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Abstract

We consider the best-choice problem for independent, not necessarily identically
distributed observations X1, · · · , Xn with the aim of selecting the sample minimum.
We show that in this full generality the monotone case of optimal stopping holds and
the stopping domain may be defined by the sequence of monotone thresholds. In
the iid case we get the universal lower bounds for the success probability. We cast
the general problem with independent observations as a variational first-passage
problem for the running minimum process which simplifies obtaining the formula
for success probability. We illustrate this approach by revisiting the full-information
game (where Xj ’s are iid uniform-[0, 1]), in particular deriving new representations
for the success probability and its limit by n → ∞. Two explicitly solvable mod-
els with discrete Xj ’s are presented: in the first the distribution is uniform on
{j, · · · , n}, and in the second the distribution is uniform on {1, · · · , n}. These ex-
amples are chosen to contrast two situations where the ties vanish or persist in the
large-n Poisson limit.

1 Introduction
The best-choice aka secretary problems are stochastic optimisation tasks where the objec-
tive is to select one or few ‘best’ elements of a random sequence observed in online regime.
Many versions of the problem are surveyed in [6, 20], these differ in the way to compare
data, the sample size, observer’s information and other constraints on admissible decision
strategies. In this paper, under ‘best’ we mean the sample minimum, admissible decision
strategies are stopping times, the number of observations is fixed and the data elements
are drawn independently from distributions which may be different or have discontinu-
ities. The focus will be on examples highlighting a connection of the optimal stopping
strategy with a first passage time for the running minimum process.

Let X1, · · · , Xn be independent random variables and denoteMj = min{X1, · · · , Xj},
j ≤ n, the running minimum. Suppose the values of Xj’s are observed sequentially
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with the objective to stop, with no recall permitted, at some value coinciding with the
ultimate minimum Mn, considered as the best option (possibly not unique) out of n
options available. Specifically we are concerned with the maximum probability

vn := sup
τ

P(Xτ = Mn), (1)

where τ runs over all stopping times adapted to the natural filtration of the observed
sequence. The general discrete-time optimal stopping theory [3] ensures that there exists
a stopping time achieving vn.

We call Xj a (lower) record in the event Xj = Mj. To include the possibility of ties we
make difference between strict records Xj < Mj−1 and weak records Xj = Mj−1 (where
formally M0 = ∞). Given a record Xj = x, the probability of Xj = Mn decreases in x
and increases in j, hence it is natural to expect that the optimal stopping time can be
determined in terms of certain critical thresholds b1 ≤ · · · ≤ bn = ∞. For the case of
iid observations drawn from given continuous distribution this was shown in the seminal
paper by Gilbert and Mosteller [7], where the problem was called the full-information
game. The name underscores the difference with the no-information problem where the
distribution is unknown and the stopping decisions depend only on the relative ranks of
observations. In the iid continuous case the optimal value, denoted further vn, does not
depend on the distribution which may be assumed uniform-[0, 1]. For sampling from the
uniform distribution Gilbert and Mosteller [7] derived exact and approximate formulas for
the thresholds and used these to observe numerically that vn converge to v = 0.580164 · · · .
The limit was confirmed by Samuels [20] who actually proved that the convergence is
monotone, vn ↓ v, and derived an explicit formula for v. Further insight was gained from
coupling with the asymptotic ‘n =∞’ form of the problem associated with a homogeneous
planar Poisson process, see [8, 10].

Some past work is related to the best-choice problem with discrete or not identically
distributed observations. Campbell [2] considered iid discrete observations from a Dirich-
let process, a setting which according to [6, 20] should be classified as a partial information
version of the problem, where the decision process incorporates Bayesian inference about
the source distribution. Faller and Rüschendorf [5] extended the framework of [8] to con-
nect the finite-n problem with independent observations to a possibly nonhomogeneous
planar Poisson limit. Hill and Kennedy [13] used single-threshold strategies to prove a
general sharp bound vn ≥ (1 − 1/n)n−1 (implying the lower bound 1/e uniformly in n)
and found explicitly the worst-case distributions for independent non-iid Xj’s. The same
bound is known to hold if the data are sampled from a continuous distribution but the
observation order is controlled by adversary [11]. Of recent results we mention the paper
by Nuti [16], where the lower bound vn was shown for the model where the observed
sequence is a random permutation of n independent non-iid values.

The rest of the paper is organised as follows. In Section 2 we treat the best-choice
problem with independent observations in full generality, argue that the monotone case
of optimal stopping [3] holds, hence conclude that the structure of the stopping domain
is as in the iid continuous case of [7]. For the iid case with ties we prove the universal
lower bounds vn and v. Then we cast the general problem with independent observations
as a variational first-passage problem for the running minimum process. This gives some
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simplification in assessing the success probability, since the conditional payoffs can be
expressed directly in terms of the Markov process (Mj, j ≤ n). In Section 3 we illustrate
the approach by revisiting the classic iid continuous case, in particular deriving new
representations for vn and v. In Sections 4 and 5 we scrutinise two explicitly solvable
models with discrete Xj’s: in the first, suggested to us by Prof. J. Cichoń, the distribution
is uniform on {j, · · · , n} (the triangular model), and in the second the distribution is
uniform on {1, · · · , n} (the rectangular model). These examples are chosen to contrast
two situations where the ties vanish or persist in the large-n Poisson limit, and both can
be included in natural parametric families of distributions which are still tractable.

2 Some general facts

2.1 Structure of the stopping domain
Assuming X1, · · · , Xn independent, let Fj denote the right-continuous cdf of Xj, and let

s(j, x) :=
n∏

k=j+1
(1− Fk(x−)),

v(j, x) := sup
{τ : τ>j, Xτ≤x}

P(Xτ = min{Xj+1, · · · , Xn}).

If no choice has been made from the first j − 1 observations, then conditionally on
record Xj = x stopping is successful with probability s(j, x), and the continuation value
achievable by skipping the record is v(j, x), regardless of the past observed values. Let
B := {(j, x) : s(j, x) ≥ v(j, x)}, seen as a subset of {1, · · · , n} × R. The optimality
principle for problems with finitely many decision steps [3] entails that the stopping time

τn := min{j ≤ n : Xj = Mj, (j,Xj) ∈ B}

(min∅ = n) is optimal.
The function s(j, x) is nonincreasing and left-continuous in x, and nondecreasing in

j. Likewise, v(j, x) is nondecreasing and right-continuous in x. Discontinuity may only
occur if some of the distributions Fj+1, · · · , Fn have an atom at x, in which case the jump
of s(j, x) is equal to the probability of min{Xj+1, · · · , Xn} = x, and the jump of v(j, x) is
not bigger than that. By the monotonicity, there exists a threshold bj (finite or infinite)
such that s(j, x) ≥ v(j, x) for x < bj and s(j, x) < v(j, x) for x > bj, so if the threshold is
finite {x : s(j, x) ≥ v(j, x)} is either (−∞, bj) or (−∞, bj].

Example The Bernoulli pyramid of Hill and Kennedy [13] illustrates an extreme pos-
sibility. This has X1 = 1, and for j = 2, · · · , n the observations are two-valued with
P(Xj = 1/j) = 1 − P(Xj = j) = p. The relative ranks assume only extreme values
and are independent. From this one computes readily that s(j, x) = (1 − p)n−j and
v(j, x) = (n− j)p(1− p)n−j−1, hence it is optimal to stop if 1− p ≥ (n− j)p. That is to
say, bj = −∞ for j < n − (1 − p)/p and bj = ∞ for j ≥ n − (1 − p)/p. The worst-case
scenario for the observer is the parameter value p = 1/n, when the optimal best-choice
probability is vn = (1− 1/n)n−1.
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Proposition 1. The optimal thresholds satisfy b1 ≤ · · · ≤ bn = ∞, and B is a closed
(no-exit) set for the running minimum process.

Proof. Arguing by backward induction suppose bj+1 ≤ · · · ≤ bn = ∞ and that B is no-
exit for the paths entering on step j + 1 or later. If 1 − Fj+1(bj+1) = 0 then obviously
s(j, x) = 0 for x > bj+1, whence bj ≤ bj+1. Suppose 1 − Fj+1(bj+1) > 0. For x > bj+1 a
continuity point of Fj+1 we have

v(j, x) ≥ [1− Fj+1(x)]v(j + 1, x)

+
∫ x

−∞
s(j + 1, y)dFj+1(y)

≥ s(j + 1, x) ≥ s(j, x),

and v(j + 1, x) > s(j + 1, x) implies that the inequality is strict whenever Fj+1(x) < 1,
hence bj ≤ x. Letting x ↓ bj+1 gives bj ≤ bj+1, which by the virtue of natural monotonicity
of the running minimum yields the induction step if either bj < bj+1, or bj = bj+1 and
s(j, bj) < v(j, bj).

It remains to exclude the possibility bj = bj+1 when stopping at record Xk = bj
is optimal for k = j and not optimal for k = j + 1. But in the case bj = bj+1 and
s(j, bj) ≥ v(j, bj), for z = bj we obtain

s(j + 1, z) ≥ s(j, z) ≥ v(j, z)
= [1− Fj+1(z)]v(j + 1, z)
+ [Fj+1(z)− Fj+1(z−)] max{s(j + 1, z), v(j + 1, z)}

+
∫ z−

−∞
s(j + 1, y)dFj+1(y) ≥ v(j + 1, z),

therefore if stopping at record Xj = bj is optimal this also holds for Xj+1 = bj. This
completes the induction step.

Implicit to the proof is the formula for the continuation value in B

v(j, x) =
n∑

k=j+1

 k−1∏
i=j+1

(1− Fi(x))
∫ x

−∞
s(k, y) dFk(y)

 , (j, x) ∈ B. (2)

Extending our notation we may understand the running minimum (Mj, j ≤ n) as
a transient Markov chain with two types of states. A state (j, x) is associated with the
event Xj > Mj = x and state (j, x)◦ with the record Xj = Mj = x. The transition
probabilities are straightforward in terms of the Fj’s, for instance a transition from either
(j, x) or (j, x)◦ to (j + 1, x)◦ occurs with probability Fj+1(x)− Fj+1(x−).

Accordingly, we say that a first passage into B occurs by jump if the running minimum
enters the set at some record time (in a state (j, x)◦), and we speak of the first passage
by drift otherwise (i.e. in a state (j, x)). The success probability is s(j, x) if the first
passage occurs in (j, x)◦ and it is v(j, x) given by (2) for (j, x). The discrimination of first
passage cases leads to a two-term decomposition of vn, which we will derive in the sequel
for concrete examples.
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2.2 Bounds in the iid case
Suppose X1, · · · , Xn are iid with arbitrary distribution F . By breaking ties with the aid
of auxiliary randomisation we shall connect the problem to the iid continuous case.

It is a standard fact, known as probability integral transform, that F (Xj) has uniform
distribution if F is continuous. In general F (Xj) has a ‘uniformised’ distribution on [0, 1]
which does not charge the open gaps in the range of F [9]. To spread a mass over the
gaps, let U1, · · · , Un be iid uniform-[0, 1] and independent of Xj’s then we will have that
the random variables

Yj := F (Xj)− [F (Xj)− F (Xj−)]Uj (3)
are also iid uniform-[0, 1]. Moreover, they satisfy F←(Yj) = Xj where F← is the gener-
alised inverse. By monotonicity, Yj = min{Y1, · · · , Yn} impliesXj = Mn = min{X1, · · · , Xn}
therefore for any stopping time τ adapted to the Yj’s

P(Yτ = min{Y1, · · · , Yn}) ≤ P(Xτ = Mn) ≤ vn.

The second inequality follows since such τ is a randomised stopping time hence cannot
improve upon the nonrandomised optimum [3]. Taking supremum in the left-hand side
gives vn ≤ vn.

The probability of a tie for the minimum in sequence X1, · · · , Xn is given by

δn := 1− n
∫ ∞
−∞

(1− F (x))n−1dF (x). (4)

If there is no tie for the minimum, that is Xj = Mn holds for exactly one j ≤ n, then
Xj = Mn implies Yj = min{Y1, · · · , Yn}. Thus we obtain

P(Xτ = Mn)− δn ≤ P(Xτ = Mn, no tie) ≤ P(Yτ = min{Y1, · · · , Yn}) ≤ vn

for each τ adapted to the Xj’s (hence also adapted to the Yj’s). Choosing the optimal
τ = τn in the left-hand side gives vn ≤ vn + δn. To summarise, with the account of
monotonicity of vn’s [20] we have the following result.
Proposition 2. In the iid case vn ≤ vn ≤ vn + δn, hence vn > v implies the universal
sharp bound vn > v.

The probability of a tie for the first place (maximum) is a thoroughly studied subject
[1]. With the obvious adjustment these results are applicable to infer about possible
asymptotic behaviours of (4).

2.3 Poisson limit
Let N be a Poisson point process in [0, T ) × R with 0 < T ≤ ∞ and some nonatomic
intensity measure µ, which satisfies

µ({t} × R) = 0, 0 ≤ t < T,

µ([t, T )× [0,∞)) = ∞, 0 < t < T,

µ([0, t)× [0,∞)) = ∞, 0 < t < T,

µ([0, T )× (−∞, x]) < ∞, x ∈ R.
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The generic point (t, x) of N is thought of as mark x observed at time t; this is considered a
strict record ifN([0, t)×[0, x]) = 1 (point (t, x) itself) and weak record ifN([0, t)×[0, x)) =
0. The first assumption excludes multiple points, but several points of N can share the
same mark x if the measure is singular with µ([0, T ) × {x}) > 0. Furthermore, there is
a well defined running minimum process (Zt, t ∈ [0, T )), where Zt is the minimal mark
observed within time interval [0, t]. The information of observer accumulated by time t is
the configuration of N -atoms on [0, t]× R. The task is to stop with the highest possible
probability at observation with the minimal mark ZT := limt→T Zt.

We refer to Faller and Rüschendorf [5] for more formal and complete treatment of the
optimal stopping problem under slightly different assumptions on µ. In particular, they
only consider the case T = 1, but this is not a substantial constraint, because increasing
transformations of scales do not really change the problem. Part (a) of their Theorem 2.1
implies that there exists a nondecreasing function b : [0, T ) → (−∞,∞] such that it is
optimal to stop at the first record falling in the domain B = {(t, x) : x ≤ b(t)}. Equation
(2.7) of [5] gives a multiple integral expression for the probability of success under the
optimal stopping time.

A connection with the discrete time stopping problem is the following. Let X1, · · · , Xn

be independent, possibly with different distributions that may depend on n. Consider the
scatter of n points {(1, X1), · · · , (n,Xn)}, subject to a suitable monotone coordinate-wise
scaling, as a finite point process Nn on the plane, and suppose that Nn converges weakly
to N . Then, by part (b) of the cited theorem from [5], vn converges to the optimal
stopping value for N . Part (c) asserts that stopping on the first record of Nn falling in B
is asymptotically optimal for the discrete time problem.

The choice of scaling is dictated by the vague convergence of the intensity measure
ENn(·) to a Radon measure on the plane. In the iid case this is typically a linear scaling
from the extreme-value theory [17]. See [4] for examples of scaling for non-iid data.

3 The full-information game revisited

3.1 The discrete time problem
Let X1, · · · , Xn be iid uniform-[0, 1]. Thus ties have probability zero and all records are
strict. Consider stopping time of the form

τ = min{j ≤ n : Xj ≤ bj, Xj = Mj},

where 0 ≤ b1 ≤ · · · ≤ bn ≤ 1 are arbitrary thresholds, not necessarily optimal. We aim to
decompose the success probability P(Xτ = Mn) according to the distribution of the first
passage time for the running minimum

σ := min{j ≤ n : Mj ≤ bj+1}.

Obviously σ ≤ τ : namely σ = τ if σ is a record time, and otherwise σ < τ and τ is the
first record time (if any) after σ.

Suppose σ = j,Mj = x. If x ≤ bj then Mj−1 ≤ bj is impossible (otherwise we would
have σ < j), hence Mj−1 > bj implying that τ = j is a record time; we qualify this event
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as a passage by jump. Alternatively, in the case bj < x ≤ bj+1 the passage is by drift and
τ > j coincides with the first subsequent record time (if any). Accordingly, we have for
the joint distribution of σ and Mσ

P(σ = j , Mj ∈ [x, x+ dx]) =
{ (1− bj)j−1 dx, 0 ≤ x ≤ bj,

j(1− x)j−1 dx, bj < x ≤ bj+1.

In the first case the (conditional) success probability is (1−x)n−j, and in the second case

n∑
k=j+1

(1− x)k−j−1
∫ x

0
(1− y)n−kdy =

n−j∑
k=1

[(1− x)n−j−k − (1− x)n−j]/k.

Integrating yields

P(σ = j, Xτ = Mn) =
(1− bj)j−1 − (1− bj)n

n− j + 1 + j
n−1∑
k=j

[
(1− bj)k − (1− bj+1)k

k(n− k) − (1− bj)n − (1− bj+1)n
n(n− k)

]
,

which can be compared with Equation (3c-1) from [7] (where dj is our 1− bj) for P(τ =
j,Xj = Mn). Summation gives the success probability

P(Xτ = Mn) = 1
n

1−
n∑
j=1

(1− bj)n
+

n−1∑
j=1

j∑
i=1

[
(1− bi)j
j(n− j) −

(1− bi)n
n(n− j)

]
, (5)

with two parts corresponding to the passage by jump and drift.
The optimal threshold bj is a solution to

n−j∑
i=1

(1− x)−i − 1
i

= 1, x ∈ [0, 1].

Using this Sakaguchi [18] obtained a nice formula

vn = 1
n

1 +
n−1∑
j=1

n−1∑
k=j

(1− bj)k
j

 ,
which also gives the mean E[τn/n] for the optimal τn, as was shown by Tamaki [21].

3.2 Poissonisation
Let N be a planar Poisson process in [0, 1]×[0,∞) with the Lebesgue measure as intensity.
It is well known and easy to verify that for X1, · · · , Xn iid uniform-[0, 1], the planar point
process with atoms (j/n, nXj), j ≤ n, converges weakly to N .

There exists a still closer connection through embedding of the finite sample in N [8].
Consider instead of the uniform distribution the mean-n exponential. A sample from this
can be implemented by splitting [0, 1] evenly in n subintervals, and identifying the jth
point of Nn with the point of N having the minimal mark among the arrivals within the
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time interval [(j − 1), j/n). By this coupling the inequality vn > v becomes immediate
by noting that the stopping problem for Nn is equivalent to a choice from N where the
observer at time j/n has the power to revoke any arrival within [(j − 1)/n, j/n).

The running minimum (Zt, t ∈ [0, 1)) is defined to be the lowest mark of arrival on
[0, t]. With every point (t, x) ∈ [0, 1]× [0,∞) we associate a rectangular box ([t, 1]× [0, x])
to the south-east with the corner point (t, x) excluded. If there is an atom of N at location
(t, x) we regard it as record if there are no other atoms south-west of (t, x), and it is the
last record (with mark Z1) if the box contains no atoms. (See Figure 1.)

Figure 1: Records in a planar Poisson process in [0, 1] × [0,∞); - record (no Poisson
atoms south-west of it), - the last record (its box contains no Poisson atoms).

An admissible strategy is a stopping time which takes values in the random set of record
times and may also assume value 1 (the event of no choice). With every nondecreasing
continuous function b : [0, 1]→ [0,∞), b(1−) =∞, we associate a stopping time

τ = inf{t : (t, Zt) is record , Zt ≤ b(t)},

where inf ∅ = 1. The associated first passage time into B is defined as

σ = inf{t : Zt ≤ b(t)}.

Clearly, σ is adapted to the natural filtration of N , σ < 1 a.s. and σ ≤ τ . However, σ is
not admissible, because in the event Zσ = b(σ) of the boundary crossing by drift, there is
arrival at time σ with probability zero.

The modes of first passage by jump or drift can be distinguished in geometric terms.
Move the rectangular frame spanned on (0, 0) and (t, b(t)) until one of the sides meets
a point of N . If the point falls on the eastern side of the frame, the running minimum
crosses the boundary by a jump and σ = τ , if the point appears on the northern side, the
boundary is hit by a drift and σ < τ . See Figures 2 and 3.

We aim to express the success probability of τ in terms of (σ, Zσ). A key observation
which leads to explicit formulas is the self-similarity property: two boxes with the same
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Figure 2: Event σ = τ , the boundary b(t) is crossed by a jump, hence the record is caught
by the eastern side of a frame spanned on (0, 0) and (t, b(t)).

area z can be mapped to one another by a bijection which preserves both measure and
coordinate-wise order. Consider a box with apex at (t, x) hence size z = (1− t)x. Then

(i) if stopping occurs on a record at (t, x) it is successful with probability e−z,

(ii) if stopping occurs on a record at (t, Ux), for U distributed uniformly on [0, 1], it is
successful with probability

J(z) :=
∫ 1

0
e−zu du = 1− e−z

z
,

(iii) if stopping occurs at the earliest arrival inside the box (if any) it is successful with
probability

D(z) :=
∫ z

0
e−sJ(z − s) ds = e−z

∫ z

0

es − 1
s

ds.

These formulas are most easily derived for standard box [0, z]× [0, 1].
Now, the running minimum crosses the boundary b at time [t, t+ dt] by jump (hence

σ = τ) if there are no Poisson atoms south-west of the point (t, b(t)), and there is an
arrival below b(t). Given such arrival, the distribution of the record value Zt is uniform
on [0, b(t)], therefore this crossing event contributes to the success probability

e−tb(t)b(t) J((1− t)b(t)) dt.

Alternatively, (Zt) drifts into the stopping domain at time [t, t+ dt] (hence σ < τ) and τ
wins with the next available record with probability

e−tb(t)t(b(t+ dt)− b(t))D((1− t)b(t)).
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Figure 3: Event σ < τ - the boundary b(t) hit by a drift. Record caught by the northern
side of a frame spanned on (0, 0) and (t, b(t)).

We write the success probability with τ as a functional of the boundary

P(b) :=
∫ 1

0
e−tb(t)b(t) J [(1− t)b(t)] dt+

∫ ∞
0

e−tb(t)tD[(1− t)b(t)] db(t). (6)

Note that the distribution of σ is given by

P(σ ≤ t) =
∫ t

0
e−sb(s)b(s) ds+

∫ b(t)

0
e−sb(s)s db(s),

where the terms correspond to two types of boundary crossing.
We may view maximising the functional (6) as a problem from the calculus of vari-

ations. Recalling that the box area at record arrival is the only statistic which matters,
suggests to try the hyperbolic shapes

b(t) = β

(1− t) . (7)

Indeed, equating (i) and (iii), e−z = D(z), we see that the balance between immediate
stopping and stopping at the next record is achieved for β∗ = 0.804352 · · · solving the
equation ∫ z

0

es − 1
s

ds = 1.

The optimal stopping time is defined by domain B with the hyperbolic boundary and
β∗ (see Figure 4), because B is no-exit domain for the running minimum process, hence
the monotone case of optimal stopping [3] applies.
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Figure 4: The hyperbolic boundary b(t) = β∗

1−t .

For (7), the functional simplifies enormously, and the success probability becomes

P(b) = J(β)P(σ = τ) +D(β)P(σ < τ)
= D(β) + (J(β)−D(β))P(σ = τ)

= D(β) + (J(β)−D(β))
(
β eβ

∫ ∞
β

e−z

z
dz
)
.

Finally, for the optimal β∗ we get with the account of D(β∗) = exp(−β∗)

sup
b
P(b) = e−β

∗ + (eβ∗ − 1− β∗)
∫ ∞
β∗

e−s

s
ds = 0.580164 · · ·

which is the formula due to Samuels [20].
Historically, the first study of the full-information best-choice problem with arrivals

by Poisson process was Sakaguchi [19]. In that paper the marks are uniform-[0, 1] and
the process runs with finite horizon T . To obtain a sensible T → ∞ limit one needs to
resort to the equivalent model of Poisson process in [0, 1] × [0, T ]. The finite-T problem
can then be interpreted as N conditioned on the initial record at point (0, T ), then for
T ≥ β∗ the optimal success probability is given by the above formula but with the upper
limit T in the exponential integral.

4 A uniform triangular model
In the models of this section the background process lives in the domain x ≥ t. These
have some appeal for applications in scheduling, where interval [t, x] represents the time
span needed to process a job by a server, and exactly one job is to be chosen by a stopping
strategy. The optimisation task is to maximise the probability of choosing the job with
the earliest completion time.

11



4.1 The discrete time problem
LetX1, · · · , Xn be independent, withXj having discrete uniform distribution on {j, · · · , n}.
Obviously, we may focus on the states of the running minimum within the lattice domain
{(j, x) : j ≤ x ≤ n}.

By Proposition 1 the optimal stopping time is given by a set of nondecreasing thresh-
olds bj. Stopping at record (j, x)◦ is successful with probability

s(j, x) =
x−j−1∏
i=0

n− x+ 1
n− j − i

. (8)

Given the running minimumMj = x with x ≤ bj, the continuation value is a specialisation
of (2), assuming the form

v(j, x) =
x−j∑
i=1

( i−2∏
k=0

n− x
n− j − k

)
· 1
n− j − i+ 1 ·

x∑
y=j+i

s(j + i, y)
 . (9)

The success probability splits in two components, vn = Jn+Dn, where Jn results from the
running minimum breaking into B by jump, whileDn relates to drifting into B. Explicitly,

Jn =
n∑
j=1

j−2∏
k=0

n− bj
n− k

 · 1
n− j + 1 ·

bj∑
x=j

s(j, x)


and

Dn =
n∑
j=2

j−2∏
i=0

n− bj−1

n− i
−

j−2∏
i=0

n− bj
n− i

 · bj∑
y=bj−1+1

v(j, y)
bj − bj−1

 ,
bj is the biggest x with s(j, x) ≥ v(j, x) and the latter are given by (8) and (9).

The computed values plotted in Figure 5 suggest that vn monotonically decreases to
a limit 0.703128 · · · (check the next subsection for its exact derivation).

2000 4000 6000 8000

0.710

0.715

0.720

0.725

0.730

0.735

Figure 5: The optimal best-choice probability vn in the discrete triangular model for
n ∈ {100, · · · , 9000}.
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4.2 Poissonisation
The right scaling is guessed from the Rayleigh distribution limit

P(Mn > x
√
n) =

∏
j≤x
√
n

(
1− j

n− bx
√
nc+ j

)
→ e−x

2/2, x > 0. (10)

We truncated the product since Xj > x
√
n for j > x

√
n. Thus we define Nn to be the

point process with atoms (j/
√
n,Xj/

√
n), j ≤ n.

Now, we assert that the process Nn converges in distribution to a Poisson process
N with unit rate in the sector {(t, x) : 0 ≤ t ≤ x < ∞}. A pathway to proving this
is the following. For x > 0, convergence of the reduced point process of scaled times
{j/
√
n : Xj ≤ x

√
n} is established in line with Chapter 9 of [4]: this includes convergence

of the mean measure and the avoidance probabilities akin to (10) with j in the bounds
t1 < j/

√
n < t2. Then the convergence of the planar process Nn restricted to [0, x]× [0, x]

follows by application of the theorem about marked Poisson processes. Sending x → ∞
completes the argument.

Figure 6: Records in a planar Poisson process above the diagonal t = x of the positive
quadrant; - record (no Poisson atoms south-west of it), - the last record (its box
contains no Poisson atoms).

The best-choice problem for N is very similar to the one in the previous section. Under
a box with apex (t, x) we shall understand now the isosceles triangle with one side lying
on the diagonal and two other sides being parallel to the coordinate axis. The box area
is equal to z := (x − t)2/2. Equal-sized boxes can be mapped to one another by sliding
along the diagonal (see Figure 7).

In these terms, the basic functions are defined as follows:

(i) if stopping occurs on a record at (t, x) it is successful with probability e−z,

13



Figure 7: The linear boundary b(t) = t+
√

2β∗.

(ii) if stopping occurs on a record at random location (t, t+U(x− t)), for U distributed
uniformly on [0, 1], it is successful with probability

J(z) :=
∫ 1

0
e−zu

2 du =
√
π erf(

√
z)

2
√
z

(recall that erf(x) = 2√
π

∫ x
0 e
−t2 dt),

(iii) if stopping occurs on the earliest arrival inside the box (if any) it is successful with
probability

D(z) :=
∫ √2z

0
exp

(
−
√

2z s+ s2/2
)

(
√

2z − s)J
((√

z − s/
√

2
)2
)

ds

= e−z
∫ √2z

0

∫ u

0
e(u2−v2)/2dvdu.

The boundaries that come in question in this problem are non-decreasing functions
b : [0,∞)→ [0,∞) that satisfy b(t) ≥ t. The analogue of (6) becomes

P(b) :=
∫ ∞

0
e−tb(t)+t

2/2(b(t)− t)J [(b(t)− t)2/2]dt

+
∫ ∞

0
e−tb(t)+t

2/2tD[(b(t)− t)2/2]db(t).

In the view of self-similarity the maximiser should be a linear function

b(t) = t+
√

2β,
and then the success probability simplifies as

P(b) = D(β) + (J(β)−D(β))P(σ = τ)

= D(β) + (J(β)−D(β))
√

2β
∫ ∞

0
exp

(
−t

2

2 −
√

2β t
)

dt

= D(β) + (J(β)−D(β))
√
πβ eβ erfc(

√
β)
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(recall that erfc(x) = 2√
π

∫∞
x e−t

2 dt). Equation e−z = D(z) becomes

∫ √2z

0

∫ u

0
e(u2−v2)/2dvdu = 1,

which by monotonicity has a unique solution

β∗ = 0.760660 · · ·

The stopping strategy with boundary b(t) = t +
√

2β∗ is overall optimal, and yields the
success probability

sup
b
P(b) = e−β

∗ +
(
eβ

∗
√
π

2
√
β∗

erf
(√

β∗
)
− 1

)√
πβ∗ erfc

(√
β∗
)

(11)

= 0.703128 · · · ,

confirming the limit we obtained numerically.

4.3 The box-area jump chain and extensions
This limit (11) has appeared previously in a context of generalised records from partially
ordered data [12]. The source of coincidence lies in the structure of the one-dimensional
box area process associated with the running minimum. This is an interesting connection
deserving some comments.

Consider a piecewise deterministic, decreasing Markov process P on R+, which drifts
to zero at unit speed and jumps at unit rate. When the jump occurs from location z,
the new state is zY , where Y is random variable with given distribution on (0, 1). The
state 0 is terminal. Thus if P starts from z > 0, in one drift-and-jump cycle the process
moves to (z−E)+Y , where E is independent exponential random variable. The associated
optimisation problem amounts to stopping at the last state before absorption.

A process of this kind describes a time-changed box area associated with the running
minimum. For the Poisson process of Section 3.2, the variable Y is uniform-[0, 1], and
in the triangular model it is beta(1/2, 1). Two different modes of the first passage by
the running minimum occur when P enters [0, β∗] by drift or by jump, where β∗ is the
optimal parameter of the boundary.

More generally, for Y following beta (θ, 1) distribution, Equation (9) from [12] gives
the success probability as

P(β∗) = Γ(−θ + 1, β∗,∞)
(
−β∗θ + eβ

∗
θΓ(θ, 0, β∗)

)
+ e−β

∗
, (12)

where
Γ(a, b, c) =

∫ c

b
e−tta−1 dt.

One can verify analytically that for θ = 1/2 the formula agrees with our (11). Indeed,
(12) specialises as

P(β∗) = Γ(1/2, β∗,∞)
(
−
√
β∗ + eβ

∗

2 Γ(1/2, 0, β∗)
)

+ e−β
∗
, (13)
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so observing

Γ (1/2, β∗,∞) =
∫ ∞
β∗

e−tt−1/2 dt = 2
∫ ∞
√
β∗
e−x

2 dx =
√
π erfc

(√
β∗
)

(14)

and similarly
Γ (1/2, 0, β∗) =

√
π erf

(√
β∗
)

(15)

we obtain (11) by substituting (14) and (15) into (13)

We also considered other processes of independent observations with linear trend that
give the same limit best-choice probability (11):

(i) X1, · · · , Xn independent, with Xj distributed uniformly on {j, · · · , j + n− 1}.
Here again the limit distribution is Rayleigh, P[Mn > x

√
n]→ e−x

2/2, and the point
process with atoms (j/

√
n,Xj/

√
n) converges in distribution to a Poisson process

N with unit rate in the sector {(t, x) : 0 ≤ t ≤ x <∞}.

(ii) Xj = j + ρnUj, where ρ > 0 is a parameter and U1, U2, · · · are iid uniform-[0, 1].
This time P[Mn > x

√
ρn]→ e−x

2/2 and the point process with atoms (j/√ρn,Xj/
√
ρn)

converges weakly to the same Poisson N .

On the other hand,

(iii) Xj = j + nU
1/θ
j , where θ > 0 is a parameter and U1, U2, · · · are iid uniform-[0, 1],

leads to (12). Here P[Mn > x n
θ
θ+1 ] → e−

x(θ+1)
θ+1 which is a Weibull distribution

with shape parameter (θ + 1) and scale parameter (θ + 1)
1
θ+1 . The point process

with atoms (j/n
θ
θ+1 , Xj/n

θ
θ+1 ) converges weakly to the Poisson process which is not

homogeneous, rather has intensity measure θ(x− t)θ−1dtdx, 0 ≤ t ≤ x.

5 A uniform rectangular model
According to Proposition 2, the limit best choice probability for iid observations is v,
provided the probability of a tie for the sample minimum approaches 0 as n → ∞. For
fixed, not depending on n, discrete distribution this may or may not be the case. Moreover,
when (−Xj)’s are geometric, the probability of a tie does not converge, but undergoes
tiny fluctuations [14]; in this setting one can expect that the best choice probability has
no limit as well. In this section we consider a discrete uniform distribution, and achieve
a positive limit probability of a tie for the sample minimum by letting the support of the
distribution to depend on n.

5.1 The discrete time problem
Let X1, · · · , Xn be independent, all distributed uniformly on {1, · · · , n}. The generic
state of the running minimum is a pair (j, x), where j, x ∈ {1, · · · , n}. In this setting the
probability of a tie for a particular value does not go to 0 with n→∞. In particular, the

16



number of 1’s in the sequence of n observations is Binomial(n, 1/n), hence approaching
the Poisson(1) distribution, so the strategy which just waits for the first 1 to appear
succeeds with probability 1− (1−1/n)n → 1−1/e = 0.632120 · · · , which already exceeds
noticeably the universal sharp bound v = 0.580164 · · · of Proposition 2.

Again, by Proposition 1 the optimal stopping time is determined by a set of non-
decreasing thresholds b1 ≤ · · · ≤ bn = ∞. Stopping at record (j, x) is successful with
probability

s(j, x) =
(
n− x+ 1

n

)n−t
.

Conditionally on the running minimum Mj = x with x < bj, the continuation value given
by (2) reads as

v(j, x) =
n−t∑
i=1

(
n− x
n

)i−1 1
n

x∑
y=1

s(t+ i, y).

500 1000 1500 2000

0.76130

0.76135

0.76140

0.76145

0.76150

0.76155

Figure 8: The optimal best-choice probabilities in the discrete rectangular model for
n ∈ {100, 200, · · · , 2000}.

The success probability may be again decomposed into terms vn = Jn +Dn, referring
to the running minimum entering B by jump or by drift, respectively. We get

Jn =
n∑
j=1

(
n− bj
n

)j−1 1
n

bj∑
x=1

s(j, x),

and

Dn =
n∑
j=2

(n− bj−1

n

)j−1

−
(
n− bj
n

)j−1
 bj∑
y=bj−1+1

v(j, y)
bj − bj−1

,

where bj is defined as the biggest x with s(j, x) ≥ v(j, x), and these are given by (8) and
(9). The computed values, as presented in Figure 5, suggest that vn decreases monotoni-
cally to a limit 0.761260 · · · . Using the Poisson approximation we shall obtain an explicit
expression in terms of the roots of certain equations.
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5.2 Poissonisation
The point process (j/n,Xn) converges to a Poisson process on [0, 1]×Z>0 with the intensity
measure being the product of Lebesgue measure and the counting measure on integers.
Hence to find the limit success probability we may work directly with the setting of this
Poisson process. We prefer, however, to stay within the continuous framework of previous
sections, and to work with the planar Poisson point process N in [0, 1]× [0,∞) with the
Lebesgue measure as intensity.

To that end, we just modify the ranking order. Let X1, · · · , Xn be iid uniform-[0, n].
Two values with dXje = dXie will be treated as order-indistinguishable. In particular, we
call Xj a (weak) record if dXje ≤ dXie for all i < j. For n large, the distribution of dMne
is close to Geometric(1− 1/e).

Now, the planar point process with atoms (j/n,Xj), j ≤ n, converges in distribution
to N . The running minimum (Zt, t ∈ [0, 1)]) is the lowest mark of arrival on [0, t]. Marks
x, y with the same integer ceiling dxe = dye will be considered as order-indistinguishable.
Accordingly, arrival (t, x) is said to be a (weak) record if [0, t]×[0, dxe) contains no Poisson
atoms. The role of a box is now played by the rectangle [t, 1]× [0, dxe).

The basic functions are defined as follows:

(i) if stopping occurs on a record at (t, x) with dxe = k it is successful with probability

exp(−(1− t)(k − 1)),

(ii) if stopping occurs on the earliest arrival (if any) inside the box [t, 1]× [0, dxe) with
dxe = k it is successful with probability

∫ 1

t
e−k(s−t)

k∑
j=1

e−(j−1)(1−s)ds = e−k(1−t)
k∑
j=1

ej(1−t) − 1
j

.

For k = 1 stopping is optimal for all t; we set t1 = 0, z1 = e and for k ≥ 2 the equality
is achieved for tk defined to be the root of equation

e−(k−1)(1−t) = e−k(1−t)
k∑
j=1

ej(1−t) − 1
j

.

Letting zk := e1−tk , zk is a solution to

k∑
j=2

zj

j
= hk, hk :=

k∑
j=1

1
j
. (16)

By monotonicity there exists a unique positive solution, and the roots are decreasing, so
that z1 = e and zk ↓ 1.

It follows that the optimal stopping time is

τ = inf{t : (t, Zt) is a record, such that t ≥ 1− log(zk) for k = dZte}.
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That is, the stopping boundary is

b(t) =
∞∑
k=1

k 1(tk < t ≤ tk+1) =
∞∑
k=1

k 1(zk+1 ≤ e1−t < zk).

The cutoffs are readily computable from (16), for instance

z1 = e = 2.71828 · · · ,
z2 =

√
3 = 1.732050 · · · ,
z3 = 1.381554 · · · ,
z4 = 1.258476 · · · ,
z5 = 1.195517 · · · ,
z10 = 1.088218 · · · ,
z15 = 1.056969 · · · ,
z20 = 1.042069 · · · .

The associated hitting time for the running minimum is

σ = inf{t : dZte ≤ b(t)}.

The success probability again decomposes in terms corresponding to the events σ < τ
and σ = τ . The first term related to jump through the boundary becomes

J :=
∞∑
k=1

∫ tk+1

tk

e−kt
k∑
j=1

e−(j−1)(1−t)dt

=
∞∑
k=1

k∑
j=1

e−k

j
(ej(1−tk) − ej(1−tk+1))

=
∞∑
k=1

k∑
j=1

e−k

j
(zjk − z

j
k+1)

= e−1(z1 − z2) +
∞∑
k=2

e−k
(
zk − zk+1 + zk+1

k+1 − 1
k + 1

)
,

where for the last equality we used (16) in the form

k∑
j=1

zjk
j

= hk + zk,

k∑
j=1

zjk+1
j

= hk+1 + zk+1 −
zk+1
k+1

k + 1 .

Note that if the ceiling of the running minimum dZe drifts into the boundary point
(tk, k), the optimal success probability from this time on is the same as from stopping as
if a record occurred at (tk, k). Hence the contribution of the event σ < τ becomes
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D :=
∞∑
k=2

(e−(k−1)tk − e−ktk)e−(k−1)(1−tk) =
∞∑
k=2

e−k(e− zk).

Putting the parts together, the optimal success probability after some cancellation
and series work becomes

P(Zτ = min
t∈[0,1]

Zt) = J +D

= 2− e+ 1
e− 1 + 1− 2

√
3

2e + e log(e− 1)−
∞∑
k=2

e−k
(
zk+1 −

zk+1
k+1

k + 1

)
= 0.761260 · · ·

The general boundary For the general boundary defined by nondecreasing cutoffs tk,
the jump term

J :=
∞∑
k=1

k∑
j=1

e−k

j
(zjk − z

j
k+1)

should be computed with zk = e1−tk , and the drift term written as

D :=
∞∑
k=2

(e−(k−1)tk − e−ktk)e−k(1−tk)
k∑
j=1

ej(1−tk) − 1
j

=
∞∑
k=2

e−k(etk − 1)
k∑
j=1

ej(1−tk) − 1
j

.

For instance, letting tk = 1 for k ≥ 3, the maximum success probability is 0.730694 · · ·
achieved at t2 = 0.450694 · · · .

5.3 Varying the intensity of the Poisson process
The extension presented in this section constitutes a smooth transition between the above
poissonised rectangular model and the full-information game from Section 3.2. As above,
consider a homogeneous Poisson process on [0, 1] × [0,∞), and treat values x, y with
dxe = dye as order-indistinguishable, but now suppose the intensity of the process is some
λ > 0. Note that as λ→ 0 the ties vanish hence the best-choice probability becomes close
to v = 0.580164 · · · from the full-information game.

This process relates to a limit form of the discrete time best-choice problem, with
observationsX1, · · · , Xn drawn from the uniform distribution on {1, · · · , Kn} whereKn ∼
n/λ. See [4] (Example 8.5.2) and [15] for the related extreme-value theory. Here, for n
large, the distribution of Mn is close to Geometric(1 − (1/e)λ). The scaling dictated by
convergence to the Poisson limit is (j/n, λXj).

Following the familiar path, we compare stopping on a record (t, x), for given dxe = k,
with stopping on the next available record. For k = 1 stopping is the optimal action for
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all t. We set t1 = 0 and z(λ)
1 := eλ. For k ≥ 2, whenever a positive solution to

k∑
j=2

zj

j
= hk, hk :=

k∑
j=1

1
j

(17)

is smaller than eλ, we define z(λ)
k to be this solution and set z(λ)

k := eλ(1−tk). Otherwise, we
set z(λ)

k = eλ (which corresponds to setting the threshold tk to 0). The optimal stopping
time is thus given by

τ = inf

t : (t, Zt) is a record with t ≥ 1− log(z(λ)
k )
λ

for k = dZte

 .
Equivalently, the stopping boundary is

b(t) =
∞∑
k=1

k 1(tk < t ≤ tk+1) =
∞∑
k=1

k 1(z(λ)
k+1 ≤ eλ(1−t) < z

(λ)
k ).

The optimal success probability decomposes into the jump and drift terms:

P(Zτ = min
t∈[0,1]

Zt) = Jλ +Dλ,

where

Jλ =
∞∑
k=1

k∑
j=1

e−λk

j

(
(z(λ)
k )j − (z(λ)

k+1)j
)
,

Dλ =
∞∑
k=0

e−λk(eλ − z(λ)
k ).

The numerical values of the best choice probability are plotted in Figure 9.

0.2 0.4 0.6 0.8 1

0.60

0.65

0.70

0.75

(a) λ ∈ {0.01, 0.02, · · · , 1}

0.004 0.006 0.008 0.01

0.5805

0.5810

0.5815

(b) λ ∈ {0.003, 0.0031, · · · , 0.01}

Figure 9: The success probability values for different ranges of λ, in comparison with the
benchmark success probability 0.580164 · · · from the full-information game.
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