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Abstract

Most commercial Finite Element codes rely on hypo-elastoviscoplastic constitutive
equations for structural computations at large deformations. Such formulations are
known to suffer from physical and thermodynamical flaws but their versatility and
ease of implementation made them ubiquitous. The paper presents an alterna-
tive systematic and thermodynamically consistent extension of anisotropic thermo-
elastoviscoplastic constitutive equations at finite strain. The formulation is based on
the well–known multiplicative decomposition of the deformation gradient into a ther-
moelastic and an inelastic part. This decomposition introduces an isoclinic interme-
diate configuration. The present framework covers a wide range of multi-mechanism
(MM) elastoplastic models so that it can advantageously replace the constitutive
part of existing codes. The choice of suitable hyperelastic potential, hardening vari-
ables and anisotropy evolution laws are discussed. The concept of plastic spin is
used and can be either derived from general representation theorems or obtained
from the normality rule. The effect of the plastic spin is discussed in the light of
examples involving anisotropic plasticity. The response of the proposed formulation
is compared with hypoelastic models in the case of several structural applications.
The implementation of this methodology in a commercial FE object-oriented code is
detailed. We mainly show how to extend readily a wide range of small strain nonlin-
ear constitutive models to finite deformations. The implementation is proved to be
competitive with respect to existing hypo-elastoviscoplastic formulations in terms of
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CPU time.
Keywords: Finite deformations, Finite element, Elastoplasticity, Plastic spin,
Anisotropic plasticity.

1. Introduction

Finite strain elastoplasticity, as observed in various materials, requires combined
geometric and material nonlinear analysis of solids. Since the early sixties, a myr-
iad of strategies have been developed to extend the well-established infinitesimal
elastoplasticity theory to finite transformations [1, 2]. The widely used approach
is the so–called hypoelastic formulations relying on additive decomposition of the
total deformation rate into elastic and inelastic parts, and constitutive equations for
objective stress rates [3, 4]. However, this framework has been the subject of much
controversy. First, the constitutive equations are generally not integrable, which re-
sults in spurious energy dissipation in the elastic regime even prior to yield (see, e.g.
[5, 6, 7] among others). In order to recover the integrability of hypoelastic formu-
lations, a logarithmic rate has been put forward by [8, 9]. However, it was shown
in [10] that the post-yield response of the logarithmic rate is inconsistent with the
notion of elasticity. Second, the rate of elastic deformation is related to a non unique
objective stress rate [11, 12]. In addition, some hypoelastic models are well-known
to depend on the reference configuration, e.g. Green-Naghdi, and logarithmic rates
[13]. Formulations relying upon the additive decomposition of the Green-Lagrange
strain tensor were developed [1]. Given that the considered strain measure is sym-
metric, the latter model cannot describe full anisotropy. Another formulation based
on the additive split of logarithmic strain was suggested by [14]. These formulations
however imply a dependence of the choice of the reference configuration, meaning
that the form of the constitutive laws is not left unchanged by the change of reference
configuration [15].

Since the aforementioned models are unsatisfactory in describing finite deforma-
tions, several authors have put forward the necessity to introduce the multiplicative
decomposition as a general way of describing the kinematics at finite strain [16, 17].
This decomposition assumes the existence of an intermediate configuration that is
generally not unique. The concept of isoclinic intermediate configuration was pro-
posed first by [18, 19]. Since then, several models relying upon the multiplicative
decomposition and a hyperelastic potential for the stress have been developed (e.g
[20, 21, 22, 23, 7]). It is noteworthy to mention that there exist different versions
of the multiplicative decomposition, e.g. considering a decomposition in the reverse
order [24, 25], decomposition assuming symmetric elastic part or symmetric plastic
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part [17, 26]. Alternatively, a rigorous presentation of this theory has been proposed
by [27] based on material isomorphisms. This approach defines a special class of
materials described by elastic ranges that are independent of plastic deformation.

Constitutive modeling of kinematic hardening is still an active area of research
even in the small strain regime [28]. Kinematic hardening models at finite strain can
be generally classified into two main groups; both are regarded as extensions of the
Armstrong-Frederick model [29]. The first one employs an evolution equation for the
back stress, or the so-called ’Chaboche-type’ model [30]. The second one involves
an additional multiplicative decomposition of the plastic part of the deformation
gradient into storage and dissipative parts [31, 20, 32, 33, 23]. The difference between
different models becomes visible, particularly in cases where principal axes rotate,
e.g. simple glide and torsion [34]. Significant differences are observed for the special
case of linear kinematic hardening (Prager model) which leads to stress oscillations
for Jaumann rate [34]. Meanwhile, many studies have shown that different extensions
of the Armstrong-Frederick model yield, at least qualitatively, similar results [35, 36,
32]. The differences are mainly due to second-order effects for loading conditions
involving large rotations, apparent in simple shear [32, 37].

At finite strain, the material does not undergo only macroscopic stretches and
rotations but also rotations of its substructure described by some privileged directions
called directors. The notion of plastic spin describes the evolution of material’s
directors with plasticity. As highlighted by several works (e.g. [38, 39]), the plastic
spin is undetermined for isotropic materials and is often assumed to vanish. Several
constitutive equations for the plastic spin has been proposed independently by [40,
41]. It has been argued that multiple plastic spins are required since each internal
variable has a different nature and, consequently, a different rotating frame is required
for each internal variable [42]. Furthermore, the plastic spin is useful to prevent stress
oscillation, particularly in the case of the simple shear problem [41] when applied
to elastoplastic materials with linear kinematic hardening. Constitutive modeling of
plastic spin can be achieved through: (i) an additional ad-hoc constitutive equation
[40, 43, 44] (ii) generalized normality conditions [19, 45, 46].

The additive hypo-elastoplastic models are widely used in finite element codes
for the sake of computational ease. Small deformation material models are adapted
to large deformation problems with appropriate tangent operators and stress/strain
measures. To our knowledge, there is no finite element software supporting a sys-
tematic extension of infinitesimal models using the multiplicative decomposition.
Meanwhile, this approach is already used, exclusively, for some particular models,
e.g. in MSC Marc [47], or by using user material subroutines in ABAQUS [23, 7].

This work aims to propose a generic and systematic extension of small strain
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models to finite deformations. The multiplicative decomposition of the deformation
gradient into thermoelastic and inelastic parts is adopted. All constitutive equations
are expressed in the local isoclinic intermediate configuration. Accordingly, the stress
is related to the elastic strain through a hyperelastic law. Emphasis is put on the
numerical implementation of the present formulation in a commercial finite element
code provided with an object-oriented interface [48]. By this approach, small strain
models, including isotropic and anisotropic plasticity models with various isotropic
and kinematic hardening rules, can be re-used in the framework of the multiplica-
tive decomposition. On the other hand, unlike usual hypoelastic models, various
constitutive equations for the plastic spin can be formulated within this framework.

The manuscript is organized as follows. Section 2 presents a general thermo-
dynamical framework for constitutive modeling of anisotropic finite strain thermo-
elastoviscoplasticity based on the multiplicative decomposition. Kinematic assump-
tions and a thermodynamically consistent derivation of constitutive equations for
multi-mechanism modeling are regarded. Different models describing kinematic
hardening are discussed. Two constitutive choices of plastic spin are presented. In
section 3, we describe the implementation of the present formulation in a commer-
cial finite element code by taking advantage of its oriented object interface. Special
attention is paid to the integration of constitutive equations and the construction
of tangent matrices. Two integration schemes are adopted: using the exponential
mapping or correcting residuals in order to fulfill the plastic incompressibility con-
dition. Finally, the response of some particular models is presented in sections 4
and 5 for a volume element and structural applications, respectively. Through these
applications, comparisons are made with hypoelastic formulations presented in the
appendix (6).

The notations used throughout are as follows. a, A∼ , and A
≈

stand respectively for
first, second and fourth order tensors. The transpose, inverse, transpose of inverse
and time derivative of a second order tensor are denoted by A∼

T , A∼
−1, A∼

−T , and
Ȧ∼ respectively. Double contractions are denoted by A∼ : B∼ = AijBij and A

≈
:

B∼ = AijklBkl ei ⊗ ej, with (ei)i=1,2,3 being a Cartesian orthonormal basis. The
following tensor products are used: A∼ ⊗B∼ = AijBkl ei ⊗ ej ⊗ ek ⊗ el, A∼ ⊗¯

B∼ =
AikBjl ei ⊗ ej ⊗ ek ⊗ el, A∼ ⊗̄B∼ = AilBjk ei ⊗ ej ⊗ ek ⊗ el.
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2. General framework for elastoviscoplastic modeling at finite strains

2.1. Kinematics
The deformation gradient is multiplicatively split as

F∼ = F∼
eF∼

p (1)

where F∼
e and F∼

p denote the thermoelastic and the inelastic parts, respectively,
see Fig. 1. In contrast to F∼ , the parts F∼

e and F∼
p are not necessarily defined as

gradients of one-to-one mappings. As a consequence of possible incompatibility of
thermoelastic and plastic deformation fields, the intermediate configuration is local,
i.e. it belongs to the immediate vicinity of a material point and is obtained from the
current deformed configuration by a purely elastic unloading of this vicinity only.
The volume changes due to elastic and plastic deformations are respectively denoted
by

Je = det
(
F∼
e
)

= ρe
ρ
, Jp = det

(
F∼
p
)

= ρ0

ρe
(2)

and ρ, ρe and ρ0 stand for the mass densities in current, intermediate and reference
configurations, respectively. The decomposition (1), however, is not unique since any

intermediate isoclinic configuration

reference configuration current configuration

Figure 1: Illustration of the local isoclinic intermediate configuration

invertible transformation H∼ can be introduced such that

F∼ = (F∼
eH∼ )(H∼

−1F∼
p) = F∼

e∗F∼
p∗ (3)

To remedy this concern, we shall define some material directors. These privileged
directors are attached to some microstructural features and undergo a different trans-
formation than the material. For solids, we can always define a triad of directors
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describing its microstructure (fibers, crystal lattice vectors, ...). In general, an infin-
ity of directors may be identified for a material. Nevertheless, if the relative spin of
all directors with respect to a single triad of directors is known, the problem shall
be simplified by considering only this triad. It leads to the concept of local isoclinic
intermediate configuration, advocated in [19], where the material directors have the
same inclination or orientation as in the reference configuration. The intermediate
configuration is obtained by elastic virtual unloading, whereas the rigid-body rota-
tion of directors is included in the thermoelastic part of the deformation gradient.
The isoclinic local configuration is uniquely defined up to a symmetry operation be-
longing to the symmetry group of the material.
The velocity gradient is additively decomposed in the current configuration

Ḟ∼F∼
−1 = L∼

e + F∼
eL∼

pF∼
e−1 (4)

L∼
e is the purely elastic part of the velocity gradient and L∼ p is referred to as the

plastic deformation rate in the intermediate configuration. The latter, in turn, can
be split into symmetric and skew-symmetric parts asL∼

e = Ḟ∼
eF∼

e−1 = D∼
e +W∼

e

L∼
p = Ḟ∼

pF∼
p−1 = D∼

p +W∼
p

(5)

where D∼
e = sym(L∼

e), D∼ p = sym(L∼ p) are the elastic and the plastic strain rates, and
W∼

e = skw(L∼
e) and W∼

p = skw(L∼ p) are the elastic and plastic spin tensors.

2.2. Thermodynamic framework
The local form of the Clausius-Duhem inequality expressed in the local current

configuration is written as

σ∼ : D∼
ρ
− (ψ̇ + Ṫ η)− 1

ρ

q · g
T
≥ 0, g =∇xT (6)

where q is heat flux, g is the current spatial gradient of temperature, and ψ, η
designate the Helmholtz free energy and entropy densities per unit mass. The volume
density of internal forces w.r.t. the intermediate configuration is given by

Jeσ∼ : D∼ = Π∼
e : Ė∼

e +M∼ : L∼
p (7)
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where 

E∼
e = 1

2
(
F∼
eTF∼

e − 1∼
)

Ė∼
e = F∼

eTD∼
eF∼

e

Π∼
e = JeF∼

e−1σ∼F∼
e−T

M∼ = JeF∼
eTσ∼F∼

e−T = C∼
eΠ∼

e

(8)

Π∼
e and M∼ denote the Piola and Mandel stress tensors, expressed in the intermediate

configuration. The Mandel stress tensor M∼ is generally non-symmetric, in contrast
to Π∼

e. By expressing the dissipation inequality in the intermediate configuration,
we obtain

Π∼
e : Ė∼

e +M∼ : L∼
p − ρe(ψ̇ + Tη)−

q
e
· g

e

T
≥ 0 (9)

where q
e

= JeF∼
e−1q and g

e
= F∼

eTg. The specific free energy density ψ(E∼
e, T,αI)

is a function of elastic strain E∼
e, temperature T and internal variables αI which are

scalar and/or tensor quantities accounting for hardening properties. It follows that

ψ̇ = ∂ψ

∂E∼
e : Ė∼

e +
∑
I

∂ψ

∂αI
α̇I + ∂ψ

∂T
Ṫ (10)

The Clausius-Duhem inequality takes the form:(
Π∼
e − ρe

∂ψ

∂E∼
e

)
: Ė∼

e +M∼ : L∼
p− ρe

∑
I

∂ψ

∂αI
α̇I − ρe

(
∂ψ

∂T
+ η

)
Ṫ −

q
e
· g

e

T
≥ 0 (11)

The following state laws are adopted

Π∼
e = ρe

∂ψ

∂E∼
e , η = −∂ψ

∂T
(12)

so that the intrinsic dissipation remains as

φin = M∼ : L∼
p − ρe

∑
I

∂ψ

∂αI
α̇I ≥ 0 (13)

together with the condition q
e
·g

e
≤ 0. The condition (13) is satisfied for any process

if there exists a convex potential Ω w.r.t. M∼ and concave w.r.t. AI such that

L∼
p = ∂Ω(M∼ ,AI)

∂M∼

, α̇I = −∂Ω(M∼ ,AI)
∂AI

(14)
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AI are the thermodynamic forces associated with the state variables αI :

AI = ρe
∂ψ

∂αI
(15)

In the case of time–independent plasticity, the flow rule in Eq. (14) is rewritten

L∼
p = λ̇

∂f(M∼ ,AI)
∂M∼

(16)

where f(M∼ ,AI) is the yield function and λ̇ denotes the plastic multiplier which can
be determined by use of the consistency condition as

ḟ(M∼ ,AI) = ∂f

∂M∼

: Ṁ∼ + ∂f

∂AI

: ȦI = 0 (17)

For viscoplasticity with a threshold, from Eq. (16) and Eq. (14), a viscoplastic
multiplier can be defined as

λ̇ = ∂Ω(M∼ ,AI)
∂f(M∼ ,AI)

(18)

The existence of a convex potential from which the flow rule and the evolution law
of internal variables are derived is sufficient to satisfy the dissipation inequality in
Eq. (13), but it is not necessary.

2.3. Thermo-hyperelasticity
A myriad of free energy potentials are available to model hyperelasticity at finite

strains. A widely used free energy potential is the so-called St. Venant-Kirchhoff
model, as a straightforward generalization of Hooke’s law

ρeψ
e(E∼

e) = 1
2E∼

e : C
≈

: E∼
e, with E∼

e = 1
2(F∼

eTF∼
e − 1∼) (19)

where C
≈

is the fourth-order elasticity moduli. This non-polyconvex potential [49]
fails to respond appropriately in some cases e.g. the stress needed to shrink a bar
to zero volume goes to zero which is physically unreasonable [50]. This limitation
is due to the fact that St. Venant-Kirchhoff model does not take into account the
volume change appropriately. Several modified versions of this model are proposed
in literature in order to circumvent the aforementioned limitation [51, 50, 52] e.g.
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the isotropic neo-Hookean model

ρeψ
e(E∼

e) = 1
2λ(log(Je))2 + µ

(
trace(E∼

e)− log(Je)
)

(20)

λ and µ are Lamé coefficients. We mention that the proposed formulation is not
restricted to a unique hyperelastic model. The model in Eq. (19) is proposed by
default. In particular this choice is sufficient to represent the elastic part of the
elastoplastic behavior of metals and alloys which are characterized by small elastic
strains.

Two approaches for introducing thermoelasticity at finite strain may be distin-
guished. In the first approach, two configurations of material sample are considered:
The initial configuration at uniform reference temperature, and the deformed con-
figuration characterized by non-uniform stress and temperature fields [27, 53, 54].
The second approach has been proposed by [55, 56, 53, 57] and by [58, 59, 20] in the
framework of thermo-elastoplasticity, where a supplementary intermediate configu-
ration is considered. In the purely thermoelastic case, the deformation gradient is
then split multiplicatively into thermal and elastic parts as

F∼ = F∼
elF∼

θ (21)

An alternative decomposition in the form of F∼ = F∼
θF∼

el is suggested by [60]. For
isotropic materials, the two approaches yield identical or similar results [57]. When
extended to anisotropic elastoplasticity, the latter approach gives rise to potential
decompositions of the form F∼ = F∼

elF∼
θF∼

p and all permutations of this decomposition
can be found in the literature1 without unambiguous justification for the best–suited
choice. That is why the first approach, see [54], which relies on a unified thermoelastic
deformation F∼

e is preferred in the following, so that superfluous sub-decompositions
are avoided.

The thermoelastic part of the Helmholtz free energy ψthe is defined as a function
of the thermoelastic deformation tensor, still defined by Eq. (19), and temperature
as

ρeψ
the(E∼

e, T ) = ρeψ
e(E∼

e)−∆T β
∼

: E∼
e − CεT 2 (22)

where β
∼

is a second order tensor describing thermal properties and Cε is the specific
heat at constant strain. If the free energy definition (19) is adopted, the stress is

1F∼ = F∼
elF∼

pF∼
θ according to [20] and F∼ = F∼

elF∼
θF∼

p in [58, 59]
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obtained as
Π∼
e = C

≈
: (E∼

e −α∼ T
∆T ), α∼ T

= C
≈
−1 : β

∼
(23)

where α∼ T
denotes the thermal expansion second order tensor which, for isotropic

materials, can be reduced to only one scalar parameter as α∼ T
= αT1∼. Due to the

fact that in usual materials thermal expansion always remains small, the proposed
framework closely related to the usual small strain formulation will be sufficient.

2.4. Multimechanism dissipation potential
The inelastic deformation observed on the macroscale has various origins at the

level of material microstructure (dislocation slip, twinning, grain boundary sliding,
viscosity and molecular orientation in polymers...). Each mechanism leads to a spe-
cific type of non-linearity and constitutive equations. To sum up the contributions
of all mechanisms, the total dissipation potential is written in the form

Ω(M∼ ,AI) =
N∑
k

Ωk(M∼ ,AI) (24)

Ωk denotes the potential associated with the individual viscoplastic mechanism k.
Each mechanism is characterized by several internal variables summarizing, at a given
time, the material state and the influence of the past thermomechanical loading. The
yield surface is defined in the stress-hardening variable (and temperature) space. For
a given temperature and hardening, the elastic range is limited by the yield surface.
It is a part of the vector space of dimension 9 of non-symmetric second order tensors
denoted by De = {M∼ /f(M∼ ,AI , T ) ≤ 0}. The condition f(M∼ ,AI , T ) = 0 defines
the yield surface and is chosen here of the form

f(M∼ ,X∼ , R) =
[
M∼ −X∼

]
eq
−R0 −R(p,αI) (25)

where [�]eq denotes an equivalent stress measure involving appropriate invariants of
the tensor inside the brackets, R0 is the initial yield stress, R describes the isotropic
hardening law depending on the accumulated plastic strain p and internal variables
αI , and X∼ is the back stress. Considering for instance the case of two internal
variables αI = (α∼ , r) and using Eq. (15), the associated forcesX∼ and R are obtained
through

X∼ = ρe
∂ψ

∂α∼
, R = ρe

∂ψ

∂r
(26)

where α∼ and r are the internal variables associated to kinematic and isotropic harden-
ing, respectively. Multiple yield functions and multiple kinematic hardening variables
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can be used in the context of multimechanism approach, as proposed in [61, 62]
It follows from Eq. (16) and (18) that the inelastic strain rate is the sum of the

individual contributions of all mechanisms:

L∼
p =

N∑
k

∂Ωk(M∼ ,AI)
∂M∼

(27)

This method circumvents the decomposition of the inelastic deformation into various
contributions, often used in the literature in the form F∼

p = F∼
plF∼

vF∼
dF∼

tr... includ-
ing plastic (rate–independent), viscoplastic, damage or transformation deformations.
Such decompositions and all their possible permutations are hard to justify or de-
fine unambiguously. In contrast, each mechanism contributes incrementally to the
inelastic deformation rate and can generally not be time–integrated into one single
deformation part.

2.5. Kinematic hardening
In small strain theory, the use of Armstrong-Frederick–Chaboche models is widely

accepted [29, 63, 64]. This model was enriched by a static recovery term, initially
proposed by [30]. This term allows for a full or partial recovery of the kinematic
hardening variable. It has been demonstrated that the Armstrong-Frederick model
does not admit a dissipation potential [28] when used with a standard yield function
[65]. Accordingly, this model is non standard. Generalized standard materials (GSM
following [45]) are characterized by a single potential to describe the yield function,
the flow rule and the evolution laws for internal variables. Nonlinear kinematic
hardening can be introduced in this GSM framework by modifying the yield function
as follows [65]

f(M∼ ,X∼ ) =
[
M∼ −X∼

]
eq
−R0 + D

2CJ
2(X∼ ) (28)

where C and D are material parameters related to kinematic hardening evolution
and J(�) =

√
3
2(� : �). Nevertheless, this modification Eq. (28) induces an isotropic

hardening term in addition to the one describing the kinematic hardening effect. A
different approach has been proposed in [66] by introducing a new class of materials
called implicit standard materials. This framework allows recovering an associative
model.

The extension of the Armstrong-Frederick model to finite strain range can be
achieved in several ways. This issue was investigated thoroughly in [21, 32, 37]. A
widely used approach is based on the multiplicative decomposition of the plastic part
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of the deformation gradient [21, 32, 7, 47]

F∼
p = F∼

p
s
F∼
p
d

(29)

The free energy, depending on E∼
e and E∼

p
s

= 1
2(F∼

pT
s
F∼
p
s
− 1∼), is split into elastic and

kinematic hardening contributions as

ρeψ(E∼
e,E∼

p
s
) = ρeψ

e(E∼
e) + ρeψ

kin(E∼
p
s
) (30)

The back stress acting on the local intermediate configuration is derived from

X∼ = ρeF∼
p
s

∂ψkin

∂E∼
p
s

F∼
pT
s

(31)

The dissipation inequality becomes

M∼ : D∼
p − ρe

∂ψkin

∂C∼
p
s

: Ċ∼
p
s ≥ 0 (32)(

M∼ − 2ρeF∼
p
s

∂ψkin

∂C∼
p
s

F∼
pT
s

)
: D∼

p + 2ρeC∼
p
s

∂ψkin

∂C∼
p
s

: D∼
p
d
≥ 0 (33)

where
C∼
p
s

= F∼
p−T
d
C∼
pF∼

p−1
d

(34)

and
Ċ∼
p
s = 2F∼

pT
s
D∼

pF∼
p
s
− 2 sym

(
C∼
p
s
D∼

p
d

)
, D∼

p
d

= sym(Ḟ∼
p
dF∼

p−1
d

) (35)

We denote by X∼ = 2ρeF∼
p
s

∂ψkin

∂C∼
p
s

F∼
pT
s

the back stress acting on the local intermediate

configuration and by M∼ d
= 2ρeC∼

p
s
∂ψkin

∂C∼
p

s

a Mandel-like stress tensor. The evolution
equations satisfying (33) are given by

D∼
p = λ̇

∂f

∂M∼

D∼
p
d

= λ̇
b

c
M∼ d

(36)

where b and c are material constants. For time-dependent plasticity, the plastic
multiplier is given by λ̇ = ∂Ω

∂f
where Ω is the dissipation potential. Otherwise, the
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plastic multiplier λ̇ is determined by applying the consistency condition ḟ = 0.

The proposed kinematic hardening model
As investigated in [32, 37], different extensions of the Armstrong-Frederick model

lead to qualitatively similar results if the material parameters are selected appropri-
ately. Another formulation of the kinematic hardening model with both static and
dynamic recovery terms is adopted here avoiding any further decomposition of F∼

p

and resulting from the non-associative evolution equation as

X∼ = 2
3Cα∼ , α̇∼ = D∼

p − λ̇Dα∼ −
3
2

(
J(X∼ )
M

)m
X∼
J(X∼ ) (37)

where C, D, m and M are material parameters. The second term in the right
describes the dynamic recovery and the third one is responsible for static recovery.
This evolution equation must be complemented by the initial value of α∼ .
Remark 1. The kinematic hardening variable α∼ in Eq. (37) is symmetric provided
that its initial value is symmetric. This rule can be generalized to a non-symmetric
kinematic hardening variable by substituting D∼ p in Eq. (37) by L∼ p

α̇∼ = L∼
p − λ̇Dα∼ −

3
2

(
J(X∼ )
M

)m
X∼
J(X∼ ) (38)

It follows that X∼ is generally not symmetric, like the Mandel stress tensor. We men-
tion also that a model with non-symmetric internal variable of kinematic hardening
has been proposed in [46].

A more accurate description of a large variety of experimental stress-strain curves
is possible by combining several independent kinematic hardening variables [30] such
that

X∼ =
NX∑
i=0
X∼ i

, X∼ i
= 2

3Cijα∼ j
(39)

where NX is the total number of kinematic hardening variables associated with
(visco)-plastic mechanisms. Cij is a matrix describing the interaction between kine-
matic hardening variables.

2.6. Plastic spin
We define the velocity gradient tensor L∼ as the pull back of L∼ to the intermediate

configuration. It can then be split into purely elastic and plastic parts as

L̄∼ = F∼
e−1L∼F∼

e = L∼
e +L∼

p (40)
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noting
L∼
e = F∼

e−1Ḟ∼
e and L∼

p = Ḟ∼
pF∼

p−1 (41)

Strain rate and spin tensors expressed in the intermediate isoclinic configuration are
derived as

L∼ = D∼ +W∼ , L∼
e = D∼

e +W∼

e
, L∼

p = D∼
p +W∼

p (42)

The plastic deformation is induced by various mechanisms as mutual slips between
material particles (crystals in metals, soil particles, etc.) without causing the rotation
of the substructure defined by appropriate directors. Hence, the rotation and stretch
of the substructure is induced only by the elastic distortion, including additional
rigid body rotation, both included in F∼

e. Accordingly, the spin of the substructure
W∼

e is independent of plastic deformation. Therefore, W∼

e is given by subtracting
the plastic spin from the total spin as follows

W∼

e = W∼ −W∼

p = skw(F∼
e−1Ḟ∼

e) (43)

One should note that if the plastic spin W∼

p vanishes, the spin of directors will
coincide with the material rotation rate.

Two important classes of plastic spin constitutive laws are distinguished in the
literature. The first one is derived from normality rules whereas the second one
follows from the application of tensor representation theorems.

2.6.1. Plastic spin derived from the tensor representation theorem
A general explicit expression of plastic spin has been proposed independently by

[41, 40] using the tensor representation theorem as

W∼
p =β1(a∼s∼ − s∼a∼) + β2(a∼

2s∼ − s∼a∼
2) + β3(a∼s∼

2 − s∼
2a∼)

+ β4(a∼s∼a∼
2 − a∼

2s∼a∼) + β5(s∼a∼s∼
2 − s∼

2a∼s∼) + · · · (44)

where s∼ is the stress measure, a∼ denotes an internal variable and βi are material
parameters. a∼ can be also regarded as structure variables [67, 68]. For instance, for
a unidirectional composite described by a director n [69], a∼ = n ⊗ n. This allows
to describe the evolution of the material substructure or directors [44]. To the best
of our knowledge, all the studies of models including plastic spin make use only of
the first order approximation of Eq. (44). By doing so, the plastic spin expressed in
terms of Mandel’s stress tensor is given by

W∼
p = β(M∼ D∼

p −D∼
pM∼ ) (45)
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This model is used to describe the evolution of anisotropic axes [42, 44] where β is a
parameter having the dimension of the inverse of stress. W∼

p vanishes as long as M∼

and D∼ p are coaxial.

2.6.2. Plastic spin derived from the normality rule
According to this approach, the plastic spin is derived naturally from the nor-

mality rule as the skew-symmetric part of L∼ p

W∼
p = skw(L∼

p) = skw
(
∂Ω(M∼ ,AI)

∂M∼

)
(46)

This model of plastic spin will be studied in the case of crystal plasticity (see section
4.6).

3. Implementation in an object oriented FEM code

3.1. Object oriented architecture
The full description of the implementation of a generic formulation of constitutive

equations in an object–oriented code, like the Z-set software2 used in the present
work, is detailed in [48, 65]. The software is designed such that material models
are implemented independently from the FEM. Therefore, the material library can
be used by other FEM codes. This is made possible by proper interfaces between
the FEM software and the material library Z-mat. The implementation of a generic
material behaviour requires the following ingredients:

• grad: the imposed variable e.g. F∼ . It allows driving the behaviour externally.

• flux: returned variable associated to a grad variable. It represents the re-
sponse of the behavior law to the application of grad variable, e.g. the conju-
gate stresses σ∼ , P∼
• EP: external parameters as temperature, humidity, grain size, ... EP are set by

the user and thus always known in advance.

• IV: Integrated variables which are to be integrated over a given time increment
in order to update flux, e.g. F∼

e, αI , ...

2See www.zset-software.com
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• AV: auxiliary variables do not define the material state directly, and they are
kept for output. They may be useful in post-processing.

• CO: material parameters appearing as coefficients introduced in constitutive
laws. They may depend on EP, IV and AV.

INTEGRATOR MATERIAL PIECE

THETA METHOD RUNGE KUTTA

GEN FEFP

BEHAVIOR

POTENTIAL

KINEMATIC

ISOTROPIC

FLOW

CRITERION

derived from

one to many

one

Figure 2: A diagram showing the organization of some objects used to build material behaviors.

Fig. 2 describes the implementation of a class named GEN FEFP derived from
BEHAVIOR. This class allows to consider various inelastic mechanisms through the
class POTENTIAL. Each potential includes a flow rule (time-independent plasticity,
Norton power law...), several isotropic and kinematic hardening rules. The internal
variables associated with kinematic hardening (i.e. α∼ ) are held by the corresponding
KINEMATIC object. Explicit and implicit integration of constitutive equations are
handled by RUNGE KUTTA and THETA METHOD classes, respectively. The CRITERION
object specifies the yield surface (von Mises, Tresca, Hill, ...). This implementation
allows a minimum programming effort since all the required classes to build a material
behavior (except GEN FEFP) are already implemented and used in the framework of
other formulations (small strain, hypoelasto-plasticity, ...).

3.2. Global resolution of equilibrium equations
The current (resp. reference) configuration of the body at time t (resp. t0) is

called V (resp. V0) with boundary ∂V (resp. ∂V0). The latter can be split into the
sub–boundaries ∂V u and ∂V tr such that ∂V = ∂V u ∪ ∂V tr and ∂V u ∩ ∂V tr = ∅,
where Dirichlet and Neumann conditions are respectively prescribed. Corresponfing
surfaces ∂V u

0 and ∂V tr
0 are defined on the reference boundary of the body. The
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space of kinematically admissible displacements field is the set of sufficiently regular
displacement functions that satisfies

K = {u(x)|u = ũ(x) if x ∈ ∂V u} (47)

knowing that ũ is the prescribed displacement field on ∂V u. Virtual displacements
are set to zero over ∂V u defining the space of virtual displacements as

V = {η(x)|η(x) = 0 if x ∈ ∂V u} (48)

The surface tractions are prescribed over the region ∂V tr.
Following [70] among others, the initial boundary value problem amounts to find

a displacement field u ∈ K that satisfies

W(u,η) = 0, ∀η ∈ V (49)

where the virtual work functional under finite deformation is given by

W(u,η) =
∫
V0

(
P∼ : ∇Xη − b.η

)
dV −

∫
∂V tr

0

t.ηdS (50)

where b and t denote the reference body force and surface traction fields, respectively.
P∼ stands for the Boussinesq stress tensor. The linearization of Eq. (49) at a given
state defined by the field u∗ is written

W(u∗,η) +DW(u∗,η)[∆u] = 0, ∀η ∈ V (51)

where DW(u∗,η)[∆u] is the directional derivative of W(u∗,η) in the direction of
∆u. For convenience, the force and surface traction fields on ∂V tr

0 are assumed to
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be independent of the displacement field. Then,

DW(u∗,η)[∆u] = d

dε

(
W(u∗ + ε∆u,η)

)∣∣∣∣∣
ε=0

(52)

= d

dε

(∫
V0
P∼

(
F∼
∗ + ε∆F∼

)
: ∇Xη

)∣∣∣∣∣
ε=0

(53)

= d

dε

(∫
V0

[
P∼

(
F∼
∗
)

+ ∆P∼ (F∼
∗, ε∆F∼ )

]
: ∇Xη

)∣∣∣∣∣
ε=0

(54)

=
∫
V0

 ∂P∼
∂∆F∼

∣∣∣∣∣
F∼

∗
: ∆F∼

 : ∇Xη (55)

where
∆F∼ = ∇X(∆u), F∼

∗ = 1∼ +∇Xu
∗ (56)

The Boussinesq stress tensor P∼ is related to Kirchhoff’s stress tensor τ∼ by

P∼ = τ∼F∼
−T (57)

The tangent modulus is computed as

A
≈

= ∂P∼
∂∆F∼

∣∣∣∣∣
F∼

∗
= ∂τ∼
∂∆F∼

∣∣∣∣∣
F∼

∗
F∼
−T + τ∼

∂F∼
−T

∂∆F∼

∣∣∣∣∣
F∼

∗
(58)

or in index notation
Aijkl = ∂τip

∂∆Fkl
F−1
jp − τipF−1

jk F
−1
lp (59)

By approximating the domain V0 with a finite number of elements nel denoted by
V e

0 , the discrete form of the virtual work (50) is written
nel∑
e=0

∫
V e

0

(
[B]T{P } − [NT ]{b}

)
dV −

nel∑
e=0

∫
∂V tr,e

0

[N ]T{t} dS = 0 (60)

[N ] and [B] denote the interpolation matrix and the discrete material gradient
operator, respectively (see appendix 6). The element stiffness matrix is given by

[Ke] =
∫
V e

0

[B]T [A][B]dV (61)

The global stiffness matrix is obtained by assembling the element tangent stiffness
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matrices as

[Kg] =
nel

A
e=1

([Ke]) (62)

The linear set of equations to be solved for ∆u iteratively is given by

[K]g∆u = −R(u) (63)

where

R
(
u
)

= f int
(
u
)
− f ext (64)

The global internal and external forces are written

f int =
nel

A
e=1

(∫
V e

0

[B]T{P }dV
)

(65)

f ext =
nel

A
e=1

(∫
V e

0

[NT ]{b}dV +
∫
∂V tr,e

0

[N ]T{t}dS
)

(66)

The consistent tangent moduli A
≈
c are calculated from the implicit incremental con-

stitutive equations as

∂τ∼(αn,F∼ n+1)
∂∆F∼ n+1

=
∂τ∼(αn,F∼ n+1)
∂∆F∼

e
n+1

∂∆F∼
e
n+1

∂∆F∼ n+1
(67)

The general iterative resolution algorithm of the incremental boundary value problem
is summarized in Table 1.

3.3. Integration of constitutive equations
The set of time–integrated variables is given by

Vint =
{
F∼
e| p1, α1; · · · ; pn, αn

}
(68)

pi is the accumulated inelastic strain associated with the i-th mechanism, αi denote
internal variables describing both isotropic (e.g. ri) and kinematic hardening (e.g.
α∼ i

) specific to each mechanism. Semicolons in (68) represent the separation between
different mechanisms. A distinction between αi and pi was considered so that partial
derivatives required by integration methods can be implemented efficiently. The
model for each deformation mechanism will be defined by the following system of
elementary equations via the POTENTIAL interface:
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Table 1: Iterative resolution algorithm of the incremental boundary value problem

Result: Compute the displacement un+1 at tn+1

(i) Set initial guess u(0)
n+1 , k = 1

while k<Nmax
iter do

(ii) u(k)
n+1 = u

(k−1)
n+1 + ∆u(k)

(iii) F∼
(k)
n+1 = 1∼ +∇Xu

(k)
n+1

(iv) Update stress and state variables using constitutive equations
(v) Compute consistent tangent moduli A

≈
c

(vi) Calculate residuals R
(
u

(k)
n+1

)
= f int

(
u

(k)
n+1

)
− f extn+1

if convergence then
go to next increment n+1 (i)

else
(vii) Compute global stiffness matrix [K]g
(viii)∆u(k+1) = −[Kg]−1R , k←k+1

end
end

• Plasticity criteria fi(M∼ , pi,αi): Each criterion depends on the Mandel stress
tensor, the accumulated plastic strain and variables that describe multi-kinematic
hardening. Only the case where a criterion is associated with one and only one
dissipation potential is discussed in the following. Alternative models involving
multi-mechanisms and one single unified criterion can be found in [62]. The
implementation of this kind of models is discussed thoroughly in [48].

• Flow rule: The plastic multiplier is defined in two ways. For time-independent
plasticity, λ̇ must fulfill the consistency condition Eq. (17). In the rate–
dependent case, the multiplier is defined as the derivative of dissipation po-
tential Ωi w.r.t the yield function fi Eq. (18). It follows that

L∼
p
i = λ̇i

∂fi
∂M∼

= λ̇iN∼ i
(69)

with N∼ i
being the inelastic flow direction.

• Isotropic and kinematic hardening laws take the generic form

α̇i = λ̇imi − q̇i (70)
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where mi is the hardening potential normal and q̇i represents the time deriva-
tive of the hardening variable evolution due to static recovery effects. Note that
in case of associated plasticity, mi = ∂f

∂Ai

, meaning that the hardening poten-
tial normal is simply given by the normal to the yield surface. For instance,
m∼ i

= N∼ i
− 3Di

2Ci
X∼ i

for nonlinear kinematic hardening. The evolution of the

nonlinear isotropic hardening variable r, from Eq. (14), writes ṙ = λ̇(1 − R

Q
)

which imply that m = 1 − R

Q
. The integrated variable r is related to R by

R = bQr (see Eq. (15)), with the material parameters b and Q. The latter
model can be integrated analytically (cf. Eq. (104) in Section 5), which allows
to reduce the number of time–integrated variables in the code.

Two integration methods for ordinary differential equations have been imple-
mented for the present general formulation. The first one is explicit, namely second
or fourth order Runge-Kutta methods with automatic time–stepping, the second one
is implicit: θ-method resolved using the iterative Newton-Raphson scheme. Each
inelastic deformation mechanism is accounted for within the class POTENTIAL. This
class provides the increment of integrated variables for explicit integration and resid-
uals for implicit integration. Each POTENTIAL object possesses various methods with
regard to the model definition (isotropic and kinematic hardening, yield criteria, ...).
The implementation supports an unlimited number of POTENTIAL objects with possi-
ble interactions. In case of interactions, another class is dedicated to add interaction
terms appropriately. The expression of L∼ p is calculated through summation of all po-
tential contributions according to Eq. (27), in addition to the supplementary ad-hoc
constitutive equation for the plastic spin.

RUNGE KUTTA:. the integration of variables is based on the calculation of the rate of
Vint. For viscoplastic cases, the plastic multiplier is calculated using the flow rule.
For time-independent plasticity, the increment of the plastic multiplier is derived
from the consistency condition as

2N∼ :
[
1∼⊗¯

Π∼
e + 1

2C∼
e.C

≈

]
:
(
F∼
eTD∼ F∼

e −C∼
e
N∑
i

L∼
p
i

)

+ ∂f

∂Ai

:
N∑
i

∂Ai

∂αi
α̇i + ∂f

∂pi
ṗi + ∂f

∂EP
: ĖP = 0

(71)
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POTENTIAL 1

L∼
p
1 =

∂Ω1

∂M∼
explicit: ∆α1 = h(p1, α1)

implicit: Rα1 = ∆α1 − h(p1, α1)

+ block of Jacobian matrix

POTENTIAL 2

L∼
p
2 =

∂Ω2

∂M∼

· · ·
POTENTIAL n

L∼
p
N =

∂ΩN

∂M∼

L∼
p = Ḟ∼

pF∼
p−1 =

N∑

i=0

L∼
p
i +W∼

p plastic spin

explicit integration
RUNGE KUTTA

∆F∼
the = ∆F∼F∼

−1F∼
the − F∼ theL∼

p

implicit integration
THETA METHOD

F∼
p
n

= exp
(
∆tL∼

p
)
F∼
p
n−1

Rel = F∼
theF∼

p − F∼

F∼
the
t+∆t

= F∼
the
t

+ ∆F∼
the

Elastic strain
E∼
e = E∼

the − E∼ th

Update Π∼
e,M∼ ,σ∼

consistent tangent matrix A≈ c

Figure 3: Diagram showing explicit and implicit integration methods. Each POTENTIAL provides
the update of associated internal variables and the corresponding block of the Jacobian matrix.

THETA METHOD:. θ = 0 corresponds to the explicit Euler method and θ = 1 results
in the so-called backward Euler method. The constitutive equations are expressed
in the residual form as follows

Rel = F∼
eF∼

p − F∼ or Rel = ∆F∼
e −∆F∼F∼

−1F∼
e
cor

+ F∼
e
cor

N∑
i=0

∆piN∼ i
(72)

Rpi
= fi(M∼ ,Ai) or Rpi

= ∆pi −∆t∂Ω
∂fi

(viscoplasticity) (73)

Rαi
= ∆αi −∆pimi −∆tq̇i (74)
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N being the total number of mechanisms. The residual in Eq. (72)-left involves
the use of the exponential mapping which satisfies the plastic incompressibility [71,
72]. Its linearization requires the expression of the derivative of the exponential
of a second order tensor w.r.t. a second order tensor. As L∼

p is in general non
symmetric, calculating these terms is a non-trivial task. In that case, the infinite
series representation is used and truncated [32, 47]. Alternatively, in Eq. (72)b, the
plastic incompressibility is not satisfied anymore. For this reason, the elastic part of
the deformation gradient is corrected at each iteration as

F∼
e
cor

=
(

detF∼
detF∼

e

) 1
3

F∼
e (75)

The values of all associated forces and parameters evaluated at an intermediate time
designated by θ are

V t+θ∆tint = V tint + θ∆Vint (76)

The set of equations (72,73,74) can be gathered in the following form

R(V t+θ∆tint ,∆Vint) = 0 (77)

Since Eq. (77) is highly non-linear, it is usually solved by means of a Newton method
which requires the calculation of the Jacobian matrix [J]. The new estimate of ∆Vk+1

int

is then given by
∆Vk+1

int = ∆Vkint − [J ]−1Rk (78)

where
[J ] = ∂R

∂∆Vint

∣∣∣∣∣
k+1

(79)

and Rk denotes the local residual at the k-th iteration. The variation of R resulting
from the variation of νint and F∼ vanishes as well

δR = ∂R
∂∆νint

δ∆νint + ∂R
∂∆F δ∆F∼ = 0 (80)

which implies that, after convergence, the inverted Jacobian matrix relates the change
of ∆νint with respect to a change in ∆F∼ as

δ∆νint = −
(

∂R
∂∆νint

)−1
∂R
∂∆F δ∆F∼ (81)
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The expression of the Jacobian matrix is detailed in the appendix (6). By using Eq.
(81), one can calculate the term ∂∆F∼

e

∂∆F∼
in Eq. (67).

4. Applications to volume element simulations

The capabilities of the model formulation and its implementation are illustrated
in this section in the case of complex homogeneous loading conditions. The tests
are therefore performed at the material point level and require integration of the
constitutive equations. Some original features of the models are highlighted.

4.1. Cyclic closed deformation path
Hypoelastic formulations are well known to result in some spurious predictions

under complex loading conditions. For instance, when a closed strain cycle is ap-
plied, the resulting stress cycle is not necessarily closed. This issue was investigated
theoretically [5, 6] and numerically [7] in the case of purely mechanical loadings. In
this example, the response of finite strain formulations is investigated in the ther-
moelastic domain for two different loading cases. In both cases, we consider two
hypoelastic constitutive models for the Cauchy stress based on the Jaumann and
Green-Naghdi rates and a hyperelastic model given by Eq. (23).

Case 1:. A cyclic and non-proportional mechanical loading is applied (see Fig. 4-a).
Accordingly, the applied deformation gradient and the resulting Cauchy stress tensor
have the following formsF11(t) F12(t) 0

0 1 0
0 0 1

 and σ∼ =

σ11 σ12 0
σ12 σ22 0
0 0 σ33

 (82)

where the functions F11(t) and F12(t) are prescribed.

Case 2:. Is concerned with a non-proportional thermomechanical loading described
in Fig. 4-b and corresponding to prescribed shear F12(t) and temperature variation
∆T (t). The deformation gradient is imposed as

F∼ =

1 F12(t) 0
0 F ∗22 0
0 0 F ∗33

 and σ∼ =

σ11 σ12 0
σ12 0 0
0 0 0

 (83)

F ∗22 and F ∗33 are determined by the analysis in such a way that the conjugate Cauchy
stress components vanish. The component σ11 does not vanish due to the applied
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Figure 4: Illustration of loading conditions corresponding to (a) case 1, (b) case 2
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Figure 5: Case 1, the resulting stress during the first and the 10000th cycles for (a) hyperelastic
material (b) hypoelastic materials. Young’s modulus E = 210000 MPa, and Poisson ratio ν = 0.3.

temperature and to the Poynting effect. The figures 5 and 6 depict an elastically
non-consistent response of the two hypoelastic formulations, namely Jaumann and
Green-Naghdi. When a closed strain cycle is applied, residual stresses remain at the
end of each cycle. Consequently, due to the accumulation of residual stresses during
the deformation process, the resulting stress drifts away over cycles. In contrast, for
a hyperelastic model, no residual stresses are detected after each cycle, i.e. all stress
components return back to zero. As suggested by [8], some hypoelastic models, e.g.
based on the logarithmic rate, produce consistent results compared to hyperelastic
models. Nevertheless, in the case of elastoplasticity, these rates are no longer inte-
grable [10]. It has been shown that any hypoelastic law is integrable in the case of
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Figure 6: Case 2, the resulting stress during the first and the 2000th cycles for (a) hyperelastic
material (b) hypoelastic materials. E = 210000 MPa, ν = 0.3 and αT = 10−4K−1

proportional loading i.e. for deformation processes depending on a single parameter
[73].

4.2. Simple glide with kinematic hardening
The deformation gradient for a simple glide test has the form

F∼ =

1 γ(t) 0
0 1 0
0 0 1

 (84)

In this section, a comparison is drawn between the elastoplastic models previously
presented by looking at the classical cases of monotonic and cyclic simple shear. The
kinematic hardening contribution ψkin to the free energy is given in the Neo-Hookean
form [32, 47]

ψkin(E∼
p
s
) = c

(
tr(E∼

p
s )− log

(
detF∼

p
s

))
(85)

In the case of linear kinematic hardening, significant differences are found between
the various formulations as shown in Fig. 7 and Fig. 8. Fig. 7 depicts a spurious
oscillatory response of both multiplicative and Jaumann formulations. In contrast,
the model based on the Green-Naghdi rate predicts that σ12 increases monotoni-
cally. The model based on the multiplicative decomposition of the plastic part of
the deformation gradient does not display oscillations as depicted in Fig. 8-a. These
oscillations can be suppressed by increasing the value of the parameter D from Eq.
(37). By doing so, kinematic hardening saturates rapidly which leads to almost the
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Figure 7: Monotonic simple glide test for different formulations of elastoplasticity with kinematic
hardening: Stress oscillations in the case of Jaumann rate and the multiplicative decomposition
if D = 0. These oscillations are suppressed as the parameter D increases. Values of material
parameters: C = 10000 MPa, R0 = 1000 MPa.

same predictions by different models. Accordingly, when the dynamic recovery term
is sufficiently high (compared to the storage part), the saturation rate of the various
models becomes similar.

4.3. Static recovery of kinematic hardening
In this example, the effect of the static recovery of the kinematic hardening is

illustrated. It corresponds to the last term in the evolution equation Eq. (37). This
term introduces time-dependent material behavior even in the absence of viscosity.
We consider a von Mises surface yield given by

f(M∼ , R) =
(
(M∼ −X∼ )dev : (M∼ −X∼ )dev

)1/2
−R0 (86)

where (�)dev denotes the deviatoric part. The back stress X∼ = 2
3Cα∼ and the evolu-

tion of α∼ follows the constitutive equation (37). This model is applied to relaxation
and creep tests.
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Figure 8: Cyclic simple glide loading: (a) linear (D = 0) (b) nonlinear kinematic hardening with
dynamic recovery.

4.3.1. Relaxation test under simple glide
A simple glide test is considered according to the following conditions

F∼ =

1 γ(t) 0
0 1 0
0 0 1

 , γ(t) =


t

2 0 ≤ t ≤ 1

1
2 1 ≤ t ≤ 4

(87)

which corresponds to monotonic glide followed by a constant shear value inducing
stress relaxation in order to highlight the impact of the static recovery term. The
material response is shown in Fig. 9 for three different sets of values of material
parameters (m,M). The following features can be observed

• 0 ≤ t ≤ 1: During this time interval, the applied shear is monotonically
increasing. After yielding, there is a competition between different terms in
Eq. (37): storage part, dynamic and static recoveries. For given parameters C
and D, a higher value of parameter M or a lower value of parameter m allow
for slower recovery of the kinematic hardening leading to a higher value of σ12
(see Fig. 9).

• 1 ≤ t ≤ 4: The imposed shear strain is constant i.e. Ḟ∼ = 0. Consequently,
the variation of the accumulated plastic strain is low due to small elastic strain
since L∼ p = −F∼

e−1Ḟ∼
e during a relaxation test. Therefore, the evolution of the
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Figure 9: Relaxation test: Higher values of m and lower values of M result in a faster recovery of
kinematic hardening. C = 300000 MPa, D = 20. Parameter M in MPa.

kinematic hardening variable reduces to

α̇∼ ≈ −
3
2

(
J(X∼ )
M

)m
X∼
J(X∼ ) (88)

The recovery rate increases then with higher values of the power m (resp. lower
values of M).

In metals, this effect occurs significantly at high temperature due to thermal ac-
tivation. In fact, the crystalline structure of the metal is partially recovered by
annihilation of dislocations and redistribution of point defects [30]. This relaxation
of internal stresses generally results in a decrease of the mechanical resistance.

4.3.2. Creep test
In this example, the imposed deformation components are Fij = 0 for i 6= j and

{ij} 6= {12}. F11, F22, F33 and F12 are set to be free. The imposed Cauchy stress
component σ12 is given by

σ12 =


1000t MPa, 0 ≤ t ≤ 1

1000 MPa, 1 ≤ t ≤ 4
(89)
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and the remaining components of Cauchy stress tensor will vanish. The material
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Figure 10: Plastic flow during a creep test.

response is shown in Fig. 10. It is important to note that the used model does
not include any viscosity, meaning that the yield condition is exactly fulfilled. The
creep deformation is induced solely by the static relaxation of the back-stress that
has developed during the loading stage (see Eq. (37)):

• 0 ≤ t ≤ 1: As the imposed stress increases, the accumulated plastic strain
increases after yielding (σ12 =

√
3R0).

• 1 ≤ t ≤ 4: According to the consistency condition, the kinematic hardening
does not evolve since the applied stress is constant. Therefore, the plastic
multiplier is constant and the accumulated plastic multiplier increases linearly.
Due the static recovery term, the model becomes time-dependent. In other
words, if the static recovery term is omitted, then α̇∼ = 0⇒ ṗ = 0.

4.4. Application to a von Mises-based multimechanism model
The concept of multimechanism modeling is applied in this section to the isotropic

von Mises plasticity. A model is introduced involving two inelastic mechanisms and
two plasticity criteria, called 2M2C in the terminology defined in the references
[61, 62]. The yield function, flow rule and evolution equations adopted for this
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example are as follows

fp(M∼ ,X∼ p) =
(
(M∼ −X∼ p)dev : (M∼ −X∼ p)dev

)1/2
−R0p (90)

fv(M∼ ,X∼ v) =
(
(M∼ −X∼ v)dev : (M∼ −X∼ v)dev

)1/2
−R0v (91)

v̇ =
〈
fv
K

〉n
, ṗ =

N∼ p :
(
1∼⊗¯

Π∼
e + 1

2C∼
e · C

≈

)
:
(
F∼
eTD∼ F∼

e − v̇ C∼
eN∼ v

)
N∼ p :

[
(1∼⊗¯

Π∼
e + 1

2C∼
e · C

≈
) : (C∼

eN∼ p)
]

+ 1
3CpN∼ p : m∼ p

(92)

α̇∼ p
= ṗ

(
∂fp
∂M∼

−Dpα∼ p

)
, α̇∼ v

= v̇

(
∂fv
∂M∼

−Dvα∼ v

)
(93)(

X∼ p

X∼ v

)
= 2

3

(
Cp Cpv
Cvp Cv

)(
α∼ p

α∼ v

)
(94)

The first plastic mechanism associated with the yield function fp is rate–independent,
whereas the second one is viscoplastic. The (visco)plastic multipliers are computed
either by a power law or the consistency condition, according to Eq. (92). The
material parameters used in the following examples are given in Table 2.

Consider now a simple tensile/compressive test under strain control, divided into
five stages. The resulting stress state is uni-axial (σ11). The response of the model
for two distinct strain rates is given in Fig. 11. The following observations can be
made:

• F11 = 1.1 t, for 0 ≤ t ≤ t1 (tension): The (v) mechanism is active first
because the corresponding yield stress is taken as R0v = 0. But after a while,
the mechanism (p) is activated once the threshold Rp is reached. In fact, the
activation of an inelastic mechanism will depend on the associated initial yield
stress and also on the hardening properties of the other mechanism. Higher
strain rates induce more plastic strain, while lower strain rates result in more
viscoplastic strain.

• F11 = 1.1, for t1 ≤ t ≤ t2: During this stage the imposed strain is maintained
at a constant value. The inelastic deformation remains quasi–constant accom-
panied by stress relaxation due to dynamic recovery of kinematic hardening.

• F11 = 1.1 − 0.1(t − t2), for t2 ≤ t ≤ t3 (unloading+compression): The plas-
tic yielding in compression occurs at a rather large stress level due to the
Bauschinger effect.
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• F11 = 0.9, for t3 ≤ t ≤ t4: The imposed strain is constant. A quasi–constant
inelastic deformation and stress relaxation due to kinematic hardening recovery
are observed.

• F11 = 0.9 + 0.1(t − t4), for t4 < t < t5 (unloading phase). At F11 = 1, the
residual stress does not vanish due to kinematic hardening.

E ν K n R0v Cv Dv R0p Cp Dp

(MPa) (-) (MPa 1
n ) (-) (MPa) (MPa) (-) (MPa) (MPa) (-)

210000 0.3 120 7 0 20000 200 140 1000 10
Table 2: Material parameters for a model with two inelastic mechanisms: (p) time-independent
plastic and (v) viscoplastic. Cpv = Cvp = 0 MPa.

4.5. Plastic spin in anisotropic plasticity
The effect of plastic spin on the response of a Hill perfectly plastic material is

illustrated in this example. Hill’s yield criterion is expressed in terms of Mandel
stress tensor in the form

f(M∼ ) =
(
F (M22 −M33)2 +G(M33 −M11)2 +H(M11 −M22)2

+ 2NM2
12 + 2LM2

23 + 2MM2
13

)1/2

−R0

(95)

where F , G, H, N , M , L are material parameters characterizing the anisotropy
of plasticity. This yield function reduces to von Mises if F = G = H = 0.5 and
H = N = M = 1.5.

A simple glide test is considered with constant shear rate in the plane (1, 2).
When the hypoelastic-plastic model is used with the Jaumann derivative, the con-
tinuum under a constant shear strain rate γ̇ rotates endlessly at the spin θ̇W = − γ̇2 .

Consequently, the spin of directors is equal to θ̇W
dir = θ̇W = − γ̇2 . The value of σ12

oscillates between R0√
2N

at F12 = γ = kπ (k ∈ N) and a peak (or valley) value
R0√

F +G+ 4H
at γ = 2k + 1

2 π (k ∈ N). In the case of the Green-Naghdi formula-

tion, the spin of directors is equal to θ̇R
dir = − 2γ̇

4 + γ2 . Therefore, the rotation angle
converges to π/2 degrees as γ goes to infinity. This is illustrated by Fig. 13.
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Figure 11: Tension/compression test for two deformation rates Ḟ11 = 0.1 s−1 (a) and Ḟ11 =
0.001 s−1 (b). Model with a time-independent and a viscoplastic mechanism.

The responses of the proposed model are shown in Fig. 14. If the plastic spin
vanishes i.e. β = 0MPa−1, for small elastic stretches, the proposed model without
plastic spin and the model based on Jaumann derivative have the same response.
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Figure 12: Hypoelastoplastic material response under simple glide loading. Jaumann (left) and
Green-Naghdi (right) formulations. Coefficients of Hill’s yield criterion used in this simulation:
F = G= H=0.5, L= M=1.5, N =4, initial yield stress R0 = 1000 MPa.

This means that the orthotropic axes rotate at the same rate as the continuum
θ̇ = −γ̇/2. In contrast, as shown in Fig. 13, when β 6= 0MPa−1, the spin of the
substructure is different from material spin. In fact, as the value of β increases,
the spin induced by W∼

p balances out the material spin. Further, if β is sufficiently
high, the rotation of directors saturates rapidly at an angle of ≈ π/4. The rate of
directors’ spin is illustrated in Fig. 14 for several values of the plastic spin parameter
β: constant spin for β = 0, rapid saturation for high values and oscillatory response
for intermediate values.
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Figure 13: Effect of plastic spin on stress values in the case of simple glide loading. (a) Without
plastic spin i.e. β = 0 MPa−1 (b) with plastic spin β = 0.01 MPa−1. Multiplicative plasticity model
with yield stress R0 = 1000 MPa, Hill yield criterion coefficients F = G = H = 0.5, L = M = 1.5,
N = 4.
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Figure 14: Directors’ spin for various values of parameter β during a simple glide test for a Hill
perfectly plastic material and multiplicative decomposition. When β = 0MPa−1, the rotation rate
of directors is constant and coincides with the material spin.

4.6. Plastic spin: crystal plasticity
Crystal plasticity represents one of the few physical situations for which the

plastic spin of crystal directors is precisely known. The spin of directors uniquely
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results from the slip of N s systems on specific crystallographic planes and along
specific slip directions. The dissipation potential is expressed in terms of the Schmid
yield function f s associated with each slip system s

f s =
∣∣∣M∼ : N∼

s − xs
∣∣∣− τ sc with N∼

s = ls ⊗ n∼
s (96)

where τ sc denotes the critical resolved shear stress (CRSS) for the s-th slip system,
ls and ns are, respectively, the slip direction and the normal to the slip plane. The
resolved Mandel shear stress τ s = M∼ : N∼

s is the driving force for activation of the
s-th slip system. Kinematic hardening has been introduced by [74] in the crystal
plasticity framework, in the form of a back stress variable xs obeying the following
evolution rule

α̇s = γ̇s −D|γ̇s|αs, xs = Cαs (97)

where C,D are the kinematic hardening material parameters. For the sake of demon-
stration, a power law potential is considered

Ω(M∼ ,N∼
s) =

Ns∑
s=0

K

n+ 1

〈
|M∼ : N∼

s − xs| − τ sc
K

〉n+1

(98)

where n and K are viscosity material parameters and <·> denotes the Macauley
brackets. Further, a non-linear hardening law is adopted for the CRSS τ sc given by

τ sc = τF(r)
c +

Ns∑
r=0

Hsr(1− exp
(
−bF(r)γrcum

)
) (99)

F(r) identifies the slip system family to which the slip system r belongs (for example
basal and prismatic system families in HCP crystals), Ns is the total number of slip
systems and γrcum denotes the accumulated plastic slip. The matrix Hsr accounts
for interactions between slip systems. The evolution of the plastic slip variables γs
follows as

γ̇s =
〈
|M∼ : N∼

s − xs| − τ sc
K

〉n
sign

(
M∼ : N∼

s − xs
)

(100)

According to the normality rule (27), the plastic deformation rate reads

L∼
p =

Ns∑
s=0

γ̇sN∼
s (101)
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and the plastic spin writes

W∼
p =

Ns∑
s=0

γ̇sskw (ls ⊗ ns) (102)
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Figure 15: The effect of plastic spin in the case of a simple glide loading of a FCC single crystal for
three different finite strain formulations: Jaumann (a) and Green-Naghdi(b) rates (with no plastic
spin) and the multiplicative decomposition (c). (d) comparison of σ12 for all three formulations.

As an illustration, the simple glide kinematics (84) is imposed to a face centered
cubic (FCC) single crystal. The single crystal model response is compared to two
fake crystal models in order to highlight the importance of properly characterizing
the plastic spin. In the fake models no plastic spin is introduced and Jaumann or
Green–Naghdi hypoelastic laws are used instead of the actual plastic spin (102). The
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Figure 16: The spin of material directors in the case of a simple glide loading for three different finite
strain formulations of crystal plasticity: Jaumann and Green-Naghdi rates and the multiplicative
decomposition

responses of the three models are shown in Fig. 15. The material is perfectly plastic,
with an initial CRSS value τ sc = 100 MPa. The simple glide loading direction 1
initially coincides with the crystal direction [100], whereas the direction 2 initially
coincides with the crystal direction [011]. The octahedral slip system family of the
FCC crystal is employed and contains 12 slip systems. The reference solution based
on the multiplicative decomposition and plastic spin predicts a saturation of stress
levels after F12 = 2 shear. In contrast, the fake crystal responses exhibit oscilla-
tory stress evolutions. It is noteworthy that the stress component σ33 vanishes for
hypoelastic models. On the other hand, the approach based on the multiplicative
decomposition includes a plastic spin derived from the dissipation potential. This
model of plastic spin dictates the spin of directors independently of material rotation
(see Fig. 16). In addition, the σ33 does not vanish according to the present model
contrary to the hypoelastic formulations.

Furthermore, the rotation rate tends to zero for the crystal orientation considered
in the present example, which is not the case for Jaumann rate. The comparison with
experimental results confirms that the rotation of anisotropic axes of a single crystal
does not follow the material rotation [75, 76]. Clearly, the fake crystal plasticity
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models are physically inadequate. Note that oscillatory responses can be observed for
special crystal orientations within the framework of multiplicative crystal plasticity,
see [77].

4.7. Crystal plasticity with system interactions
The interaction matrix in Eq. (99) has the general form

H =



Q1H1 Q1h
1
2 . . . Q1h

1
n

Q2h
1
2 Q2H2 . . . Q2h

2
n

... ... . . . ...

Qnh
1
n Qnh

2
n . . . QnHn



(103)

where Qi is the isotropic hardening parameter associated with each slip system fam-
ily i, Hi matrices denote the self-hardening coefficients, and hnm denotes the latent
hardening parameters (hardening of slip systems belonging to the family n caused
by slip systems belonging to the family m). The table 3 shows typical material
constants for a single crystal with octahedral and cubic slip system families. Such
combination of octahedral and cube slip system families are encountered in single
crystal Nickel–based superalloys [74].

K1 n1 τ (1)
c Q1 b1 H1 K2 n2 τ (2)

c Q2 b2 H2
(MPa1/n1) (-) (MPa) (MPa) (-) (-) (MPa1/n2) (-) (MPa) (MPa) (-) (-)

0.1 20 100 50 50 1 0.1 20 100 100 100 1
Table 3: Material parameters for octahedral (1) and cubic (2) slip systems with isotropic hardening.

Fig. 17 shows the influence of latent hardening parameter h1
2 on the activation of

slip systems. In fact, if h1
2 = 0, the cubic slip systems are activated as soon as σ33 ≈

3
√

2
2 τ (2)

c (according to Schmid’s law, neglecting the overstress due to viscoplasticity),

and the octahedral slip systems are activated when σ33 ≈
3
√

6
2 τ (1)

c . If h1
2 > 0, the
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Figure 17: A single crystal including two slip system families (octahedral an cubic) in tension along
< 111 >. γcubcum (resp. γoctcum) denotes the accumulated cubic (resp. octahedral) plastic slip.

octahedral slip systems will be activated later since the corresponding critical resolved
shear increases due to accumulated cubic plastic slip according to Eq. (99). This is
the manifestation of latent hardening between slip system families.

5. Structural applications

The proposed generic formulation and implementation are now illustrated in the
case of structural components subjected to various loading conditions. The model
predictions and computational efficiency are compared to those obtained by standard
approaches involving hypo-elastoviscoplastic models.

5.1. Application 1: Deep drawing for anisotropic materials
The present approach is applied first to the three dimensional problem of cup

deep drawing. This problem is common in literature and solved using various finite
strain formulations, see [44, 23]. The geometry of the test is described in Fig. 18.

A time-independent elastoplastic model is considered with a Hill yield function
as in Eq. (95). A nonlinear isotropic hardening rule is adopted in the form

R(p) = R0 +Q(1− exp(−bp)) (104)

Here the value of the initial yield stress is R0 = 253 MPa, the isotropic hardening
parameters are chosen as b = 14 and Q = 215 MPa. The parameters of Hill’s yield
function are set to F = G = H = N = 0.5 and L = M = 1.5. Herein, only a quarter
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die

punch

holder

sheet

Figure 18: Schematic view of the cup drawing process. No friction is considered between sheet and
tools. The die, punch and the holder are assumed to be linear elastic with a Young modulus of
E = 106 MPa and a Poisson ratio ν = 0.3. Lengths in mm.

xy

z

xy

z

(a) (b)

Figure 19: Accumulated plastic strain induced by cup drawing in an anisotropic elastoplastic plate:
(a) Without plastic spin β = 0 MPa−1, (b) with plastic spin β = 0.01 MPa−1

of the cup is analyzed due to the orthotropic material symmetry. The mesh of the
sheet contains 900 C3D8 hexahedral solid elements (linear interpolation with 8 Gauss
points per element), with 3 elements in the thickness direction. The plate is initially
circular. The tools are modeled as rigid surfaces and are completely fixed except the
punch which is pushed in z-direction to a total displacement of uz = −40 mm.

Fig. 19 shows the distribution of the accumulated plastic strain and the deformed
configuration. If the plastic spin vanishes, the maximal values of the accumulated
plastic strain are located along the directions of the material symmetry x- and y-
axes. When plastic spin is taken into account by means of parameter β from Eq.
(45), the distribution of accumulated plastic strain tends to be more isotropic for
β = 0.01 MPa−1.
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Figure 20: Distance of rim to the sheet center versus angle to x-axis. The curve shows the earing
pattern for two values of the parameter β.

The earing profile after forming is depicted in Fig. 20 for two values of the
parameter β. The edge of the sheet has a wavy shape. As the value of β increases,
the edge shows less pronounced wave-shape. Similar results were reported in [44] for
an isotropic elastic and a transverse isotropic Hill-type plastic model. The hypoelastic
version of this model yields similar results to the present approach, including the wavy
shape of the cup and the distribution of plastic strains. The present formulation,
however, is advantageous since a supplementary plastic spin describing the evolution
of anisotropy axes can be incorporated in the model.

5.2. Application 2: Turbine blade with single crystal plasticity
In the following, the behavior of a nickel-based superalloy single crystal turbine

blade subjected to creep at high temperature is studied. During their operation,
turbine blades are subjected to centrifugal forces induced by the rotation (∼ 20000
RPM) of the turbine disc in addition to gas pressure. During one flight, the turbine
blades are subjected to high and non-uniform temperatures (maximum temperature
∼ 1200◦C), which will induce thermal strains. The thermomechanical loading is
maintained for a longer time, compared to the nominal in-service conditions, at the
maximum temperature(∼ 640◦C at the root and ∼ 1200◦C at the tip). The mesh
of the turbine blade geometry contains 1366 linear C3D8 hexahedral solid elements.
We consider two initial orientations of the crystal. The first one is such that the
crystal directions triplet ([100] − [010] − [001]) coincide with the orthogonal basis
vectors triplet (x1,x2,x3). For the second orientation, the crystal is tilt by 15◦ in the
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x1-x3 plane. The objective is to assess the impact of crystal misorientation on the
thermomechanical response of the blade.

The material model has 18 slip systems potentially active, 12 octahedral {110}<111>
and 6 cubic slip systems {110}<100>. The constitutive equations of the model in-
cluding kinematic hardening law were given in Sec. 4.6. Typical values of the material
parameters used in the simulation can be found in [78]. Cubic elasticity moduli, the
coefficient of isotropic thermal expansion, critical resolved shear stresses, viscoplas-
tic flow parameters and nonlinear kinematic hardening parameters are identified as
functions of temperature.
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Figure 21: (a) The accumulated plastic strain in a turbine blade subjected to creep at high tem-
perature. (b) Displacement of the node Q as a function of time: comparison of different finite
deformation formulations.

Fig. 21 shows that both hypoelastic formulations yield similar creep results. The
present model prediction slightly differs and the difference increases with time. The
difference between various formulations becomes apparent when an initial rotation
of 15◦ around y-axis is considered. Fig. 22 shows the relative rotation of material
directors with respect to material rotation for the present model. For hypoelastic
formulations, the spin of directors coincides with material rotation which is not the
case for the model based on the multiplicative decomposition. The multiplicative
crystal plasticity model assumes a relative rotation of crystal directors with respect
to material lines, induced by the plastic spin (102). An initial misorientation of
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relative rotation (radian)relative rotation (radian)

Figure 22: Relative rotation of crystal directors w.r.t. material lines for the multiplicative-based
model in two cases (a) ideal < 1001 > orientation of the blade, (b) deviation of 15◦ around y-axis.

15◦ leads to slightly larger relative rotation of crystal directors, as shown in Fig.
22. This result explains the fact that the difference in creep predicted by various
formulations is much more pronounced for an initial misorientation of 15◦ compared
to 0◦. It must be underlined that the presented crystal plasticity formulations based
on corotational frames are physically unsound but represent standard extensions of
small strain crystal plasticity.

5.3. Computational efficiency of the approach
The present formulation is compared to two hypoelastic formulations, Jaumann

(J) and Green-Naghdi (GN) rates, in terms of computational efficiency. We consider
four examples of structural applications and different material models. In addition
to the applications discussed previously, we carry out a tensile test on a notched
specimen with 323703 nodes corresponding to 73920 C3D20R quadratic elements
with reduced integration. A von Mises plasticity model is adopted with initial yield
stress R0 = 300 MPa.The parameter values for nonlinear isotropic and kinematic
hardening are taken as Q = 400 MPa, b = 2.5, C = 5700 MPa and D = 17, as in
[33]. The results predicted by different formulations (hypoelastic and multiplicative
models) turn out to be almost identical in this isotropic case. Fig. 23 depicts
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Figure 23: Accumulated plastic strain in a notched specimen subjected to tensile loading using the
multiplicative decomposition based model.

the obtained accumulated plastic strain field. The objective of this example is to
illustrate the performance of the approach for a problem with almost one million
degrees of freedom.

Note that the integration of constitutive equations is carried out using a fully
implicit integration method (θ = 1). The time increment is set to the same value
for all the formulations (if it does not converge, the time increment is divided by
2). Comparison results for various formulations are presented in Fig. 24. Computa-
tions were carried out on processors of type Intel(R) Xeon(R) CPU E5-2650 v4 @
2.20GHz. It is found that the formulation based on the multiplicative decomposition
leads to a slightly higher computational cost compared to hypoelastic formulations
(+15%–20%). This is due to the fact that more operations are implied by the sys-
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tematic use of non–symmetric tensors in the algorithm. Besides, the total number of
iterations for convergence of global equilibrium, is slightly higher for the model based
on the multiplicative decomposition. In spite of that, the computational cost is still
reasonable compared to formulations common in commercial FEM software. The
slight increase in computation time is counter–balanced by additional possibilities in
the modeling of anisotropic inelasticity.
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Figure 24: Comparison of the total number of increments, total number of iterations and CPU time
for different formulations. Applications: (a) deep drawing with 900 C3D8 elements (1324 nodes),
(b) deep drawing with 19500 C3D8 elements (26564 nodes), (c) turbine blade under creep with 1366
C3D8 elements (2498 nodes), (d) Notched specimen with 73920 C3D20R elements (323703 nodes).
Simulations are run on 24 CPUs.

6. Conclusion

The present work demonstrates that elasto-viscoplastic models based on the mul-
tiplicative decomposition of the deformation gradient are now mature for a systematic
use in commercial finite element codes for structural computations. The proposed
generic constitutive framework overcomes the shortcomings of standard formulations
used in most available FE codes and based on hypoelastic laws and limited descrip-
tion of anisotropic behavior. It has been shown that the computing efficiency is
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comparable to the standard approach, although slightly less advantageous. The use
of a thermodynamically consistent formulation of constitutive equations ensures in-
creased reliability of model predictions.

The proposed extension of constitutive equations at finite strain relies upon the
multiplicative decomposition of the deformation gradient and a hyperelastic relation
between stress and elastic strain measures. The other characteristic feature is the
expression of plasticity laws in terms of the Mandel stress tensor, which is generally
non-symmetric. The approach accommodates contributions of many deformation
mechanisms combining thermo-plasticity, viscosity and possibly damage, without
resorting to arbitrary further multiplicative decompositions of elastic or plastic parts
of the deformation gradient. Instead, the rates of multimechanism contributions are
added in the viscoplastic flow rule. Anisotropy is incorporated via the consideration
of directors and associated structural tensors and plastic spin concept which are
often absent in existing standard formulations. It was illustrated in the case of Hill’s
criterion and crystal plasticity.

Two numerical integration methods of the nonlinear evolution equations are pro-
posed. First, the elastic or the plastic part of the deformation gradient is integrated
using an exponential map. In general, this method involves calculating the exponen-
tial of a non-symmetric second-order tensor and its derivative, which is not an easy
task. An alternative integration method is considered, which consists of correcting
the elastic part of the deformation gradient to enforce the plastic incompressibil-
ity. The present framework is illustrated through various models, including isotropic
and anisotropic (visco)-plasticity with isotropic and kinematic hardening. Most for-
mulations exist in the literature but a few are original: nonlinear non-symmetric
kinematic hardening rule including dynamic and static recovery terms. In the case
of linear kinematic hardening, models based on the Jaumann rate and the multiplica-
tive decomposition exhibit stress oscillations extensively discussed in the literature.
However, regarding nonlinear kinematic hardening including dynamic recovery term,
the various models provide similar predictions for a proper choice of material param-
eters.

The capabilities of the present formulation are illustrated through elementary
industrial applications. The effect of plastic spin on the evolution of anisotropy de-
scribed by a triad of directors was evaluated in the case of cup drawing. This effect
cannot be neglected, particularly for materials showing a high degree of anisotropy
under large plastic deformation. The comparison between hypo-elastoplastic models
applied to crystal plasticity shows that the result heavily depends on the objective
stress rate. The crystal plasticity model based on the multiplicative decomposition
remains the reference model in that case and was successfully validated by experi-
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ments, especially the rotation of crystal directors with respect to loading axes.
Meanwhile, further research is necessary to develop yield criteria in terms of the

generally non-symmetric Mandel stress tensor [46, 44]. The identification of the con-
stitutive equations for the plastic spin requires more experimental investigations at
large deformations. Furthermore, non-symmetric internal variables (e.g. kinematic
hardening) are to be considered. Examples showing applications to compressible
elastoviscoplastic materials could also be provided. Non associated flow rules for
applications to granular media should also be envisaged.

It is hoped that the present results can increase the interest of the engineering
computation community towards the systematic use of physically consistent nonlin-
ear constitutive equations.

Appendix A: Hypoelastic-based formulations

The constitutive laws are formulated in terms of objective rates of stress measures,
as e.g. of σ∼

O
σ∼ = C

≈
: D∼

e = C
≈

: (D∼ −D∼
p) (A.1)

O
σ∼ denotes an objective rate of Cauchy stress tensor given by

O
σ∼ = σ̇∼ + σ∼Ω∼ −Ω∼σ∼ (A.2)

Ω∼ is a skew-symmetric second-order tensor. The most commonly used corotational
objective stress rates are the Jaumann and Green–Naghdi rates. The spin tensors Ω∼
corresponding to the Jaumann and Green–Naghdi rates are defined as

Ω∼
J = W∼ and Ω∼

GN = Ṙ∼R∼
T (A.3)

where W∼ = skw(L∼ ) is the skew-symmetric part of the velocity gradient and R∼ is an
orthogonal tensor such that F∼ = R∼U∼ (U∼ is a symmetric second order tensor). The
yield condition is given by

f(σ∼ , AI , T ) = 0 (A.4)

The plastic part D∼
p of the rate of deformation tensor is determined by the flow rule

D∼
p = λ̇

∂f(σ∼ , AI , T )
∂σ∼

(A.5)
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Appendix B: Finite element implementation

The nodal displacements are written in vector form as

{ue} =
{
u1

1 u1
2 u1

3 · · · up1 up2 up3
}T

(A.6)

uij denotes the j-th (1 ≤ j ≤ 3) component of the nodal displacement at node i. p is
the total number of nodes. The shape functions can be written as

[N ] =

N
1 0 0 · · · Np 0 0

0 N1 0 · · · 0 Np 0
0 0 N1 · · · 0 0 Np

 (A.7)

and
{u} = [N ]{ue} (A.8)

It follows that

{F∼ } = {F11 F22 F33 F12 F23 F31 F21 F32 F13}T = [B]{ue} (A.9)

where

[B] =



∂N1

∂X1
0 0 · · · ∂Np

∂X1
0 0

0 ∂N1

∂X2
0 · · · 0 ∂Np

∂X2
0

0 0 ∂N1

∂X3
· · · 0 0 ∂Np

∂X3
∂N1

∂X2
0 0 · · · ∂Np

∂X2
0 0

0 ∂N1

∂X3
0 · · · 0 ∂Np

∂X3
0

0 0 ∂N1

∂X1
· · · 0 0 ∂Np

∂X1

0 ∂N1

∂X1
0 · · · 0 ∂Np

∂X1
0

0 0 ∂N1

∂X2
· · · 0 0 ∂Np

∂X2
∂N1

∂X3
0 0 · · · ∂Np

∂X3
0 0



(A.10)

The linear set of equations to be solved for ∆u iteratively is given by

[K]g∆u =
∫

Ω0
[NT ]{b}dV0 +

∫
∂Ωtr

0

[N ]T{t}dS0 −
∫

Ω0
[B]T{P }dV0 (A.11)

where [K]g is the global tangent matrix in Eq. (63) and Eq. (67) and {P∼ } is the
Boussinesq stress tensor. {b} and {t} denote the reference body force and surface
traction fields, respectively.

49



Appendix C: Tangent matrices

The Jacobian matrix is required to integrate the constitutive equations at the
Gauss point level. The block form of the Jacobian matrix writes

∂Rel

∂∆F∼
e

∂Rel

∂∆pi

∂Rel

∂∆αi

∂Rpi

∂∆F∼
e

∂Rpi

∂∆pi

∂Rpi

∂∆αi

∂Rαi

∂∆F∼
e

∂Rαi

∂∆pi

∂Rαi

∂∆αi

 (A.12)

where the residuals are taken as

Rel = ∆F∼
e −∆F∼F∼

−1F∼
e + F∼

e
N∑
i=0

∆piN∼ i
(A.13)

Rpi
= fi or Rp = ∆pi −∆t∂Ω

∂fi
(A.14)

Rαi
= ∆αi −∆pimi + ∆qi (A.15)

The terms related to the global part of the Jacobian (the first row and the first
column) are given by

∂Rel

∂∆F∼
e = 1

≈
− (∆F∼F∼

−1)⊗
¯

1∼ +
N∑
i=0

∆pi
(
1∼⊗¯

N∼
T
i

)
+ θF∼

e

[
N∑
i=0

∆pi
∂N∼ i

∂M∼

]
: ∂M∼

∂F∼
e

(A.16)
∂Rel

∂∆pi
= F∼

eN∼ i
+ ∆pi

∂N∼ i

∂Ai

∂Ai

∂pi
(A.17)

∂Rel

∂∆αi
= θF∼

e
N∑
i=0

∆pi
(
∂N∼ i

∂Ai

∂Ai

∂αi

)
(A.18)

∂Rp

∂∆F∼
e = θ

∂f

∂M∼

: ∂M∼

∂F∼
e or ∂Rp

∂∆F∼
e = −θ∆t∂ṗi

∂fi

(
∂f

∂M∼

: ∂M∼

∂F∼
e

)
(A.19)

∂Rαi

∂∆F∼
e = −θ∆pi

∂mi

∂M∼

: ∂M∼

∂F∼
e (A.20)
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where

∂M∼

∂F∼
e = 1∼⊗̄(Π∼

eF∼
eT ) + F∼

eT ⊗
¯

Π∼
e + F∼

eTF∼
e∂Π∼

e

∂E∼
e : ∂E∼

e

∂F∼
e (A.21)

∂E∼
e

∂F∼
e = 1

2

(
1∼⊗̄F∼

eT + F∼
eT ⊗

¯
1∼
)

(A.22)

Recall that θ ∈ [0,1] is a parameter of the integration method. Next, the block of
the Jacobian related to the internal variable evolution equations writes

∂Rpi

∂∆pi
= θ

∂f

∂p
or ∂Rpi

∂∆pi
= 1− θ∆t∂ṗi

∂fi

∂fi
∂pi

(A.23)

∂Rpi

∂∆αi
= ∂f

∂αi

∂αi
∂∆αi

or ∂Rpi

∂∆αi
= −θ∆t∂ṗi

∂fi

∂f

∂Ai

∂Ai

∂αi
(A.24)

∂Rαi

∂∆pi
= −mi − θ∆pi

∂mi

∂pi
(A.25)

∂Rαi

∂∆αi
= 1− θ

(
∆pi

∂mi

∂Ai

+ ∆t ∂qi
∂Ai

)
∂Ai

∂αi
− θ∆pi

∂mi

∂αi
(A.26)

The interaction terms are given by

∂Rpi

∂∆pj
= θ

∂fi
∂pj

or ∂Rpi

∂∆pj
= −θ∆t∂ṗi

∂fi

∂fi
∂pj

(A.27)

∂Rpi

∂∆αi
= θ

∂f

∂Ai

∂Ai

∂αj
or ∂Rpi

∂∆αi
= −θ∆t∂ṗi

∂fi

∂f

∂Ai

∂Ai

∂αj
(A.28)

∂Rαi

∂∆pi
= 0 (A.29)

∂Rαi

∂∆αj
= 1− θ

(
∆pi

∂mi

∂Ai

+ ∆t ∂qi
∂Ai

)
∂Ai

∂αj
(A.30)

The matrix ∂Ai

∂αj
accounts for interactions between the hardening variables.

The second method to integrate constitutive equations relies upon the following
definition of the residual in Eq. (A.13)

Rel = F∼
eF∼

p − F∼ (A.31)
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F∼
p is the solution of the following differential equation

Ḟ∼
p = L∼

pF∼
p (A.32)

So F∼
p, at increment n+ 1, can be estimated by using the exponential mapping [71]

as
F∼
p
n+1 = exp

(
∆L∼

p
)
F∼
p
n

(A.33)

Accordingly, the plastic incompressibility, i.e. trace(L∼ p) = 0 or det
(
F∼
p
)

= 1, is
satisfied since

det
(
expA∼

)
= exp

(
trA∼

)
(A.34)

The first row of the Jacobian matrix in Eq. (A.12) is rewritten

∂Rel

∂∆F∼
e = 1∼⊗¯

F∼
pT + θF∼

e

∂ exp
(
∆L∼ p

)
∂∆L∼ p

:
(

N∑
i=0

∆pi
∂N∼ i

∂M∼

)
: ∂M∼

∂F∼
e

F∼ p
n

(A.35)

∂Rel

∂∆pi
= F∼

e

∂ exp
(
∆L∼ p

)
∂∆L∼ p

: N∼ i

F∼ p
n

(A.36)

∂Rel

∂∆αi
= F∼

e

∂ exp
(
∆L∼ p

)
∂∆L∼ p

:
(

N∑
i=0

∆pi
∂N∼ i

∂∆αi

)F∼ p
n

(A.37)
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[61] G. Cailletaud, K. Säı, Study of plastic/viscoplastic models with various inelastic
mechanisms, International Journal of Plasticity 11 (8) (1995) 991–1005. doi:
10.1016/S0749-6419(95)00040-2.

[62] G. Cailletaud, Multi-mechanism modeling of inelastic material behavior, ISTE
Ltd/John Wiley and Sons Inc, Hoboken, NJ, 2017.

[63] C. Frederick, P. Armstrong, A mathematical representation of the multiaxial
Bauschinger effect, Materials at High Temperatures 24 (2007) 1–26. doi:10.
1179/096034007X207589.

58

https://doi.org/10.1016/S0749-6419(03)00057-3
https://doi.org/10.1016/S0749-6419(03)00057-3
https://doi.org/10.1016/0020-7683(75)90015-3
https://doi.org/10.1016/0020-7683(75)90015-3
https://doi.org/10.1016/0020-7225(76)90085-9
https://doi.org/10.1016/0020-7225(76)90085-9
https://doi.org/10.1115/1.1591000
https://doi.org/10.1002/pen.760321605
https://doi.org/10.1007/s001610050104
https://doi.org/10.1016/S0022-5096(96)00104-4
https://doi.org/10.1016/S0749-6419(95)00040-2
https://doi.org/10.1016/S0749-6419(95)00040-2
https://doi.org/10.1179/096034007X207589
https://doi.org/10.1179/096034007X207589


[64] J. Chaboche, A review of some plasticity and viscoplasticity constitutive theo-
ries, International Journal of Plasticity 24 (2008) 1642–1693. doi:10.1016/j.
ijplas.2008.03.009.

[65] J. Besson, G. Cailletaud, J.-L. Chaboche, S. Forest, Non-Linear Mechanics of
Materials, Solid Mechanics and Its Applications, Springer Netherlands, 2009.
doi:10.1007/978-90-481-3356-7.
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