Roininen, Huttunen, and Lasanen [54], M
and K are defined by Mij =

∫
Ω
ψi(x)ψj(x) dΩ and Ki,j =

∫
Ω
∇ψj(x) · ∇ψi(x)dΩ, respectively,

and are (proportional to) the standard FE mass and stiffness matrices, respectively. W ∈ RN is a
white noise vector with normally distributed independent components.

By applying the standard rules of linear operators applied to Gaussian random variables, we
find the prior covariance for our error vector ê is

Σ = α2
(
M + β2K

)−1
M
(
M + β2K

)−1
(32)

Notice that mass matrix M is invertible, under weak assumptions on the quality of the FE
discretisation. Moreover, both M and K are symmetric and positive. Hyperparameter β is a
covariance length, which controls the smoothness of the random field, while hyperparameter α
controls the overall amplitude of the process 4 5.

3.2.3 Parameter optimisation

Optimising the hyperparameters of the prior in a data-driven manner may be done by maximising
the data-likelihood with respect to hyperparameter vector θ := (α β)T . In our case, the data log
likelihood reads as [67]

log(Lθ(d) = −1

2
dT (HTΣ(θ)H + Σε)

−1d− log(Z(θ)) (36)

where Z(θ) =
√

(2π)M |HTΣ(θ)H + Σε|. Providing that the number of observations remains
small, this optimisation problem is tractable. The expression of the sensitivities of the data-
likelihood can be found in [67].

For now, this optimisation will be performed “by hand”. We calibrate the overall size and length
scale of the Gaussian process in order to match observations, by a procedure of trial-and-error.
Fully automatising the algorithm is a perspective of this work but it not implemented here.

3The formulation described above corresponds to the introduction a continuous Gaussian process and its sub-
sequent restriction to the vertices of the FE mesh

4Let us indicate that the continuous counterpart of the prior introduced previously reads as

∀v ∈ U , (e, v)L2(Ω) + β2a (e, v) = α 〈g, v〉 (33)

where random linear functional g is such that

∀(v, w) ∈ U2, E (〈g, v〉 〈g, w〉) = (v, w)L2(Ω) (34)

and e ∈ U × Ξ is the random continuous field of interest, and is defined over the set of all outcomes Ξ.
5In paper [64, 65], the authors propose, in another context, to make use of the following prior covariance:

Σ = α2K−1
(
M + β2K

)
K−1 (35)

In our preliminary experiments with this prior, we failed to eliminate the spurious mesh dependencies that seem
to appear when regularisation parameter β is non-vanishing. As a consequence, we did not manage to generate
sufficient freedom to optimise this prior in a data-driven manner.
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3.3 Computational bottleneck

It is now possible to compute the marginal distribution of the set of unseen linear combinations of
components of ê that we are interested in. The posterior mean of Eê, is EΣHT (HΣHT +Σε)

−1d.
Product ΣHT appearing in innovation matrix HΣHT + Σε dominates the computational cost.
It may be evaluated by considering the lines of observation operator H, one-by one, and left-
applying the covariance operator to each individual observation vector. This involves solving M
linear problems of the type

(
M + β2K

)
. = .. This operation scales as o(MN2). The inversion

of (HΣHT + Σε)
−1 is of negligible cost as we wish to recover full error fields based on a limited

number of observations, with typically M ≤ 20.
The computation of the posterior covariance is only tractable for low-rank prediction oper-

ators E. Indeed, the posterior covariance for the unseen quantities to be predicted is EΣET −
EΣHT (HΣHT +Σε)

−1HΣET . The second term can be computed by taking advantage of the fact
that the number of observations is small. However, if prediction operator E has a large number of
lines ne, the first term becomes intractable. In our case of hierarchical Dirichlet submodelling, E
will extract all the DoFs of ∂ΩI .

We may generate realisations of Ee|d directly, without actually constructing the posterior
covariance matrix. Such a sample s ∼ N (m?,Σ?) is obtained as follows:

s = E
(
x0 + G

(
d̃−Hx0

))
(37)

where x0 ∼ N (0,Σ) is drawn from the prior distribution, d̃ ∼ N (d,Σε) is a randomly perturbed
observation, and the Kalman gain is G = ΣHT (HΣHT + Σε)

−1. Drawing a sample from the pos-
terior distribution is dominated by the cost of solving two systems involving the matrix

(
M + β2K

)
on the left hand side (once to draw a sample from the prior distribution, and once to apply the
Kalman gain). In this analysis, we consider that the innovation is already assembled and factorised
to compute the posterior mean.

This analysis of the numerical tractability of the Gaussian regression process is unfortunate
news. Indeed, the goal of the previous developments was to replace the expensive computation of
many observations of the error field via the adjoint method by a cheap interpolation between a few
selected observations. However, we see here that the Gaussian process interpolation itself requires
solving a series of FE systems, each as expensive to solve as an adjoint problem (M systems to
build the innovation matrix, one more to compute the posterior mean and 2 per sample to evaluate
the variability via Monte-Carlo). The method can only be of benefit if the cost of evaluating the
posterior distribution is made orders of magnitude cheaper than that of actually computing the
all QoIs directly, which we will do in the following section by proposing a dedicated low-rank
approximation strategy.

Let us emphasise that the numerical difficulty is due to the dimension of the parameter space
(as is often the case in state estimation, when using Kriging or Kalman filters to identify high-
dimensional spatial fields from sparse measurements), not the number of observations (as may
appear when using Gaussian processes in machine learning, for instance to perform regression in
relatively small feature spaces but with high volumes of data).

4 Results - Example Problem definition and application of
full rank Bayesian State Estimation

4.1 Context and example problem definition

We beign by illustrating the Gaussian process enhanced GOEE methods developed above through
a simple multiscale problem. We here consider a 2d (plane stress) continuum element ”perforated
L” plate, fixed along the lower edge and loaded in the vertical by a uniformly distributed load
(see figure 1 (a)). Note that the “x” dof at the node at the lower left hand corner is constrained
to prevent rigid body motion. To clarify the loading arrangement, the deformed (unity scale
factor) and undeformed mesh is presented in figure 1 (b) (note that this is the primal problem
solution, found by normal FE solution approaches). We consider the situation presented in figure
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1 as our macro problem and introduce several potential micro models at one of two locations
(model interfaces are shown in blue and red in figure 2) to complete the multiscale setting. The
introduction of only a small number macro/micro boundaries clearly simplifies the problem, to the
benefit of the error field recovery. In reality, it is highly likely that many potential interface will
be possible over the global model, thereby greatly increasing the number of potential QoIs. In the
present work, we limit selection of QoIs to the two boundaries highlighted in figure 2. In all cases,
QoIs are centred on one of the boundary nodes using a Dirac delta function (furnishing us with
point wise error estimates) and consider the resultant of the DoFs in a random direction. In this
way, each QoI observation provides information on errors in both x and y. For the meshes presented
in figure 2 and given the restrictions listed above, the “all duals” case (i.e. the situation in which
all relevant adjoints are solved) amounts to solving an additional 51 problems. Coherency between
meshes at the macro/micro model boundaries is maintained, thereby simplifying the propagation
of errors through the scales (note however that this is done purely to simplify the implementation
and is not a requirement). In the present work, error propagation is only performed using the “two
cirle” micro model in the blue boundary position. Error fields are recovered over the entire macro
model domain however, in the interest of space, repeated micro model implementations that do
not add to reader comprehension are ommitted. In all cases, linearity in both material stiffness
and geometry is assumed.
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Figure 1: The example macroscopic system, showing (a) boundary conditions and loads, and (b)
the deformed (red) and undeformed (black) mesh (with a unity deformation scaling factor).
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Figure 2: The example multiscale problem considered in the present work. Two potential RoI
boundaries are defined (in red and blue), within which a multitude of micro models (that contain
local features) can be placed, thereby motivating a description of error in driving DoFs on the RoI
boundaries.

4.2 Full Rank Bayesian Recovery of Goal Oriented Error Estimation
field

We present here the recovery of error fields over the entire macro domain using the methods out-
lined above, wherein the stochastic partial differential equation representation of the Matérn prior
is used (see equation 32), and consider how the number of observations (duals) influences the pos-
terior distributions. In the following, we randomly select a number of duals from the 51 available
(restrictions are outlined and justified in the previous section), optimise the hyperparameter α
(see equation 32) by maximising the likelihood given by equation 36 (note β is taken as 1 in all
cases, being a length scale on the order of the problem itself), evaluate the prior and posterior, and
sample form the resultant to propagate error though the model scales. Given that β is assumed,
the hyperparaemter optimisation becomes 1d. A starting value of 3.5 × 10−4 is assumed for α
in this optimisation (note that this value is preserved in realisations that make use of the prior
but no observations) and the process amounts to a simple polynomial fitting approach (applied to
evaluations of equation 36 for a wide range of α values around the initial estimate). The optimisa-
tion approach implemented here is clearly simplistic and far more sophisticated methods may be
utilised for enhanced hyperparameter estimation, however given the scope of the present work the
method is judged to be appropriate. It is important to note that some form of hyperparameter
optimisation is required here, as the use of a single set of hyperparameters (regardless of number
of observations) infers some form of prior knowledge that fixes the amplitude of the prior. We
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may sample from multivariate normal distributions (∼ N (µ,Σ)) using standard methods, such
as the following. A covariance matrix Σ may be decomposed to the matrix A using Cholesky
decomposition, such that

Σ = AAT (38)

A noise vector, z, may then be constructed whose components are independent and drawn from
a standard normal. A sample, ζ is generated using the mean µ by

ζ = µ+ Az (39)

Note that, in the context of the present work, each sampling ζ is a realisation of the error field ê.
Figure 3 presents 4 such samplings, all developed using the same z noise vector (shown in figure 3
(a)). By using the same z in all samplings, the influence of number of training duals (observations)
can be visualised. Figure 3 (b) shows sampling performed on the prior, figure 3 (c) shows sampling
performed on a 2 dual trained posterior, figure 3 (d) shows sampling performed on a 16 dual trained
posterior, and figure 3 (e) shows sampling performed on a posterior trained by all (51) duals. Note
that dual training sets are subsets of one another (that is to say, the 2 duals selected to train
that particular posterior are also found in the 16 used to train that particular posterior), meaning
features in the posterior resulting from particular observations should be preserved as the number
of training cases is increased. Figures 3 (b)-(e) clearly show that, as the number of observations
is increased, the posterior tends (as expected) to the case where all duals are considered (figure 3
(e)). We can also see the influence of the Dirichlet boundary conditions in all samples (clearly, we
know these when generating the prior, hence variance in this neighbourhood is greatly reduced),
and note that, as we move away from the RoI boundaries (and hence observations) we tend towards
the prior distribution.

The influence of uncertainty at the RoI boundary (and the effect of number of QoI observations
on this) can be further visualised by considering stress distributions over the entire the RoI. We
consider the cases where 2, 16, and all available duals are used to train the posteriors. Monte-Carlo
samplings are taken from each posterior and are used to calculate potential stress states in the
micro model (as above). Distributions are then fitted to the results on an integration point by
integration basis, allowing for the determination of the mean von Mises stress (MeanVM ) and its
standard deviation (StdVM ) over the micro model. Results for the 2, 16, and all available duals
training cases are shown in figures 4, 5, and 6, respectively. We may observe that, in these results,
the number of training duals has little influence on the mean of the stress field. This is of course
to be expected, as this field will be mainly governed by driving macro solution the macro solution
(which is common to all realisations). Similar features are observed in all standard deviation fields
(the largest deviations are located around stress concentrations), however the magnitude of the
standard deviations decreases with an increasing number of training duals (the standard deviation
of the 2 dual training cases is approximately 3 times greater than that of the all duals training
case). This of course can be rationalised as a transition from the uncertainty associated with
the prior (which is relatively large and is recovered in the low number of training duals case)
to the uncertainty associated with the noise in our error observations (which is propagated in
the all training dual case). Observations regarding the development of the mean and standard
deviation of the von Mises stress fields can be further demonstrated by considering only the peak
von Mises stresses in the micro model and noting how the resulting distributions vary with number
of training duals. This is presented in figure 7, wherein we again see a preservation of the mean
and a reduction in the standard deviation of the peak von Mises stress as we increase the number
of training duals (from 2 to all available). Note that the standard deviation of the 32 training
duals and all training dual distributions are near identical, suggesting that there is limited utility
in calculating the additional QoIs.

Our discussions thus far have focused on a fixed set of training duals. That is to say, whenever
we make a realisation for a 16 training dual case (for example), we have used the same 16 duals.
While these we selected at random from the 51 available over the RoI boundary, one may question
how representative the results are of all possible dual selections. Is it possible that the selected
duals were particularly “good” (or “bad”) by pure chance? This question is addressed in two ways
here. First, we consider different random selections of training duals to develop the peak von Mises
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stress distributions, as shown in figure 8. While these distributions are distinct, they all possess the
general properties noted above. We see, in all cases, a tendency from large amounts of uncertainty
(associated with the prior) to relatively small amounts of uncertainty (associated with the noise
in the error observations) as the number of training duals is increased. The Kullback-Leibler
divergence (or relative entropy) can be used to formalise these observations. The Kullback-Leibler
divergence between the approximate distribution pn1

Lẽ obtained using a prior covariance of rank n1

and the approximate distribution pn2

Lẽ obtained using a prior covariance of rank n2, is

DKL (pn1

Lẽ||p
n2

Lẽ) =
1

2

(
Tr
(

Cov (pn2

Lẽ)
−1

Cov (pn1

Lẽ)
)

− (M + ne) + ln

(
|Cov (pn2

Lẽ) |
|Cov (pn1

Lẽ) |

)) (40)

In the context of the present work, we may use DKL to compare posteriors against the all dual
training case. This is presented in figure 9. Note that, in figure 9, each evaluation of DKL is
made using a posterior trained using a random selection of duals. As expected, as we increase the
number of training duals, we see the spread in DKL reduce to the point where it represents only
the noise in the observations. For small numbers of training duals we note an increasingly larger
spread in DKL, suggesting a recovery of the prior distribution. Note that one may be “lucky” (or
“unlunky”) when randomly selecting duals and achieve an posterior that has a relatively low (or
high) DKL. It is not possible, however, to ensure that this is the case without deliberate selection
of the training duals based on some exterior selection pressure, which is outside the scope of the
present work.
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(a)

(b) (c)

(d) (e)

Figure 3: A sampling from GOEE field distributions, showing convergence of the solutions with
increasing numbers of training data sets (duals). Note the same noise vector, shown in (a), is used
in all cases. Sub figures (b)-(e) show the stochastic differential equation determined Matérn prior,
a posterior trained using 2 randomly selected duals, a posterior trained using 16 randomly selected
duals, and a posterior trained using all duals on the RoI boundaries, respectively.
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(a) (b)

Figure 4: Monte-Carlo error field propagation for the “2 hole” (position 2) microscopic model,
showing (a) the mean field and (b) the standard deviation field. Results are based on a posterior
trained using 2 randomly selected duals from the RoI boundaries.

(a) (b)

Figure 5: Monte-Carlo error field propagation for the “2 hole” (position 2) microscopic model,
showing (a) the mean field and (b) the standard deviation field. Results are based on a posterior
trained using 16 randomly selected duals from the RoI boundaries.
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(a) (b)

Figure 6: Monte-Carlo error field propagation for the “2 hole” (position 2) microscopic model,
showing (a) the mean field and (b) the standard deviation field. Results are based on a posterior
trained using all duals from the RoI boundaries.

Figure 7: Peak von Mises equivalent stresses (σVM ), taken from a series of Monte-Carlo error field
propagations for the “2 hole” (position 2) microscopic model. Microscopic models are driven by
DoF fields modified by posterior distributions trained using varying numbers of dual solutions.
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(a)

(b)

(c)

Figure 8: Alternative peak von Mises equivalent stresses (σVM ), taken from a series of Monte-
Carlo error field propagations for the “2 hole” (position 2) microscopic model. Microscopic models
are driven by DoF fields modified by posterior distributions trained using varying numbers of
dual solutions. Note that, while selected duals are consistent in any one Monte-Carlo simulation,
different randomly selected duals are used in subfigure (a)-(c).
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Figure 9: Relative entropy (Kullback-Leibler divergence) for Monte-Carlo developed posterior
distributions (i.e. posterior distributions are developed using a random selection of duals from the
RoI boundaries).

5 Low-rank Gaussian process by Galerkin Model Order Re-
duction

5.1 Stochastic reduced basis approximation

We now look to address the computational bottleneck identified in section 3.3 through the projec-
tion of the Gaussian process onto a low rank space. We will look for a reduced basis approximation
of prior distribution of ê. The corresponding approximation reads as

ê ≈ ẽ = φγ (41)

where the nφ columns of φ are the deterministic reduced bases. Random vector γ may be optimally
computed using Galerkin’s principle (see e.g. [68, 69, 70])

∀b ∈ RN , φT (b−Aẽ) = 0 (42)

We find that

ẽ = φ
(
φTAφ

)−1

φTb . (43)

Therefore, the approximate prior reads as

ẽ ∼ N
(
0, Σ̃ := φΣγφ

T
)

(44)

where the covariance matrix for the nφ reduced random variables γ is

Σγ = α2φ
(
φT (M + β2K)φ

)−1

φTMφ
(
φT (M + β2K)φ

)−1

φT (45)

The approximate prior covariance Σ̃ given in the expression above is rank-deficient. The systems
of equations involved in computing the posterior mean and co-variance are now reduced to nφ
equations, but the corresponding system matrices are fully populated.

Reduction of computational operations. The low-rank approximation can be taken advant-
age of when computing posterior distributions, typically by making use of the Sherman-Morrison
formula. These computational tricks are classical and therefore not detailed in the paper (refer for
instance to the usual implementation of the Ensemble Kalman Filter)
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5.2 Projection subspaces

5.2.1 Karhunen-Loève transform.

If the basis vectors are made of all the eigenvectors of the full covariance matrix, i.e.

∀ i = 1 ... N, Kφi = λiMφi and ∀ j 6= i, φTi φj = δij , (46)

then the previous derivation is the Karhunen-Loève transform: the random coefficients are uncor-
related (and independent in the Gaussian case) and the covariance matrix Σγ is diagonal. More
precisely, we have

Σ̃ = α2φΛm(Λm + β2Λk)−2φT (47)

where Λm and Λk are diagonal matrices with ith diagonal entry equal to φTi Mφi and φTi Kφi,
respectively. The Karhunen-Loeve transform provides a natural method to truncate reduced basis
expansions, but requires computing the spectrum of the discrete Laplacian operator. The associ-
ated computational cost is not acceptable in the present context.

5.2.2 Subspace generated by the set of precomputed dual solutions

What can we choose as good projection subspace? An obvious first choice is to reuse what is
already at our disposal: the set of all adjoint states zi defined by

∀i ∈ J1,MK, KT zi = Qi (48)

where QT
i is the ith line of observation operator H. These linear systems of equations have been

solved to compute the GOEE corresponding to each component of data vector d. We will store
concatenation Z = (z1 z2 ... zM ) ∈ RN×M .

5.2.3 RBF enrichment and regularisation

Additional reduced basis functions are required to let the Gaussian process express uncertainty.
Several options have been explored during the early phase of this work. In particular, we have suc-
cessfully used coarse functions generated by Algebraic Multigrid Solvers [71] as projection vectors.
In this paper, we report results related to the use of a set of analytically defined and numerically
optimised readial basis functions (RBFs). This will be fully detailed in the following chapter. For
now, we assume that these nb functions are represented in the FE space, and can be encoded by
their nodal values, contained in matrix B ∈ RN×nb .

Finally, the set of duals and RBFs are concatenanted as follows:

φ = (B Z) ∈ RN×nΦ (49)

To avoid the potential (near-)linear dependencies of the columns of φ, an SVD of φ is computed,
and φ is replaced by the matrix whose columns are the left-singular vectors of this decomposition
that are associated non-vanishing singular values up to a numerical tolerance.

5.3 Accuracy measure

The discrepancy between the exact error vector and its low rank approximation as is a random
variable defined by

∆e = ê− ẽ = A−1
(
Id −AB

(
BTAB

)−1
BT
)

b (50)

where we recall that b is a zero-mean Gaussian-distributed vector with covariance matrix α2M.
Therefore, the prior distribution of discrepancies in errors in predicted QoIs Eê is given by

E∆e ∼ N
(
0,Σ∆E := EΣ∆ET

)
(51)

with

Σ∆ = α2
(
A−1

(
Id −AB

(
BTAB

)−1
BT
))

M
((

Id −B
(
BTAB

)−1
BTAT

)
A−1

)
(52)
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The computation of EΣ∆ is not tractable, as we would need to compute A−1ET , which is a matrix
whose columns are made of all dual solutions, the computation of which we are precisely trying to
avoid by using Gaussian process functional regression. However, choosing a selected few lines of
E can provide valuable GOEE of the accuracy of the low-rank approximation to the full Gaussian
process, which we will make use of later on.

6 Adaptive set of radial basis functions using stochastic
adjoint-based goal oriented methodology and hierarchical
clustering

6.1 Reduced basis vectors defined as finite element interpolants of RBFs

We propose to construct the reduced space as the span of a set of radial bases functions, projected
in the FE space. To this end, let us define

∀ i ∈ J1, nbK, ∀x ∈ Ω, ζi(x) = ωdi/de exp

(
−1

2

(
x− cdi/de

)2
ldi/de

2

)
ei−(di/de−1)d (53)

ζi(x) = ηdi/de(x) ei−(di/de−1)d (54)

and its FE interpolant
ζih(x) = Ihζi(x) (55)

which may be represented by basis vector γi ∈ RN , the component of which are such that

∀ i ∈ J1, nbK, ∀x ∈ Ω, ζih(x) =

N∑
j=1

ψj(x)γij (56)

We assume in these developments that nb is a multiple of d. Set {ci}i∈J1,nb/dK ∈
(
Rd
)nb/d is

composed of the nb/d centers of the set of radial bases functions {ηi}i∈J1,nb/dK ∈ Rnb/d. Set

{ωi}i∈J1,nb/dK ∈ Rnb/d is a set of weights that allows the approximation to reproduce constant

vectors, and {li}i∈J1,nb/dK ∈ Rnb/d is the set of length-scales associated with the RBFs. Sets
{ci}i∈J1,nb/dK, {ωi}i∈J1,nb/dK and {li}i∈J1,nb/dK are chosen as follows.

• For any i ∈ J1, nb/dK, we define li as the distance to the N th
l closest point of set {ci}i∈J1,nb/dK,

with Nl ∈ R+∗\{1}, in the sense of the standard euclidean distance. This technique ensures
that the set of RBFs are overlapping to a satisfying degree.

• We define weight set {ωi}i∈J1,nb/dK by

∀ i ∈ J1, nb/dK, ωi(x) =
1

nb/d∑
i=1

ηi(x)

(57)

• The set of centers C = {ci}i∈J1,nb/dK is constructed adaptively, using a goal oriented hierarch-
ical clustering approach, as described in details in the next section.

To initialise the adaptation process, a standard coarse clustering of the vertices of FE tessella-
tion Th is first performed. We use the agglomerative hierarchical clustering tree implemented
in Matlab to partition the set of vertices of the mesh into n0

b/d. Then, each element of set
C0 = {c0i }i∈J1,n0

b/dK
is computed as the centroid of the ith cluster of mesh vertices.

Once the nb/d radial basis functions are constructed, we can build projection matrix B by
concatenation:

B = (γ1 γ2 ... γnb) (58)
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6.2 Stochastic dual weighted residual approach

We define the following error estimate

ν =

M?∑
i=1

Var

((
Qi?

)T
∆e

)
(59)

where {Qi?}i∈Ji M?K are an arbitrary set of extractors of scalar QoIs. As mentioned previously,
we will use a random selection of the lines of prediction operator H.

We note that (
Qi?

)T
∆e =

(
Qi?

)T (
A−1r

)
=
(
zi
?
)T

r (60)

where ith dual zi
?

is such that AT zi
?

= Qi?, and the random residual vector r := b − Aẽ has
expression

r = I−Aφ
(
φTAφ

)−1

φTb =: ξb (61)

Therefore, r is a zero-mean Gaussian vector with covariance Cov(r) = ξMξT . Hence, (59) reads
as

ν =

M?∑
i=1

zi
?T

Cov(r)zi
?

(62)

Equation (60) is usually coined Dual Weighted Residual in the error estimation literature
[72, 73], albeit usually employed in a deterministic setting. In order to make this expression small,
an owing to Galerkin orthogonality, the suggestion is to use the adjoints {zi?}i∈Ji M?K as reduced
basis vectors. They are, of course unavailable and we can only try and produce a similar effect by
using selected RBFs.

Extending classical error estimation procedures, we use Galerkin orthogonality6 to reveal that
(62) reads as

ν =

M?∑
i=1

(
zi
? −ΠΦzi

?
)T

Cov(r)
(
zi
? −ΠΦzi

?
)

(64)

where ΠΦ = Φ
(
ΦTΦ

)−1

ΦT is the norm two projector onto span(Φ), which we may further write
as

ν =

M?∑
i=1

(
wi
)T

yi (65)

with wi := zi
? −ΠΦzi

?
and yi := Cov(r)wi. Equation (65) can be seen as an extension of the

classical dual weighted residual framework to discrete stochastic Galerkin approximations. As
usual in dual weighed residual approaches, we may interpret the previous expression as a discrete
error density, as

ν =

M?∑
i=1

N∑
j=1

wi
jy
i
j =

N∑
j=1

(
M?∑
i=1

wi
jy
i
j

)
=

N∑
j=1

(
M?∑
i=1

|wi
jy
i
j |

)
. (66)

We may finally attempt to select the radial basis functions that approximately minimise ν,
i.e. our chosen measure of the distance between exact and low-rank Gaussian priors for all QoIs.

This can be done by cancelling large elements of set

{
M?∑
i=1

∣∣wi
jy
i
j

∣∣}
j∈J1NK

, thereby making sure

that for DoFs corresponding to large values of projected dual vectors {wi}i∈J1M?K, the associated
components of “residual” vector {yi}i∈J1MK are small (this is the central idea of the dual-weighted
residual approach [72, 73]). This implies refining the projection space in those areas, following
Galerkin’s principle.

6Galerkin orthogonality:

∀i ∈ J1, nΦK, ΦiT r = 0 (63)
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6.3 Goal oriented hierarchical clustering

We propose to use the discrete GOEE density described previously to guide the hierarchical re-
finement of the agglomerative clustering algorithm described in section 6.1.

This is done as follows. Given the current clustering of mesh vertices at iteration k of the
construction process, associated with centroid set Ck = {cki }i∈J1,nk

b/dK
, we compute, for every

cluster index l ∈ J1 nlcK

qkl =

nl
c∑

j=1

M?∑
i=1

∣∣∣wi,k
Il(j)y

i,k
Il(j)

∣∣∣ (67)

where nlc is d times the number of vertices of cluster l, and Il is an index map between the cluster-
wise and global numbering of FE DoFs. In words, qkl is the contribution to the GOEE metric of
cluster l at iteration k of the construction algorithm.

Then, we set cluster l? for refinement, with

l? = arg max
l

(qkl ) (68)

This cluster is subdivided into nr subclusters using K-means, the centroids of which will define
new RBF centers, yielding the updated center set Ck+1 = {ck+1

i }i∈J1,nk+1
b /dK with nk+1

b = nkb + nr.

6.4 Rank selection by holdout/cross-validation

To make sure that the distribution of reduced-rank Gaussian process Eẽ is close enough to “truth”
distribution of Eê, we will monitor the size of Σ∆E through the greedy construction process. The
RBF selection algorithm stops if assertion√√√√ 1

M??

M??∑
i=1

Var
((

Qi??
)T

∆e
)
≤ ξ

√√√√ 1

M??

M??∑
i=1

Var
((

Qi??
)T

ẽ
)

(69)

with tolerance 0 < ξ � 1, is satisfied. In the previous equation, the ?? notation indicates that we
use a new set of randomly selected lines of E to populate QoI extractors {Qi??}i∈Ji M??K. Indeed,

the there exists a severe risk of over-fitting if using set {Qi?}i∈Ji M?K to build the reduced basis
and monitor convergence. Unfortunately, this requires the computation of additional dual vectors.
Alternatively, one could cross-validate the previous methodology, thereby avoiding this additional
computational effort at the cost of a heavier implementation.

7 Results of Low Rank Approximation of Full Error Field
Gaussian Process

We now implement the goal oriented hierarchical clustering approach described above to the ex-
ample problem outlined in section 4.1. In the following, we consider a randomly selected 25 training
duals in all cases and look to train a posterior based on a low rank approximation of the prior.
RBFs define a projection space for the prior. We here use a hierarchical clustering approach to
locate RBFs in the solution domain (RBFs are normalised to ensure partition of unity). A series
to clusters are presented here to demonstrate the refining nature of the hierarchical approach, both
at the macro and micro scales.

Clusters for the example macro problem are shown in figure 10, with “Cluster 1” illustrating
the initial cluster arrangement (due to k-medoids) and Clusters 3, 5, and 7 relating to the 3rd, 5th,
and 7th refinement, respectively. Cluster refinement is achieved by evaluating the quantity q (as
per equation 67, here referred to as the clustering density) for a given cluster arrangement (and
associated RBF space), noting the cluster within which the weighted summation of q is maximised,
and performing k-medoids on the selected cluster. In the results presented here, an initial 10
clusters (Cluster 1) are created to begin the hierarchical process, with subsequent refinements
partitioning the selected cluster into 3. Example plots of the density q are presented in figure
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11 for the clusters in figure 10. The example problem considered in the present work limits the
location of QoIs to two RoI boundaries (see figure 2). As a result, the error in low rank QoI
estimations (characterised by the density q) is concentrated in the upper right corner of the macro
model. This can be clearly seen in figure 11, wherein there is not only the desired reduction in the
magnitude of q with cluster refinement but also a concentration of q on the boundaries of clusters.
For completeness example RBFs, resulting from the clusters in figure 10, are presented in figure
12.

We must now consider how, and if, the clustering based RBF refinement leads to convergence of
the low rank approximation of the Gaussian process prior. We may first consider the entropy of the
difference between our “exact” error field (furnished without model order reduction of the prior)
and the RBF approximation of it. Recall that equation 52 gives the covariance of the discrepancy
field. In lieu of a complete set of QoIs (E), we use the restricted set H which is made up of the same
QoIs that inform our GOEE observations (see equation 21). Through this substitution, we note
that the calculation A−1HT (used to evaluate the distribution in equation 51) becomes trivial, as
it is equal to the solutions of the dual problems (z) we have already solved. The entropy of the
difference between exact and low rank error fields is given by

1

2
ln det (2π exp (Σ∆H)) (70)

The evolution of this entropy term with cluster iteration can be seen figure 13. If the hierarchical
clustering approach is effective we would expect a continued reduction in the discrepancy entropy,
indicating a collapse of the discrepancy distribution as the low rank approximation approach the
exact field. This feature is clearly demonstrated in figure 13. The near linear rate at which
the entropy reduced with cluster iteration is somewhat surprising and suggests that, at least for
the example problem, the improvements offered by cluster refinement are incremental despite the
significant changes in q. Note that the entropy of the error field distribution itself is also presented
in figure 13 for reference. We may also perform Monte-Carlo analyses on the micro models by
sampling error correct DoF distributions that are generated by exact and low rank approximations
of the Gaussian process terms (similar to the demonstrations performed in section 4.2). Peak
von Mises stress may be extracted from the “2 circle” micro model (as used before) for the low
rank approximations associated with each cluster refinement, as shown in figure 14. Note that as
cluster refinement progresses we see a general broadening in peak stress distributions, resulting
from the greater fidelity in error field approximation offered by higher dimensional projection
spaces. Furthermore, we note a refinement of the distribution mean and standard deviation,
again resulting from the great degree of variation captured in the refined cluster projections. In
the example problem, it is clear that convergence of the sub spaces is oscillatory (as opposed to
monotonic). It is unclear why this is the case, however we suggest that it is a symptom of the
relatively coarse macro model mesh. Given the limited number of DoFs driving the micro model
(and therefore the small number of possible QoIs) it is conceivable that, given some particular
projection space, the propagation of certain QoIs over regions that in reality are not controlled
by these quantities happens to result in preferable micro states. This feature of the low rank
approximation is not explored here, however the convergent nature of the process should be noted.
This satisfies the original motivation for the goal oriented projection.
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Figure 10: Agglomerative hierarchical clustering development for the example macroscopic prob-
lem, using 10 initial clusters. The crosses indicate the centroids of each cluster of vertices. Clusters
selected by the defined denisty quantity are refined into 3 sub-clusters using K-means at each cluster
step.
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Figure 11: Clustering density (see equation 67) evolution during cluster refinement for the example
macroscopic problem.
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Figure 12: Agglomerative hierarchical clustering development for the example macroscopic prob-
lem, using 10 initial clusters, showing RBF definition for each cluster.

Figure 13: Entropy of the discrepancy between exact error field on the union of all micro boundaries
and its approximation using adaptive RBFs.
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Figure 14: Peak von Mises equivalent stresses (σVM ), taken from a series of Monte-Carlo error
field propagations for the “2 hole” (position 2) microscopic model. Error fields that modify driving
DoFs result from posterior distributions trained with 25 dual solutions. Projections are made using
the cluster based RBF functions (with higher clustering numbers indicating subsequent clusterings
that have made use of density driven refinement). A true “No RBFs” distribution is include for
reference (this does not make use of any form of model order reduction in the calculation of the
prior).

Perspectives and Conclusions

A statistical learning approach is presented here for the estimation of full error fields in large FE
models. The method is unobtrusive - it does not require any re-meshing operation and is com-
putationally efficient, owing to the low-rank SPDE-based gaussian process specifically developed
in this work. The stochastic PDE representation of the prior error field allows for posterior real-
isations to be generated using sparse matrix inversions, thereby ensuring the cost of generating
such realisations, and that of tuning the GP hyperparameters using maximum marginal likelihood,
is comparable to the cost of solving the FEA problem itself. It is important to note that the
adoption of a stochastic PDE representation of the prior is of little help if done in isolation. It is
the sparse approximation of this prior through a guided reduced basis projection that alleviates
computational bottlenecks and enables the overall methodology to be computationally affordable.

Although attention is given to classical sub-modelling multiscale problems, the methods are
applicable to many alternative cases. For example, consider a large domain where there exist
many potential localisation features but the analyst does not know which is of the greatest concern.
Consider also that, due to some limit on computational overhead, the mesh cannot be refined at
all localisation features. The error field recovery approach outlined here would furnish the analyst
with confidence intervals for QoIs at the localisation features, thereby indicating which should be
investigated in “dive deeper” exercises. While it is highly unlikely for an analyst to be completely
ignorant of potential RoIs, it is very likely in complex systems that many potential regions at
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the macro scale and features at the micro scale will be of interest. There is a need, therefore, to
extract uncertainty information across the macro model such that this can be propagated down to
various micro models. This observation drives the creation of approaches like the one developed
in the present work. A strong constraint on computational cost is industry inspired and motivates
the development of an efficient analysis method; a consideration often omitted in similar studies.
Attention has also been limited to small strain linear (elastic) problems here, however the methods
may be readily extended to more complicated non-linear conditions. GOEE concepts may, for
example, be extended to non-linear problems by linearising constitutive matrices (as in the work
of Cirak [46] or that of Ghorashi and Rabczuk [74]). The integration of non-linearity at local levels
is straightforward. Duals solutions (at the macro scale) can be updated with the iterative primal
solution, with each leading to a modification of the recovered error field. Note that QoIs do not need
to be the same between solution increments in the non-linear case. State estimation in space and
time can provide inspiration, with dual solutions from previous increments being used to inform
subsequent error field estimations [75]. Active learning can be implemented here to strategically
define QoIs between increments. QoIs are defined arbitrarily in the present work, however future
work should look to optimise the QoIs through adaptive learning/Greedy algorithms. Note that this
can be accomplished in a simplistic way by characterising QoIs with the problem shape functions,
however a more intriguing question lies in the full optimisation of QoIs in the problem domain.
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[27] Pierre Ladevéze and Jean-Pierre Pelle. Mastering Calculations in Linear and Nonlinear Mech-
anics. Springer, 2005.

32



[28] Fredrik Larsson and Kenneth Runesson. On two-scale adaptive fe analysis of micro-
heterogeneous media with seamless scale-bridging. Computer Methods in Applied Mechanics
and Engineering, 200(37):2662 – 2674, 2011. Special Issue on Modeling Error Estimation and
Adaptive Modeling.

[29] Junqi Zhang, Sundararajan Natarajan, Ean Tat Ooi, and Chongmin Song. Adaptive analysis
using scaled boundary finite element method in 3d. Computer Methods in Applied Mechanics
and Engineering, 372:113374, 2020.

[30] Chongmin Song, Ean Tat Ooi, Aladurthi L N Pramod, and Sundararajan Natarajan. A novel
error indicator and an adaptive refinement technique using the scaled boundary finite element
method. Engineering Analysis with Boundary Elements, 94:10 – 24, 2018.

[31] Alejandro Allendes, Csar Naranjo, and Enrique Otrola. Stabilized finite element approxima-
tions for a generalized boussinesq problem: A posteriori error analysis. Computer Methods in
Applied Mechanics and Engineering, 361:112703, 2020.

[32] Luca Heltai and Nella Rotundo. Error estimates in weighted sobolev norms for finite element
immersed interface methods. Computers & Mathematics with Applications, 78(11):3586 –
3604, 2019.

[33] M. Rech, S. Sauter, and A. Smolianski. Two-scale composite finite element method for dirichlet
problems on complicated domains. Numerische Mathematik, 102:681–708, 2006.

[34] Tamal Pramanick and Rajen Kumar Sinha. Error estimates for two-scale composite finite
element approximations of parabolic equations with measure data in time for convex and
nonconvex polygonal domains. Applied Numerical Mathematics, 143:112 – 132, 2019.
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