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Dynamic social learning under graph constraints
Konstantin Avrachenkov, Vivek S. Borkar, Fellow, IEEE , Sharayu Moharir, and Suhail Mohmad Shah

Abstract— We introduce a model of graph-constrained
dynamic choice with reinforcement modeled by positively
α-homogeneous rewards. We show that its empirical pro-
cess, which can be written as a stochastic approximation
recursion with Markov noise, has the same probability law
as a certain vertex reinforced random walk. We use this
equivalence to show that for α > 0, the asymptotic out-
come concentrates around the optimum in a certain limiting
sense when ‘annealed’ by letting α ↑ ∞ slowly.

Index Terms— dynamic choice with reinforcement, op-
timal choice, graphical constraints, annealed dynamics,
vertex reinforced random walk

I. INTRODUCTION

DYNAMIC choice models, wherein the subsequent choice
of one among finitely many alternatives depends upon

the relative frequency with which it has been selected in
past, have found many applications. This is so particularly
in the scenario when the higher the frequency, the higher
the probability of an alternative being chosen again. Such
‘positive reinforcement’ is seen in models of herding behavior
[17], evolution of conventions [32], ‘increasing returns’
economics [2], etc. Similar dynamics also arise in other
disciplines, e.g., population algorithms for optimization
[13] and more recently, for service requests in web based
platforms for search, e-commerce, etc. [30]. One common
caveat in all these is what is already the concern of the
aforementioned models of herding and increasing returns
economics, viz., the risk of some initial randomness leading
to the process getting eventually trapped in an undesirable or
suboptimal equilibrium behavior. In this work we present a
different take on this issue. Firstly, we introduce what we call
a graph-constrained framework, wherein the choice at any
instant is restricted by the choice during the previous instant.
This is a realistic scenario that reduces to the classical case
when the constraint graph is fully connected. Some examples
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are:

1. Consider buyers buying a product on an e-commerce
portal. They are influenced by both the average rating
(assumed to be stable) and the number of people who bought
the product, as reflected in the number of reviews. In this
application the graph constraints come from suggestions from
the e-commerce portal for purchase of items from the same
or related categories.

2. Consider the task of locating an object in a large image
using crowdsourced agents. Typically, the image is split into
multiple sub-images and each agent is asked to examine a few
sub-images for the desired object. Since the image is large,
it is desirable to determine which sub-image to examine next
based on partial information of the current state. One way to
do this is to constrain the next sub-image to be one of the
neighbors of the sub-image examined most recently, chosen
randomly according to a probability distribution based on the
current information from the crowd about these sub-images.
See, e.g., [19] for one potential real application.

3. A graphical constraint may also arise in a scenario where
a mobile sensing unit (e.g., a robot or a UAV) covers an
area repeatedly. It has to plan its trajectory according to
certain objectives which prioritize dynamically the preferred
regions or ‘hot spots’. The movement, however, can only be
to neighboring positions. If there is no central coordinator,
then one is faced with the kind of problem we have.

4. Online video sharing platforms such as YouTube make yet
another application case. Typically, after a user has seen a
video, he or she is recommended a list of suggested videos.
The videos are recommended based on semantic similarity
and the number of views. In this case, the graphical constraints
come from the physical limitation of the screen (typically
no one scrolls down more than one or two screens) and
semantic similarities. Furthermore, the system is more likely
to recommend a content with a large number of views and the
user is also more likely to click on a content with a significant
number of views. Our model not only confirms that this leads
to the effect of social bubbles [26], but also proposes a way of
tuning the recommendation mechanism to break such bubbles.

As indicated above, optimality is not guaranteed in many
of the aforementioned models because of the dynamics get-
ting trapped in a suboptimal limit, the so called ‘trapping’
phenomenon [2]. We show here that by suitably tuning or
‘annealing’ the choice probabilities, the asymptotic profile
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can be made to concentrate on the optimal behavior. The
tuning scheme increases the concentration of probability on
the current front runner and corresponds to the natural phe-
nomenon whereby the agents’ confidence in their choices
increases with increasing adoption thereof by their peers. Our
agents are autonomous, though influenced by the past. Thus
the final outcome is emergent and not engineered. In the basic
model (i.e., without the aforementioned ‘annealing’), we get
convergence to a common decision, but not necessarily to an
optimal one. The ‘annealed’ variant on the other hand ensures
the latter, i.e., asymptotic optimality. It should be emphasized
that while we borrow terminology from simulated annealing
(SA), our annealing scheme modulates the net drift, i.e., the
driving vector field of the stochastic approximation iteration
and ipso facto its limiting o.d.e., in order to achieve optimality,
its effect on the noise component is unimportant. This is unlike
classical SA where it is the noise variance that is being tuned.
We do add extraneous noise to the choice probabilities (see
(2) below) just as in SA, but its aim is to ensure that unstable
equilibria are avoided almost surely, not to ensure avoidance
of stable suboptimal equilibria as in SA. The former is an
easier objective as it entails only some ‘persistent excitation’
(to borrow a phrase from control theory) to push the iterates
away from unstable equillibria and their stable manifolds, and
does not call for ‘hill climbing’ with noise as in SA. The
slow morphing of the drift is tantamount to morphing of the
landscape itself to make it more ‘peaked’ while retaining the
same optima. (That is, ratio of the function value at a global
maximum to that at a local maximum which is not a global
maximum progressively increases, but their locations don’t
change.) The dynamics in question is closely related to similar
dynamics arising in connection with vertex reinforced random
walks [7], a fact we exploit.

We give brief comparisons with some related works in mul-
tiarmed bandits in order to highlight the differences. In [30], a
related model is considered and it is observed that the process
may get locked into suboptimal equilibria. The remedy they
propose is to randomize the rewards for a fixed time window in
a clever manner (dubbed a ‘balanced’ exploration) before the
aforementioned dynamic choice process takes over. We eschew
any such modification and instead take recourse to the above
scheme which is indeed optimal in the limit. This result is of
a distinct flavor compared to [30]. Also, our techniques are
different, as are our objectives: we seek asymptotic optimality
and do not consider regret. In [18], which is methodologically
closer to our work, a full fledged game problem is considered
wherein many agents are concurrently exercising their choices
with their payoffs depending on others’ choices as well. Their
focus is on ε-Nash equilibria and not on optimal behavior as in
our (non–game theoretic) work. While the core technique, viz.,
use of the multiplicative weight rule, is common between this
work and [18], they use a different choice thereof. Graphical
constraints analogous to ours are used in [29] in a bandit
framework, but they are motivated by how communication
among agents can be factored into the analysis. In general,
bandit algorithms do not involve graphical constraints and their
focus is on non-asymptotic behavior unlike ours. However,
graphical restrictions in bandit context do arise in a number

of practical applications and have important implications. The
standard algorithms deployed to solve bandit problems such
as the ε-greedy strategy or UCB algorithm [24] may fail
to achieve optimal behavior under graph constraints, as one
may get stuck with a choice with a sub-optimal reward. We
substantiate this claim in Section VI with a simple example.

We draw upon the framework of [7] substantially. (See
[8], [9], [10] for extensions.) The key contribution of ibid.
is the analysis of a general vertex reinforced random walk
using the ‘o.d.e.’ approach to stochastic approximation. It
derives very broad results about their asymptotic behavior,
and then narrows these down to concrete examples with linear
reinforcement to obtain stronger claims. Our model is pitched
in between - it is a nonlinear model, but a very specific one
and allows for more specific claims to be established. Use of
annealing ideas in this context is another novelty of our work.

Such graphically constrained choice models can also be
posed as stochastic combinatorial optimization problems. A
well known heuristic for solving such problems is simulated
annealing. However, SA with noisy observations is well known
to be sample inefficient [14], [20], [21]. In fact, the best
possible sample complexity results that have been obtained
(Theorem 3, [14]) require that the number of samples required
per iteration increase to infinity with the iteration count. This

Key Notation
µi Reward associated with object i.
m Number of objects.

Si(n) Number of times i was picked.
xi(n) Relative frequency Si(n)/n.
Sm Unit simplex in Rm.

int(Sm) Interior of Sm.
G Directed graph.
V Node set of G.
E Edge set of G.
N (i) Neighbourhood of i.
ζ(n) Noise in reward vector.
Fn σ

(
ξ(k), ζi(k), 1 ≤ i ≤ m, k ≤ n

)
.

µ̂i(n) Empirical mean, see (4).
ε(n) Exploration time step (see (5)).

c(n), a(n) See (5) and (7).
fαi (x) Reinforcement function, (µixi)

α.
α Reinforcement exponent, see above.

χ·(i) Uniform distribution on N (i).
pαij(x) Transition prob. of {ξ(n)}, see (8).
πα(x) Stationary distribution of pαij(x).
ϕα(x) See (11).
ιi(n) See (10).
A Adjacency matrix, A := [[aij ]]i,j∈V .
T Temperature, defined as 1/α.
b(n) Time step in T , see (18).
D {i ∈ V : µi = maxj µj}.

f(n) = O(g(n)) lim supn→∞
|f(n)|
g(n) <∞.

f(n) = Ω(g(n)) g(n) = O(f(n)).
f(n) = o(g(n)) limn→∞

|f(n)|
g(n) = 0.

f(n) = ω(g(n)) g(n) = o(f(n)).
f(n) = Θ(g(n)) f(n) = O(g(n)) and g(n) = O(f(n)).
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makes deploying SA with noisy observations quite difficult,
particularly for applications where obtaining samples may
entail time consuming simulations. In contrast, our algorithm
needs one sample per iteration under i.i.d. bounded variance
noise, which makes it much more sample efficient as compared
to SA with noisy observations.

We describe our model in the next section and demonstrate
its connection with the vertex reinforced random walk. Sec-
tion 3 provides convergence analysis of the basic scheme.
In section 4 we analyze its ‘annealed’ counterpart, leading
to the desired result. Section 5 specializes the problem to
complete graph where we can say more. Section 6 provides
some numerical experiments. Three appendices sketch some
technical issues left out of the main text for ease of reading.

Notation: For ease of reference, we list the key notation
used in the paper in the above table. This includes the standard
Big-O notation used throughout the paper.

II. PROBLEM FORMULATION

In this section we set up our model of choice dynamics
and the key notation.

Model: Consider a stream of agents arriving one at a time1 and
choosing one of m > 1 distinct objects, with a reward µi > 0
associated with the ith object. The (n+ 1)-st agent picks the
jth object with conditional probability (conditioned on past
history) pj(n), which we shall soon specify. Let ξ(n) = i if
the nth agent picks object i. Let Si(n) := the number of times
object i was picked till time n and xi(n) := Si(n)

n , n ≥ 1,
its relative frequency. Then a simple calculation leads to the
recursion

xi(n+1) = xi(n)+
1

n+ 1
(I{ξ(n+ 1) = i} − xi(n)) , n ≥ 0.

(1)
Here I{· · · } is the ‘indicator function’ which is 1 if its
argument is true and 0 otherwise. For specificity, we arbitrarily
set xi(0) = 1

m ∀i, suggestive of a uniform prior. This will
not affect our conclusions. Throughout, we use the convention
0
0 = 0. The vector x(n) := [x1(n), · · · , xm(n)]T takes values
in the simplex of probability vectors,

Sm :=

x = [x1, · · · , xm]T : xi ≥ 0 ∀i,
∑
j

xj = 1

 .

We shall denote by int(Sm) the interior of Sm. We assume
that the observed reward at time n for choice i is not µi, but
µ̃i(n) = µi + ζi(n) where {ζi(n), n ≥ 0} is i.i.d. zero mean
noise with bounded variance.

Graphical Constraints: We assume that the choice in the
(n + 1)-st time slot is constrained by the choice made in
the nth slot, e.g., when, given the present choice, only some
selected ‘nearby’ or ‘related’ choices are offered or preferred
(see examples in the introduction). We model this as follows.
Consider a directed graph G = (V, E) where V, E are resp.,

1This is for convenience. The identity of agents is irrelevant here and they
may repeat as long as the choice mechanism remains the same.

its node and edge sets, with |V| = m. Assume that G is
irreducible, i.e., there is a directed path from any node to any
other node. Let N (i) := {j ∈ V : (i, j) ∈ E} denote the set
of successors of i in G. If i is chosen at any instant n, the
next choice must come from N (i). We assume:

(A1) For each i, i ∈ N (i). This implies a self-loop at
each node, i.e., (i, i) ∈ E ∀ i ∈ V . (Thus, in particular,
|N (i)| ≥ 2 ∀i.) We also assume that the neighborhood
structure is bidirectional, i.e., i ∈ N (j)⇐⇒ j ∈ N (i).

Selection Policy: Let Fn := the σ-field σ(ξ(t), ζi(t), 1 ≤ i ≤
m, t ≤ n). Then the vector process x(n) ∈ Sm, whose i’th
component xi(n) := Si(n)

n , is assumed to satisfy (1) with

P(ξ(n+1) = j|Fn) = (1−ε(n))p̃αξ(n)j(x(n))+ε(n)χj(ξ(n)).
(2)

Here:
•

p̃αij(x) := I
{
j ∈ N (i)

} f̂α,nj (x)∑
l∈N (i) f̂

α,n
l (x)

, (3)

for f̂α,ni (x) := (µ̂i(n)xi(n))α, where

µ̂i(n) :=

∑n
k=0 I{ξ(k) = i}µ̃i(k)∑n

k=0 I{ξ(k) = i}
is the empirical estimate of µi at time n recursively
computed by

µ̂i(n+ 1) =
(

1− 1

Si(n+ 1)

)
µ̂i(n) +

µ̃i(n+ 1)

Si(n+ 1)
,

if ξ(n+ 1) = i,

= µ̂i(n), otherwise, (4)

with µ̂i(0) := 0.
• {ε(n)} satisfy the recursion

ε(n+ 1) = (1− c(n))ε(n), (5)

where 0 < c(n) ↓ 0,
∑
n c(n) = ∞, nc(n)

n↑∞→ 0.
The last condition implies that

∑
n c(n)2 <∞. We also

assume that for a(n) := 1
n+1 ,∑

n

ε(n)m =∞,
∑
n

a(n)ε(n) =∞, (6)

ε(n) = ω

(
1√
n

)
. (7)

One example is c(n) = 1
1+(n+1) log(n+1) , which results

in ε(n) = Θ
(

1
logn

)
, see Appendix III for details.

• χ·(i) is the uniform distribution on N (i), i ∈ V .
That is, with probability 1 − ε(n), we pick ξ(n + 1) = j
with probability pαξ(n)j(x(n)), and with probability ε(n), we
pick it uniformly from N (ξ(n)). As α ↓ 0, the process
approaches a simple random walk on the graph that picks a
neighbor with equal probability. As α ↑ ∞, the process at i
will (asymptotically) pick the j ∈ N (i) for which µjxj =
maxk∈N (i) µkxk, uniformly. An immediate observation is the
following, proved in Appendix I.
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Lemma 2.1: µ̂i(n)→ µi a.s. ∀i.

Thus a.s., limn↑∞ f̂α,ni (x) = fαi (x) := (µixi)
α ∀ i, x, α

and

lim
n↑∞

p̃αij(x) = pαij(x) := I
{
j ∈ N (i)

} fαj (x)∑
l∈N (i) f

α
l (x)

. (8)

The functions fαi are monotone increasing, which captures the
‘positive reinforcement’, i.e., the fact that increased choice of
a particular object i increases its probability of being chosen
in future, all else remaining the same. Each fαj is a locally
Lipschitz function in int(Sm), strictly increasing in xj and
satisfying positive α-homogeneity: fαj (axj) = aαfαj (xj) for
a ≥ 0. Then µixi can be viewed as the fraction of the total
reward accrued by the fraction of population that chose i.
Thus, e.g., in example 1 in the introduction, it is the average
rating of i times the fraction of the customers who bought i
from among all who bought similar products. (In fact, it can
be the number thereof rather than the fraction, because the
normalization factor cancels out in the transition probability
defined in (8).) Its homogeneity property renders the choice
probabilities defined in (8) scale-independent, as it should.
Since our selection probability for i will be proportional
to fαi (xi), a higher value of α makes the preference more
peaked in the sense already described: it concentrates the
probability mass further near global maxima, thereby putting
higher weight on ‘exploitation’ than on ‘exploration’. Smaller
α do the opposite. The ‘annealed’ scheme we propose later
slowly increases α to capture the trade-off between the two.

III. CONVERGENCE ANALYSIS

This section analyzes the convergence of the above scheme
for fixed α using the theory of stochastic approximation [12].
The standard stochastic approximation algorithm is

y(n+1) = y(n)+a(n)[F (y(n), Y (n+1))+ι(n)+W (n+1)]
(9)

where the possibly random positive stepsizes {a(n)} satisfy∑
n a(n) = ∞,

∑
n a(n)2 < ∞, the ‘martingale noise’

{W (n)} satisfies E[W (n + 1)|F ′n] = the zero vector for
F ′n := σ(y(t), a(t), Y (t), ι(t),W (t), t ≤ n), ι(n) → 0
componentwise a.s., and the ‘Markov noise’ {Y (n)} satisfies
P (Y (n+ 1) ∈ ·|F ′n) = p̂y(n)(·|Y (n)) for a suitable transition
probability p̂y(·|·) parametrized by y. Then (1) has this form
with y(n) = x(n), a(n) = 1

n+1 ,

Wi(n) = I{ξ(n+ 1) = i} − (1− ε(n))pαξ(n)i(x(n))

− ε(n)I{i ∈ N (ξ(n))}/mi,

Y (n) = ξ(n), p̂y(j|i) = pαij(x). Also, ι(n) is a vector whose
ith component is

ε(n)(m−1i −p̃
α
ξ(n)i(x(n)))+(p̃αξ(n)i(x(n))−pαξ(n)i(x(n)))→ 0.

(10)
(The presence of ι(n) does not affect the convergence, see
the third ‘extension’ in section 2.2, [12] which applies to
the stochastic approximation with Markov noise as well.)
The stochastic matrix [[pαij(x)]]i,j∈V is parametrized by the
probability vector x ∈ Sm. For fixed x, let πα(x) denote
its stationary distribution, whose existence and uniqueness is

ensured for each fixed x ∈ int(Sm) by our irreducibility as-
sumption for G (see e.g., [6, Section 6.1]). A direct calculation
shows that

π̃αi (x) :=
fαi (x)

∑
k∈N (i) f

α
k (x)∑

`(f
α
` (x)

∑
k∈N (`) f

α
k (x))

, i ∈ V,

satisfies the local balance condition π̃αi (x)pαij(x) =
π̃αj (x)pαji(x), because both sides equal

fαi (x)fαj (x)I
{
j ∈ N (i)

}∑
`(f

α
` (x)

∑
k∈N (`) f

α
k (x))

,

where I
{
j ∈ N (i)

}
= I
{
i ∈ N (j)

}
. So πα(x) = π̃α(x).

We apply the ‘o.d.e. approach’ to our problem. Thus let
ϕαi (x) := fαi (x)

∑
j∈N (i) f

α
j (x)/xi and consider the o.d.e.

ẋi(t) =
xi(t)ϕ

α
i (x(t))∑

k xk(t)ϕαk (x(t))
− xi(t). (11)

Note that every equilibrium of (11) satisfies the fixed point
equation

π(i) = hi(π) :=
fαi (π)

∑
j∈N (i) f

α
j (π)∑

k f
α
k (π)

∑
`∈N (k) f

α
` (π)

∀i. (12)

Set h(·) := [h1(·, · · · , hm(·)]. By irreducibility, every such π
must be in int(Sm).

Lemma 3.1: The o.d.e. (11) has the same trajectories and
the same asymptotic behavior as the o.d.e.

żi(t) = zi(t)

ϕαi (z(t))−
∑
j

zj(t)ϕ
α
j (z(t))

 , (13)

i.e., z(t) = x(τ(t)) for some t ∈ [0,∞) 7→ τ(t) ∈ [0,∞)
which is strictly increasing and satisfies t ↑ ∞ ⇐⇒ τ(t) ↑ ∞.

Proof: Since the r.h.s. of (13) is locally Lipschitz in
the interior of Sm, (13) has a unique solution when z(0) ∈
int(Sm). We obtained (13) from (11) by multiplying the
r.h.s. of (11) by the positive scalar valued bounded function
q(t) :=

∑
k xk(t)ϕαk (x(t)), which is bounded away from zero

uniformly in t. This amounts to a pure time scaling t 7→ τ(t)
where τ(·) is specified by the well-posed differential equation
τ̇(t) = q(τ(t)). Then z(t) := x(τ(t)). (The same device was
used in [7], p. 368.) Also, for suitable ∞ > c2 > c1 > 0,
c1t ≤ τ(t) ≤ c2t. In particular, τ(t) ↑ ∞ as t ↑ ∞, so the
entire trajectory is covered. The claim follows.

The dynamics (13) is a special case of replicator dynamics
[28] (as is equation (3), [7], p. 368, in a similar context). Note
also that an equilibrium z∗ of (13) must satisfy

z∗i > 0 =⇒ ϕαi (z∗) =
∑
j

z∗jϕ
α
j (z∗). (14)

In particular, ϕαi (z∗) ≡ a constant for i ∈ the support of z∗.
Let A := [[aij ]]i,j∈V be the (symmetric) adjacency matrix

of G. Then for x = [x1, · · · , xm] ∈ Sm,

ϕαi (x) =
∂

∂xi
Ψα(x) for Ψα(x) :=

1

2α

∑
i,j

aijf
α
i (x)fαj (x).

Thus (13) corresponds to the replicator dynamics for a
potential game with potential −Ψα [28]. In what follows, by
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local maximum of a function we mean a point in its domain
where a local maximum is attained and not the function
value there. We make the following assumption which is
generically true (i.e., true for almost all parameter values,
see, e.g., [25], Chapter 2).

(A2) The equilibrium points of (11) (i.e., the fixed points
of (12)) are isolated and hyperbolic, i.e., the Jacobian
matrix of h at these points does not have eigenvalues on the
imaginary axis. Also, their stable and unstable manifolds,
which exist by hyperbolicity, intersect transversally if they do.2

In view of the preceding discussion, this amounts to the
requirement that the Hessian of Ψα be nonsingular at its
critical points in int(Sm).

Theorem 3.2: For each α > 0, the local maxima of Ψα :
Sm 7→ R are stable equilibria of (11) and the iterates of (1)
converge to the set thereof, a.s.

Proof: Since (11) and (13) are obtained from each other
by a time scaling t 7→ τ(t) that satisfies τ(t) = Θ(t), it suffices
to consider only (13). We have

d

dt
Ψα(z(t))

=
∑
i

zi(t)

ϕαi (z(t))−
∑
j

zj(t)ϕ
α
j (zj(t))

2

≥ 0. (15)

Thus −Ψα serves as a Lyapunov function for (13), implying
that it converges to the set of critical and Kuhn-Tucker points
of Ψα. The local maxima will then correspond to stable
equilibria. We next argue that the iterates converge to some
local maximum a.s. By Corollary 8, p. 74, [12], for stochastic
approximation with Markov noise, combined with the first
bullet of section 2.2, p. 16, and Corollary 4, p. 18, [12]
(both of which which work with Markov noise for exactly
identical reasons) and (A2), the iterates converge a.s. to a
single, possibly sample path dependent, critical or Kuhn-
Tucker point of Ψα. That it must be a stable equilibrium, i.e.,
a local maximum, follows by a variant of the theory developed
in section 4.3, pp. 40-47, [12]. This argument is very technical
and is sketched in Appendix II.

The next lemma is similar to Theorem 6.3 of [7], see also
Theorem 5.1 of [3], reproduced as Chapter 10 of [2]. We
sketch a brief proof for the sake of completeness.

Lemma 3.3: The probability of convergence of {x(n)} in
(1) to any local maximum of Ψα in Sm is strictly positive.

Proof: Let x∗ be a local maximum and O its domain of
attraction for (11). Since the graph is irreducible and the prob-
ability of next choice being j is strictly positive ∀ j ∈ N (i)
when the current choice is i, it follows that the probability
of {x(n)} reaching O from any initial condition in finitely
many steps is strictly positive. Once in O, the probability of
convergence to x∗ is strictly positive by Theorem III.4 of [23],
implying the claim.

2This makes it a special case of a ‘Morse-Smale system’.

(0,1)(0,1)

(1,0)(1,0)

Fig. 1: An illustration of the collapse of sets Bα to B∞.

We have

Ψα(π) =
1

2α

∑
i,j

(µiµj)
αaijπ

α
i π

α
j .

Corollary 3.4: The local maxima of Ψα are of the form
π(i) = z(i)

1
α where z is a local maximum of the quadratic

form in {xi} given by
∑
i,j xixj(µiµj)

αaij , over the set

Bα := {y : y(i) ≥ 0 ∀i,
∑
i

y(i)
1
α = 1}.

IV. ‘ANNEALED’ DYNAMICS

In this section, we consider the ‘annealed’ dynamics. That
is, taking a cue from simulated annealing [22], we consider
the asymptotics as α ↑ ∞, corresponding to the ‘temperature’
T := 1/α ↓ 0, slowly with time. A behavioral interpretation
is that the agents exhibit a herd behavior, weighing in public
opinion more and more with time. We first analyze the
optimization problem described in Corollary 3.4 as α ↑ ∞.
The set of limit points of Bα as α ↑ ∞ is given by (see Fig.
1) B∞ := ∩α>0(∪α′>αBα′) ⊃ B∗ := {ei, 1 ≤ i ≤ m},
where ei, 1 ≤ i ≤ m, are the unit coordinate vectors. Let

D := {i ∈ V : µi = max
j
µj} (16)

and Πα := {π ∈ Sm : π is a local maximum of Ψα}, α > 0.
Lemma 4.1: If αn ↑ ∞ and πn ∈ Παn , then πn → B∗.

Proof: We are concerned here only about the relative
sizes (i.e., ratios) of the summands in the definition of Ψα.
So we may assume that maxi µi = 1 and drop the factor
1
2α in the definition of Ψα. This simplifies the analysis while
not affecting the location of local maxima and the relative
magnitudes of the function values there. Let S∗ := {i : µi =

1}. Then
∑
i,j(µiµj)

αaijx(i)x(j)
α↑∞→ 0 uniformly outside

any relatively open neighborhood of B∗ in Sm. Hence

max
x∈Sm

∑
i,j

(µiµj)
αaijx(i)x(j)

α↑∞→ max
x∈B∞

∑
i,j

(µiµj)
αaijx(i)x(j) = 1,

which is attained at some ei, i ∈ S∗. The claim follows.
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Recall from (12) that πα is a (not necessarily unique)
solution to the fixed point equation

πα(i) :=
fαi (πα)

∑
k∈N (i) f

α
k (πα)∑

`(f
α
` (πα)

∑
k∈N (`) f

α
k (πα))

. (17)

Decrease T := 1/α slowly according to the iteration

T (n+ 1) = (1− b(n))T (n), n ≥ 0, (18)

where 1 > b(n) ↓ 0 are stepsizes satisfying∑
n

b(n) =∞, nb(n)
n↑∞→ 0, b(n) = o(c(n)). (19)

The second condition implies
∑
n b(n)2 < ∞. Assume that

x(0) ∈ int(Sm). This is not a restriction, since x(n) ∈ int(Sm)
from some n on when all possible choices have been made at
least once and the above requirement can be ensured simply by
counting time from then on. Our main result is the following,
reminiscent of ‘stochastically stable’ equilibria of [33].

Theorem 4.2:
∑
i∈D xi(n)→ 1 a.s.

Proof: The second and third conditions in (19) render the
pair (1), (18) a two time scale stochastic approximation with
(1) run on a fast time scale and (18) run on a slower time scale.
In fact the situation is simpler than the general two time scale
schemes because the latter does not depend on the former, the
dependence is unidirectional. We shall use the results of [31].
In [31], stochastic recursive inclusions involving set-valued
maps on both time scales are considered. In (1), (18), we have
instead single valued Lipschitz maps for which assumptions
A1-A8 of [31] are easily verified. Our slow iteration (18) has
a unique limit 0, whence A10 of [31] is trivially satisfied. This
leaves the verification of assumption A9 of [31]. Consider (1)
for fixed α = 1/T, ε(n) ≡ 0, and define:

DT
0 := {π : π satisfies the fixed point equation (17)}.

Let DT := the closed convex hull of DT
0 . Using the fact that

T (n) update on a slower time scale and hence are ‘quasi-
static’ for the faster time scale of x(n) (cf. the ‘two time
scale’ methodology of [12], secion 6.1), we first ‘freeze’ the
slow components T (n) ≈ T and analyze the fast iterate (1).
By the theory of stochastic approximation with Markov noise
(see [12], Chapter 6), it tracks the o.d.e. (11), a time-scaled
version of (13) as observed earlier. Thus it converges to DT

by Theorem 3.2. We next show that as T = T (n) ↓ 0 and
π̃n ∈ DT (n) n ≥ 1, π̃n → the set D defined in (16). Consider
a subsequence T̃ (n) ↓ 0 such that

π̃n := πα
∣∣∣
α=1/T̃ (n)

→ π∗

for some π∗ ∈ Sm with support S∗. Rewrite (17) as

π̃n(i) =

∑
j∈N (i)[µiµj π̃n(i)π̃n(j)]1/T̃ (n)∑

i′
∑
j∈N (i′)[µi′µj π̃n(i′)π̃n(j)]1/T̃ (n)

=

∑
j∈N(i)[(µiµj π̃n(i)π̃n(j)]

1/T̃ (n)

maxk,l∈N(k)[µkµlπ̃n(k)π̃n(l)]1/T̃ (n)∑
i′

∑
j∈N(i′)[µi′µj π̃n(i

′)π̃n(j)]1/T̃ (n)

maxk,l∈N(k)[µkµl∈̃n(k)π̃n(l)]1/T̃ (n)

.

As T̃ (n) ↓ 0, this concentrates on the set of (i, j) ∈ E for
which

µiπ
∗(i)

∑
j∈N (i)∩S∗

µjπ
∗(j)

= max
k

µkπ∗(k)
∑

`∈N (k)∩S∗
µ`π
∗(`)

 .

Combined with Lemma 4.1, this implies that the measure will
concentrate on the i such that

µ(i)2 = max
j
µ(j)2,

i.e., on D. Setting D1/T = D when T = 0, this verifies A9 of
[31] for our purposes3. Then Theorem 4, p. 1435, [31], holds.
We note that in the notation of this theorem, Y = {0} and
λ(y) = D1/y , whence the claim follows.

V. THE UNCONSTRAINTED CASE

In this section we consider the case without graphical
constraints, i.e., when the graph G is fully connected, where
we can say more. The case without graphical constraints can
be viewed as a special case with G = the complete graph,
i.e., aij = 1 ∀ i, j. Then Ψα(x) = (

∑
i f

α
i (x))

2, which is
convex for α ≥ 1, where the absence of graphical constraints
does allow us to make stronger statements. Unfortunately this
does not buy us stronger results for the α ↑ ∞ asymptotics.
However, the story is different for a fixed α ∈ (0, 1), where we
indeed can say much more than in the graphically constrained
case. Specifically, we get desired convergence guarantees even
for a fixed α in this range, and make an analogy with Ant
Colony Optimization [1], [13].

For α ∈ (0, 1), since the expression being squared is
non-negative, we can equivalently consider the problem of
maximizing ψα(x) :=

∑
i f

α
i (x), which is strictly concave.

Hence it has a unique maximum on Sm to which our scheme
will converge even without annealing. In fact, in this case,
the stationary solution can be specified explicitly using the
Lagrange multiplier technique as:

xi(∞) =
µ
α/(1−α)
i∑m

k=1 µ
α/(1−α)
k

. (20)

From (20), as α→ 1, the frequencies xi(∞) start to concen-
trate on D defined in (16). As seen in the simulation section,
in practice one does not need to take α very close to one.
If α = 1, the replicator dynamics has the well studied linear
payoffs and converges to a solution with only one nonzero
component by standard arguments.

Now consider the case of α > 1 with ε(n) ≡ a constant ε >
0. Note that in the unconstrained case, given x, the transition
probability matrix [[pα,εij (x)]] is a stationary probability matrix
with the identical rows πα,ε(x) given by

πα,εi (x) := (1− ε) fαi (x)∑
k f

α
k (x)

+ ε
1

m
.

3It is also clear that the limiting measure will be uniform on D.
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(a) Linear Topology (b) Star Topology

Fig. 2: Fraction of total Visits, x(n) Vs. Iteration Count for Linear and Star Topology.

(a) Initialize in clique-2, α fixed. (b) Initialize in clique-2, α→ ∞.

Fig. 3: Fraction of total Visits, x(n) Vs. Iteration Count for the two clique experiment

Hence its stationary distribution coincides with its (identical)
rows. By Corollary 8, p. 74, [12], the sequence {x(n)} tracks
the o.d.e.

ẋi(t) = πα,ε(x(t))− xi(t), (21)

i.e.,

ẋi(t) = (1− ε) fαi (x(t))∑
k f

α
k (x(t))

+ ε
1

m
− xi(t).

The stationarity condition for the above o.d.e. gives

(1− ε) fαi (x)∑
k f

α
k (x)

+ ε
1

m
− xi = 0 ∀i. (22)

If ε→ 1, then by standard continuity arguments, x→ the set
of solutions to (22) corresponding to ε = 1. This is a singleton
consisting of the uniform distribution xi = 1

m ∀i. The map

(x, ε) 7→ F (x, ε) :=

(1− ε)(
∑
k

fαk (x))−1[fα1 (x), · · · , fαm] +
ε

m
I − x

has a nonsingular Jacobian matrix −I w.r.t. x in int(Sm) at
ε = 1. Hence by the implicit function theorem, the fixed point
xε of (22) is an analytic function in a small neighborhood of

the uniform distribution [6], i.e.,

xi(ε) =
1

m
+ (1− ε)x(1)i + ... .

Substituting this expansion in the stationarity condition (22)
and equating terms with the same powers of 1− ε yields

x
(1)
i =

µαi∑m
k=1 µ

α
k

− 1

m
.

This implies that the states with indices in the set D will obtain
a larger fraction of visits in comparison with the other states.
This is reminiscent of the Ant Colony Optimization algorithm
of [1], [13] where the initial randomness itself builds up the
bias in favor of the optimum, to which the scheme converges
with high probability. A very fine analysis of the α > 1 case
for a related model appears in [10].

The payoff functions {ϕαi (·)} in (13) are of the form
ϕαi (z) = gi(zi)h(z) for h(·) : Sm 7→ (0,∞) and gi : [0, 1] 7→
R+, where the latter are monotone increasing. As shown in
Lemma 4, p. 14, [13], corners of Sm, i.e., {ei}, are stable
equilibria for (13) and the only ones to be so. Moreover, the
domain of attraction of ei is {z ∈ Sm : zi > zj , j 6= i}. In
view of the foregoing, this makes it clear how the bias for the
optimum builds up starting from a uniform prior.
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VI. SIMULATION EXPERIMENTS

In this section we empirically demonstrate our theoretical
results on a star and linear graph topology (with m = 4,
see Fig. 2 and 3). For the linear topology, µ = (2, 14 ,

1
2 , 1),

designed so as to demonstrate the hill descending capabilities
(i.e. jump out of the local maximum at node 4) of the
algorithm. The noise ζi(·) is assumed to be N(0, 0.1). The
random exploration parameter is set as ε(n) := 1

log(n+1) . As
can be seen in Fig. 2, x1(n) (the fraction of visits to the
node with the highest µ) converges to 1 as n ↑ ∞. We
remark here that the cooling schedule {α(n)} is the most
important (and sensitive) parameter of the algorithm. A too fast
or constant cooling schedule may tend to make the algorithm
get stuck in the local maximum at node 4. The cooling

schedule we used was α(n+ 1) = α(n)
(

1− 1
n logn

)−1
. For

initial few iterations, we keep α = 10−2 fixed to promote
exploration. For the star topology, µ = (1, 13 ,

1
3 ,

1
3 ). The

cooling schedule was the same as before. Here, the central
node, i.e. the node connected to all other nodes, is node 4.
For comparison purposes, we have also tried µ = (2, 14 ,

1
2 , 1)

with the fixed α = 0.85 < 1 in the complete graph setting.
The dynamics always converges to the stationary solution
(0.98, 0.000, 0.000, 0.019). This demonstrates our conclusion
from Section V that in the unconstrained case for the values
of α < 1 even not so close to one, a very significant portion
of the mass is concentrated on the optimal node.

Our next numerical experiment is aimed at highlighting the
importance of annealing for convergence of x(n) to D. We
consider a graph composed of two cliques connected through
a single edge. The number of nodes for clique-1 is 2 and
those for clique-2 is 8. We set the noise ζi = 0 for all i for
this experiment. The results have been plotted in Fig. 3. We
set µi = 1 for i ∈ clique-1 and µi = 0.5 for i ∈ clique-2.
Some points to note are:
• If we initialize the walk in clique-2 and do not increase
α → ∞, then the relative frequencies converge to non-
zero values for nodes in clique-2. (In Fig. 3(a), we have
set T = 0.1 (α = 10).)

• If we initialize the walk in clique-2 and do increase α→
∞, then the chain moves to clique-1 and stays there.

With linear topology, we make an important comparison
with the multiarmed bandit literature. With nodes labeled
{1, 2, 3, 4}, the α ↑ ∞ limit corresponds to the transition
probabilities

p(1|1), p(1|2), p(4|3), p(4|4) = 1, p(i|j) = 0 otherwise.

That is, the chain moves deterministically to the neighbor
(including itself) with the highest reward. It has two commu-
nicating classes {1, 2} and {3, 4}. For ε ∈ (0, 1), the ε-greedy
policy has a stationary distribution that is seen to concentrate
equally on 1, 4 as ε ↓ 0 by the symmetry of the problem. In
particular, it is a suboptimal distribution. A simple two time
scale argument applied to (1) then shows that x(n) converges
this suboptimal distribution. In contrast, if we consider the
corresponding fully connected graph with the same reward
structure, the purely greedy policy given by the α ↑ ∞ limit
has p(1|i) = 1 ∀i and the stationary distribution is seen to

concentrate on the optimal node 1. In the fully connected
case the ε(n)-greedy policy with ε(n) = 1

n converges to the
optimal, as shown in Theorem 3 of [4]. Thus, a standard bandit
algorithm can fail in the graph-constrained framework.

In Fig. 4, we provide a comparison of the proposed al-
gorithm with Simulated Annealing. We briefly describe the
details of the modified version of SA we use here. The SA
algorithm consists of a discrete time inhomogeneous Markov
chain, whose transition mechanism P (n) := [[pxy(n)]]x,y∈V
for temperature Tn can be formally written as:

px,y(n) =

0, if y /∈ N (x)

1
|N (x)| exp

{−(µ̂x(n)−µ̂y(n))+
Tn

}
, otherwise

and
px,x(n) = 1−

∑
i∈N (x)

px,i(n),

where (x)+ := max(0, x) and µ̂x(n) is the empirical mean
estimate at time n of object x. To keep the comparison to
our algorithm fair we update the empirical mean in the same
manner as (4).

Judging from Fig. 4, our algorithm achieves a better medium
and long run performance in terms of relative frequency of the
optimal reward for both linear and star topology. The time step
for SA is kept equal to γ

log(1+k) , where γ = 0.1 is selected
empirically to give the best performance.

Fig. 4: An empirical comparison of SA with the proposed
algorithm for star and linear topology. The reward vectors are
kept the same as the previous experiments.

Appendix I

Proof of Lemma 2.1 : This follows from the strong law of
large numbers if

Si(n) ↑ ∞, (23)

and our convergence analysis applies. But (23) follows from
the fact

∑
n ε(n) = ∞, because by the conditional Borel-

Cantelli lemma (Lemma 17, p. 49, of [12]),∑
n

I{ξ(n+ 1) = i} =∞⇐⇒
∑
n

P (ξ(n+ 1) = i|Fn) =∞
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a.s. Now χ(ξ(n)) assigns mass 1
|N (i)| ≥

1
m to i when ξ(n) ∈

N (i) and 0 otherwise. Hence∑
n

P (ξ(n+ 1) = i|Fn) ≥ 1

m

∑
j∈N (i)

∑
n

ε(n)I{ξ(n) = j},

By the conditional Borel-Cantelli lemma,
1

m

∑
j∈N (i)

∑
n

ε(n)I{ξ(n) = j} =∞

⇐⇒ 1

m

∑
j∈N (i)

∑
n

ε(n)P (ξ(n) = j|Fn−1) =∞.

Using a similar bound for P (ξ(n) = j|Fn−1) yields

1

m

∑
j∈N (i)

∑
n

ε(n)P (ξ(n) = j|Fn−1)

≥ 1

m2

∑
k∈N (j)

∑
j∈N (i)

∑
n≥1

ε(n)2I{ξ(n− 1) = k},

and so on, so combining all these inequalities and using (6),
1

mm

∑
n≥m

ε(n)m =∞ =⇒
∑
n

I{ξ(n+ 1) = i} =∞

a.s. Thus (23) holds.

Appendix II

Here we sketch the proof of the ‘avoidance of unstable
equilibria a.s.’ (also known as ‘avoidance of traps’) result
invoked in the proof of Theorem 3.2. This is based on the
results of section 4.3, [12], pp. 44-51, originally from [11].
These in turn depend on the estimates of section 4.1, pp. 31-
41 of [12]. We sketch the main steps, referring the reader to
the above for details common to both and highlight only the
differences between the present set-up and that of section 4.3,
[12]. For later reference, we use (An)∗, n ≥ 1, to denote the
assumptions of ibid. and simply (An) to refer to our own.

The proof of ibid. is broadly in two parts. The bulk of the
work is for the first part, which is to show that the iterates
will keep getting pushed away from the stable manifolds of
unstable equilibria sufficiently often, a.s. This is an argument
based on the conditional Borel-Cantelli lemma. In [12], this
argument relies on showing that the aggregated martingale
noise over an interval approaches a non-degenerate gaussian
distribution under suitable scaling, by the central limit theorem
for martingale arrays. This is ensured by assumption (A6)∗.
The topological assumption (A5)∗ then ensures that there
is enough probability of the iterates getting pushed away
adequately and often enough that they move away from the
manifold, to the domain of attraction of stable equilibria.
The second part then says that it will converge to a stable
equilibrium almost surely. This uses a concentration result
from section 4.1 of [12], which quantifies the probability of
convergence to a stable equilibrium given that the current
iterate is in its domain of equilibrium. For us, the second part
simply amounts to replacing the latter result by its counterpart
for Markov noise from [23]. The first part is what takes
the most effort. While (A5)∗ can be ensured by imposing a

reasonable assumption, (A6)∗ turns out to be more elusive,
precisely because of graph constraints that imply motion only
to neighboring nodes. Thus, the natural counterpart of (A6)∗

that would require the conditional covariance of ξ(n+1) given
Fn to be non-singular is simply false. Luckily, we need such
non-singularity to hold in an average sense. Bulk of our work
below will be towards establishing this. The condition (A7)∗

is simply replaced by its suitable counterpart here, so it is not
a major issue.

It should also be added that the assumptions and proof of
[11] followed here are among many such for ‘avoidance of
traps’ results, see [15], [27], to name some others. Thus it
seems eminently possible to adapt these to give alternative sets
of assumptions and corresponding proofs for Markov noise.

We begin by discussing the key assumptions (A5)∗-(A8)∗

in section 4.3, [12], that are specific to the results therein.
Assumptions (A1)∗-(A4)∗ of ibid. are generic assumptions for
stochastic approximation that are already covered here. Let
mi = |N (i)|. Define the {Fn}-martingale difference sequence

Mi(n+ 1) = I{ξ(n+ 1) = i} − (1− ε(n))pαξ(n)i(x(n))

− ε(n)I{i ∈ N (ξ(n))}/mi. (24)

Let a(n) := 1
n+1 , n ≥ 0. Then (1) can be written as

xi(n+ 1) = xi(n) + a(n)

[
(1− ε(n))pαxi(n)j(x(k)) +

ε(n)

mi

]
+ a(n)Mi(n+ 1), 1 ≤ i ≤ m. (25)

Let W denote the complement of the union of the domains
of attraction of stable equilibria, i.e., the local maxima of Ψ.
One important implication of (A2) is the following. Define the
truncated open cone

Cκ :=

x ∈ Sm : 1 < x1 < 2,

∣∣∣∣∣
m∑
i=2

x2i

∣∣∣∣∣
1/2

< κx1


for some κ > 0. For any orthogonal matrix O, x ∈ Rd and
a > 0, we let OD, x + D and aD denote respectively, the
rotation of D by O, translation of D by x, and scaling of D
by a. Then (A2) implies:

(A2’) There exists κ > 0 such that for any x ∈ Sm and
sufficiently small a > 0, there exists an orthogonal matrix
Oa,x such that B(x, a, κ) := x + aOx,aCκ satisfies: any
y ∈ B(x, a, κ) is at least distance a away from W .

This means in particular that for any sufficiently small a >
0, we can plant a version of the truncated cone scaled down by
a near x by means of suitable translation and rotation, in such
a manner that it lies entirely in W . This ensures that any point
in Rm cannot have points in the complement of W arbitrarily
close to it in all directions. This replaces (A5)∗. Next we
consider (A6)∗. This is not appropriate for the ‘Markov
noise’ framework here, hence will have to be modified. We
modify it by replacing Q(x) there by Qni (x), 1 ≤ i ≤ m,
where Qnξ(n)(x(n)) is the conditional covariance matrix of the
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WW
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XX

Fig. 5: An illustration of Assumption 2’.

random vector [I{ξ(n + 1) = 1}, · · · , I{ξ(n + 1) = m}]
conditioned on ξ(n), x(n), which is the same as ‘conditioned
on Fn’ by virtue of conditional independence. Then Qni (x)
has a mi ×mi diagonal block Q̄ni (x), corresponding to rows
and columns indexed by elements of N (i). Note also that
I{ξ(n + 1) = j}, j ∈ N (i), conditioned on ξ(n), x(n),
are conditionally Bernoulli random variables, albeit correlated.
The remaining rows and columns of Qni (x) are zero. Thus
Qni (x) is singular for each i, n, and the obvious counterpart
of (A6)∗, which would require the least eigenvalue of the
Qni (x)’s to be bounded away from zero, is not tenable.
However, a closer scrutiny of the arguments of section 4.3,
[12], specifically the last part of the proof of Lemma 16 there,
shows that the actual requirement is weaker. We exploit this
fact below.

An additional complication is that the smallest eigenvalue
of the diagonal submatrices Q̄ni (x) is also zero because of
the fact that

∑
j∈N (i) I{ξ(n + 1) = j} = 1 when ξ(n) = i

introduces degeneracy: the vector 1 := [1, · · · , 1]T is always
an eigenvector corresponding to eigenvalue 0. However, our
dynamics is confined to the probability simplex, a compact
manifold with boundary, to which 1 is orthogonal. Thus we
need to consider only the linear transformations

y ∈ Rmi 7→

Si := {z ∈ Rmi : zj ≥ 0, 1 ≤ j ≤ mi,

mi∑
j=1

zj = 1}.

We show later that the least eigenvalue λn(i) of Q̄ni (x)
∣∣∣
Si

satisfies
λn(i) ≥ ε(n)

m
, (26)

which in turn implies that

Q̄i(x)
∣∣∣
Si
≥ ε(n)

m
Ji

∣∣∣
Si
, (27)

where Ji := the diagonal matrix with diagonal elements
= 1 for rows and columns corresponding to N (i) and = 0
otherwise. The inequality in (27) is w.r.t. the usual partial
order for positive semidefinite matrices. Denote by I the m-
dimensional identity matrix and by Dπα the Jacobian matrix

of πα. Also define

ϕ(n) =

(
s(n)∑
k=n

a(k)2ε(k)

) 1
2

.

where s(n) := min{k ≥ n :
∑k
`=1 a(k) ≥ T} for a prescribed

T > 0. Then as in p. 48, [12], we have,

1

ϕ(n)2

s(n)+i−1∑
j=s(n)

a(j)2×

(
s(n)+i−1∏
k=j+1

(I + a(k)(Dπα(x(n))− I))

)
×Qξ(n)(x(n))×(
s(n)+i−1∏
k=j+1

(I + a(k)(Dπα(x(n))− I))

)T
≥ 1

mϕ(n)2
×

s(n)+i−1∑
j=s(n)

a(j)2

(
s(n)+i−1∏
k=j+1

(I + a(k)(Dπα(x(n))− I))

)

×ε(k)Jξ(n)

(
s(n)+i−1∏
k=j+1

(I + a(k)Dπα(x(n))− I))

)T
.

(28)

Define the random probability vector ν(n) =
[ν1(n), · · · , νs(n)] by

νi(n) :=

∑s(n)
k=n a(k)2ε(k)I{ξ(k) = i}∑s(n)

k=n a(k)2ε(k)

for i ∈ S. Then an argument analogous to that of Lemma 6, pp.
73-74, [12], shows that a.s., every limit point π∗ of {ν(n)} is
some stationary distribution πα for {ξ(n)}. In particular, it has
full support by virtue of (17). By dropping to a further subse-
quence if necessary, consider a limit point of the r.h.s. of (28).
This will be of the form 1

m

∫ t
0

Φ(T, s)(
∑
i π
∗(i)Ji)Φ(T, s)T ds

for some t ≥ 0, where Φ(·, ·) is the fundamental matrix for the
linearization of the o.d.e. (11) restricted to SM . This is clearly
positive definite when restricted to SM

(
because

∑
i π
∗(i)Ji

is
)
. The argument leading to Corollary 18 in [12], pp. 49, then

goes through as before.
(A7)∗ is used in section 4.3, [12], on p. 50 alone. One

key step in its application there is the use of the estimate
of trapping probability (i.e., the probability of convergence to
a stable equilibrium conditioned on the iterates being in its
domain of attraction), from Theorem 8, pp. 37, [12]. This is
used to conclude the proof in section 4.3 of [12]. That estimate
cannot be used here because we are dealing with Markov
noise. However, we can use the (stronger) concentration result
from Theorem III.4, [23] to conclude our desired result in
a completely analogous manner. That said, we still need to
verify, as in p. 50 of [12], that
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∑
k≥n

1

(k + 1)2
= o(ϕ(n)) = o


√√√√s(n)∑
k=n

(
ε(k)

k + 1

)2

 . (29)

The l.h.s. is Θ
(
1
n

)
. The r.h.s. is Θ

(√
Tε(s(n))2

s(n)

)
= Θ

(
ε(n)√
n

)
because s(n) = Θ

(
neT

)
. Thus (29) amounts to 1/n

ε(n)/
√
n
→ 0,

i.e., ε(n) = ω
(

1√
n

)
. This is the second condition in (7).

(A8)∗ can be seen to hold in the interior of Sm, which is
our state space of interest, because it follows from (17) that
the equilibria will be in the interior of Sm.

We have ignored the errors due to time variation of
µ̂n, T (n) because they do not affect the analysis. Both
get multiplied by a(n) and are therefore o(a(n)) in the
‘drift’ (i.e., the driving vector field) of the algorithm and
contribute only an asymptotically negligible error. (See
again the second bullet on p. 17 of [12] which applies to
stochastic approximation with Markov noise as well.) The
factor a(n)ε(n) on the other hand multiplies the noise and
therefore is what matters for ‘avoidance of traps’.

Derivation of (26):

For ξn = i,

pn(j) := (1− ε(n))pαij(x(n))I{j ∈ N (i)}
+ ε(n)I{j ∈ N (i)}/mi. (30)

Then pn(j) ≥ ε(n)
mi

∀j ∈ N (i). Fix n. Let p =

[p(1), · · · , p(mi)] be a probability vector in Si0 := the simplex
of probability vectors in Rmi with each component ≥ ε(n)

mi
(in

particular, pn(·) ∈ Si0). Let y = [y1, · · · , ymi ]T ∈ Rmi satisfy
‖y‖2 = 1 and y ⊥ 1 (i.e.,

∑
i yi = 0). Then

yT Q̄i(x(n))y ≥ min
p∈Si0

 ∑
j∈N (i)

p(j)y2j −

∑
j

p(j)yj

2
 .

The function of p(·) in parentheses on the right is concave
in p(·) for a fixed x and will achieve its minimum at some
corner of Si0, say (without loss of generality) at

p :=

[
1− (mi − 1)ε(n)

mi
,
ε(n)

mi
, · · · , ε(n)

mi

]
. (31)

Then

yT Q̄i(x(n))y ≥ (1− ε(n))y21 +
ε(n)

mi

∑
i

y2j −(
(1− ε(n))y1 +

ε(n)

mi

∑
i

yi

)2

= ((1− ε(n))− (1− ε(n))2)y21 +
ε(n)

mi

≥ ε(n)

mi
,

where we use the identities
∑
i yi = 0,

∑
i y

2
i = 1. This

completes the proof.

Appendix III

In this appendix, we provide an example of {c(n)} in (5).
Let c(n) = 1

1+(n+1) log(n+1) in (5). Then we have

ε(n) =

n∏
k=1

(
1− 1

1 + (k + 1) log(k + 1)

)
ε(0)

< exp
(
−

n∑
k=1

1

1 + (k + 1) log(k + 1)

)
ε(0)

< exp
(
− log log n

)
υε(0)

=
υε(0)

log n

for some υ > 0. Thus ε(n) = O
(

1
logn

)
. Next we show that

ε(n) = Ω
(

1
logn

)
. For this we use the fact for x ∈ (0, 1),

log

(
1

1− x

)
≤ x

1− x
=⇒ 1− x ≥ e−

x
1−x .

Letting ε(0) = 1 without loss of generality,

ε(n) =

n∏
k=1

(
1− 1

1 + (k + 1) log(k + 1)

)
≥

n∏
k=1

e
− pk

1−pk for pk :=
1

1 + (k + 1) log(k + 1)

= e
−

∑n
k=1

pk
1−pk .

As p ↓ 0, p
1−p = p(1 + o(1)). Thus

ε(n) ≥ e−
∑n
k=1 pk(1+o(1)).

But

n∑
k=1

pk ≤ p1 +

∫ n

0

1

1 + (1 + y) log(1 + y)
dy

≤ log log(n+ 1) + logC ′

for suitable C ′ > 0. Hence for suitable C > 0,

ε(n) ≥ Ce−(1+o(1))
∑n
k=1 pk

≥ Ce−(1+ε(n))(log log(n+1))

where ε(n)
n↑∞→ 0,

=
C

(log(n+ 2))1+ε(n)
.

That is, ε(n) = Θ((log n)−1).
Using the above, it is easy to verify that {c(n)} satisfies

the stipulated conditions.
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