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Abstract

Multi-modal interactions at the network-level remain unexplored due to the lack of high-resolution data for all transporta-

tion modes involved. The current work investigates the effect of multi-modal interactions at space-mean network speed for

each mode using the dataset from pNEUMA experiment that was carried out in a congested city centre network of Athens,

Greece. Explanatory variables considered are the accumulation and the stopped fraction of vehicles of each mode. Firstly,

a multi-modal mean speed MFD is considered by assuming that the mean speed of each mode can be expressed in terms of

accumulations of all modes. The quality of multi-modal MFD fits is compared to the uni-modal ones, where the mean speed of

a given mode is assumed to be a function of the accumulation of that mode only. Secondly, the classical two-fluid model is ex-

tended to multi-modal networks. An analysis on the ergodicity assumption in the context of stopped fraction is also presented.

This work also introduces a network-level dynamic model that uses the stopped fraction of vehicles. This so-called extended

trip-based model simulates the stop-and-go pattern of the vehicles thereby reproducing the evolution of network congestion.

This work is the first to explore in this direction. The results from the classical trip-based and the extended trip-based models

are compared and validated with the empirical data.
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1. Introduction

The present work targets to better explain the interactions between different modes in multi-modal urban environments

using massive data of vehicle trajectories from aerial footage in a congested urban network. This unique collection of empirical

data allows revisiting and redeveloping network-level models based on measurable variables than theoretical conjectures that

might not hold in reality. The interconnection between local interactions and their scaling to network effects will enable5

to develop a new era of empirical urban multi-modal traffic models. While network-level models have been studied since

the 1960’s and the seminal papers of Godfrey (1969) and Herman and Prigogine (1979), there have been rapid advances

in the network-level modeling once dynamic Macroscopic or Network Fundamental Diagram (MFD or NFD or NMFD)

models were investigated with real data for the city of Yokohama (Geroliminis and Daganzo, 2008). The MFD relates mean

density to mean flow in the urban network (Mahmassani et al., 1984; Daganzo, 2007). It has evolved as a promising tool for10

urban management, where applications like traffic state estimation (Yildirimoglu and Geroliminis, 2014; Kavianipour et al.,
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2019; Mariotte et al., 2020), perimeter control (Ampountolas et al., 2017; Sirmatel and Geroliminis, 2018; Mohajerpoor

et al., 2020; Haddad and Mirkin, 2020), congestion pricing (Zheng et al., 2016; Gu et al., 2018; Zheng and Geroliminis,

2020), route guidance (Yildirimoglu et al., 2015; Sirmatel and Geroliminis, 2017), ridesharing (Wei et al., 2020), demand

management (Yildirimoglu and Ramezani, 2020) and cruising for parking (Cao and Menendez, 2015; Leclercq et al., 2017;15

Gu et al., 2020), etc. have been proposed based on the MFD approach.

Most of the works proposed in the literature based on the MFD assume uni-modal networks. However, urban networks are

multi-modal, where different modes interact with each other in different ways. For instance, Boyaci and Geroliminis (2011);

Chiabaut et al. (2014); Loder et al. (2017) showed that buses and cars have a different effect on the network dynamics in

multi-modal urban networks. Similar findings (Barmpounakis et al., 2016) had been reported for Powered Two-Wheelers20

(PTWs) due to their smaller size and better manoeuvrability compared to the other modes. Gashaw et al. (2018) proposed

microscopic traffic mixed flow model considering cars and PTWs and estimated the changes in the flow of cars for different

densities of PTWs. The effect of PTWs on traffic cannot yet be fully quantified and therefore, the in-homogeneity they create

may conceal a significant cause of congestion. Paipuri and Leclercq (2020) showed that it is indeed essential to differentiate

the modes in the MFD-based frameworks to have accurate traffic state prediction.25

Most of the works (Buisson and Ladier, 2009; Saberi and Mahmassani, 2013; Tsubota et al., 2014; Ambühl et al., 2018)

focusing on the estimation of MFD using empirical empirical observations assume an uni-modal MFD Geroliminis et al.

(2014) estimated the so-called bi-modal or 3D-MFD that relates the accumulation of private cars, public transport buses to the

mean flow in the network based on micro-simulations. Later, Loder et al. (2017); Huang et al. (2019) showed the empirical 3D-

MFDs for Zurich, Switzerland and Shenzhen, China, respectively. In the stated works, the authors used either Loop Detector30

Data (LDD) or GPS data of private taxis in conjunction with Automatic Vehicle Locator (AVL) data of public transport

vehicles to estimate bi-modal MFDs. Extending this type of bi-modal MFD to multi-modal MFD using existing techniques

and data sources is not trivial. Identifying the level of interaction of local disturbances and the subsequent network effects (for

example, when a bus stops for passengers) requires high-resolution data that is not readily available. Thus, the data collection

challenges limited the multi-modal works to private cars and public transport buses in the literature. Recently, Paipuri et al.35

(2020) proposed a methodology to estimate the MFD based on mobile phone data. This framework can be used along with

the mode detection techniques presented on a similar kind of reliable data in Yang et al. (2020) to estimate a multi-modal

MFD in such networks. The main limitation of data from these types of sources is that they do not cover entire traffic and

hence, they are available at low to moderate penetration rates. Additionally, issues related to privacy or over representation

of specific modes could arise. More recently, Fu et al. (2020) estimated an empirical bi-modal MFD combining data from40

multiple sources for private cars, taxis and public transport buses for the city network of Shenzhen, China. Thus, there have

not been any works that estimate a true multi-modal mean speed MFD by considering all urban network modes.

A novel way of traffic data collection in the recent past is using Unmanned Aerial Systems (UAS) or drones (Barmpounakis

et al., 2016). Several previous works (Barmpounakis et al., 2018; Khan et al., 2018; Barmpounakis et al., 2019) used a single

drone to monitor the urban traffic at the intersections or specific arterials. Recently, Barmpounakis and Geroliminis (2020)45

extended this idea to monitor the traffic at the network scale using a swarm of drones in Athens, Greece. This experiment,

named pNEUMA (New Era of Urban traffic Monitoring with Aerial footage), provides a unique set of data, where more

than 100000 trajectories, with their mode identified, in a large urban area with more than 200 links and 60 bus stops were

monitored. The main advantage of this data compared to probe vehicles or smartphones is the complete network coverage
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and the quality of the individual trajectories, where almost every vehicle is tracked. Thus, it can be used in both microscopic50

and macroscopic studies of traffic flow problems like calibrating lane changing models, determining the impact of location of

loop detectors on the estimation of MFD, etc.

In the current work, this dataset is used to investigate the multi-modal interactions of all modes with respect to their

mean speeds. The dynamic influence of multi-modal interactions in network space-mean speed is investigated using two sets

of explanatory variables, namely accumulations as per the MFD theory and network-wide stopped fractions of vehicles as55

proposed in the two-fluid model by (Herman and Prigogine, 1979). Most of the works proposed based on the two-fluid model

in the literature (Jones and Farhat, 2004; Vo et al., 2007; Dixit, 2013) considered only private cars in the network. Chakraborty

and Srinivasan (2016) used the GPS data of public transport buses to study the impact of measurement errors on the two-fluid

model mean speed curves. Besides, there had been very few works (Herman and Ardekani, 1984; Ardekani and Herman, 1987)

validating the ergodic assumption used in the two-fluid model. The present dataset can shed some insights on the ergodicity60

assumption as trajectories of all types of vehicles are known a priori. Thus, the current work also addresses this research

gap by presenting a study on ergodicity assumption in estimating the stopped fraction of vehicles. Besides, the influence of

penetration rates on the estimation of stopped fractions is also analysed.

Multi-modal mean speed regression fits are essential to understand the interactions between different modes at the network

level. These are critical inputs to the macroscopic dynamic models used to predict the future traffic states and apply different65

control actions. While mean speed vs. accumulation fits can be directly used in the context of the MFD-based models, no

attempts have been made to use mean speed prediction methods based on the two-fluid model, i.e., using mean speed vs.

network-wide stopped fraction fit as an input to the macroscopic model. Thus, this work is the first step to explore in this

research direction by proposing the multi-modal two-fluid model and comparing it with the multi-modal MFD model. It

is worth noting that this is possible due to the unprecedented coverage of current dataset that have penetration rates higher70

than 99%. In the context of the current study, the trip-based MFD model is extended to segregate the two typical vehicular

states during their trips (running and stopped) and the modelling and application of the single-mode and bi-modal MFDs are

extended to a general multi-modal mean speed vs. accumulation of each individual mode. Then, building on the two-fluid

model concept, a multi-modal two-fluid model is developed, where the speed of each mode depends on the stopped fraction

of vehicles of all the other modes. Finally, an extended trip-based model that replicates the stop-and-go pattern of the vehicles75

is proposed.

The paper is organized as follows: Section 2 discusses the details about the network and the data, Section 3 compares

the mean speeds and mean running speeds for different modes and presents the regression analysis of mean speeds using

accumulations as explanatory variables, Section 4 provides a detailed discussion on the regression analysis of mean speeds

using stopped fractions as explanatory variables, Section 5 proposes the extended trip-based model and validates it using the80

empirical data and finally, Section 6 brief conclusions of the work.

2. Data Description and Processing

Figure 1a shows the region under consideration in the down town area of Athens city. Fig. 1b presents the link-level

description of down town Athens, where links highlighted in blue falls under the monitored region. A swarm of 10 drones

was used to monitor the central business district of Athens that covers an area of 1.4 km2. The total length of the road network85

in the considered area is around 78 km and there are a total of 63 bus stops. The experiment was carried out on five weekdays,
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Figure 1: Athens network: map of the area and its link level description. (a) Map of Athens, Greece ©OpenStreetMap 2020. (b) Link level representation of

Athens. Links in blue are present inside the considered area.
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Figure 2: 2D MFDs of considered region. (a) Production MFD. (b) Mean speed MFD.

namely October 19, 2018, October 24, 2018, October 29, 2018, October 30, 2018 and November 1, 2018. In the present work,

only data from the last four days of the experiment is used. On the first day, the morning peak hour from 08:30 AM to 11:00

AM was monitored, whereas on the remaining three days, the traffic stream from 08:00 AM to 10:30 AM was monitored.

The video recordings were processed to extract the individual trajectories of each vehicle along with its mode. In the current90

dataset, six different modes are identified: private cars, taxis, buses, medium vehicles, heavy vehicles, and PTWs. Although

the raw data has a higher sampling frequency of 0.04 s, for the current study, it is eventually downgraded to 1 s in order to

ease the data processing. More details about the experimental setup can be found in Barmpounakis and Geroliminis (2020)

and hence, they are omitted here.

Since the drones have a limited battery life, the recordings were intermittent. Drones were brought back to change the95

batteries and thus, 12 min to 15 min of recording was lost inside each 30 min period. Hence, for every 30 min period the

active recording time is only around 15 min to 17 min. It is noticed that not all drones were recording either at the beginning

or towards the end of active recording periods due to synchronization issues. Only data corresponding to complete drone

coverage is considered to minimize the bias in estimating macroscopic variables in the current work. According to the
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generalized definitions of Edie (1963); Saberi et al. (2014), average flow (q) and average density (k) are defined as,100

q =

M
∑

i=1
T Di

Ln ∆T
and k =

M
∑

i=1
T Ti

Ln ∆T
, (1)

where T Di and T Ti are travelled distance and travelled time of vehicle i during a given aggregation interval ∆T , Ln is the

total length of the network and M is the total number of trajectories. In the present work, an aggregation interval of 1 min is

assumed. The mean speed of the network can be estimated as the ratio of average flow to average density. The computed k and

q are used to estimate vehicle accumulation (Ln k) and production (Ln q), respectively. Vehicle accumulation can be defined

as the total number of vehicles present in the network in a given aggregation interval, whereas production is average distance105

travelled by all vehicles in the network during the aggregation interval. Fig. 2 presents the production and mean speed MFDs

considering all vehicles irrespective of modes in the considered region. Fig. 2a shows that most of the data points are in the

network saturation regime of the production MFD. The active drone recordings start either at 08:00 AM or 08:30 AM, where

the network is expected to be saturated. Thus, the data points corresponding to the free-flow regime are not obtained in the

experiment. The mean speed MFD shown in Fig. 2b has a mean speed range of 1.5 ms−1 at the network saturation. Similarly,110

production MFD shows a scatter of 2000 vehm sec−1 at the peak hour. It is worth noting that no smoothening techniques were

used to present the results and thus, compared to previous works in the literature, relatively low scatter MFDs are obtained for

both production and mean speeds.

It is also noticed that certain trajectories, especially of cars and taxis, have very low mean speeds, less than 2 ms−1, over

their entire trajectory. Given that 1 m sec−1 to 1.5 m sec−1 is a nominal walking speed, such a low mean speed over the whole115

trip is rather unusual. This is due to the vehicle tracking algorithm used to extract the trajectories from drone videos. The

vehicle tracking algorithm does not stop tracking a vehicle even after it has stopped. For instance, consider a vehicle that

was moving for the first 30 seconds of the recording and then was parked for the rest 14 minutes. The trajectory data will

contain the whole 14 min and 30 sec. In the case of taxis, this might happen when they are stopped in a taxi stop, move for 4

meters to occupy the next available slot and then stop again until a new customer/passenger arrives. At the same time, these120

very low mean speeds are not due to long queues in the spillbacks that can typically occur during peak hours. Spillbacks

and long queues occur in the network under consideration, but there is still heterogeneity and the network is really far from

gridlock conditions. Thus, long queues might propagate for a few intersections, but do not cover the whole network. This

can be verified by space-time diagrams presented in Barmpounakis and Geroliminis (2020, Figs. 12, 13 and 18), which were

plotted for the same dataset. Thus, these set of trips are flagged for further investigation and data cleaning. The following125

technique is adopted for the processing these low-speed trajectories: Firstly, all the trajectories that have mean speed of less

than 2 m sec−1 over the entire trajectory are flagged for further scrutiny. In the current case, these set of trips are around 8 to

9 %. The inherent assumption is that the vehicle made a stop for a significant time and hence, a very low mean speed over

the entire trip is observed. The global idea is to identify the time instances corresponding to these stoppages and remove them

from the dataset. In this set of flagged trajectories, vehicles that remain stationary (zero instantaneous speed) for more than130

3 min are further filtered out. Most of the signals in the area of investigation have timing cycles between 1 min to 2 min and

thus, a threshold of 3 min is chosen in the current case. If these stoppages occur at the beginning or at the end of the trips,

trajectories are simply truncated to remove the data points corresponding to these timestamps. On the other hand, if they occur

in the middle of the trip, the trajectory is divided into two different ones by neglecting the timestamps of stoppage time. Thus,

this process is done only for the trips with very low mean speed over their entire trajectories. Indeed, a sensitivity analysis135
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is done with different threshold times. It is observed that using longer thresholds increases the scatter in the MFD as they

introduce artificial bias to the mean speed estimation. Using a threshold less than the signal timing settings would filter out

the traffic-related stops.

3. Uni-modal vs. Multi-modal Mean Speed MFDs

In this section the importance of multi-modal MFD in understanding and evaluating the multi-modal performance of the140

urban system is demonstrated. Multi-modal MFD can be used to determine if the underlying networks is in a state that

produces the desired accessibility levels for all modes of transport. Towards this direction mean speed vs. accumulation

relation for each individual mode is investigated to show if there is a clear trend of congestion.

Figure 2 shows that the current dataset covers only a fraction of the production-accumulation plane. The experiment

monitors only at the morning peak hour and data from the off-peak hours are missing. In order to determine robust multi-modal145

mean speed fit, it is necessary to have the data that cover a wide range of accumulations for each mode pair. However, this

requires a longer duration of the experiment, which was not possible during the first execution and in reality, accumulations

of each mode tend to operate within certain regions. In order to compute the mean speed of a given mode j, generalized

definitions of Edie (1963) presented in eq (1) are modified accordingly to include only the trajectories of vehicles that belong

to that mode to estimate average flow (q j) and average density(k j) of that mode.150

Figure 3 presents the mean speed (v j) of a given mode as a function of the accumulation (n j) of that mode j. The subscripts

j ∈ {c, t,b,m,h, p} represent cars, taxis, buses, medium vehicles, heavy vehicles and PTWs, respectively. Firstly, it can be

noticed that cars are a significant fraction of the vehicles in the network, followed by taxis and PTWs. Taxis and PTWs have

minimal scatter in the MFD compared to other modes. On the contrary, heavy vehicles show significant scatter in the MFDs.

In the case of heavy vehicles, the range of accumulation is very low, approximately 30 veh, which might contribute to the155

scatter in the MFD. Since there are very few heavy vehicles in the network compared to other modes, they are neglected in

the current analysis. Several factors influence the scatter in the bus MFD. Buses make more frequent stops than other modes

to aboard and alight the passengers at the bus stops. Simultaneously, if there are dedicated bus lanes, they can travel faster

than their counterparts during the congested periods. Thus, the combination of these two effects results in a broader range

of speeds and, consequently, scatter in the mean speed MFD. Finally, cars, taxis and PTWs show a satisfactory trend with an160

acceptable scatter in the MFDs.

Figure 3 shows that PTWs travel at higher speeds amongst the modes considered and heavy vehicles have the lowest.

However, this direct comparison is biased as buses and taxis have service-related stops in addition to the stops at signalized

intersections and congested links. In order to compare the “true” mean speed of each mode, the so-called mean running speed

(vr, j) of each mode j is estimated. The mean running speed can be defined as the average speed of all moving vehicles of a165

given mode in a given aggregation interval. In other words, the mean running speed is computed by excluding all the stopped

vehicles during their trajectories. It is to be noted that the accumulations shown in the plots correspond to total number of

vehicles including both running and stopped. In Fig. 3, the data points in orange show the mean running speed MFD of each

mode. Among all the different modes considered, it is noticed that buses show a bigger difference between mean speed and

mean running speed. This can be due to the service-related stops that are inherent for buses. At the same time, PTWs also170

show a difference comparable to buses owing to their faster speeds during movements compared to other modes. As there are

only few heavy vehicles during the monitored peak hours and they are not making service-related stops, they are excluded in

6



400 500 600 700 800

2

4

6

8

C
ar

m
ea

n
ru

nn
in

g
sp

ee
d,

v r
,c

(m
s−

1 )

Car accumulation, nc (veh)

C
ar

m
ea

n
sp

ee
d,

v c
(m

s−
1 )

Car

0 769

0

9

(a)

200 300 400

2

4

6

8

Ta
xi

m
ea

n
ru

nn
in

g
sp

ee
d,

v r
,t

(m
s−

1 )

Taxi accumulation, nt (veh)

Ta
xi

m
ea

n
sp

ee
d,

v t
(m

s−
1 )

Taxi

0 407

0

9

(b)

40 60 80

2

4

6

8

B
us

m
ea

n
ru

nn
in

g
sp

ee
d,

v r
,b

(m
s−

1 )

Bus accumulation, nb (veh)

B
us

m
ea

n
sp

ee
d,

v b
(m

s−
1 )

Bus

0 79

0

9

(c)

20 40 60 80 100

2

4

6

8

M
V

m
ea

n
ru

nn
in

g
sp

ee
d,

v r
,m

(m
s−

1 )

MV accumulation, nm (veh)

M
V

m
ea

n
sp

ee
d,

v m
(m

s−
1 )

MV

0 93

0

9

(d)

10 20 30

2

4

6

8

H
V

m
ea

n
ru

nn
in

g
sp

ee
d,

v r
,h

(m
s−

1 )

HV accumulation, nh (veh)

H
V

m
ea

n
sp

ee
d,

v h
(m

s−
1 )

HV

0 32

0

9

(e)

200 300 400 500 600

2

4

6

8

PT
W

m
ea

n
ru

nn
in

g
sp

ee
d,

v r
,p

(m
s−

1 )

PTW accumulation, np (veh)

PT
W

m
ea

n
sp

ee
d,

v p
(m

s−
1 )

PTW

0 600

0

9

(f)

Figure 3: Partial mean speed (v j) and mean running speed (vr, j) MFDs for mode j. (a) Car. (b) Taxi. (c) Bus. (d) Medium Vehicle (MV). (e) Heavy Vehicle

(HV). (f) PTW.

the current analysis due to the sample size. Appendix A shows the comparison between the mean speed and mean running

speed of each mode is compared to that of cars to deduce the network’s traffic characteristics.

In the previous works that estimated the bi-modal MFDs (Geroliminis et al., 2014; Loder et al., 2017), mean speed175

of entire network is expressed as a function of accumulations of private cars and public transport vehicles. However, it was

shown in Paipuri and Leclercq (2020) that segregating mean speed of each mode is essential for accurate traffic state estimation

in the MFD-based models. Thus, in the current work mean speed of each mode is assumed to be a function of accumulation

of all modes in the network. Although very detailed data is available in the present case, the coverage in terms of traffic

states remains limited. Hence, a linear functional form (Ampountolas et al., 2017; Loder et al., 2017) is chosen and mean180

speed of each mode is expressed as linear combination of all mode in the current work. If the data across the wider ranges

of accumulation is available, it is necessary to consider a piece-wise linear functional form to approximate the mean speed

accurately. The linear functional form assumed in the present work can be expressed as follow,

v j = v f , j +αc, j nc +αt, j nt +αb, j nb +αm, j nm +αp, j np, ∀ j = {c, t,b,m, p}, (2)

where v j is mean speed of mode j, v f , j is free-flow speed of mode j. The regression coefficient αk, j represents the marginal

negative effect of mode k on the mean speed of mode j. Thus, this functional form has a clear physical meaning and it is185

possible to quantify the relative importance of all modes on the mean speed of each mode. Besides, uni-modal approach is

also considered where the mean speed of a given mode is assumed to depend on that mode only, i.e., regression coefficients
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in (2) can be expressed as,

αk, j =

1 if k = j,

0 else.
(3)

The mean speed fits from both approaches above are compared to demonstrate the importance of considering the multi-modal

interactions.190

All regression coefficients in (2) must be negative to respect the physics of the traffic (Geroliminis et al., 2014). Thus,

in order to determine the fit coefficients αk, j, Non-Negative Least Squares (NNLS) (Lawson and Hanson, 1995) is used in

the present work. This method is a variant of constrained linear least squares, where a lower bound of zero is applied to the

regression coefficients. It is straightforward to use this method to obtain negative regression coefficients in the current context.

Least-squares methods tend to fail when there is a large set of explanatory variables and highly correlated. Partial Least195

Squares (PLS) (Geladi and Kowalski, 1986; Wold, 1992) technique addresses this limitation of multicollinearity between the

explanatory variables. The idea behind the PLS method is to decompose the independent and dependent variable matrices

using Principal Component Analysis (PCA) and then perform the regression between the projected components. It is noticed

that the regression coefficients obtained by NNLS and PLS methods are very similar and hence, only results of the NNLS

method are presented to avoid redundancy. At the same time, it is concluded that the multicollinearity between explanatory200

variables, i.e., accumulations of different modes is weak in the current dataset.

Figure. 4 shows the coefficients of mean speed linear regression fits for different modes using NNLS method. The ac-

cumulation of each mode is standardized using the mean and standard deviation of that mode. This permits to compare the

impact of each mode on the mean speed of a given mode. The Root Mean Squared Relative Error (RMSRE) is defined as,

RMSRE =

√√√√ 1
w

w

∑
l=1

(
v̂l− vl

vl

)2

, (4)

where v̂l and vl are the lth predicted and actual observations, respectively and w is total number of observations. Firstly, it is205

clear from the plots that all the coefficients are negative as expected. It is also clear that PTWs have the highest and buses

have the lowest free-flow speeds amongst the modes. As discussed earlier, the mean speeds of cars and taxis are very similar

and that conclusion is reiterated here, where free-flow speeds of both modes are very similar. The values of R2 and RMSRE

suggest that the mean speeds of cars, taxis and PTWs resulted in relatively tight and accurate fits. In the case of medium

vehicles and buses, low R2 values are obtained. This is due to the relatively small range of accumulations noticed in these210

two modes. The dwelling buses in the bus stops can introduce a significant scatter in the mean speed estimation too. A new

explanatory variable in the form of total dwell time is added to the regression analysis of buses to account for the dwell times

of the buses in each aggregation interval. However, it is noticed that neither the R2 nor the RMSRE improves by adding the

dwell time to the explanatory variables and hence, the results are omitted here. Another reason for larger errors in bus speed

prediction is the fact that the number of buses circulating is smaller (accumulation ranges between 40 and 80 buses) and they215

are not moving in all parts of the network. A more detailed analysis could shed more light by considering only the roads

that buses are moving. This will be a future research direction, as it will require significant effort to associate trajectories of

vehicles with links. On the other hand, RMSRE values for all modes fall within 6 to 12 %, which is reasonable.

It can be noticed that taxis have a significant negative impact on all other modes except PTWs. This can be due to the

aggressive driving behavior of taxi drivers compared to buses and MVs. Similarly, PTWs significantly impact the mean speed220
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Figure 4: Coefficients of linear regression fits for mean speed using NNLS for each mode. Free flow speed v f , j is in ms−1. (a) Car. (b) Taxi. (c) Bus. (d)

Medium Vehicle (MV). (e) PTW.
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Table 1: Statistical p-values, mean speed in ms−1, R2 and RMSRE values of uni- and multi-modal mean speed fits for all modes using NNLS method.

Mode

p-values v f , j R2 RMSRE

Uni- Multi-
Uni- Multi- Uni- Multi- Uni- Multi-

nm nc nt nb nm np

Car 0.01 0.01 0 0 0.60 0 4.06 4.06 0.01 0.75 0.125 0.065

Taxi 0 0.80 0 0 0.72 0 4.05 4.05 0.60 0.68 0.071 0.063

Bus 0 0.14 0 0 0.06 0.48 2.79 2.79 0.15 0.30 0.123 0.112

MV 0 0.01 0 0 0.12 0.07 3.66 3.66 0.19 0.43 0.114 0.098

PTW 0 0 0.06 0 0.63 0 4.90 4.90 0.04 0.78 0.074 0.071

of cars, taxis and medium vehicles. This is again due to the filtering behavior of the PTWs, which negatively impact the speeds

of other modes. It is also inferred that the mean speed of PTWs is majorly impacted by other PTWs in the network, as they

can form platoons to move faster compared to other vehicles.

To show the importance of a multi-modal approach, the RMSRE errors of the multi-modal mean speed fits are compared

with the uni-modal ones estimated using eqs. (2) and (3). Table 1 presents the R2 and RMSRE for uni- and multi-modal mean225

speed fits using NNLS technique. Firstly, it can be noticed that there is an improvement in both R2 and RMSRE values going

from uni-modal to multi-modal approach. Notably, in the case of cars, there is a significant improvement in R2 and RMSRE

values using multi-modal fit, where the error is almost halved compared to the uni-modal one. Following, taxis and medium

vehicles show a 10% – 15% decrease in the RMSRE when the multi-modal functional form is assumed. It is observed that

the buses and PTWs show minor improvement with the current dataset. However, R2 value of the buses doubled in the case230

of multi-modal fit, although the improvement in RMSRE is marginal. In the case of PTWs, it is clear from Fig. 4e that the

other PTWs majorly influence their mean speed as they tend to form platoons and the interactions from other modes is rather

minimal. Thus, there is no significant improvement resorting from the uni-modal to multi-modal approach for PTWs. Finally,

it can be concluded that the multi-modal approach gives better mean speed estimation compared to the uni-modal one, even

though the improvement is not very significant for some modes.235

Finally, it can be concluded that multi-modal mean speed MFD describes the variation of mean speed over the uni-modal

counterpart, where the improvement is quite pronounced for some modes. However, it is worth noting that data coverage is

the main limitation of the current analysis. Nevertheless, the current regression analysis gives satisfactory results. However,

there is room for improvement in predicting the mean speed of some modes, mainly buses and medium vehicles. Thus, in

the following section, another functional form using stopped fractions instead of accumulations as explanatory variables is240

investigated.

4. A Multi-modal Two-fluid Model

4.1. Background

A functional form between mean speed and accumulations is not only way to characterize the traffic behaviour at network-

level and there are other expressions that have been proposed in the literature. In particular, the two-fluid theory proposed245

by Herman and Prigogine (1979) for the town traffic is based on the kinetic theory of multi-lane highway traffic (Prigogine
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and Herman, 1971). The traffic in a city network can be assumed to have two parts: running vehicles and stopped vehicles

due to congestion, traffic signals, stop signs, etc., but not parked vehicles. Two parameters characterize the two-fluid model,

namely minimum travel time
(

1
v f ,r

)
and an indicator of the quality of traffic in the network (ň). The model is based on two

assumptions:250

1. The mean running speed (vr) of vehicles in the network is proportional to the fraction of vehicles ( fr) that are moving.

2. The fraction of the time stopped of a given vehicle is equal to the average fraction of the homogeneous population of

vehicles ( fs) over the same period. It is clear that fr + fs = 1.

The first assumption can be expressed mathematically as follows,

vr = v f ,r ( fr)
ň ≡ v f ,r (1− fs)

ň, (5)

where v f ,r is the free-flow running speed. As the mean speed can be defined as v = vr fr, eq. (5) can be re-written as,255

v = v f ,r ( fr)
ň+1 ≡ v f ,r (1− fs)

ň+1. (6)

The essential difference compared to the regression analysis presented in Section 3 is that the explanatory variable for the

mean speed is no longer the vehicle accumulations but the fraction of stopped (or running vehicles). However, this variable is

difficult to monitor in reality and thus, it is necessary to estimate this fraction from other variables that are easier to measure

in the field, i.e., the accumulations.

The second assumption leads to the following expression,260

fs =
Ts

T
, (7)

where Ts is the mean stopped time per unit distance and T is the trip time per unit distance. Substituting eq. (7) in eq. (6) and

using relations v =
1
T

, Tf =
1

v f ,r
and T = Tf +Ts, the following expressions can be deduced:

Tr = T
1

ň+1
f T

ň
ň+1 and Ts = T −T

1
ň+1

f T
ň

ň+1 . (8)

It is to be noted that the variables in the two-fluid model are always meant to be mean values taken over the entire network.

Eq. (8) represents conventional two-fluid model. A higher value of ň for a given value of Tf leads to lower mean running

speeds and thus, more congested traffic. Several field studies showed that the value of ň varies between 0.8 to 3, where smaller265

ň indicates better operating conditions for traffic flow (Williams, 2001).

As a first step, the two-fluid model is applied to the current dataset per mode to investigate if the assumptions of the

two-fluid model hold on the modal data. This is referred to as uni-modal two-fluid regression. Simultaneously, the classical

two-fluid model is also calibrated by treating all modes alike to estimate the two-fluid parameters for the entire network under

consideration. The so-called uni-modal and classical two-fluid regressions are then compared to investigate if segregating the270

modes can improve the estimation of model parameters.

4.2. Multi-modal two-fluid model

Most of the works based on the two-fluid model were proposed at the network level without considering the multi-

modality. Herman and Ardekani (1984) presented the results of a controlled experiment involving buses and cars in the
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context of the two-fluid model. It was reported that buses have a considerably higher value of ň compared to cars. The authors275

claimed that the differences in the two-fluid parameters result from additional acceleration-deceleration cycles of the buses

during the dwelling. However, they applied the two-fluid model to cars and buses independently and did not account for their

interactions. For instance, in eq. (6), it is a very crude approximation to assume that the mean speed of a given mode depends

only on the stopped fraction of vehicles of that mode itself, especially in multi-modal urban networks. At the same time, the

two-fluid model does not explain the scatter in the city traffic data presented in Ardekani (1984).280

The first assumption of the original two-fluid model is modified as: “The mean running speed (vr, j) of vehicles of mode

j is proportional to the fractional of vehicles of all modes that are moving”. This modified assumption is the basis of the

multi-modal two-fluid regression. Mathematically, it can be expressed as,

vr, j = v f ,r, j ∏
k∈M

(
1− fs,k

)ňk, j , ∀ j ∈M and M = {c, t,b,m, p}, (9)

where v f ,r, j is free-flow running speed of mode j, fs,k ∀ j is the stopped fraction of vehicles and ňk, j is two-fluid parameter of

mode k. Consequently, using the relation v j = vr, j (1− fs, j), the mean speed of mode j can be expressed as,285

v j = v f ,r, j (1− fs, j) ∏
k∈M

(
1− fs,k

)ňk, j , ∀ j ∈M and M = {c, t,b,m, p}. (10)

When all the vehicles of all modes are moving, fs, j = 0 and therefore, the mean speed of that mode is equal to free-flow

running mean speed (v f ,r, j). Similarly, if all the vehicles are stopped, v j = 0 according to eq. (10). Hence, the assumption

in eq. (9) satisfies the boundary conditions. The multi-modal extension differs from the original model when fs, j is between

0 and 1. Consider a case when fs, j = 0, i.e., all the vehicles of mode j are moving, but there are stopped vehicles of other

modes, i.e., fs,k ∀ k 6= j are non-zero. In that scenario, the mean speed of mode j will be lower than free-flow running speed290

and its magnitude depends on the stopped fraction ( fs,k) and the corresponding ňk, j of each mode. For a given number of total

vehicles, different combinations of stopped fractions between different modes give different mean speeds as per eq. (10). On

the other hand, the original two-fluid model depends only on the stopped fraction of all vehicles irrespective of the mode and

always yields the same mean speed. Hence, eq. (10) can explain the scatter in the data.

Now using the relations v j =
1
Tj

, v f ,r, j =
1

Tf ,r, j
and fs,k =

Ts, j

Tj
, stopped time per unit distance can be expressed in terms of295

trip time per unit distance as follows,

Ts, j = Tj−
T

1
ň j, j+1

f ,r, j T
ň j, j

ň j, j+1

j

∏
k∈M ,k 6= j

(
1− fs,k

) ňk, j+1
ň j, j+1

, ∀ j ∈M and M = {c, t,b,m, p}. (11)

Here Ts, j is a function of travel times of all modes and hence, interactions between different modes are taken into account.

Notice that the two-fluid parameter ňk, j quantifies the influence of stopped vehicles of mode k on the mean speed of mode j.

Like the previous study, empirical data is used to estimate the model parameters in eq. (10). The non-linear relation in eq. (10)

can be transformed into linear by using log-transformation and so, linear regression can be used on the resulting transformed300

equation.

As the trajectory data of each vehicle is available, it is possible to estimate the total number of vehicles and number of

stopped vehicles within each aggregation interval. Using generalized definitions of Edie (1963), total number of vehicles (n)
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Table 2: Two-fluid parameters for different modes using uni-modal and classical approaches using NNLS technique.

Mode v f ,r, j in ms−1 ň j R2 RMSRE (Uni-) RMSRE (Classical-)

Car 10.890 1.184 0.880 0.031 0.045

Taxi 9.805 0.958 0.794 0.035 0.050

Bus 5.785 0.158 0.656 0.076 0.119

MV 7.849 0.578 0.769 0.046 0.081

PTW 9.152 0.479 0.802 0.040 0.080

Classical 10.900 1.092 - - -

and total number of stopped vehicles (ns) can be computed as,

n =

M
∑

i=1
T Ti

∆T
and ns =

M
∑

i=1
STi

∆T
, (12)

where STi is the stopped time of vehicle i during a given interval. In the present work, a vehicle is considered as stopped when305

the instantaneous speed is less than 2 kmh−1. Using eq. (12), n and ns can be computed for each aggregation interval and

consequently, stopped fraction of vehicles can be estimated as fs =
ns

n
.

4.3. Uni-modal and multi-modal two-fluid models results

Besides multi-modal two-fluid model, the original two-fluid model assumptions are applied to each mode separately to

investigate if they hold true in the case of modal segregation. Thus, eqs. (6) and (8) can be modified to apply for each mode310

as follows,

v j = v f ,r, j (1− fs, j)
ň j+1 and Ts, j = Tj−T

1
ň j+1

f , j T
ň j

ň j+1 ∀ j = {c, t,b,m, p}. (13)

Finally, the original two-fluid model is also calibrated by assuming all modes to be alike. As stated earlier, log-transformation

can be used for the mean speed in eq. (13) to transform the non-linear equation into a linear one. Table 2 shows the estimated

fit parameters for each uni-modal and the classical two-fluid model using the NNLS method. The RMSRE is estimated using

both uni-modal and classical two-fluid approaches. RMSRE (Uni-) in the table gives the error in the model fit when the315

parameters from the uni-modal approach are used. Similarly, RMSRE (Classical-) shows the error when the parameters from

the classical two-fluid model approach is used. Hence, the improvement in the error from RMSRE (Classical-) to RMSRE

(Uni-) can be attributed to the segregation of modes and applying the two-fluid assumptions to each mode. The parameter ň

is highest for cars, followed by taxis, medium vehicles and PTWs. On the other hand, buses have the lowest ň values. The

lower ň for buses can be attributed to the presence of dedicated bus lanes, where the impact of traffic from other modes is320

minimized. At the same time, buses have lower free-flow speed and this is due to lower travelling speeds and less aggressive

acceleration-deceleration of public transport vehicles. It will be shown later in Fig. 5 that inaccurate fit also contributes to the

lower ň value of the buses. Observing the RMSRE (Uni-) and RMSRE (Classical-) values, it is clear that there is a significant

improvement in the mean speed estimation for all modes in the uni-modal approach compared to the classical one. Thus,

it can be concluded that segregating the modes results in better mean speed prediction and the assumptions of the classical325

two-fluid model are valid at the modal level. Now, the estimated v f ,r, j and ň j values are used in eq. (13) to built a relation
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Figure 5: Comparison of empirical data and model results between stopped time and total time per unit distance in the uni-modal two-fluid regression for all

modes considered. (a) Car. (b) Taxi. (c) Bus. (d) Medium Vehicle (MV). (e) PTW.

between trip time (Tj) and stop time (Ts, j) per unit distance. At the same time, both T ′j and T ′s, j can be computed empirically

from the trajectory data. They can be expressed as follows,

T ′j =
n j

Pj
and T ′s, j =

ns, j

Pj
, ∀ j ∈ {c, t,b,m, p}, (14)

where n j and ns, j are total and stopped accumulations, respectively and Pj is production of mode j.

Figure 5 presents empirical data of T ′j and T ′s, j, estimated by eq. (14), and its corresponding model, using eq. (13) and fit330

parameters in Table 2. For the sake of comparison, the classical two-fluid model regression is also shown in all plots. Firstly,

it is evident that the scatter in the plots is considerably smaller than the ones shown in Fig. 3, where mean speed is expressed

as a function of modal accumulations. By considering the trip time as a surrogate to the mean speed, it can be concluded

that stopped time (or stopped fraction) is a better variable to characterize mean speed than accumulations per se in the current

dataset. At the same time, it can be observed that the empirical data and model are in good agreement for all the modes. Fig. 5c335

shows the uni-modal and classical approaches of buses yield skewed results compared to the empirical data. This can be due

to several factors like the characteristics of bus, presence of dedicated bus lanes in the bus route, bus bunching, etc., which can

increase travel time variability. On the other hand, cars and taxis have a very similar trend as overall traffic behaviour. It can

be noticed that the stop times of PTWs are very close to average stop times in the free-flow regime. However, PTWs tend to

have fewer stoppages than the network average due to their filtering behaviour in the congestion periods. Fig. 5e shows that340

the average stop time of PTWs is lower than the network average as the network gets congested.

Thus, it can be concluded that the original two-fluid model can be applied to each mode independently, which in turn helps
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Table 3: Statistical p-values, mean running speed in ms−1, R2 and RMSRE values of uni- and multi-modal two-fluid model fits for all modes using NNLS

method.

Mode

p-values v f ,r, j R2 RMSRE

Uni- Multi-
Uni- Multi- Uni- Multi- Uni- Multi-

nm nc nt nb nm np

Car 0 0 0.08 0 0.25 0 10.89 11.16 0.88 0.87 0.031 0.030

Taxi 0 0 0 0 0.89 0.01 9.81 10.45 0.79 0.85 0.035 0.030

Bus 0 0 0.03 0 0.33 0.08 5.78 8.21 0.66 0.77 0.076 0.063

MV 0 0 0.19 0 0 0.61 7.89 9.35 0.77 0.83 0.046 0.040

PTW 0 0 0.02 0 0.67 0 9.15 13.09 0.80 0.91 0.040 0.027

to understand the macroscopic behaviour of each mode in the urban network. However, it is clear from the plots that there

is still some scatter in the empirical data and the model cannot predict it. The presented uni-modal two-fluid regression is

analogous to expressing the mean speed of a given mode as a function of the accumulation of only that mode. By applying the345

two-fluid model assumptions to each mode independently, the interactions and dependencies between modes are neglected.

These multi-modal interactions might be responsible for the scatter in the empirical data.

Figure 6 shows the multi-modal two-fluid parameters for each mode considered in the present work using the NNLS

method. Relatively tight fits with high R2 and low RMSRE values are obtained for all the modes in the present context. This

inference reinforces the previous conclusion that stopped fraction describes the mean speed better than accumulations. Table 3350

shows the comparison of R2 and RMSRE values between uni- and multi-modal two-fluid approaches. It can be observed that

there is a significant improvement in the multi-modal case for PTWs and rather a marginal improvement for the rest of the

modes. Furthermore, there is a considerable improvement in the R2 values for all modes than the uni-modal case. In cars, the

mean speed is mainly influenced by stopped cars and the influence from other modes is negligible as the coefficients are either

zero or very low. Hence, the improvement for cars from uni-modal to multi-modal case is minimal. It is clear that stopped355

buses do not significantly impact the mean speed of cars, but stopped cars impact the mean speed of buses negatively. This

can be because passenger cars can use bus lanes to make right turns and tend to make short-stops in the right lanes, where

buses normally circulate, negatively impacting their mean speed. Similarly, stopped PTWs have no major influence on the

mean speed of cars but stopped cars influence PTWs. This is again due to the filtering phenomenon of PTWs, where the

manoeuvring of PTWs between stopped cars reduces the mean speed.360

The estimated multi-modal two-fluid regression fit parameters are used to compute stopped time per unit distance using

eq. (11). The model estimates are validated using empirical data, as in the previous case. Fig. 7 shows the model estimates and

empirical data of stopped time and trip time per unit distance for each mode. Firstly, it can be observed that model estimates

yield scatter that is comparable to the empirical data. This phenomenon is entirely absent in the case of the uni-modal two-fluid

regression shown in Fig. 5. The presence of scatter in the model is the consequence of assuming the mean speed as a function365

of the stopped fraction of all modes. This assumption permits to account for the interactions between different modes, which

introduce the scatter. Therefore, it can be concluded that the assumptions of the proposed multi-modal two-fluid regression

hold and are validated with empirical data. However, it should be noted that the current dataset covers only a minor range of
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Figure 6: Multi-modal two-fluid regression fit parameters estimated using NNLS method for each mode. v f ,r is in ms−1. (a) Car. (b) Taxi. (c) Bus. (d)

Medium Vehicle (MV). (e) PTW.
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Figure 7: Comparison of empirical data and model results between stopped time and total time per unit distance in the multi-modal two-fluid regression for

all modes considered. (a) Car. (b) Taxi. (c) Bus. (d) Medium Vehicle (MV). (e) PTW.
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mean speeds and it is necessary to validate the model with data that covers a broader range of mean speeds.

Finally, the results from the current model are compared with the ones of multi-modal mean speed analysis as a function370

of accumulations presented in Section 3. A significant reduction in the RMSRE values for all modes is noticed when the

mean speed is expressed in terms of stopped fractions compared to the accumulations. Similarly, there is also improvement

in the R2 values, which signifies that the stopped fractions can explain the mean speed variability than the accumulations.

This improvement is significant for buses and medium vehicles. Therefore, the current work results conclude that the stopped

fraction of vehicles better explains the mean speed than the accumulations counterpart. However, it is worth noting that this375

conclusion is valid only in the current dataset for the network under investigation. More analysis on different networks that

cover wider time periods is necessary to arrive at a consensus.

This opens a new research question: how to estimate the stopped fraction of vehicles in the real networks? As in the

current case, if GPS traces of individual vehicles are available, the estimation of stopped fractions is trivial. However, the

current dataset comes from a unique experiment designed to record traffic observations and these kinds of data are one of their380

kind. In the absence of GPS data, other means of traffic observations, especially Loop Detector Data (LDD), are not relevant

in the current context to determine the stopped and trip times per distance travelled. Thus, it is necessary to resort to surrogate

models to estimate an approximate stopped fraction as a function of more common traffic variables like accumulations or

densities, which is discussed in Appendix B. The following study discusses the validity of ergodicity assumption and the

effect of penetration rates of GPS data on the estimation of stopped fractions.385

4.4. Investigation of Ergodicity assumption and vehicle penetration rates for a multi-modal two-fluid model.

GPS data can be used to estimate stopped fraction and they are more readily available lately from different types of sources

like mobile phones, GPS devices, etc. The main limitation of data from these types of sources is that they do not cover entire

traffic and hence, they are available at low to moderate penetration rates. Hence, it is vital to study the influence of penetration

rates on the estimation of stopped fractions in the real network. This analysis provides the influence of penetration rates on390

the estimation of stopped fractions using the present dataset.

In practical systems, it is often not possible to estimate time averages due to various limitations. The ergodic theory was

developed to address this shortcoming, proposing that the ensemble average can replace the time average. In the case of traffic,

the system is ergodic if the performance of a single test vehicle over a sufficiently long period of time is identical to the mean

performance of all the vehicles in the system over the same period (Herman and Ardekani, 1984). The assumption can be395

considered a strong ergodicity assumption (Chakraborty and Srinivasan, 2016) as it states that the ratio of stopped time to trip

time of any probe vehicle is equal to the average fraction of stopped vehicles during the same period and it is valid only in

steady-state conditions. This is unlikely to hold in reality due to variability in the driver’s behaviour, type and characteristics

of probe vehicle, etc. This can be relaxed by assuming that the stopped fraction can be determined by the average stopped and

trip distances of all probe vehicles within a given time period. This so-called weak ergodic assumption can be expressed as,400

f̂s =
T s

T
, (15)

where T s and T are mean stopped time and mean trip time of all probe vehicles in a given time period. Moreover, using

the mean travel times represent the population average better than the individual data. Ardekani (1984) studied the strong

ergodicity assumption by using aerial photographs and chase-car techniques of urban traffic corridors. It was concluded

18



that the average stopped fraction can be approximated as an average of the fraction of stopped times of all probe vehicles.

Mathematically, it can be expressed as,405

f̃s =

〈
Ts

T

〉
. (16)

However, very few probe vehicles were used in the study. On the contrary, it is the first time that such a high resolution data

is available to provide a rigorous and accurate comparison of the ergodicity conjecture. Thus, the current dataset is used to

study the validity of the strong and weak ergodicity assumption using the ground truth presented in eq. (12). This section

presents the comparison of ground truth ( fs) with the strong ( f̃s) and weak ( f̂s) ergodicity assumptions for different levels of

penetration rates.410

As the current dataset is multi-modal, the stopped fraction of vehicles for each mode is estimated and comparison is made

for each mode independently. Different penetration rates (ρ) ranging from 0.05 to 0.95 with a step of 0.05 are considered.

For each penetration rate, trajectories are randomly sampled to build a set of probe trajectories. It is to be noted that random

sampling is done with all modes combined and thus, a constant penetration rate for each mode is not guaranteed. For each

penetration rate, both f̃s and f̂s are estimated for all aggregation intervals. This process is repeated 1000 times to minimize415

the biases in random sampling.

Figure 8 shows the evolution of RMSRE of stopped fractions computed using strong and weak ergodicity assumptions

for different penetration rates. It is clear from the plots that the error reduces rapidly for weak ergodicity assumption with

increasing penetration rate. On the other hand, the error remains almost constant for all modes for the stopped fraction

estimated by the strong ergodicity assumption. This error saturation is due to the bias introduced by the strong ergodicity420

assumption in the computation of stopped fraction. It is noticed that the strong ergodicity assumption under-predicts the

stopped fraction consistently for all modes at all ranges of the stopped fraction. This inference is in-line with the field

experiments reported in Herman and Ardekani (1984), where f̃s is slightly lower than ground truth. The error falls between

10–23% for stopped fraction computed by the strong ergodic condition. The penetration rate needed to estimate stopped

fraction using weak ergodicity with an RMSRE error of 0.1 is indicated in the plots. In cars, taxis, and PTWs, around 20%425

of penetration is enough to accurately estimate the stopped fraction. However, buses and medium vehicles need more than

50% penetration rates, which is unrealistic. This can be again due to fewer buses and medium vehicles than other modes in

the current data. In the case of buses, this limitation is less critical as bus trajectories can be obtained (even in real-time)

from public transit operators and thus, stopped fraction estimates can be extracted accurately. Thus, it can be concluded

that the ergodic assumption is valid in the case of the two-fluid model, albeit it should be applied weakly to estimate the430

stopped fraction accurately. Very good estimates of the stopped fraction can be obtained with lower penetration rates using the

weak ergodicity assumption. In the absence of GPS traces, it is not trivial to estimate stopped fractions using classical traffic

measurements like LDD.

5. A Dynamic Trip-based Model Based On Stopped Fraction of Vehicles

5.1. Model description435

Dynamic models to predict the evolution of accumulation with time have been developed and integrated in perimeter

control strategies based on flow conservation equations (Ramezani et al., 2015). However, it is concluded from the previous

analysis that integrating a multi-modal two-fluid model can have a better estimation of the running speed at a given time
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Figure 8: RMSRE of stopped fractions estimated by the strong
(

f̃s, j
)

and weak
(

f̂s, j
)

ergodic assumptions with respect to ground truth. The penetration rates

indicated in red correspond to an error of 0.1 in f̂s, j . (a) Car. (b) Taxi. (c) Bus. (d) Medium Vehicle (MV). (e) PTW.

interval, if the stopped fraction of vehicles for individual modes can be measured. Nevertheless, describing in a dynamic

framework the evolution of this fraction is challenging as physical interpretation of such a model is not possible. In this440

section, a dynamic model that combines concepts both from MFD and two-fluid model is attempted for the first time. In the

current MFD-based models, vehicles inside the reservoir always travel with a mean speed given by the MFD until they exit

the reservoir. Thus vehicles are not making any stops inside the reservoir in the classical MFD-based approach. Therefore,

it is not possible to estimate the stopped fraction of vehicles from the classical MFD-based framework. Simultaneously, the

two-fluid model is mainly descriptive about traffic states. It does not possess a dynamic equation to predict traffic evolution445

by estimating the stopped fraction of the vehicles. It is also shown in Appendix B that there is no well-defined functional

form between stopped fraction of vehicles and accumulations. A novel method is proposed in the present work to emulate

the stop-and-go patterns of the vehicles on a macroscopic scale. The trip-based MFD approach (Arnott, 2013; Daganzo and

Lehe, 2015; Mariotte et al., 2017) is an appropriate choice in this context as trips are already described at an individual level.

Mathematically, classical trip-based formulation can be expressed as,450

L j =
∫ t

t−τ j(t)
v j ({nk(s)}k∈M ) ds ∀ j. (17)

Consider τ j(t) is the travel time of a user of mode j, who entered the reservoir at time t. The mean speed at each time instant

depends on the accumulation of each mode in the reservoir, which is given by multi-modal mean speed MFD. Hence, the

area under the speed-time curve between the times, t− τ j(t) and t gives the total travel distance, which is trip length L j. By

considering an alternation of moving distances with a running speed given by a two-fluid model and stopping intervals for

each trip, accumulations of stopped and moving vehicles can be estimated. The distribution of trip length, moving distances455
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Figure 9: Distributions of stop durations and distance travelled between two stoppages. (a) Car. (b) Taxi. (c) Bus. (d) Medium Vehicle (MV). (e) PTW.

and stopping intervals are estimated from the pNEUMA dataset. When stop-and-go patterns are mimicked at the vehicular

level, it is trivial to estimate the number of stopped vehicles at any given time and thus, mean speed vs. stopped fractions

regression fits can be integrated into the trip-based framework. Consequently, eq. 17 can be re-written as,

L j =
∫ t

t−τ j(t)
v j ({ fk(s)}k∈M ) ds ∀ j, (18)

where the stopped fraction of vehicles, fk, is used to estimate the mean speed using multi-modal two-fluid model. Thus, this

section discusses the so-called extended trip-based model, which uses mean speed vs. stopped fraction as the underlying input460

to the model and compares the numerical results with the empirical data.

Figure 9 shows the distributions of stop durations (ts, j) and distances travelled between stoppages (ds, j) for mode j for all

the four days considered. Firstly, it is noticed that the distance between stoppages follows well-defined log-normal distribution

for all the modes. Similarly, stop durations follow approximately an exponential distribution in the present case. Exponential

and log-normal distributions are fitted to the empirical data of stop durations and distances travelled, respectively. The obtained465

probability distributions are shown as lines in the plots. It is clear that the estimated fit data and empirical data show very

good correspondence for distances travelled.

The distributions presented in Fig. 9 can be considered static as the dynamic information is neglected. The mean stopped
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Figure 10: Schematic illustration of the proposed extended trip-based formulation.

time and distance travelled tend to change depending on the traffic conditions. It is noticed that the stop durations are almost

constant at all times. On the other hand, a decrease in the mean distances travelled between stoppages with time is noticed in470

the current dataset. This observation is in accordance with the mean speed data, where a reduction in mean speed is noticed

with time in the data. Recall from Section 2 that each day has five different recording sessions with a duration around 15 min

separated by 30 min breaks. Well-defined distributions of stop durations and distances travelled are obtained inside each

session for a given day and hence, these pseudo-dynamic distributions are used in the extended trip-based model.

5.2. Extended trip-based model475

As stated earlier, typically, vehicles stop and move alternatively in an urban network during their trips. In a simplistic

scenario, if the distance travelled between two stoppages and the stop duration are the same for all trips, this so-called stop-

and-go pattern can be replicated in the trip-based model by allowing the vehicles to travel the given distance before stopping

them for the given stop duration alternatively. In reality, these distances and stop durations are rarely constant and can vary

widely across the network. However, it is shown in Fig. 9 that reasonably well-defined distributions exist in the current case480

and hence, it is possible to replicate the stop-and-go pattern of vehicles on a macroscopic scale.

The extended trip-based model requires the following inputs: departure times, trip lengths, mean running speed MFD,

distribution of stop durations and distance travelled between two stoppages. Stoppage times and distance covered between

stoppages are randomly drawn from the given distributions and assigned to each trip alternatively to reproduce the stop-and-go

pattern. Since the stop durations are explicitly accounted for in the simulation with this modified approach, the vehicles must485

travel with mean running speed between two stoppages and not mean speed. This approach can simulate the stop-and-go

pattern of the vehicles at the macroscopic scale. Fig. 10 illustrates the evolution of trips in time in the proposed extended

trip-based model. The green zones correspond to the running state and the red ones represent the stoppages. Thus, the

stopped fraction of vehicles can be estimated at any given time ti by tracking the number of vehicles that are moving and the

vehicles that are stationary at that instant. It is worth noting that these distributions of stop durations and distance travelled490

are inherently dynamic in nature. In the current context, static distributions inside each session interval are assumed to stop

durations and distances travelled. This is equivalent to assigning static distributions for every 15 min, which is a reasonable

assumption. Usually, the public transit operators can track the number of buses operating in the network at a given time using

Automatic Vehicles Locators (AVL). Consequently, there is no strong necessity to model the accumulation of buses as this
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Figure 11: Numerical results of Classical Trip-Based (CTB) Extended Trip-Based (ETB) model along with the empirical data for day 1. (a) Car. (b) Taxi. (c)

Medium Vehicle (MV). (d) PTW.

information can be obtained from operators in real-time. Hence, in the current work, the accumulation of buses is assumed as495

known a priori and is provided as an input to the extended trip-based model. For the sake of clarity, only one day is selected

to compare the trip-based model results with the empirical data. It is worth noting that mean running speed MFD vs. stopped

fraction fits are estimated for each day separately. This minimizes the errors induced by the estimated fits and ensures that the

significant differences between numerical and empirical data are due to the modelling framework.

Figure 11 shows the evolution of accumulation for different modes using the proposed extended trip-based model (ETB)500

for day one along with the empirical data for comparison. Since there are five different sessions, trip-based model is provided

with initial accumulations, departure times. Then, the model is run for each session to predict the traffic states based on

the mean speed determined by the stopped fraction of vehicles. It can be observed from the empirical data that evolution

of accumulation shows sort of loading and unloading behavior. This is due to the synchronization issues during that data

collection. At the start and end of the recording periods, not all drones are perfectly synchronized to observe all the data.505

Consequently, the data observed during the first and last couple of minutes inside each period covers only partial traffic data.

Thus, we see this kind of loading and unloading trends in the accumulation. Firstly, it can be observed that the evolution of

accumulation in the extended trip-based model is closer to the empirical data for the majority of session intervals. Apart from

certain time periods, good accordance is found between empirical data and extended trip-based for most data. It is very difficult

to reproduce the exact stopped fraction evolution, even on a macroscopic scale, due to strong constraints on distributions of510

distances travelled and stop duration. In order to demonstrate the potential gain in the accuracy using the proposed extended

trip-based approach, the classical trip-based approach is also considered using multi-modal mean speed MFDs presented in

Section 3 and L2 norm of errors are estimated for each day with respect to the empirical data. It is worth noting that mean

speed fits are estimated for each day separately and accumulation of buses is used as an input in the classical trip-based model
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Table 4: L2 error norms with respect to the empirical data for Classical Trip-Based (CTB) and Extended Trip-Based (ETB) models.

Day
Car Taxi MV PTW

CTB ETB CTB ETB CTB ETB CTB ETB

1 0.083 0.066 0.082 0.072 0.112 0.090 0.084 0.080

2 0.116 0.086 0.113 0.086 0.164 0.111 0.137 0.104

3 0.108 0.089 0.139 0.097 0.155 0.105 0.119 0.101

4 0.131 0.107 0.113 0.098 0.110 0.110 0.128 0.109

as well. This ensures a fair comparison between the classical and extended trip-based models. Table 4 presents the error norms515

for both models considered for each mode. The error estimates suggest that the proposed extended trip-based model predicts

the traffic states better than the classical one. The gain in accuracy is marginal in some cases. However, a clear trend can be

noticed that the extended trip-based results are always similar or better than the classical trip-based ones.

Finally, it can be concluded that the proposed extended trip-based model is working as expected. Although the distribution

of stop durations are weakly distributed in the current dataset, satisfactory results are obtained. This extended trip-based model520

can be further enhanced if the distributions of moving distances and stopping times depend on congestion level. This should

be a research priority that would possibly require a larger experiment with also data from off-peak periods. More investigation

on the stop duration distribution is required to understand the dynamics of stop durations during trip trajectories and their

inclusion in the modelling framework.

6. Conclusions525

The current work investigated the multi-modal interactions using network-level mean speed for Athens’ city network,

Greece, using the drone data from the pNEUMA experiment. The available dataset covers morning peak hour for four working

days. Five different transportation modes are covered: cars, taxis, buses, medium vehicles, and PTWs. The accumulations and

mean speeds of different modes were compared to characterize the network under study. The so-called mean running speed

was also computed by estimating the mean speed of only moving vehicles, excluding the stopped vehicles in the network. It530

was noticed that cars and taxis have very similar speed characteristics, albeit taxis are slightly faster during congested periods

due to their ability to use dedicated bus lanes. At the same time, PTWs have the highest mean speeds in the network as they

can filter through the traffic during congestions.

Firstly, the interactions in the mean speed of each mode were studied with respect to accumulations by extending the

existing MFD approach to general multi-modality using linear regression. The R2 and RMSRE values of the multi-modal535

fits were compared with the uni-modal fits, where the mean speed of a given mode was assumed to depend on that mode

solely. It was concluded that the multi-modal approach improves both R2 and RMSRE estimates of all modes compared to the

uni-modal one.

The next part of the work extended the original two-fluid model to multi-modality. Two different approaches were used in

this case as well, namely uni-modal and multi-modal two-fluid models. In the uni-modal approach, the mean speed of a given540

mode was assumed to be a function of the stopped fraction of that mode only. A classical approach was also considered by

combining all modes. It was concluded that the uni-modal approach gives a better prediction model compared to the classical
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one with respect to R2 and RMSRE values. The uni-modal results were then compared to the multi-modal one, where the

mean speed was a function of the stopped fraction of all modes. Again, an improvement was observed in some modes by

resorting to a multi-modal approach from uni-modal. Finally, it was noticed that the two-fluid model could better approximate545

the network-level mean speed than the MFD counterpart in the present work.

Finally, the current analysis was concluded with a discussion on integrating the stopped fractions as variables to the

trip-based modelling framework. A novel extended trip-based model was proposed to simulate the stop-and-go pattern of

the vehicles. To do so, the distributions of stop duration and distances travelled between the stoppages were introduced in

the classical trip-based framework. It was shown that the results of the proposed extended trip-based model were in good550

accordance with the empirical data. It was also demonstrated by using L2 norm of errors that the extended trip-based model

is superior to the classical trip-based.

While MFD research has received significant attention, it is not considered a universal law that can replace all the ambigu-

ities and limitations of microscopic models. Its role is complementary to models and control tools of higher granularity. There

are various challenges and ambiguities that require further research efforts. First, the network conditions (in terms of network555

structure, distribution of congestion and spatio-temporal variations across days) that ensure a well-defined MFD need to be

further studied. Second, how data limitations related to measurement errors, spatial coverage and type of sensors influence the

observability of network MFDs require further attention. pNEUMA dataset provides a unique opportunity as it contains a level

of accuracy in the vehicle positions and penetration rates that have not been observed at just a large scale before. Nevertheless,

further experiments of the same type (even for large networks and duration) could shed more light not only in MFD research,560

but in all granularities of traffic models. Third, how directional congestion influences MFD models and how dynamic clus-

tering can help to better understand network level and scaling effects for multi-modal networks is another challenge. Last but

not least, how hierarchical multi-modal traffic management schemes with mixed structure (e.g. upper level perimeter control

based on MFD with lower level distributed control) can further alleviate congestion should be further explored.
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Appendix A. Accumulation Coverage and Comparison of Mean Speeds

Figure A.12 presents the accumulation (first column), mean speed (second column) and mean running speed (third column)

of each mode with respect to cars. Firstly, the coverage of accumulations for different modes with respect to cars has a smaller

range as the data is only available for limited time periods. The Pearson coefficient between different accumulation pairs575

is very close to zero, an indication there is no correlation between accumulations. The black line in mean speed and mean

25

https://open-traffic.epfl.ch
Mahendra Paipuri



running speed plots correspond to the line of equal speeds. Firstly, consider mode pair car-taxi in Fig. A.12a. The mean speeds

of cars tend to be higher at higher mean speeds (close to the free-flow regime). In contrast, taxis travel faster at lower mean

speeds (network saturation/congestion). The lower mean speeds of taxis can be attributed to the service-related stops that taxis

make to pick up and drop off passengers or when searching for a new passenger. At the same time, taxis can use the dedicated580

bus lanes and thus, they can travel at higher speeds than cars, especially during congested periods. It can be inferred that

the time gained using the dedicated bus lanes outweighs the time lost in the service-related stops during the peak saturation

periods. Hence, the mean speed of taxis is higher than cars at network saturation regimes. Now consider the mean running

speeds of the car-taxi mode pair. The mean running speeds of both cars and taxis are almost the same in the entire range of

speeds. Again, during the congested periods, taxis are slightly faster than cars, which can be due to the aggressive driving585

by taxi drivers compared to car drivers. In the case of mode pair car-bus, it is clear that the mean speed and mean running

speed of cars are always higher than that of the bus. It is an expected inference as buses tend to travel slower than cars. In the

case of medium vehicles, mean speed and mean running speed are always lower than that of cars. The mean running speed

of PTWs is higher than that of cars. This is also an expected inference as PTWs tend to be more aggressive and can “filter”

through the other urban traffic modes. Finally, it is clear from the plots that the mean speeds of all modes, except buses, tend590

to coincide with the mean speed of cars at lower speeds (higher congestion) periods. As the network becomes more congested,

the vehicles tend to move at the same speed collectively. Buses can be an exception in this scenario as they can travel in the

dedicated bus lanes even on the congested road networks. At the same time, the dwell times of the buses lower the overall

mean speed and thus, lower mean speeds are obtained even in the congested regimes in the present case.

Appendix B. Relation Between Stopped Fraction And Accumulation595

It is clear from the previous analysis that using stopped fractions of each mode as explanatory variables provides very

close fits for the mean speed (or trip time per unit distance). In the absence of GPS data, it is necessary to investigate the

relationship between the stopped fraction and other accessible traffic variables like accumulations. Herman and Prigogine

(1979) postulated stopped fraction of vehicles can be related to the density (k) as follows,

fs =

(
k
kc

)p

, (B.1)

where kc is the maximum density and parameter p measures the quality of traffic. As p increases, fs decreases as
k
kc

is always600

less than 1. However, the validity of this relation has not been studied in-detail in the literature. Herman and Ardekani (1984)

reported the values of p for Austin and Dallas using average density and stopped fraction values that are obtained from aerial

photographs. The present dataset can be used to verify the validity of this assumption. Again, eq. (B.1) was proposed for

urban traffic in general, without mode specification. The existence of a relationship in both uni- and multi-modal contexts are

investigated. Eq. (B.1) is modified in both approaches as follows,605

Uni-modal: fs, j = c j n
p j
j , ∀ j ∈ {c, t,b,m, p},

Multi-modal: fs, j = c j ∏
k∈M

n
pk, j
k , ∀ j ∈M and M = {c, t,b,m, p},

(B.2)

where c j is constant and nk is accumulation of mode k. The role of pk, j reverses in the modified relation, i.e., higher pk, j

results in higher stopped fractions. Eqs. (B.2) satisfy the boundary conditions, i.e., when n j = 0, stopped fraction of that mode
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Figure A.12: Comparison of accumulation, mean speed and running speed of each mode with respect to car. (a) Car - Taxi. (b) Car - Bus. (c) Car - Medium

Vehicle (MV). (d) Car - PTW.

27



Table B.5: Fit parameters for uni-modal relation between stopped fractions and accumulations.

Mode c j p j R2 RMSRE

Car 0.363 0.014 0.02 0.093

Taxi 0.363 0.051 0.36 0.071

Bus 0.467 0.043 0.17 0.129

MV 0.383 0.048 0.18 0.108

PTW 0.342 0.123 0.54 0.106

fs, j = 0. By using log-transformation, linear regression method NNLS can be used to estimate the regression parameters in

eq. (B.2).

Table B.5 presents the fit parameters for the uni-modal case along with the R2 and RMSRE values. Relatively poor610

estimates with larger errors are noticed for most of the modes. It is also worth noting that the values of p j vary across

the modes. Figure B.13 shows the regression coefficients of accumulation for predicting stopped fraction using the NNLS

technique for different modes. It is clear from the values of R2 that accumulations cannot explain the variability in the stopped

fractions to a satisfactory level. However, an improvement in both R2 and RMSRE values is observed for cars compared to

the uni-modal case. The R2 values are particularly low for buses and medium vehicles. Consequently, RMSRE values are615

relatively higher for buses and medium vehicles. This can be due to the scatter in the data or lack of sufficient explanatory

variables that can adequately describe the variation in the stopped fraction.
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Figure B.13: Regression coefficients for relation between stopped fraction and accumulation estimated using NNLS method for each mode. (a) Car. (b) Taxi.

(c) Bus. (d) Medium Vehicle (MV). (e) PTW.
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