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Introduction

In many real life situations, for example when controlling the rate of inflation, finding a safe investment with a satisfactory return, or maintaining an appropriate level of sugar or minerals in one's body, we want to be as far as possible from extreme values and therefore the most desirable choice is the value closest to the middle. This article considers a problem of this form where a decision maker must make an online decision within a fixed discrete time horizon. The decision maker cannot measure observations precisely, but is able to rank each successive observation with respect to the previous ones. This manuscript derives an optimal strategy for selecting the most central observation.

More precisely, consider the following online problem: n numbers, labelled x 1 , x 2 , . . . , x n , are randomly selected from the interval [0, 1]. A decision maker cannot observe these values precisely, but on observing x k , 1 ≤ k ≤ n, can rank the first k observations. We ignore the possibility that some of these numbers are equal (this event has a probability of zero). Our goal is to stop on the appearance of the number x k which is the closest to 1 2 , the center of the interval, amongst all of the n numbers. We will construct an optimal stopping algorithm and show that for large values of n the probability of success under this algorithm is of order 1 √ n 2 π . This problem is a new relative of the classical secretary problem. In the classical secretary problem, the goal is to choose the best of n linearly ordered objects. In our model, this corresponds to choosing the object whose value is closest to 1. The classical secretary problem, whose solution was derived by Lindley [START_REF] Lindley | Dynamic programming and decision theory[END_REF], has attracted a lot of attention and various modifications have been considered. A thorough review of this research is given by Ferguson [START_REF] Ferguson | Who solved the secretary problem[END_REF]. Many generalizations of the classical problem have been studied, for example problems in which linear orders have been replaced by partial orders (Morayne [START_REF] Morayne | Partial-order analogue of the secretary problem; the binary tree case Discrete Mathematics[END_REF]; Preater [START_REF]Preater The best-choice problem for partially ordered objects[END_REF]; Freij & Wästlund [3]; Georgiou, Kuchta, Morayne & Niemiec [START_REF] Georgiou | Niemiec On a universal best choice algorithm for partially ordered sets Random Structures and Algorithms[END_REF]; Stadje [START_REF]Stadje Efficient stopping of a random series of partially ordered points[END_REF]), or by a graph or digraph structure (Kubicki & Morayne [START_REF] Kubicki | Morayne Graph-theoretic generalization of the secretary problem: the directed path case[END_REF]; Goddard, Kubicka, & Kubicki [START_REF] Goddard | An efficient algorithm for stopping on a sink in a directed graph[END_REF]; Sulkowska [START_REF] Sulkowska | The best choice problem for upward directed graphs Discrete Optimization[END_REF]; Benevides & Sulkowska [START_REF] Benevides | Sulkowska Percolation and best choice problem for powers of paths[END_REF]). The optimal solution of the classical secretary problem itself was also deeply analyzed. E.g., Rogerson [11] derived the probability that the optimal algorithm for choosing the best candidate returns j th candidate.

Nevertheless, there are still very natural questions referring to the classical secretary problem that remain unanswered. The optimal algorithm for choosing online the k th candidate (instead of the best one) out of n linearly ordered is still not known. The case k = 1 is the classical secretary problem and the case k = 2, known as the postdoc problem, was solved independently by Rose [START_REF]Rose A problem of optimal choice and assignment[END_REF] and Vanderbei [START_REF] Vanderbei | The postdoc variant of the secretary problem[END_REF]. The solution for any k ≥ 3 (to the best of our knowledge) has not been given yet. It seems that the case when k = n/2 (i.e., choosing the middle rank element) is the hardest one. The problem we study in this paper is similar to choosing the middle rank element, but it is not exactly the same. In our case, stopping on the element of middle rank does not guarantee that this number would be closest to 1 2 . Also, stopping on elements other than the one of middle rank gives a nonzero probability of success. Another difference is that since we refer to a specific value, namely 1 2 , we have to make some assumption about the distribution of incoming numbers whose ranks we observe. The most natural one seems to be the uniform distribution.

This paper is organized as follows. In Section 2, using recursion, we construct an optimal stopping algorithm and derive a formula for the probability of success. Unsurprisingly, this algorithm prescribes stopping only on numbers which do not appear very early and have ranks not far from the middle. We provide an example of how this algorithm works for n = 10 and what the stopping region looks like. The asymptotic performance of the algorithm is analyzed in Section 3. First, we construct an algorithm that is not optimal, but has a more regular stopping region. This enables us to estimate the asymptotic performance of our algorithm from below. Then we consider a slightly easier problem for which it is simple to calculate the asymptotic performance of the optimal strategy. This provides an upper bound. Since these bounds are identical, this proves that the asymptotic probability of success under the optimal stopping algorithm is of order 1 √ n 2 π .

Optimal Stopping Algorithm

Assume that n numbers x 1 , x 2 , ..., x n are chosen from the uniform distribution on the interval [0, 1] and presented to a decision maker in sequence. The decision maker knows n in advance, but after observing the first t numbers, 1 ≤ t ≤ n, knows only their relative ranks, not their values. Let us relabel these numbers such that, at moment t, y

(t) 1 < y (t) 2 < ... < y (t)
t . Assume that the rank of x t is r, i.e. x t = y (t) r . Our goal is to stop on the number

x t such that |x t -1 2 | ≤ |x i -1 2 | for all i, 1 ≤ i ≤ n, i.e.
x t is the closest to the midpoint of the interval. We will call such an event "x t is the best".

Before constructing the optimal stopping algorithm (denoted by A n ), we need two results providing formulas for the probability that a number with a specific rank is the best.

Theorem 2.1. If y 1 < y 2 < ... < y r < ... < y n are the ranked numbers at time n, then P r(y r is the best

) = n -1 r -1 • 1 2 n-1 .
Proof. We have Pr(y r is the best) = Pr y r < 1 2 < y r+1 and |y r -

1 2 | ≤ |y r+1 - 1 2 | + Pr y r-1 < 1 2 < y r and |y r-1 - 1 2 | ≥ |y r - 1 2 | .
If Z i denotes the distance between y i and 1/2, then Z 1 , Z 2 , . . . , Z n are independent random variables drawn from the uniform distribution on the interval [0, 1/2]. Therefore,

Pr |y r - 1 2 | ≤ |y r+1 - 1 2 | y r < 1 2 < y r+1 = Pr min{Z 1 , Z 2 , . . . , Z r } < min{Z r+1 , Z r+2 , . . . , Z n } = r n .
Analogously, we obtain

Pr |y r-1 - 1 2 | ≥ |y r - 1 2 | y r-1 < 1 2 < y r = n -r + 1 n and, finally, Pr(y r is the best) = n r • 1 2 n • r n + n r -1 • 1 2 n • n -r + 1 n = 1 2 n (n -1)! (r -1)!(n -r)! + (n -1)! (r -1)!(n -r)! = n -1 r -1 • 1 2 n-1 . Theorem 2.2. If y (t) 1 < y (t) 2 < ... < y (t) r < ... < y (t) t
are the ranked numbers at time t, then P r(y (t) r will be the best)

= 1 2 n-1 n-t j=0 n -1 r -1 + j n -t j r j (t + 1 -r) n-t-j (t + 1) n-t . (1) 
Proof. Since n -t additional numbers will appear, the rank r of the number y

(t)
r will increase by some j, where 0 ≤ j ≤ n -t. Each number following y (t) r will fall into one of the intervals (0, y (t) 1), (y

(t) 1 , y (t)
2 ), ... , (y

(t)
t , 1), independently and with the same probability 1 t+1 . Every time a number falls into one of the first r intervals, the rank of y (t) r increases by 1. Therefore, the probability that after the appearance of all n numbers, the rank of y (t)

r will be r + j is n-t j r j (t+1-r) n-t-j (t+1) n-t
. Thus, from Theorem 2.1, Pr (y (t) r will be the best

| its rank is r + j) = n -1 r -1 + j 1 2 n-1
and formula (1) follows from the law of total probability. From now on, Pr(y

(t)
r will be the best) will be abbreviated to P (t) r . Also, we denote the optimal algorithm from the set of algorithms that stop only in rounds t, t + 1, ..., n -1, or n by A (t) n (i.e. such algorithms never stop before time t). We now construct an optimal stopping algorithm A n using recursion. Note that

A n = A (1) n . A (n)
n is the algorithm that stops only on the number that comes in the last round, thus Pr(A

(n) n succeeds) = 1 n . Algorithm A (n-1) n
stops only in rounds n -1 or n. Therefore, it stops on number y

(n-1) r in the (n -1) th round if and only if P (n-1) r ≥ 1
n . Using the formula from Theorem 2.2 with t = n -1, we obtain the inequality

1 2 n-1 n-1 r-1 n-r n + n-1 r r n ≥ 1 n , which is equivalent to n -2 r -1 ≥ 2 n-2 n -1 .
Solving this inequality for r -1 gives a symmetric interval from the (n -2) th row of the Pascal triangle, namely r -

1 ∈ [z 1 , n -2 -z 1 ] for some z 1 , or, setting r 1 = z 1 + 1, r ∈ [r 1 , n -r 1 ]. Therefore, algorithm A (n-1) n
stops in round n-1 if and only if the rank of the number that appears in that round is from the stopping interval

[r 1 , n -r 1 ]. Of course, Pr(A (n-1) n succeeds) = n-r 1 r=r 1 1 n -1 P (n-1) r + 2(r 1 -1) n -1 1 n ,
where the two terms represent the probabilities of winning if the rank of the (n -1) th number is in [r 1 , n -r 1 ] or is outside of that interval, respectively. In general, assume that for k = t+1, t+2, . . . , n we know the probabilities Pr(A

(k) n succeeds) and the stopping region in round k, the interval [r n-k , k + 1 -r n-k ]. The optimal algorithm A (t)
n stops on the number y

(t)
r in round t if and only if its rank r satisfies the inequality As can be seen from this example, the stopping region for our algorithm A n is rather irregular and the recursive formulas used to calculate Pr(A n succeeds) give little hope of finding a closed formula for this probability. Despite these difficulties, in the next section we will derive the asymptotic performance of the optimal algorithm A n .

P (t) r ≥ Pr(A (t+1) n succeeds). (2) 

Asymptotics

Throughout this section we use the standard notation:

f (n) ∼ g(n) if f (n) g(n) ---→ n→∞ 1 and f (n) = o(g(n)) if f (n) g(n) ---→ n→∞ 0.
Also, when z is not a natural number, the binomial coefficient n z is defined as

n z = Γ(n + 1) Γ(z + 1)Γ(n -z + 1)
,

where Γ(z) is the gamma function.

The example from the previous section for n = 10 might be misleading, because for large values of n the stopping region under the optimal algorithm is relatively small. Based on computer simulations carried out for n ≤ 5000, we found that, for large values of n, the algorithm A n does not stop until it reaches round n-n 2/3 √ ln n and in round n-1 stops only on elements whose ranks are close to the middle. In fact, for large values of n, r 1 ∼ n 2 -1 2 n ln 2n π . This result is proved in Corollary 3.5. Prior to this proof, we need several simple lemmas.

Lemma 3.1. For large values of n, n n/2 ∼ √ 2•2 n √ πn .
This formula follows easily from Stirling's approximation.

Lemma 3.2. If g(n) ---→ n→∞ ∞ and g(n) = o(f (n)), then (1+ 1 f (n) ) f (n) e g(n) ---→ n→∞ 1. Proof. Since 1 ≥ (1+ 1 f (n) ) f (n) e g(n) ≥ 1 + 1 f (n) f (n) 1 -1 f (n) f (n) g(n) = 1 -1 f 2 (n) f 2 (n) g(n) f (n)
, the result follows from the sandwich theorem since the lower bound approaches 1.

Lemma . From the assumption that w = o s 2/3 , we get w s 2/3 → 0, so w 2 s 4/3 → 0 implying that w 2 s = o s 1/3 . From w s 2/3 = s 1/3 s/w → 0, we obtain s 1/3 = o s w . Therefore,

w 2 s = o s w
and applying Lemma 3.2 with f (n) = s w and g(n) = w 2 s , we conclude that both lower and upper bounds approach 1.

From Lemma 3.1 and Lemma 3.3, we immediately obtain the following result. 

Corollary 3.4. If s = s(n) ---→ n→∞ ∞ and w = o s 2/3 , then s s 2 -w ∼ √ 2 • 2 s √ πs • e
-2 r-1 ≥ 2 n-2 n-1 is r ≥ n 2 -1 2 n ln 2n π .
Proof. Let s = n -2 and r -1 = s 2 -w. We want to find w for which

s s 2 -w ≥ 2 s s+1 .
Assuming that w = o(s 2/3 ) and using Corollary 3.4, we get the inequality

√ 2 • 2 s √ πs • e 2w 2 s ≥ 2 s s + 1 , which is equivalent to e 2w 2 s ≤ √ 2(s + 1) √ πs .
Hence,

2w 2 s ≤ ln √ 2(s+1) √ πs or, equivalently, w ≤ s 2 •(ln √ 2(s+1) √ πs ) 1/2 ∼ 1 2 s ln 2s π . Therefore, r = s 2 + 1 -w ≥ n 2 -1 2 n ln 2n π .
The rest of this section covers the derivation of the exact asymptotics of the probability that A n succeeds. First, we define the algorithm A(h n , w n ), which is not optimal, but has a more regular stopping region than the optimal algorithm A n . This will be helpful in finding a reasonable lower bound for the performance of A n .

The stopping region of the algorithm A(h n , w n ) is defined by two natural numbers h n and w n . This algorithm never stops before time h n . For t ≥ h n , it stops on x t if and only if x t falls between y (t-1) The following technical lemma will be used in the next theorem to estimate the performance of A(h n , w n ). 

a 2m+3 a 2m+1 = 2 2m+1 2 2m+3 • 2m+3 2m+3 2 -w 2m+1 2m+1 2 -w = 1 4 • Γ(2m + 4) Γ(m -w + 5 2 )Γ(m + w + 5 2 ) • Γ(m -w + 3 2 )Γ(m + w + 3 2 ) Γ(2m + 2) = 1 4 • (2m + 3)(2m + 2) (m -w + 3 2 )(m + w + 3 2 ) = 2m 2 + 5m + 3 2m 2 + 6m -2w 2 + 9 2 .

It follows that the ratio a 2m+3

a 2m+1 is smaller than 1 and thus the sequence {a 2m+1 } m≥0 is decreasing when m > 2w 2 -3 2 . The fact that the sequence {a 2m } m≥0 is decreasing for m > 2w 2 -1 can be shown in an analogous manner.

Figure 2 illustrates the rectangular stopping region for the algorithm A(h n , w n ). Note that n -h n + 1 and 2w n can be interpreted as the height and width of this stopping region, respectively. 

• • • • • • • • • • • • • • ````D O NOT STOP h n -1 h n t n -1 n width ∼ 2w n ← → Figure 2.
The stopping region for the algorithm A(h n , w n ).

Corollary 3.7. Let s, w, and n be natural numbers such that n > s and s > 4w 2 . Then

1 2 s-1 s -1 s 2 -w ≥ 1 2 n-1 n -1 n-1 2 -w .
Proof. Whenever n and s are both odd or both even, from Lemma 3.6 we immediately obtain

1 2 s-1 s -1 s 2 -w ≥ 1 2 s-1 s -1 s-1 2 -w ≥ 1 2 n-1 n -1 n-1 2 -w .
Now, assume that s is even and n is odd. Then, from Lemma 3.6, since n > s

1 2 s-1 s -1 s 2 -w = 1 2 s-1 s -1 s 2 -w ≥ 1 2 s-1 • 1 2 • s s 2 -w ≥ 1 2 n-1 n -1 n-1 2 -w .
Finally, assume that s is odd and n is even. Then, analogously

1 2 s-1 s -1 s 2 -w = 1 2 s-1 s -1 s+1 2 -w ≥ 1 2 s-1 • 1 2 • s s+1 2 -w ≥ 1 2 s • s s 2 -w ≥ 1 2 n-1 n -1 n-1 2 -w .
Theorem 3.8. For any sequences h n and w n of natural numbers such that h n ≤ n and 4w 2 n < n, we have

Pr(A(h n , w n ) succeeds) ≥ v(h n , w n ), where v(h n , w n ) is a function such that for w n ---→ n→∞ ∞ v(h n , w n ) ∼ h n n2 n-1 n -1 n-1 2 -w n • 1 -1 - 2w n h n n-hn .
Proof. For s ∈ {1, 2, . . . , n}, let B s be the event that the best element arrives at time s; this means that x s is the closest element to 1 2 . Of course,

Pr(B s ) = 1 n . Hence, Pr(A(h n , w n ) succeeds) = n s=1 Pr(A(h n , w n ) succeeds B s ) • Pr(B s ) = 1 n n s=hn Pr(A(h n , w n ) succeeds B s ),
since our algorithm never stops before time h n .

In order for A(h n , w n ) to succeed, the numbers x hn , x hn+1 , ..., x s-1 must fall outside of the stopping intervals and the number x s must fall into the interval y (s-1) 

2w n t . (4) 
For the event that x s falls into the interval y (s-1) s 2 -wn , y (s-1) s 2 +wn to occur given B s , note that all of the s -1 numbers that came before x s must be outside the interval 1 2 -d, 1 2 + d , where d = x s -1 2 . Suppose j numbers out of s -1 fall into the interval 0, 1 2 -d . In order for x s to have a rank such that the algorithm will stop on it, j must satisfy the inequality s 2 -w n ≤ j ≤ 

j= s 2 -wn s -1 j 1 2 s-1 ≥ 1 2 s-1 • (2w n -1) • s -1 s 2 -w n . (5) 
Using inequalities (4) and ( 5), we obtain

Pr A(h n , w n ) succeeds ≥ 1 n n s=hn s-1 t=hn 1 - 2w n t 2w n -1 2 s-1 s -1 s 2 -w n ≥ 1 n 2w n -1 2 n-1 n -1 n-1 2 -w n n s=hn 1 - 2w n h n s-hn ,
where the last inequality uses Corollary 3.7 regarding the monotonicity of

1 2 s-1 s-1 s 2 -wn .
After changing the index of summation, we obtain

Pr A(h n , w n ) succeeds ≥ 2w n -1 n2 n-1 n -1 n-1 2 -w n n-hn s=0 1 - 2w n h n s = 2w n -1 n2 n-1 n -1 n-1 2 -w n 1 2wn hn 1 -1 - 2w n h n n-hn+1 = v(h n , w n ). Whenever w n ---→ n→∞ ∞, we obtain v(h n , w n ) ∼ h n n2 n-1 n -1 n-1 2 -w n 1 -1 - 2w n h n n-hn . Corollary 3.9. If h n = n 1 - √ ln(n) n 1/3
and w n = n 1/3 , then

√ n Pr A(h n , w n ) succeeds ≥ √ n v(h n , w n ) ---→ n→∞ 2 π ,
and thus the inequality Pr A(h n , w n ) succeeds) ≥ 2 πn holds for sufficiently large n.

Proof. From Theorem 3.8, it follows that for sufficiently large n

√ n Pr A(h n , w n ) succeeds ≥ √ n v(h n , w n ) and √ n v(h n , w n ) ∼ √ n h n n2 n-1 n -1 n-1 2 -w n 1 -1 - 2w n h n n-hn .
The last factor can be rewritten as

1 -1 - 1 hn 2wn hn 2wn 2wn(n-hn) hn and since hn 2wn ∼ 1 2 n 2/3 1 - √ ln(n) n 1/3 ---→ n→∞ ∞ and 2wn(n-hn) hn ∼ 2n 1/3 n 2/3 √ ln(n) n 1- √ ln(n) n 1/3 = 2 √ ln(n) 1- √ ln(n) n 1/3 = 2n 1/3 √ ln(n) n 1/3 - √ ln(n) ∼ 2 ln(n),
the last factor approaches 1 as n → ∞.

For the remaining factors, using Corollary 3.4, we obtain

√ nh n n2 n-1 n -1 n-1 2 -w n ∼ √ nn 1 - √ ln(n) n 1/3 n2 n-1 √ 2 • 2 n-1 π(n -1) • e 2n 2/3 /(n-1) ∼ 2 π ,
and the result follows.

The choice of h n in Corollary 3.9 was not accidental. It equals nn 2/3 √ ln n , which is the number of rounds for which the algorithm A n never accepts an observation according to our numerical calculations -see the beginning of this section. Choosing the stopping region on the basis of these values of w n and h n , the probability of success under the algorithm A(h n , w n ) is bounded from below by a function which asymptotically behaves like 1 √ n 2 π . Since the optimal algorithm A n is not worse, this lower bound also applies to A n . It remains to show that this function of n is also asymptotically an upper bound for the performance of A n . Theorem 3.10. For the online decision problem considered here, the optimal stopping algorithm A n has asymptotic performance

Pr A n succeeds ∼ 1 √ n 2 π .
Proof. From the analysis of the algorithm A(h n , w n ) (Corollary 3.9), we know that the performance of A n may be bounded from below by a function which asymptotically behaves like 1

√ n 2 π .

To find an upper bound, we consider an online decision problem that is easier than the problem in question. Suppose that a decision maker observes the ranks of n numbers which are independent realizations from the uniform distribution on the interval [0, 1]. The decision maker must choose one of these numbers with the aim of maximizing the probability of choosing the element which is closest to 1 2 . The optimal strategy is simple. From Theorem 2.1, we know that we have to select the number of rank r such that the binomial coefficient n-1 r-1 takes its maximum value. This happens if r -1 = n-1 2

or r -1 = n-1

2

. Thus Pr x r is the best = n -1 n-1 2

• 1 2 n-1 and using Lemma 3.1, we obtain Pr x r is the best ∼ n -

1 n-1 2 • 1 2 n-1 ∼ √ 2 • 2 n-1 √ πn • 1 2 n-1 = 1 √ n 2 π ,
which gives an asymptotic upper bound for the performance of A n .

In Figures 3 and4, we present the asymptotic behavior of the performance of A n . We have

ṽ(h n , w n ) = h n n2 n-1 n -1 n-1 2 -w n • 1 -1 - 2w n h n n-hn
which, from Theorem 3.8, is the function describing the asymptotic behavior of the function v(h n , w n ). The choices of h n and w n are h n = n 1 -

√ ln n n 1/3
and w n = n 1/3 .

Final remarks

If the interval [0, 1] is replaced by the interval [a, b], where a < b, and the goal is to stop on the element closest to the interval's midpoint, then the optimal stopping algorithm is identical to our algorithm A n . How does the situation change if we sequentially observe n numbers from the interval [0, 1], but we are informed about the value of each number drawn?

Since we now know whether the revealed number is greater or smaller than 1 2 , by replacing each x k greater than 1 2 by 1-x k , we obtain a problem equivalent to finding the maximum element of a sequence of n numbers. This problem was solved by Gilbert & Mosteller [START_REF] Gilbert | Mosteller Recognizing the maximum of a sequence[END_REF] and the optimal strategy in what they called 'the full-information game' has an asymptotic probability of success approximately equal to 0.580164. On the other hand, if our aim is to minimize the expected difference between the number selected and 1 2 , then we should adopt another stopping algorithm from (Gilbert & Mosteller [START_REF] Gilbert | Mosteller Recognizing the maximum of a sequence[END_REF]) which gives an expected difference of order 1 n .
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