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Abstract

A decision maker observes a sequence of n independent realizations from the

uniform distribution on the unit interval. However, he does not observe the

precise values of these realizations, but only their ranks relative to those that

have appeared previously. The goal of the decision maker is to select the re-

alization whose value is closest to 1
2
. A realization can only be selected at the

moment of its appearance. We derive a stopping rule which maximizes the

probability of achieving this goal, together with the asymptotic probability

of success.

Keywords:

Combinatorial optimization, Optimal stopping, Secretary problem.

1. Introduction

In many real life situations, for example when controlling the rate of

inflation, finding a safe investment with a satisfactory return, or maintaining

an appropriate level of sugar or minerals in one’s body, we want to be as far

as possible from extreme values and therefore the most desirable choice is

the value closest to the middle. This article considers a problem of this form

where a decision maker must make an online decision within a fixed discrete
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time horizon. The decision maker cannot measure observations precisely, but

is able to rank each successive observation with respect to the previous ones.

This manuscript derives an optimal strategy for selecting the most central

observation.

More precisely, consider the following online problem: n numbers, labelled

x1, x2, . . . , xn, are randomly selected from the interval [0, 1]. A decision maker

cannot observe these values precisely, but on observing xk, 1 ≤ k ≤ n, can

rank the first k observations. We ignore the possibility that some of these

numbers are equal (this event has a probability of zero). Our goal is to stop

on the appearance of the number xk which is the closest to 1
2
, the center of

the interval, amongst all of the n numbers. We will construct an optimal

stopping algorithm and show that for large values of n the probability of

success under this algorithm is of order 1√
n

√
2
π
.

This problem is a new relative of the classical secretary problem. In the

classical secretary problem, the goal is to choose the best of n linearly ordered

objects. In our model, this corresponds to choosing the object whose value is

closest to 1. The classical secretary problem, whose solution was derived by

Lindley [8], has attracted a lot of attention and various modifications have

been considered. A thorough review of this research is given by Ferguson

[2]. Many generalizations of the classical problem have been studied, for

example problems in which linear orders have been replaced by partial orders

(Morayne [9]; Preater [10]; Freij & Wästlund [3]; Georgiou, Kuchta, Morayne

& Niemiec [4]; Stadje [13]), or by a graph or digraph structure (Kubicki &

Morayne [7]; Goddard, Kubicka, & Kubicki [6]; Sulkowska [14]; Benevides &

Sulkowska [1]). The optimal solution of the classical secretary problem itself

was also deeply analyzed. E.g., Rogerson [11] derived the probability that

the optimal algorithm for choosing the best candidate returns jth candidate.

Nevertheless, there are still very natural questions referring to the clas-

sical secretary problem that remain unanswered. The optimal algorithm for

choosing online the kth candidate (instead of the best one) out of n linearly

ordered is still not known. The case k = 1 is the classical secretary problem
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and the case k = 2, known as the postdoc problem, was solved indepen-

dently by Rose [12] and Vanderbei [15]. The solution for any k ≥ 3 (to the

best of our knowledge) has not been given yet. It seems that the case when

k = bn/2c (i.e., choosing the middle rank element) is the hardest one. The

problem we study in this paper is similar to choosing the middle rank ele-

ment, but it is not exactly the same. In our case, stopping on the element

of middle rank does not guarantee that this number would be closest to 1
2
.

Also, stopping on elements other than the one of middle rank gives a nonzero

probability of success. Another difference is that since we refer to a specific

value, namely 1
2
, we have to make some assumption about the distribution

of incoming numbers whose ranks we observe. The most natural one seems

to be the uniform distribution.

This paper is organized as follows. In Section 2, using recursion, we con-

struct an optimal stopping algorithm and derive a formula for the probability

of success. Unsurprisingly, this algorithm prescribes stopping only on num-

bers which do not appear very early and have ranks not far from the middle.

We provide an example of how this algorithm works for n = 10 and what

the stopping region looks like. The asymptotic performance of the algorithm

is analyzed in Section 3. First, we construct an algorithm that is not op-

timal, but has a more regular stopping region. This enables us to estimate

the asymptotic performance of our algorithm from below. Then we consider

a slightly easier problem for which it is simple to calculate the asymptotic

performance of the optimal strategy. This provides an upper bound. Since

these bounds are identical, this proves that the asymptotic probability of

success under the optimal stopping algorithm is of order 1√
n

√
2
π
.

2. Optimal Stopping Algorithm

Assume that n numbers x1, x2, ..., xn are chosen from the uniform distri-

bution on the interval [0, 1] and presented to a decision maker in sequence.

The decision maker knows n in advance, but after observing the first t num-

bers, 1 ≤ t ≤ n, knows only their relative ranks, not their values. Let us
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relabel these numbers such that, at moment t, y
(t)
1 < y

(t)
2 < ... < y

(t)
t . Assume

that the rank of xt is r, i.e. xt = y
(t)
r . Our goal is to stop on the number xt

such that |xt − 1
2
| ≤ |xi − 1

2
| for all i, 1 ≤ i ≤ n, i.e. xt is the closest to the

midpoint of the interval. We will call such an event “xt is the best”.

Before constructing the optimal stopping algorithm (denoted by An), we

need two results providing formulas for the probability that a number with

a specific rank is the best.

Theorem 2.1. If y1 < y2 < ... < yr < ... < yn are the ranked numbers at

time n, then

Pr(yr is the best) =

(
n− 1

r − 1

)
· 1

2n−1
.

Proof. We have

Pr(yr is the best) = Pr
((
yr <

1

2
< yr+1

)
and

(
|yr −

1

2
| ≤ |yr+1 −

1

2
|
))

+ Pr
((
yr−1 <

1

2
< yr

)
and

(
|yr−1 −

1

2
| ≥ |yr −

1

2
|
))
.

If Zi denotes the distance between yi and 1/2, then Z1, Z2, . . . , Zn are

independent random variables drawn from the uniform distribution on the

interval [0, 1/2]. Therefore,

Pr
((
|yr −

1

2
| ≤ |yr+1 −

1

2
|
)∣∣∣(yr < 1

2
< yr+1

))
= Pr

(
min{Z1, Z2, . . . , Zr} < min{Zr+1, Zr+2, . . . , Zn}

)
=
r

n
.

Analogously, we obtain

Pr
((
|yr−1 −

1

2
| ≥ |yr −

1

2
|
)∣∣∣(yr−1 < 1

2
< yr

))
=
n− r + 1

n

and, finally,

Pr(yr is the best) =

(
n

r

)
· 1

2n
· r
n

+

(
n

r − 1

)
· 1

2n
· n− r + 1

n

=
1

2n

[
(n− 1)!

(r − 1)!(n− r)!
+

(n− 1)!

(r − 1)!(n− r)!

]
=

(
n− 1

r − 1

)
· 1

2n−1
.
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Theorem 2.2. If y
(t)
1 < y

(t)
2 < ... < y

(t)
r < ... < y

(t)
t are the ranked numbers

at time t, then

Pr(y(t)r will be the best) =
1

2n−1

n−t∑
j=0

(
n− 1

r − 1 + j

)(
n− t
j

)
rj(t+ 1− r)n−t−j

(t+ 1)n−t
.

(1)

Proof. Since n− t additional numbers will appear, the rank r of the number

y
(t)
r will increase by some j, where 0 ≤ j ≤ n − t. Each number following

y
(t)
r will fall into one of the intervals (0, y

(t)
1 ), (y

(t)
1 , y

(t)
2 ), ... , (y

(t)
t , 1),

independently and with the same probability 1
t+1

. Every time a number falls

into one of the first r intervals, the rank of y
(t)
r increases by 1. Therefore, the

probability that after the appearance of all n numbers, the rank of y
(t)
r will

be r + j is
(
n−t
j

)
rj(t+1−r)n−t−j

(t+1)n−t . Thus, from Theorem 2.1,

Pr (y(t)r will be the best | its rank is r + j) =

(
n− 1

r − 1 + j

)
1

2n−1

and formula (1) follows from the law of total probability.

From now on, Pr(y
(t)
r will be the best) will be abbreviated to P(t)

r . Also,

we denote the optimal algorithm from the set of algorithms that stop only

in rounds t, t + 1, ..., n − 1, or n by A(t)
n (i.e. such algorithms never stop

before time t). We now construct an optimal stopping algorithm An using

recursion. Note that An = A(1)
n .

A(n)
n is the algorithm that stops only on the number that comes in the last

round, thus Pr(A(n)
n succeeds) = 1

n
. Algorithm A(n−1)

n stops only in rounds

n− 1 or n. Therefore, it stops on number y
(n−1)
r in the (n− 1)th round if and

only if P(n−1)
r ≥ 1

n
. Using the formula from Theorem 2.2 with t = n− 1, we

obtain the inequality 1
2n−1

[(
n−1
r−1

)
n−r
n

+
(
n−1
r

)
r
n

]
≥ 1

n
, which is equivalent to(

n− 2

r − 1

)
≥ 2n−2

n− 1
.

Solving this inequality for r− 1 gives a symmetric interval from the (n− 2)th

row of the Pascal triangle, namely r − 1 ∈ [z1, n − 2 − z1] for some z1, or,
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setting r1 = z1 + 1, r ∈ [r1, n− r1].
Therefore, algorithm A(n−1)

n stops in round n−1 if and only if the rank of the

number that appears in that round is from the stopping interval [r1, n− r1].
Of course,

Pr(A(n−1)
n succeeds) =

n−r1∑
r=r1

1

n− 1
P(n−1)
r +

2(r1 − 1)

n− 1

1

n
,

where the two terms represent the probabilities of winning if the rank of the

(n− 1)th number is in [r1, n− r1] or is outside of that interval, respectively.

In general, assume that for k = t+1, t+2, . . . , n we know the probabilities

Pr(A(k)
n succeeds) and the stopping region in round k, the interval [rn−k, k+

1− rn−k]. The optimal algorithm A(t)
n stops on the number y

(t)
r in round t if

and only if its rank r satisfies the inequality

P(t)
r ≥ Pr(A(t+1)

n succeeds). (2)

If inequality (2) has a solution, then the solution set, which is a symmetric

interval [rn−t, t+ 1− rn−t], is the stopping region for A(t)
n in round t and

Pr(A(t)
n succeeds) =

t+1−rn−t∑
r=rn−t

1

t
P(t)
r +

2(rn−t − 1)

t
Pr(A(t+1)

n succeeds). (3)

If there is no r satisfying inequality (2), then the algorithm A(t)
n never stops

in round t and Pr(A(t)
n succeeds) = Pr(A(t+1)

n succeeds). Recall that the op-

timal algorithm for our decision problem is An = A(1)
n . This optimal strategy

and the corresponding set of Pr(A(t)
n succeeds), t = 1, 2, . . . , n can be calcu-

lated by recursion based on Equation (3).
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Algorithm 1: Implementation of A(1)
n - the optimal strategy

Data: x1, x2, . . . , xn - numbers chosen uniformly at random

from [0, 1]; P
(t)
r for t = 1, 2, ..., n− 1 as calculated from

Equation (1); Pr(A(t)
n succeeds) for t = 2, 3, ..., n calculated

recursively as described above.

Result: candidate for the number closest to 1/2 among

x1, x2, . . . , xn via online search.

begin

for t = 1, 2, . . . , n− 1 do

r := rank of element xt based on x1, . . . , xt (xt = y
(t)
r )

if rank r satisfies P(t)
r ≥ Pr(A(t+1)

n succeeds) then

return xt

return xn

Recall that y
(t)
1 < y

(t)
2 < ... < y

(t)
t are the ordered values of x1, x2, . . . , xt, i.e., the

ordering of the numbers appearing not later than moment t.

Implementation of the algorithm An is straightforward and our next ex-

ample illustrates what the optimal stopping strategy looks like for n = 10.

Example. The optimal algorithm A10 never stops in rounds 1, 2, and

4. It stops in round 3 only on a number which has current rank 2. The

stopping region is shaded in Figure 1. The number in bold in Table 1 is

Pr(A(1)
10 succeeds), the probability of success under A10.
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t 10− t r10−t stopping interval Pr(A(t)
10 succeeds)

1 9 0.1893

2 8 0.1893

3 7 2 {2} 0.1893

4 6 0.1858

5 5 3 {3} 0.1858

6 4 3 [3, 4] 0.1798

7 3 3 [3, 5] 0.1701

8 2 4 [4, 5] 0.1585

9 1 4 [4, 6] 0.1378

10 0 1 [1, 10] 0.1

Table 1: Stopping intervals at time t and probabilities that the algorithm A(t)
n succeeds

for n = 10.

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

1 2 3 4 5 6

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 8

t = 9

t = 10

Figure 1. The stopping regions for the optimal algorithm A10.

As can be seen from this example, the stopping region for our algo-

rithm An is rather irregular and the recursive formulas used to calculate
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Pr(An succeeds) give little hope of finding a closed formula for this probabil-

ity. Despite these difficulties, in the next section we will derive the asymptotic

performance of the optimal algorithm An.

3. Asymptotics

Throughout this section we use the standard notation:

f(n) ∼ g(n) if f(n)
g(n)
−−−→
n→∞

1 and f(n) = o(g(n)) if f(n)
g(n)
−−−→
n→∞

0.

Also, when z is not a natural number, the binomial coefficient
(
n
z

)
is defined

as (
n

z

)
=

Γ(n+ 1)

Γ(z + 1)Γ(n− z + 1)
,

where Γ(z) is the gamma function.

The example from the previous section for n = 10 might be misleading,

because for large values of n the stopping region under the optimal algorithm

is relatively small. Based on computer simulations carried out for n ≤ 5000,

we found that, for large values of n, the algorithm An does not stop until it

reaches round dn−n2/3
√

lnne and in round n−1 stops only on elements whose

ranks are close to the middle. In fact, for large values of n, r1 ∼ n
2
− 1

2

√
n ln 2n

π
.

This result is proved in Corollary 3.5. Prior to this proof, we need several

simple lemmas.

Lemma 3.1. For large values of n,
(
n
n/2

)
∼
√
2·2n√
πn

.

This formula follows easily from Stirling’s approximation.

Lemma 3.2. If g(n) −−−→
n→∞

∞ and g(n) = o(f(n)), then

[
(1+ 1

f(n))
f(n)

e

]g(n)
−−−→
n→∞

1.

Proof. Since
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1 ≥
[

(1+ 1
f(n))

f(n)

e

]g(n)
≥
[(

1 + 1
f(n)

)f(n) (
1− 1

f(n)

)f(n)]g(n)
=[(

1− 1
f2(n)

)f2(n)] g(n)
f(n)

,

the result follows from the sandwich theorem since the lower bound ap-

proaches 1.

Lemma 3.3. If s = s(n) and w = w(n) are positive sequences such that

s(n) −−−→
n→∞

∞ and w = o
(
s2/3
)
, then

(2s
s )

( 2s
s−w)
∼ e

w2

s .

Proof. The ratio
(2s

s )
( 2s
s−w)

simplifies to

(s+1)(s+2)...(s+w−1)(s+w)
(s−w+1)(s−w+2)...(s−1)s = (1 + w

s−w+1
)(1 + w

s−w+2
)...(1 + w

s
).

Therefore, (1 + w
s
)w ≤ (2s

s )
( 2s
s−w)
≤ (1 + w

s−w+1
)w or, equivalently,

[(1+ 1
s/w

)s/w]w
2/s

ew
2/s

≤
(2s

s )
( 2s
s−w)
ew

2/s
≤

[(1+ 1
(s−w+1)/w

)
s−w+1

w ]
w2

s−w+1

ew
2/s

.

From the assumption that w = o
(
s2/3
)
, we get w

s2/3
→ 0, so w2

s4/3
→ 0 implying

that w2

s
= o

(
s1/3
)
. From w

s2/3
= s1/3

s/w
→ 0, we obtain s1/3 = o

(
s
w

)
. Therefore,

w2

s
= o

(
s
w

)
and applying Lemma 3.2 with f(n) = s

w
and g(n) = w2

s
, we

conclude that both lower and upper bounds approach 1.

From Lemma 3.1 and Lemma 3.3, we immediately obtain the following

result.

Corollary 3.4. If s = s(n) −−−→
n→∞

∞ and w = o
(
s2/3
)
, then

(
s

s
2
− w

)
∼
√

2 · 2s
√
πs · e 2w2

s

.

Corollary 3.5. Under the assumption that r ≤ n
2
, the asymptotic solution

of the inequality
(
n−2
r−1

)
≥ 2n−2

n−1 is r ≥ n
2
− 1

2

√
n ln 2n

π
.
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Proof. Let s = n− 2 and r − 1 = s
2
− w. We want to find w for which(

s
s
2
−w

)
≥ 2s

s+1
. Assuming that w = o(s2/3) and using Corollary 3.4, we get the

inequality

√
2 · 2s

√
πs · e 2w2

s

≥ 2s

s+ 1
, which is equivalent to e

2w2

s ≤
√

2(s+ 1)√
πs

.

Hence, 2w2

s
≤ ln

√
2(s+1)√
πs

or, equivalently, w ≤
√

s
2
·(ln

√
2(s+1)√
πs

)1/2 ∼ 1
2

√
s ln 2s

π
.

Therefore, r = s
2

+ 1− w ≥ n
2
− 1

2

√
n ln 2n

π
.

The rest of this section covers the derivation of the exact asymptotics of

the probability that An succeeds. First, we define the algorithm A(hn, wn),

which is not optimal, but has a more regular stopping region than the optimal

algorithm An. This will be helpful in finding a reasonable lower bound for

the performance of An.

The stopping region of the algorithm A(hn, wn) is defined by two natural

numbers hn and wn. This algorithm never stops before time hn. For t ≥ hn,

it stops on xt if and only if xt falls between y
(t−1)
d t
2
e−wn

and y
(t−1)
b t
2
c+wn

, where

y
(t−1)
1 < y

(t−1)
2 < ... < y

(t−1)
t−1 are the ordered numbers at time t − 1. If this

never happens, A(hn, wn) stops at xn.
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Algorithm 2: Implementation of A(hn, wn)

Data: x1, x2, . . . , xn - numbers chosen uniformly at random

from [0, 1]; hn, wn - parameters describing the stopping region

Result: candidate for the number closest to 1/2 among

x1, x2, . . . , xn via online search

begin

for t = 1, 2, . . . , hn − 1 do

rank xt with respect to previous observations

for t = hn, hn + 1, . . . , n− 1 do

rank xt with respect to previous observations

if xt ∈ [y
(t−1)
d t
2
e−wn

, y
(t−1)
b t
2
c+wn

] then

return xt

return xn

Recall that y
(t)
1 < y

(t)
2 < ... < y

(t)
t are the ordered values of x1, x2, . . . , xt, i.e., the

ordering of the numbers appearing not later than moment t.

The following technical lemma will be used in the next theorem to esti-

mate the performance of A(hn, wn).

Lemma 3.6. Let as = 1
2s

(
s

s
2
−w

)
. For m > 2w2 − 1, the sequences {a2m}m≥0

and {a2m+1}m≥0 are decreasing.

Proof. Consider the sequence {a2m+1}m≥0. Using the fact that Γ(z+1) = zΓ(z),

12



we obtain

a2m+3

a2m+1

=
22m+1

22m+3
·

(
2m+3

2m+3
2
−w

)(
2m+1

2m+1
2
−w

)
=

1

4
· Γ(2m+ 4)

Γ(m− w + 5
2
)Γ(m+ w + 5

2
)
·

Γ(m− w + 3
2
)Γ(m+ w + 3

2
)

Γ(2m+ 2)

=
1

4
· (2m+ 3)(2m+ 2)

(m− w + 3
2
)(m+ w + 3

2
)

=
2m2 + 5m+ 3

2m2 + 6m− 2w2 + 9
2

.

It follows that the ratio a2m+3

a2m+1
is smaller than 1 and thus the sequence

{a2m+1}m≥0 is decreasing when m > 2w2 − 3
2
.

The fact that the sequence {a2m}m≥0 is decreasing for m > 2w2 − 1 can

be shown in an analogous manner.

Figure 2 illustrates the rectangular stopping region for the algorithm

A(hn, wn). Note that n − hn + 1 and 2wn can be interpreted as the height

and width of this stopping region, respectively.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

• •
• •
• •
• •

• •

• •
• •

`̀̀
`̀̀

DO NOT STOP

hn − 1
hn

t

n− 1
n

width
∼ 2wn

← →
Figure 2. The stopping region for the algorithm A(hn, wn).
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Corollary 3.7. Let s, w, and n be natural numbers such that n > s and

s > 4w2. Then
1

2s−1

(
s− 1

d s
2
e − w

)
≥ 1

2n−1

(
n− 1

n−1
2
− w

)
.

Proof. Whenever n and s are both odd or both even, from Lemma 3.6 we

immediately obtain

1

2s−1

(
s− 1

d s
2
e − w

)
≥ 1

2s−1

(
s− 1

s−1
2
− w

)
≥ 1

2n−1

(
n− 1

n−1
2
− w

)
.

Now, assume that s is even and n is odd. Then, from Lemma 3.6, since n > s

1

2s−1

(
s− 1

d s
2
e − w

)
=

1

2s−1

(
s− 1
s
2
− w

)
≥ 1

2s−1
· 1

2
·
(

s
s
2
− w

)
≥ 1

2n−1

(
n− 1

n−1
2
− w

)
.

Finally, assume that s is odd and n is even. Then, analogously

1

2s−1

(
s− 1

d s
2
e − w

)
=

1

2s−1

(
s− 1

s+1
2
− w

)
≥ 1

2s−1
· 1

2
·
(

s
s+1
2
− w

)
≥ 1

2s
·
(

s
s
2
− w

)
≥ 1

2n−1

(
n− 1

n−1
2
− w

)
.

Theorem 3.8. For any sequences hn and wn of natural numbers such that

hn ≤ n and 4w2
n < n, we have

Pr(A(hn, wn) succeeds) ≥ v(hn, wn),

where v(hn, wn) is a function such that for wn −−−→
n→∞

∞

v(hn, wn) ∼ hn
n2n−1

(
n− 1

n−1
2
− wn

)
·
(

1−
(

1− 2wn
hn

)n−hn)
.

Proof. For s ∈ {1, 2, . . . , n}, let Bs be the event that the best element ar-

rives at time s; this means that xs is the closest element to 1
2
. Of course,

14



Pr(Bs) = 1
n
. Hence,

Pr(A(hn, wn) succeeds) =
n∑
s=1

Pr(A(hn, wn) succeeds
∣∣Bs) · Pr(Bs)

=
1

n

n∑
s=hn

Pr(A(hn, wn) succeeds
∣∣Bs),

since our algorithm never stops before time hn.

In order for A(hn, wn) to succeed, the numbers xhn , xhn+1, ..., xs−1 must

fall outside of the stopping intervals and the number xs must fall into the

interval
[
y
(s−1)
d s
2
e−wn

, y
(s−1)
b s
2
c+wn

]
. These events are independent and

Pr
(
xt falls outside

[
y
(t−1)
d t
2
e−wn

, y
(t−1)
b t
2
c+wn

]∣∣Bs

)
= 1− 1

t

(
b t
2
c+ wn − d t2e+ wn

)
,

because the expression in parenthesis (which is at most 2wn) counts the

number of intervals (out of t intervals) that xt cannot fall into (due to the

stopping criterion). It follows that

Pr
(
xt falls outside

[
y
(t−1)
d t
2
e−wn

, y
(t−1)
b t
2
c+wn

]∣∣Bs

)
≥ 1− 2wn

t
. (4)

For the event that xs falls into the interval
[
y
(s−1)
d s
2
e−wn

, y
(s−1)
b s
2
c+wn

]
to occur given

Bs, note that all of the s − 1 numbers that came before xs must be outside

the interval
[
1
2
− d, 1

2
+ d
]
, where d =

∣∣xs − 1
2

∣∣. Suppose j numbers out of

s− 1 fall into the interval
[
0, 1

2
− d
)
. In order for xs to have a rank such that

the algorithm will stop on it, j must satisfy the inequality d s
2
e − wn ≤ j ≤

b s
2
c+ wn − 1. Therefore,

Pr
(
xs falls into

[
y
(s−1)
d s
2
e−wn

, y
(s−1)
b s
2
c+wn

]∣∣Bs

)
=

b s
2
c+wn−1∑

j=d s
2
e−wn

(
s− 1

j

)
1

2s−1

≥ 1

2s−1
· (2wn − 1) ·

(
s− 1

d s
2
e − wn

)
.

(5)

15



Using inequalities (4) and (5), we obtain

Pr
(
A(hn, wn) succeeds

)
≥ 1

n

n∑
s=hn

(
s−1∏
t=hn

(
1− 2wn

t

)) 2wn − 1

2s−1

(
s− 1

d s
2
e − wn

)

≥ 1

n

2wn − 1

2n−1

(
n− 1

n−1
2
− wn

) n∑
s=hn

(
1− 2wn

hn

)s−hn
,

where the last inequality uses Corollary 3.7 regarding the monotonicity of
1

2s−1

(
s−1
d s
2
e−wn

)
. After changing the index of summation, we obtain

Pr
(
A(hn, wn) succeeds

)
≥ 2wn − 1

n2n−1

(
n− 1

n−1
2
− wn

) n−hn∑
s=0

(
1− 2wn

hn

)s
=

2wn − 1

n2n−1

(
n− 1

n−1
2
− wn

)
1

2wn

hn

(
1−

(
1− 2wn

hn

)n−hn+1
)

= v(hn, wn).

Whenever wn −−−→
n→∞

∞, we obtain

v(hn, wn) ∼ hn
n2n−1

(
n− 1

n−1
2
− wn

)(
1−

(
1− 2wn

hn

)n−hn)
.

Corollary 3.9. If hn = dn
(
1−
√

ln(n)

n1/3

)
e and wn = dn1/3e, then

√
n Pr

(
A(hn, wn) succeeds

)
≥
√
n v(hn, wn) −−−→

n→∞

√
2

π
,

and thus the inequality Pr
(
A(hn, wn) succeeds) ≥

√
2
πn

holds for sufficiently

large n.

Proof. From Theorem 3.8, it follows that for sufficiently large n

√
n Pr

(
A(hn, wn) succeeds

)
≥
√
n v(hn, wn)

and

√
n v(hn, wn) ∼

√
n

hn
n2n−1

(
n− 1

n−1
2
− wn

)(
1−

(
1− 2wn

hn

)n−hn)
.
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The last factor can be rewritten as

1−
[(

1− 1
hn
2wn

) hn
2wn

] 2wn(n−hn)
hn

and since hn
2wn
∼ 1

2
n2/3

(
1−
√

ln(n)

n1/3

)
−−−→
n→∞

∞ and

2wn(n−hn)
hn

∼ 2n1/3n2/3
√

ln(n)

n
(
1−
√

ln(n)

n1/3

) =
2
√

ln(n)

1−
√

ln(n)

n1/3

=
2n1/3
√

ln(n)

n1/3−
√

ln(n)
∼ 2
√

ln(n),

the last factor approaches 1 as n→∞.

For the remaining factors, using Corollary 3.4, we obtain

√
nhn

n2n−1

(
n− 1

n−1
2
− wn

)
∼
√
nn
(
1−
√

ln(n)

n1/3

)
n2n−1

√
2 · 2n−1√

π(n− 1) · e2n2/3/(n−1)
∼
√

2

π
,

and the result follows.

The choice of hn in Corollary 3.9 was not accidental. It equals dn −
n2/3
√

lnne, which is the number of rounds for which the algorithm An never

accepts an observation according to our numerical calculations - see the be-

ginning of this section. Choosing the stopping region on the basis of these val-

ues of wn and hn, the probability of success under the algorithm A(hn, wn) is

bounded from below by a function which asymptotically behaves like 1√
n

√
2
π
.

Since the optimal algorithm An is not worse, this lower bound also applies

to An. It remains to show that this function of n is also asymptotically an

upper bound for the performance of An.

Theorem 3.10. For the online decision problem considered here, the optimal

stopping algorithm An has asymptotic performance

Pr
(
An succeeds

)
∼ 1√

n

√
2

π
.

Proof. From the analysis of the algorithmA(hn, wn) (Corollary 3.9), we know

that the performance of An may be bounded from below by a function which

asymptotically behaves like 1√
n

√
2
π
.
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To find an upper bound, we consider an online decision problem that is

easier than the problem in question. Suppose that a decision maker observes

the ranks of n numbers which are independent realizations from the uniform

distribution on the interval [0, 1]. The decision maker must choose one of

these numbers with the aim of maximizing the probability of choosing the

element which is closest to 1
2
. The optimal strategy is simple. From Theorem

2.1, we know that we have to select the number of rank r such that the

binomial coefficient
(
n−1
r−1

)
takes its maximum value. This happens if r− 1 =

bn−1
2
c or r − 1 = dn−1

2
e. Thus

Pr
(
xr is the best

)
=

(
n− 1

bn−1
2
c

)
· 1

2n−1

and using Lemma 3.1, we obtain

Pr
(
xr is the best

)
∼
(
n− 1
n−1
2

)
· 1

2n−1
∼
√

2 · 2n−1√
πn

· 1

2n−1
=

1√
n

√
2

π
,

which gives an asymptotic upper bound for the performance of An.

In Figures 3 and 4, we present the asymptotic behavior of the performance

of An. We have

ṽ(hn, wn) =
hn

n2n−1

(
n− 1

n−1
2
− wn

)
·
(

1−
(

1− 2wn
hn

)n−hn)
which, from Theorem 3.8, is the function describing the asymptotic behavior

of the function v(hn, wn). The choices of hn and wn are hn = dn
(
1−

√
lnn
n1/3

)
e

and wn = dn1/3e.

4. Final remarks

If the interval [0, 1] is replaced by the interval [a, b], where a < b, and

the goal is to stop on the element closest to the interval’s midpoint, then the

optimal stopping algorithm is identical to our algorithm An.
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Figure 3. Performance of An with its asymptotic bounds for

hn = dn
(
1−

√
lnn
n1/3

)
e and wn = dn1/3e.

Figure 4. Function
√
n Pr

(
An succeeds

)
with its asymptotic bounds for

hn = dn
(
1−

√
lnn
n1/3

)
e and wn = dn1/3e.

How does the situation change if we sequentially observe n numbers from

the interval [0, 1], but we are informed about the value of each number drawn?

19



Since we now know whether the revealed number is greater or smaller than 1
2
,

by replacing each xk greater than 1
2

by 1−xk, we obtain a problem equivalent

to finding the maximum element of a sequence of n numbers. This problem

was solved by Gilbert & Mosteller [5] and the optimal strategy in what they

called ’the full-information game’ has an asymptotic probability of success

approximately equal to 0.580164. On the other hand, if our aim is to minimize

the expected difference between the number selected and 1
2
, then we should

adopt another stopping algorithm from (Gilbert & Mosteller [5]) which gives

an expected difference of order 1
n
.
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