
HAL Id: hal-03462351
https://hal.science/hal-03462351

Submitted on 1 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Meta-diagnosis via Preference Relaxation for State
Trackability

Xavier Pucel, Stéphanie Roussel, Louise Travé-Massuyès, Valentin Bouziat

To cite this version:
Xavier Pucel, Stéphanie Roussel, Louise Travé-Massuyès, Valentin Bouziat. Meta-diagnosis via Pref-
erence Relaxation for State Trackability. KES - IDT 2021, Jun 2021, VIRTUEL, Italy. �10.1007/978-
981-16-2765-1_44�. �hal-03462351�

https://hal.science/hal-03462351
https://hal.archives-ouvertes.fr

Meta-diagnosis via preference relaxation for state
trackability

Xavier Pucel1,3, Stéphanie Roussel1, Louise Travé-Massuyès2,3, and Valentin
Bouziat1

1 ONERA / DTIS, University of Toulouse, Toulouse, France
firstname.lastname@onera.fr

2 LAAS-CNRS, University of Toulouse, CNRS, Toulouse, France
louise@laas.fr

3 ANITI, University of Toulouse, Toulouse, France

Abstract. In autonomous systems, planning and decision making rely on the
estimation of the system state across time, i.e. state tracking. In this work, a pref-
erence model is used to provide non ambiguous estimates at each time point.
However, this strategy can lead to dead-ends. Our goal is to anticipate dead-ends
at design time and to blame root cause preferences, so that these preferences can
be revised. To do so, we present the preference-based state estimation approach
and we apply a consistency-based meta-diagnosis strategy based on preference
relaxation. We evaluate our approach on a robotic functional architecture bench-
mark.

1 Introduction

For autonomous systems, state tracking is a critical task because it strongly influences
decision making, which is essential to the life of the system. It provides the means to
diagnose faults and to react to the various hazards that can affect the system.

In this paper, we focus on discrete event systems [17] in which states are Boolean
variable assignments and transitions are propositional logic formulae. When the sys-
tem state is partially observable, the number of candidate state estimates may quickly
become too large to be usable. In embedded or distributed systems, memory and com-
munication limitations may also become a problem, even with symbolic representation
techniques such as in [15]. These limitations lead us to propose a single-state estima-
tion strategy that retains only one state out of the set of candidate estimates at each time
step, as in [2]. Although this can be seen as an extreme strategy, it is efficient to feed
the decision system with a clear input and it is consistent with main stream works that
select a limited number of best candidates according to some preference criterion, for
example probabilities [16, 9]. However, the more we limit the number of estimates, the
more we may be confronted with the problem of dead-ends, i.e. observations proving
that previous estimates were wrong and evidencing no continuation of the estimated
trajectory. Because backtracking [9] is not a viable solution in regard to real time con-
straints, some approaches ([4, 14]) build single-state estimators that are guaranteed to
avoid dead-ends, making the system single-state trackable. However, this is not always

2 Xavier Pucel et al.

possible. In this case, there are two options: to refer to multi-estimator strategies as pro-
posed in [5] or to detect and diagnose dead-ends at design time and to identify which
part(s) of the estimator should be modified to circumvent the dead-end.

In this work, we focus on the second option that can be qualified as a meta-diagnosis
strategy. Following the approach of [11, 12, 2], a single-state estimator is defined by a
totally ordered conditional preference model [1], which allows to describe conditions
for estimating truth values of state variables. Diagnosing a dead-end means identify-
ing a set of preferences that, if modified appropriately, circumvent the dead-end. The
approach implements a consistency-based diagnosis approach based on preference re-
laxation. This paper resumes the work of a short two-pages paper presented as a poster
in [3]. It provides the details of the meta-diagnosis approach and the results of a set of
experiments used in the validation phase.

The paper is structured as follows. In Section 2, we formally define the process
of incremental single-state estimation and dead-ends. In Section 3, we define the se-
mantic for relaxing conditional preferences and describe a meta-diagnosis strategy to
circumvent dead-ends based on relaxing preferences. In Section 4, we present a robotic
functional architecture used to test our approach and provide the results in Section 5.
We then conclude and discuss future work in Section 6.

2 Incremental Single State Estimation

Preliminary notations. For a variable set V, an assignment over V is a function that as-
signs a truth value (true , false) to each variable of V. An assignment over V is classically
extended to assign a value to formulae whose scope is in V.

For a variable set V and a variable v ∈ V, v (resp. v) denotes the assignment in
which v is assigned true (resp. false). For two assignments x and y on the variable sets
X and Y, x .y is the assignment on X ∪ Y such that ∀x ∈ X, xy(x) = x (x) and ∀y ∈ Y,
xy(y) = y(y).

For two sets of variables X and Y such that Y ⊆ X, and an assignment x on X, the
projection of x on Y is denoted x↓Y such that ∀y ∈ Y, x↓Y(y) = y(y).

2.1 System Definition

In the following, we adapt definitions of previous works [12, 2]. We suppose that the
system is governed by discrete dynamics where each time step lasts the same duration.

Definition 1 (System). A system M is a tuple (O, E,S, s0 , ∆) where:

– 0 and E are two finite sets of propositional symbols that represent respectively ob-
servable and estimated features of the system;

– S is a subset of assignments on 0 ∪ E and represents the states of the system;
– s0 ∈ S is the initial state of the system;
– ∆ ⊆ S × S is the set of transitions of the system.

Without loss of generality, we consider that all the states of the system are reachable
from the initial state s0. In order to avoid an explicit representation of transitions, ∆

Meta-diagnosis for state trackability 3

is represented by a set of propositional logic formulae ∆p that can relate to both the
variables of 0 ∪ E, here denoted P and the same variables but referring to the previous
time step, denoted Ppre. Formally, we define a bijection pre : P→ Ppre such that for all
p ∈ P, pre(p) refers to the variable p of the state at the previous time step. For a state
s ∈ S, spre is the assignment on Ppre such that ∀p ∈ P, spre(pre(p)) = s(p). The set of
transitions ∆ is the set {(s, t) ∈ S2|spre.t(∆p) = true}.

An observation is a projection of a state on observable symbols O. The set of obser-
vations of a system is denoted O.

We define the function cands : S × O → 2S such that for all states s in S, for
all o in O, cands(s, o) represents the set of successors of s that have observation o.
Formally, ∀s ∈ S,∀o ∈ O, cands(s, o) = {t ∈ S|(s, t) ∈ ∆ and t↓O = o}.

We also define nextObs the function S → 2O such that nextObs(s) is the set of
observations that can be observed just after the system is in state s. Formally, ∀s ∈
S,nextObs(s) = {o ∈ O|cands(s, o) 6= ∅}.

A state sequence seq is a list (s0 , s1 , . . . , sn−1) where each si is a state in S; |seq | =
n is the length of the sequence and seq [i] = si is the ith state in the sequence; last(seq)
designates the last state of seq ; if s is a state, seq · s is the sequence of length |seq |+ 1
that begins with seq and ends with s .

Definition 2 (Language, observation language). The language associated with a sys-
tem M = (O, E,S, s0 , ∆) is the set of state sequences accepted by the system and
starting with s0. Formally L(M) = {seq ∈ S+|seq [0] = s0 and ∀i ∈ [1, |seq | −
1], (seq [i− 1], seq [i]) ∈ ∆}. The observation language is the language accepted by the
system projected on the observations. Formally, Lobs(M) = {seq↓O|seq ∈ L(M)}.

We illustrate this modelling approach on a small model that is a simplified version
of the experimental benchmark of Section 4.

Example 1 (System). We consider a simple robot functional architecture with three
functions: movement, communication and power supply. The health status of each func-
tion is represented by the three respective variables hmv, hcom and hpow. Two alarms almv
and alcom can be raised when movement and communication fail respectively. We esti-
mate the value of health variables from the sequence of alarms, i.e. O = {almv, alcom},
and E = {hmv, hcom, hpow}. The initial state is s0 = almv .alcom .hmv .hcom .hpow .

∆ is the conjunction of the following formulae :

¬pre(hpow)→ ¬hpow (δ1)
¬hmv → almv (δ3)

¬hpow → (almv ∧ alcom) (δ2)
¬hcom → alcom (δ4)

It expresses that the fault in the power supply is permanent (δ1), and causes both
alarms to be raised (δ2), movement faults cause movement alarms (δ3) and communi-
cation faults cause communication alarms (δ4). Note that alarms can also occur without
any fault being present (false positives, external perturbations, etc.), and that movement
and communication faults are intermittent, i.e. they are independent of their previous
values.

At time step 1, let us assume we receive observation o1 = almv .alcom . We have
cands(s0 , o1) = {almv .alcom .hmv .hcom .hpow , almv .alcom .hmv .hcom .hpow}.

4 Xavier Pucel et al.

In the first candidate state, the almv alarm is explained as a false alarm or caused by
some unknown event, while it is explained by a fault in the move module in the second
candidate.

2.2 Preference-based estimation strategy

We now focus on the estimation part for systems defined above. Since we consider non-
deterministic, partially observable systems, there may be several state sequences that
explain a given observation sequence. We adopt an incremental approach to select a
unique explanation, called an estimation strategy [14].

Definition 3 (Estimation strategy). An incremental single-state estimation strategy
for a system M is a function estim : S × O → S such that for all s in S, for all
o in nextObs(s), estim(s, o) represents the estimated state of the system at time step
k if it was estimated in state s at time step k − 1 and if o is observed at time step
k. We impose the estimation strategy to be consistent both across time (i.e. estim is a
function) and with the system behaviour (i.e. estim(s, o) belongs to cands(s, o)).

Following [12, 2], the estimation strategy is based on a sequence of conditional
preferences.

Definition 4 (Conditional preference). Let M be a system. A conditional preference
γ on a variable e of E is defined by 〈cond : e ≺ e〉, where cond is a propositional
formula on P ∪ Ppre. cond is called γ’s condition and e is γ’s target.

Informally, 〈cond : e ≺ e〉 expresses the fact that we prefer to estimate e as true if
and only if cond is true. Note that it is equivalent to 〈¬cond : e ≺ e〉.

From now on, we consider that the set of estimated variables E contains n variables
and that these variables are ordered, from e1 to en. This order can be seen as the order
used to estimate the state at every time step.

Definition 5 (Conditional preference model). A conditional preference model Γ for
a system M is an ordered sequence of preferences (γ1, γ2, . . . , γn) such that γi =
〈condi : ei ≺ ei〉 is a conditional preference on ei and that its condition condi only
uses variables from Ppre ∪ O ∪ {ej|1 ≤ j < i}.

Informally, if γi appears before γj in Γ , then the condition of γj can depend on the
outcome of γi, but the reverse is forbidden.

A conditional preference model Γ allows to define an estimation strategy estim
as presented in Algorithm 1. Let s ∈ S be the state of the system at time step k − 1
and o ∈ nextObs(s) the observation received at time step k. We initialise the sets of
preferred candidates for estim(sk−1 , ok) with cands(sk−1 , ok) (line 1) and the general
idea is to remove non-preferred candidates from this set until it is a singleton. To do
so, for each preference γi, we compute the value val of condi with the assignment
sk−1

pre.ok .estTargets where estTargets is the assignment containing truth values for
variables ej with j < i (line 3). If there exists a state t in preferredCands such that
t(ei) = val , we apply the preference and consider that estim(sk−1 , ok) = val (line 5)

Meta-diagnosis for state trackability 5

Algorithm 1: PreferredEstimation(M , sk−1 , ok)
Returns a singleton containing the preferred state estim(sk−1 , ok)

preferredCands ← cands(sk−1 , ok); estTargets ← true1
for i← 1 : n do2

val ← sk−1
pre.ok .estTargets(condi)3

if ∃t ∈ preferredCands such that t(ei) = val then4
estTargets ← estTargets.[ei ← val]5
preferredCands ← preferredCands − {t|t(ei) 6= val}6

else estTargets ← estTargets.[ei ← val]7

return preferredCands8

and we remove from preferredCands all states that do not have value val for ei (line
6). If such a t does not exist, it means there is no choice for this preference, i.e. only the
negation of val is possible for ei in preferred states (line 7). Note that such an algorithm
corresponds to the best transition with respect to a partial order on transitions formally
defined in [2].

Example 2 (Preference model). We consider the system of Example 1 and now define
the conditional preference model:

〈¬pre(almv) ∧ almv ∧ ¬pre(alcom) ∧ alcom : hpow ≺ hpow 〉 (γ1)

〈almv ∧ hpow : hmv ≺ hmv 〉 (γ2)

〈pre(alcom) ∧ alcom ∧ hpow : hcom ≺ hcom〉 (γ3)

If both alarms are raised simultaneously, we blame their common cause, i.e. the
power supply (γ1). Otherwise we blame the respective functions (γ2 and γ3). Moreover,
for the communication function, we dismiss the first alarm as noise, and only diagnose
a communication fault when the alarm persists during several time step (γ3). Thus, we
have estim(s0 , o1) = almv .alcom .hmv .hcom .hpow .

Definition 6 (Estimated sequence). Let M be a system, seqobs be an observation se-
quence in Lobs(M) and estim an estimation strategy for M based on a preference
model Γ . The estimated sequence for seqobs is the state sequence ŝeq ∈ L(M) such
that ŝeq [0] = s0 and for all i in [1, |ŝeq | − 1], ŝeq [i] = estim(ŝeq [i− 1], seqobs [i]).

2.3 Dead-end

At some point, the estimator may choose a state sequence different from the one actually
taken by the system. This may be an issue when the following conditions happen: a) the
system is in state s , the estimator estimates that it is in state ŝ with ŝ 6= s; b) the system
moves to state t and produces observation t↓O; c) the set of candidates cands(ŝ, t↓O) is
empty.

Definition 7 (Dead-end). Let M be a system and estim an estimation strategy based
on a preference model Γ . A sequence of observations seqobs · o in Lobs(M) is a dead-
end if there exists an estimated sequence ŝeq for seqobs and cands(last(ŝeq), o) = ∅.

6 Xavier Pucel et al.

Example 3 (Dead-end). In the system and the estimation strategy presented in Exam-
ples 1 and 2, the sequence of observations (almv .alcom , almv .alcom , almv .alcom) is a
dead-end. In fact, at time step 1, two faults occur simultaneously in the movement and
communication functions in the system, causing both alarms to activate. The estimator
explains it with a fault in the battery, due to preference (γ1), which constitutes a diver-
gence between the real system and the diagnosis. At time step 2, the faults disappear
in the real system, causing both alarms to stop and the estimator cannot explain this
observation as the fault in the battery is permanent.

3 Meta-diagnosis via consistency-based diagnosis of preferences

While dead-ends can be eliminated by modifying the system, we aim at eliminating
them by modifying the estimation strategy defined by the the preference model. Indeed,
some dead-ends can be circumvented by modifying the preference conditions in Γ . We
address this problem with a consistency-based diagnosis approach [7]. More precisely,
given a dead-end and a preference model, we want to know whether the observation
sequence associated with the dead-end could be accepted by the estimator if some pref-
erences that we aim to identify were “relaxed”. When this is the case, we can indicate
to the designer that the dead-end can be avoided by modifying the conditions for the
identified subset of preferences. Correcting the preference conditions is left for future
work.

3.1 Relaxed preference model

In this subsection, we generalise the notion of preference by introducing relaxed pref-
erences. Then, we define the notion of (general) preference, allowing us to define a
relaxed preference model. A relaxed preference targeting the variable e in E declares
that the valuations of e are incomparable, i.e. there is no preference on the valuations
of e in any context.

Definition 8 (Relaxed preference model). A relaxed preference for e in E has the form
〈e � e〉. A (general) preference for e ∈ E, denoted ϕ, is either a conditional preference
〈cond : e ≺ e〉 or a relaxed preference 〈e � e〉. Given a system M , a conditional
preference model Γ = (γ1, γ2, . . . , γn) and a subset of preferences Ω ⊆ Γ , a relaxed
preference model ΓΩ is a sequence of preferences (ϕ1, ϕ2, . . . , ϕn) such that ϕi = γi
if γi /∈ Ω, and ϕi = 〈ei � ei〉 otherwise.

In comparison with the conditional preference model presented previously, a relaxed
preference model may result in more than one preferred state in the set of candidates
at each time step. Preferred states only differ with respect to variables that are target of
relaxed preferences. In Algorithm 1, two lines should be modified to compute preferred
states in that case. First, at line 2, the condition of the loop should be “for all i ∈ [1, n]
such that φi is a conditional preference”. This implies that candidates states can only
be removed by conditional preferences. Then, as variables ej that are target of relaxed
preferences are not assigned a truth value in estTargets , line 3 should be replaced
by “val ← isSAT(sk−1

pre.ok .estTargets, condi)”, where for an assignment x over

Meta-diagnosis for state trackability 7

variables X, and form a formula whose scope is F, isSAT(x, form) returns true if and
only there exists an assignment y over variables X ∪ F such that y↓X = x and y(form)
is true. Therefore, val is true if and only if it is possible to assign targets of relaxed
preferences to make condition condi true. Finally, the returned preferred candidates
may be several as some steps are skipped in the loop.

Note that, following [2], it would be possible to formally define the new order on
transitions defined by a relaxed preference model but we do not present it here for
conciseness purposes.

3.2 Relaxed estimation process

We now generalise the notions of estimation strategy, estimation sequence and dead-
end. Informally, a relaxed estimation strategy returns a set of preferred candidates in-
stead of a unique preferred candidate. A relaxed estimated sequence is a sequence of
states in which any successive states s and t in the sequence are such that t belongs to
the set of preferred states of the relaxed estimation strategy for state s. A relaxed dead-
end is a sequence of observations for which the last observation cannot be explained by
any relaxed estimation sequence.

Definition 9 (Relaxed estimation strategy). A relaxed estimation strategy for a system
M and a relaxed preference model ΓΩ is a function estimΩ

Γ : S × O → 2S such that
for all s in S, for all o in nextObs(s), estimΩ

Γ (s, o) represents the set of preferred
estimated states of the system at time step k if it was estimated in state s at time step
k − 1 and if o is observed at time step k.

Definition 10 (Relaxed estimation sequence). Let M be a system, seqobs be an obser-
vation sequence inLobs(M) and estimΩ

Γ a relaxed estimation strategy for M . A relaxed
estimation sequence for seqobs is a state sequence ŝeq ∈ L(M) such that ŝeq [0] = s0
and for all i in [1, |ŝeq | − 1], ŝeq [i] ∈ estimΩ

Γ (ŝeq [i− 1], seqobs [i]).

Definition 11 (Relaxed dead-end). Let M be a system and estimΩ
Γ a relaxed estima-

tion strategy. A relaxed dead-end is a sequence of observations seqobs · o in Lobs(M)
such that for all relaxed estimated sequences ŝeq for seqobs , cands(last(ŝeq), o) = ∅.

Intuitively, relaxing preferences allows to increase the set of estimated sequences
and therefore might reduce the number of relaxed dead-ends. This is expressed through
the following proposition.

Proposition 1 (Relaxed dead-end inclusion). Let M be a system and estimΩ1

Γ and
estimΩ2

Γ two relaxed estimation strategies such that Ω1 ⊆ Ω2. If seqobs is a relaxed
dead-end for estimΩ2

Γ then it is also a relaxed dead-end for estimΩ1

Γ .

Proof. We first show that for a state s in S and an observation o in nextObs(s),
estimΩ1

Γ (s, o) ⊆ estimΩ2

Γ (s, o), i.e. preferred states are still preferred after relax-
ing preferences. Then, we can show that a relaxed estimation sequence for seqobs in
estimΩ1

Γ is also a relaxed estimation sequence for seqobs in estimΩ2

Γ . It follows that if
all relaxed estimation sequences for seqobs in estimΩ2

Γ cannot be followed by o, so it is
for all relaxed estimation sequences for seqobs in estimΩ1

Γ .

8 Xavier Pucel et al.

Example 4. Let us consider the dead-end from Example 3: seqobs = (almv .alcom ,
almv .alcom , almv .alcom), and let us relax two preferences Ω = {γ1, γ2}. TOTOTO
TOTOTOTO TOTOTOTO The sequence of states (s0, ŝ1, ŝ2) with ŝ1 = almv .alcom .
hpow .hmv .hcom and ŝ2 = almv .alcom .hpow .hmv .hcom is a relaxed estimation sequence
for seqobs , which means that seqobs is not a relaxed dead-end for estimΩ

Γ .

3.3 Consistency-based preference diagnosis

Checking whether a given observation sequence is a relaxed dead-end can be consid-
ered as a form of consistency check (due to Proposition 1). Then, searching for the
smallest set(s) of preferences that circumvent a dead-end can be done with a classical
consistency-based diagnosis algorithm [13].

Definition 12 (Preference Meta-Diagnosis). Let M be a system, estim an estimation
strategy based on a conditional preference model Γ , and seqobs a dead-end for this
estimation strategy. A set of preferencesΩ ⊆ Γ is a preference meta-diagnosis if seqobs
is not a relaxed dead-end for estimΩ

Γ .
A meta-diagnosis Ω is a minimal meta-diagnosis if and only if there is no meta-

diagnosis Ω′ ⊆ Γ such that Ω′ ⊂ Ω.

A meta-diagnosis Ω is interpreted as follows: it is possible to modify the conditions
for the preferences in Ω so that the diagnoser does not dead-end on the associated
observation sequence. It does not guarantee anything with respect to other potential
dead-ends. Proposition 1 ensures that if Ω is a meta diagnosis, then all supersets of Ω
are meta-diagnoses as well.

Example 5 (Minimal meta-diagnosis). In example 4, we have seen that seqobs was not
a relaxed dead-end for estimΩ

Γ . This means that Ω = {γ1, γ2} is a meta-diagnosis
for this dead-end. The minimal meta-diagnosis for seqobs is in fact Ω2 = {γ1}. Thus,
modifying the condition of γ1, can eliminate dead-end seqobs , for example by replacing
γ1 with γ′1 = 〈> : hpow ≺ hpow 〉. However it implements a different fault management
strategy, that must be validated against the robotic mission requirements.

To check if a sequence of observations seqobs is a relaxed dead-end for a given set
of relaxed preferences, it is possible to compute at each time step the set of preferred
candidates. To do so, we follow the modification of Algorithm 1 described previously
in this section. Then, starting from the initial state, it is possible to compute all relaxed
estimation sequences and therefore compute whether seqobs is a relaxed dead-end. Note
that this approach is combinatorial in both the number of relaxed preferences and the
length of seqobs .

By testing the meta-diagnosis candidates, one can find all the minimal preferences
meta-diagnoses. Approaches such as the FASTDIAG algorithm [6] can be used to effi-
ciently browse the meta-diagnosis candidate space.

4 Experiments

We have experimented our approach on a functional robotic architecture along with
a complex dynamic and complex preference model. We consider a system with three

Meta-diagnosis for state trackability 9

functions: movement, communication and power supply. It can raise two alarms almv
and alcom (observations of the system) if they are performing poorly. We model the trust
we have in each function with variables tmv, tcom and tpow, in the sense that as we receive
alarms, we lose trust in the system’s operational capacity. Variables fmv and fcom model
external perturbations that impede movement and communication (obstacles, slippery
terrain, distance to antenna, etc). fpow represents a loss of voltage in the power supply.

The estimator receives alarms as input, and estimates if each function can be trusted
for autonomous operation. Figure 1 details the model and illustrates this architecture.

∆ represents that we trust the movement and communication functions only if we
trust the power supply function as well (δ1). Movement (resp. communication) pertur-
bations or low voltage cause a movement (resp. communication) alarm (δ2, δ3). Once
we have lost trust in the power supply, we never trust it again (δ4). For communication,
the alarm is a perfect indicator of our trust in the function (δ5).

(tmv ∨ tcom)→ tpow (δ1)

(fmv ∨ fpow)→ almv (δ2)

(fcom ∨ fpow)→ alcom (δ3)

¬pre(tpow)→ ¬tpow (δ4)

tcom ↔ ¬alcom (δ5)

pre(fpow) ∨ (up(almv) ∧ up(alcom)) : fpow ≺ fpow (γ1)

O(Hκ(fpow)) : tpow ≺ tpow (γ2)

H2(almv) ∧ ¬fpow : fmv ≺ fmv (γ3)

H4(¬almv) : tmv ≺ tmv (γ4)

alcom ∧ ¬fpow : fcom ≺ fcom (γ5)

> : tcom ≺ tcom (γ6)

Move Com

Power

−fmv
−tmv
+almv

−fcom
−tcom
+alcom

−fpow
−tpow

Fig. 1: ∆, Γ and schema of the simple architecture model. Variables labelled with +
are observable, − estimated. Arrows represent functional dependency.

In the preferences associated with this model, we use the temporal logic operators
from PtLTL to express formula compactly. We rely on [8] to efficiently translate PtLTL
formulae into propositional logic formulae. The formula up(f) is true when the formula
f was false at the previous time step and is now true. The formula Hκ(f) (with κ > 0)
is true when the formula f has been true for the last κ time steps, including now. The
formula O(f) is true when f has been true at least once in the experiment, including
now.

Γ is the ordered sequence (γ1, γ2, γ3, γ4, γ5, γ6) and implements the following
strategy. We blame low voltage if and only if both alarms fire simultaneously (γ1), or
if low voltage was already blamed at the previous time step. After a continuous period
of size κ with low voltage, we lose trust in the power supply1 (γ2). When a movement

1 Given constraint (δ4), preference (γ2) could equivalently be written as Hκ(fpow)) : tpow ≺
tpow . However, we claim that Γ should represent the estimation strategy independently from
the system model, for modularity purposes.

10 Xavier Pucel et al.

alarm not explained by low voltage is on for two time steps, we blame the associated
environmental perturbations (γ3). After 4 time steps without alarm we trust the move-
ment function (γ4). Communication alarms not explained by low voltage are blamed on
environmental perturbations (γ5). In doubt, we trust the communication function (γ6).

This model has a dead-end when both movement and communication alarms are
raised simultaneously, stay on for κ time steps, then alcom turns off. We can control the
minimal length of the dead-ends with the κ parameter in (γ2), as the shortest dead-end
has κ+2 time steps. There are two minimal meta-diagnoses for this dead-end: {γ1} and
{γ2}. If we replace γ1 by γ′1 = 〈> : fpow ≺ fpow 〉 or γ2 by γ′2 = 〈> : tpow ≺ tpow 〉,
the dead-end is circumvented, although it changes the estimation strategy.

5 Results

We use Sat4j [10] as a SAT solver to directly compute if there exists a candidate with a
particular variable value (see Algorithm 1 line 5), and to implement the isSAT function
described in Section 3.1. Experiments have been conducted on an Intel(R) Xeon(R)
CPU E5-2660 v3 @ 2.60GHz processor with 62GiB of RAM, although only around
2Gib were used.

The results depicted in Table 1 show that the computation is very fast for short dead-
ends, but grows exponentially with dead-end length. This is due to the fact that at each
time step, for each relaxed preference, there may be two outcomes, which means that
in the worst case we need to explore an exponential number of paths to check if a path
is a relaxed dead-end.

We consider the performance satisfactory for two reasons. First, memory usage is
not a limiting factor, and time is not a constraint during design. Second, long dead-ends
are difficult to find, but also difficult to interpret and debug by the designer. When an
estimation model becomes too large for maintenance, architectural responses may help
dividing it in smaller decentralized models.

κ Dead-end len. Comp. time (s)

3 5 0.56
4 6 0.84
5 7 1.52
6 8 3.03
7 9 6.07

κ Dead-end len. Comp. time (s)

8 10 11.57
9 11 23.48

10 12 47.72
11 13 94.26
12 14 186.93

Table 1: Meta-diagnosis computation time (in seconds) against dead-end length.

6 Conclusion

In this paper, we present an approach for blaming a dead-end on a set of preferences at
design time. It follows a consistency-based meta-diagnosis strategy based on relaxing

Meta-diagnosis for state trackability 11

conditional preferences. We have defined and implemented algorithms with satisfactory
performances. For large benchmarks, several approaches can be explored to improve
the associated computation time. For instance, we could parallelize the algorithms by
dividing the space search among several computation cores. We could also define an
intelligent heuristic for finding relevant scenarios faster.

During our experiments we noted that many dead-ends reproduce the same pattern.
A perspective is to identify dead-end patterns to represent them more compactly. An-
other perspective is to find relaxations that circumvent several dead-ends at once. A final
perspective is the correction of conditions of preferences belonging to a meta-diagnosis
to avoid a dead-end or a set of dead-ends.

Acknowledgements

This project has been supported by ANITI, the “Artificial and Natural Intelligence
Toulouse Institute”, through the French ”Investing for the Future – PIA3” program un-
der the Grant agreement ANR- 19-PI3A-0004.

References

1. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Preference-based con-
strained optimization with CP-nets. In: Computational Intelligence, pp. 137–157 (2004)

2. Bouziat, V., Pucel, X., Roussel, S., Travé-Massuyès, L.: Preferential discrete model-based
diagnosis for intermittent and permanent faults. In: Proceedings of the 29th International
Workshop on Principles of Diagnosis (DX’18) (2018)

3. Bouziat, V., Pucel, X., Roussel, S., Travé-Massuyès, L.: Preference-based fault estimation in
autonomous robots: Incompleteness and meta-diagnosis. In: E. Elkind, M. Veloso, N. Ag-
mon, M.E. Taylor (eds.) Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019,
pp. 1841–1843. International Foundation for Autonomous Agents and Multiagent Systems
(2019). URL http://dl.acm.org/citation.cfm?id=3331937

4. Bouziat, V., Pucel, X., Roussel, S., Travé-Massuyès, L.: Single state trackability of discrete
event systems. In: Proceedings of the 30th International Workshop on Principles of Diagnosis
(DX’19) (2019)

5. Coquand, C., Pucel, X., Roussel, S., Travé-Massuyès, L.: Dead-end free single state multi-
estimators for DES -the 2-estimator case. In: 31st International Workshop on Principles of
Diagnosis (DX-2020). Nashville, Tennessee, United States (2020). URL https://hal.laas.fr/
hal-03089427

6. Felfernig, A., Schubert, M., Zehentner, C.: An efficient diagnosis algorithm for inconsistent
constraint sets. Artificial Intelligence for Engineering Design, Analysis and Manufacturing:
AI EDAM 26(1), 53 (2012)

7. Hamscher, W., et al.: Readings in model-based diagnosis (1992)
8. Havelund, K., Rosu, G.: Synthesizing monitors for safety properties. In: Proc. of the 8th

International Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS-02), pp. 342–356 (2002)

9. Kurien, J., Nayak, P.P.: Back to the future for consistency-based trajectory tracking. In:
AAAI/IAAI, pp. 370–377 (2000)

12 Xavier Pucel et al.

10. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. JSAT 7(2-3), 59–6 (2010). URL
https://satassociation.org/jsat/index.php/jsat/article/view/82

11. Pralet, C., Pucel, X., Roussel, S.: Diagnosis of intermittent faults with conditional pref-
erences. In: Proceedings of the 27th International Workshop on Principles of Diagnosis
(DX’16) (2016)

12. Pucel, X., Roussel, S.: Intermittent fault diagnosis as discrete signal estimation: Trackability
analysis. In: 28th International Workshop on Principles of Diagnosis (DX’17) (2017)

13. Reiter, R.: A theory of diagnosis from first principles. Artificial intelligence 32(1), 57–95
(1987)

14. Roussel, S., Pucel, X., Bouziat, V., Travé-Massuyès, L.: Model-based synthesis of incremen-
tal and correct estimators for discrete event systems. In: C. Bessiere (ed.) Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pp.
1884–1890. ijcai.org (2020). DOI 10.24963/ijcai.2020/261. URL https://doi.org/10.24963/
ijcai.2020/261

15. Torta, G., Torasso, P.: An on-line approach to the computation and presentation of preferred
diagnoses for dynamic systems. AI Communications 20(2), 93–116 (2007)

16. Williams, B.C., Nayak, P.P.: A model-based approach to reactive self-configuring systems.
In: Proceedings of the 13th AAAI Conference on Artificial Intelligence, pp. 971–978 (1996)

17. Zaytoon, J., Lafortune, S.: Overview of fault diagnosis methods for discrete event systems.
Annual Reviews in Control 37(2), 308–320 (2013)

