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Abstract

This work investigates network-related trajectory features to unravel trips that contribute most to system under-
performance. When such trips are identified, feature analysis also permits determining the best alternatives in terms
of routes to bring the system to its optimum. First, we define important trajectory features that unravel the trips
contributing the most to the network under-performance. Second, based on supervised learning methods, we propose
a two-step data-driven methodological framework to reroute a part of the users and make the system close to its
optimum. The learning models are trained with trajectory features to identify which users should be selected, and
which alternative routes should be assigned, thanks to the data and features obtained from two reference dynamic
traffic assignment (DTA) simulations, under User-Equilibrium (UE) and System-Optimum (SO). We only focus on
trajectory features that are accessible in real time, such as network features and regular travel time information, so
that the methods proposed can be implemented without requiring cumbersome network monitoring and prediction.
Finally, we evaluate the efficiency of the methods proposed through microscopic DTA simulations. The results show
that by targeting 20 % of the users according to our selection model and moving them onto paths predicted as optimal
alternative paths based on our rerouting model, the total travel time (TTT) of the system is reduced by 5.9 % in
comparison to a UE DTA simulation. This represents 62.5 % of the potential TTT reduction from UE to SO, when all
the users choose their path under the SO condition.

Keywords: Trajectory data analysis, Network-related trajectory features, System optimum (SO), Supervised
learning, Polynomial regression, Naive Bayes classifier

1. Introduction1

In urban areas, the conflict between the demand for increasing mobility and limited infrastructure capacities de-2

grades the level of service of road networks. The consequences include: (i) economic loss resulting from wasted3

time and fuel in traffic jams, and (ii) environmental impacts due to air pollutants and noise emissions. Expanding4

infrastructures to improve network performance may not always be efficient in the long term (Braess et al., 2005). In5

this work, we focus on re-routing strategies that bring the system closer to the global optimum by moving some users6

out of their personal optimum. This solution occurs when all the users aim at minimizing their own travel cost, and7

it usually refers to user equilibrium (UE) (Wardrop, 1952; Smith, 1979). It is also known that the system optimum8

(SO) can be achieved if users cooperate to match a collective optimized function (i.e., minimizing total travel time)9

(Beckmann et al., 1956; Mahmassani and Peeta, 1993). Some studies show that SO can save up to 33 % of total travel10

costs in comparison to UE (Roughgarden and Tardos, 2002; Youn et al., 2008; van Essen et al., 2016). However, SO11

is achieved in return for higher individual travel costs experienced by some users. Therefore, instead of changing the12

paths of all users to achieve the perfect SO, it would be more efficient to focus on those who contribute the highest13

marginal gain in total travel cost to the whole system in return for a reasonable increase of their own travel costs.14

Fortunately, researchers have found that only a small share of network users contribute most to system under-15

performance (Wang et al., 2012; Ameli et al., 2020b). The main challenges are how to identify (i) these users and16

∗Corresponding author. Tel. : +33 (0) 4 72 04 77 16.
Email address: ludovic.leclercq@univ-eiffel.fr (Ludovic Leclercq)

Preprint submitted to Transportation Research Part C May 7, 2021



(ii) their alternative paths. To tackle these problems, we rely on trajectory data analysis and supervised learning17

models. In the past few decades, various trajectory data have become available. These data help engineers, decision18

makers and researchers to propose corresponding strategies for improving urban mobility (Gonzalez et al., 2008; Ma19

et al., 2015; Saeedmanesh and Geroliminis, 2016; Lopez et al., 2017). For example, with detailed Global Positioning20

System (GPS) data from mobile phones, Wang et al. (2012) showed that the congestion of a given network is mostly21

due to very few network users who travel on the most congested road segments. However, this conclusion was22

obtained by removing part of the traffic demand from certain origin-destination pairs (O-D pairs) without giving23

alternative routing solutions. Çolak et al. (2016) showed that if 10 % of drivers adjust their routing behavior under SO24

conditions, the whole system benefits from 40 % of the potential travel time saving that could be achieved if all users25

behaved unselfishly. Nevertheless, their conclusion was based on a traffic assignment model where the travel time on26

links depended only on its volume-over-capacity (VoC) ratio (BUREAU, 1964), i.e., the links between travel times27

are time-independent. Travel time delay is modeled by vertical queues, without considering spillbacks in congested28

situations. This is not representative enough of how congestion spreads in dense urban areas. In addition, the SO path29

distribution cannot be easily known in real life (Peeta and Mahmassani, 1995; Yildirimoglu and Kahraman, 2018) so30

that we are not able to ensure whether these users are traveling under SO conditions or not.31

In this work, we present methods to both target the most contributive users, i.e., those with the highest marginal32

total travel time gain, and re-route them to alternative optimal paths. These methods are designed considering a33

dynamic framework. The main objective is to define a small, simple, and relevant set of trajectory features that34

determine the trips to be modified. Briefly speaking, trajectory features are the characteristics of a user’s travel35

pattern, such as its length, travel time, average travel speed of the path, etc. In addition, the characteristic of the nodes36

and links on the pattern can also be taken into consideration, such as their topological features (degree, betweenness37

centrality, link lengths, etc), and traffic-related features (node/link capacity, traffic light cycles, etc). Since we aim to38

find the targeted users in practice based only on their trajectory features, these features should be kept easy to access39

in real-time. This is why we will consider only network features or regular travel time information without requiring40

expensive network monitoring and/or a prediction system. The second objective is to define alternative routes for41

the selected users by using the same features. A previous work presented in Chen and Leclercq (2019b) shows that42

that by rerouting a small part of users according to a single type of trajectory feature can improve the total system43

performance. However, this work will focus on selecting and rerouting users based on a combination of different44

trajectory features.45

In this paper, we rely on results from dynamic UE and SO dynamic traffic assignment (DTA) simulations with the46

help of a microscopic simulator to investigate the differences in trajectory features. Note that with the same traffic47

demand on the same network, the assigned paths in UE and SO simulations can be compared pair-by-pair (Leclercq48

et al., 2016). This fact gives us access to the full picture of how UE / SO patterns differ. However, our purpose is to49

define a generic methodology that can rely on UE patterns based only on simple network-related features to perform50

user selection and re-routing. In addition, using a microscopic simulation framework allows us to easily assess network51

performance after selection and re-routing and provide a clear benchmark of our method. The contribution of this work52

is threefold:53

• using comparative feature analysis of trajectories obtained in UE and SO simulations, we define the network-54

related trajectory features that unravel the trips contributing most to network under-performance;55

• using the network-related trajectory features defined, we propose re-routing strategies for the selected users in56

order to improve total network performance (e.g., the total travel times of all vehicles);57

• by applying machine learning techniques to vehicle trajectory data, we improve the total system performance58

of the network by changing the paths of a small share of network users without cumbersome DTA simulations.59

One of the key contributions is that once the trajectory features are identified and the learning models are built, we60

are able to carry out user selection and re-routing strategies without knowing the actual network or trajectory features61

at SO state. The purposes of running a reference SO simulation are: (i) to provide the data set for training our machine62

learning models, and (ii) to serve as a criterion of the optimal network performance when we evaluate the efficiency63

of our method. However, during the method evaluation, it is still assumed that all the network users travel under64

UE perspectives and only their trajectory features at UE state are accessible. Under these assumptions, we can still65
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improve the whole network performance by targeting users and moving them to predicted alternative paths, based only66

on their trajectory features and/or regular travel time information under UE condition, thanks to our proposed learning67

models. This makes it possible to solve real-world congestion problems without cumbersome network monitoring68

and prediction.69

The remainder of this paper is organized as follows. Firstly, we present the case study description, the overview70

of the method and the definitions of trajectory features in Section 2. Then Section 3 presents the case study results71

and discussions. Finally, Section 4 presents the main conclusions and future research perspectives of this work.72

2. Methodology73

This section presents the methodological framework, the definitions of trajectory features, and mathematical for-74

mulations of the supervised learning models used in this work. Table 1 shows the main notations.75

2.1. Method overview76

This subsection mainly focuses on the general methods without entering into detailed computation. Figure 177

presents the overall framework of our methodology. We carry out two reference DTA simulations under UE and SO78

conditions, with the same dynamic OD matrix and road network as inputs. These two scenarios are denoted as UE-ref79

and SO-ref, respectively. The main idea is to select α % of the users, give them rerouting guidance, and evaluate80

whether the system’s performance is improved. Therefore, there are two important phases in the methodology: (i) the81

selection of targeted users and (ii) the determination of rerouting strategies. The total travel time (TTT) of all users82

in the whole network is considered as the criterion for evaluating the system’s performance. The trajectories obtained83

in the SO simulation, named as SO paths/trajectories in the paper, are assumed to be the optimal paths for the system84

optimum. In fact, they are the paths that bring the least marginal TTT to the whole system when additional users85

travel in the network through these paths. The features of SO trajectories are used only for the construction of the data86

set. The main objective is to achieve a significant TTT reduction of the whole system by moving a small portion of the87

users onto their predicted SO trajectories, based on the application of data mining and supervised learning methods to88

trajectory feature data.89

For each step, we first need to prepare the data set of trajectory features obtained from UE-ref and SO-ref, as90

shown in the blocks in the data preparation part of Figure 1. Based on the literature review, there are some key91

network features that contribute to system underperformance, such as the betweenness centrality (BC) of nodes and92

links (Freeman, 1977; Wang et al., 2008, 2012; Chen and Leclercq, 2019a,b; Bellocchi et al., 2020), corridor capacity93

(Laval and Castrillón, 2015), the distribution and cycle of traffic lights (Laval and Castrillón, 2015), etc. Section 2.394

will present the detailed definitions of the network-based trajectory features analyzed in this work. However, we first95

introduce the definition and computational methods for obtaining the path marginal cost (PMC).96

In particular, we consider the differential of path marginal costs (diffPMC) between the UE and SO states of the97

network as the indicator to evaluate the marginal total travel gain that can be achieved by moving a user and then98

assess its potential contribution to improving the system’s performance. Indeed, the marginal cost of a path represents99

the increase of travel cost to the whole system due to an additional vehicle on that path. In the SO state, users are100

on routes with equal and minimum PMC so that no users can shift to any other paths that have a lower marginal101

travel cost (Sheffi, 1985). Therefore, the re-assignment of the users with the largest PMC difference between UE and102

SO can shift the system close to the system optimum. However, this is not an option in practice as PMC can hardly103

be estimated in the reference situation (UE), and the differences in PMC are unavailable because the SO solution is104

unknown. This is the reason why we rely on analyzing simulated trajectory data. Here, we focus on network-related105

trajectory features that are easy to obtain in practice. Furthermore, to evaluate the quality of user selection, we are106

going to run new simulations considering that the selected users now have new predefined routes while the others keep107

traveling under the UE discipline. This permits us to account for the influence of the route guidance of the selected108

users on the other users in the system. In this work, we use a simulation-based method to compute PMC. Detailed109

definitions and computation methods are presented in Section 2.2.110
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Table 1: List of notations

Notations Explanations

T Travel time

H Planning horizon (the duration ofH is 3600 minutes)

TTT The total travel time of the network

∆TTTrelative Relative TTT reduction with respect to UE-ref simulation

∆TTTrelative w.r.t ref reduction Relative TTT reduction with respect to the optimal TTT reduction: TTTUE-ref − TTTSO-ref

LTT Link travel time

PTT Path travel time

LMC Link marginal cost

PMC , P̂MC Path marginal cost and dimensionless path marginal cost (normalized by free-flow travel time)

diffPMC The difference between PMC of UE pattern and SO pattern

BC Abbreviation of Betweenness Centrality

i Index of user

j Index of link

p, P Index of trajectory feature, and the total number of analyzed trajectory features

α, α∗ Fraction and the optimal fraction of users that are selected to change trajectories

x, x, X Scalar, vector, and matrix of attributes composed by trajectory feature(s)

y, y Target scalar and target vector to be predicted and they are obtained from the simulation data set

y′, y′ Scalar and vector predicted by supervised-learning model, with feature vectors as attributes

w, w Scalar and vector of regression coefficient

f (·) The learning model for targeted user selection, with trajectory features as input and diffPMC as output

g(·) The classifier for labeling whether a path is an SO path, with trajectory features as input and the path’s class as output

C Class of labels of a path

∆τ The snapshot time step of the microscopic simulator to collect simulation results (60s in this work)

n(τ) Spatially-averaged number of vehicles on a link during the time step [τ, τ + ∆τ]

φ(·) Link performance function: the input is n(τ) and the output is link travel time

∆t The time step for computing path travel time and path marginal cost (60s in this work)

D The total number of OD pairs in the network

si,d The number of available alternative paths of the user i to the destination d, d ∈ RD

G The directed graph representing the network

A The set of links on the graph

N The set of nodes on the graph

Li The trajectory of user i

Li Length of trajectory Li

Ji, Ki Number of links and nodes on trajectory Li

µl Mean distance between two consecutive traffic lights on a trajectory

σl Standard deviation of distances between two consecutive traffic lights on a trajectory

µl Dimensionless mean distance of two consecutive traffic lights on a trajectory

GBC
i Gini coefficient of node betweenness centrality on trajectory Li

GdynamicBC
i Gini coefficient of dynamic link betweenness centrality on trajectory Li

Q One-lane link saturation capacity during green time

tg, tr Green time and red time of traffic light cycle

µg, µr , σg, σr Mean green / red time, and the corresponding standard deviations of traffic lights on a trajectory

δ The coefficient of variance: σ
µ

Capi Mean MFD capacity of trajectory Li

ηcritical
i Normalized length of critical links on trajectory Li

Ei, j Dynamic link betweenness centrality of link j on trajectory Li

Ei, Êi Mean and value of dynamic betweenness centralities of all the links on trajectory Li

BCi, B̂Ci Mean and median of betweenness centralities of all nodes on a trajectory Li

4



Data mining of trajectory 
features obtained from DTA 

simulations: UE-ref and SO-ref

1st step: user selection 2nd step: re-routing

Select α*% users with the biggest 
diffPMC approximated by f(·)

Polynomial regression

To approximate diffPMC (Y) which 
cannot be easily get in reality: 

Y ≈ Y' = f(X)

Re-run DTA simulation under UE 
condition, while rerouting these 

selected α*% users on their SO paths

Move these α*% selected users on 
predicted SO paths classified by g(·)

Combination 
trajectory features: 

X = (x1,x2,x3,…,xP)

Classifier to define whether a 
path is SO path or not: 

Y ≈ Y' = g(X)

Re-run DTA simulation under UE 
condition, with α*% users moved 

onto their predicted SO paths

Use network-related trajectory features of 
(1) UE-ref trajectories
(2) Other trajectories of the same OD 
 to predict if a path is an SO path

Class of the 
trajectory:

SO path or not?
Y = (C0 or C1)

Naïve Bayes Classifier

Combine
2 steps

Two-steps supervised learning:
1. Selection of targeted users
2. Defining rerouting strategies 

Combination 
trajectory features: 

X = (x1,x2,x3,…,xP)

Differential of PMC 
between UE and SO path

Y = diffPMC

Use network-related trajectory features 
of UE-ref trajectories to predict the 
differential of PMC (diffPMC)

I. Data preparation

II. Model training

III. Evaluation

Figure 1: Methodology flow chart of this work

2.2. Link marginal cost (LMC) and path marginal cost (PMC)111

The path marginal costs are computed based on time-dependent link marginal costs (LMC). LMC is defined as112

the change of link travel time caused by one additional unit of flow on the link. In the DTA simulation, LMC is113

time-dependent and can be computed by Equation (1) (Peeta and Mahmassani, 1995):114

LMC j(t, n) = T j(t, n) + n(t) ×
∂T j(t, n(t))
∂n(t)

, (1)

where T j(t) denotes the link travel time at t on link a j, n(t) denotes the spatially-averaged number of vehicles on link115

a j. The challenge is to calculate ∂T j(t,n(t))
∂n(t) . We assume that (i) the vehicle type on the network is single (i.e., mono class116

user), and (ii) the traffic light plan of the whole network is given. Therefore, the link marginal cost can be considered117

as an intrinsic feature of the link, and it depends only on n. It can be estimated via a simulation-based method. In118

this work, we use Symuvia1 platform for dynamic traffic simulations. Symuvia is a dynamic microscopic trip-based119

simulator based on a Lagrangian discretization of the LWR model (Leclercq et al., 2007). Here, we present how we120

use Symuvia to compute simulation-based LMC. For the details of the traffic simulation, readers can refer to Ameli121

et al. (2020c).122

The main idea of simulation-based methods is to approximate a link performance function, i.e., link travel time123

(LTT) vs. accumulation, for every link of the network. Then the LMC can be easily calculated by the deviation. To get124

1Note that Symuvia is an open-source simulator which is available on GitHub: https://github.com/Ifsttar/Open-SymuVia

5

https://github.com/Ifsttar/Open-SymuVia


link performance functions, the main steps for computing LMC are as follows. First, we run a reference simulation125

with different traffic demand profiles. During each time step [τ, τ+ ∆τ], we compute the average travel time (Tτ, j) and126

the spatially-averaged number of vehicles (nτ, j) on link a j, and then save them as sample points {(nτ, j,Tτ, j)}. Second,127

for each link, we compute its maximum n by multiplying its length with the maximum density, and then split the128

values of n into K equal-width classes. Then for each class k, we gather all the points (nτ, j,Tτ, j) of which nτ, j belongs129

to the class k, and compute the corresponding average values of n and T during the whole simulation period, in order130

to get (nk, j,Tk, j) for link a j. At last, we fit a regression model representing a time-dependent link performance function131

φ j : n → T, based sample points of (nk, j,Tk, j). In this work, we choose linear and/or quadratic regression models for132

fitting link performance functions. Therefore, during the time step [τ, τ + ∆τ], we can compute n(τ) and dT
dn(τ) for a133

given time τ. By replacing T j in Equation (1) by φ j, the LMC of a j can be computed by Equation (2). It is worth134

mentioning that the estimated performance function φ j is only used to compute LMC and then path marginal costs.135

The path travel times of users are still obtained from the results of microscopic simulator Symuvia, by computing136

the difference between the arrival time and enter time of users. These path travel times are used to compute User137

Equilibrium at each iteration.138

LMC j(τ, n) = φ j(n(τ)) + n(τ) ×
dφ j(n)

dn
|n=n(τ), (2)

where n(τ) is estimated as n(τ) =
TTT (τ)

∆τ
. TTT (τ) denotes the total travel time of all users travelling on link a j during139

that time step [τ, τ + ∆τ].140

Therefore, the PMC on a trajectory Li can then be obtained by summing up all the time-dependent LMC on the141

trajectory (Peeta and Mahmassani, 1995). The time step for computing PMC is ∆t = 60 s in our case study. The total142

number of time steps is denoted by |H|. PMCi is then computed as follows:143

PMCi =

|H|∑
t

∑
j

LMC j,tδ j,t, (3)

where δ j,t is the incidence indicator. If the entering time of user i on the link a j belongs to the time interval [t, t + ∆t],144

then δ j,t = 1. Otherwise, δ j,t = 0. The computation of LMC and PMC is time-dependent. In SO-based DTA based145

on microscopic simulator, the PMCs are computed after network loading at each iteration. The links passed through146

by a user i are already known, and the average number of vehicles (denoted as n(t)) of all links at all time intervals147

[t, t + ∆t] are already computed, too. To compute the PMC of the user i, we check its entering time on each link that148

is on the current loaded path of the user i, and see the entering time belongs to which time interval. Then we use the149

corresponding n(t) to compute LMC(t) based on Equation(2), and sum up all LMCs of all links on the path to get the150

PMC.151

When we analyze trajectory features in order to determine which users should be re-routed and which alternative152

paths should be chosen, it is assumed that we don’t have real-time arrival information of users on each link of their153

paths. Therefore, the computations of LMC, PMC and diffPMC are departure-time centered. In other words, we154

compute PMC and diffPMC of a user i by using Equation (3), where t corresponds to its entering time onto the155

network. In addition, it is worth noticing that the diffPMC is computed based only on features obtained in the UE156

simulation. Indeed, user i has a pair of paths resulting from the UE-ref and SO-ref simulations. As we assume that157

moving the user from the UE path to the SO path should bring the system close to its SO, users with a high diffPMC158

value should be selected first, as mentioned in Section 2.1. However, when we try to re-route a user who is traveling159

on the network under the UE condition, we only have access to traffic-state characteristic (LTTs and LMCs) in the UE160

state. Therefore, even though we can move it to its SO path, the diffPMC from UE to SO path should be computed161

based on the LMCs obtained in UE-ref. To be more precise, we denote LMCUE
j,t as the LMC of link a j computed from162

the UE-ref simulation during the time step [t, t + ∆t]. We denote PMCUE
i and PMCSO

i as the PMCs of the UE and the163

SO path for user i, respectively. These variables are computed by Equation (4):164

PMCUE
i =

|H|∑
t

∑
j

LMCUE
j,t δ

UE
j,t , PMCSO

i =

|H|∑
t

∑
j

LMCUE
j,t δ

SO
j,t , (4)
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where δUE
j,t and δSO

j,t denote the incidence indicators defined in Equation (5) and Equation (6), respectively.165

δUE
j,t =

1 if the user i is on the link a j during [t, t + ∆t] in UE-ref simulation;
0 Otherwise.

(5)

δSO
j,t =

1 if the user i is on the link a j during [t, t + ∆t] in SO-ref simulation;
0 Otherwise.

(6)

Therefore, the diffPMC of the user i in this work is calculated by the Equation (7).166

diffPMCi = PMCUE
i − PMCSO

i (7)

It is worth mentioning that users may have the same paths under both UE and SO conditions. Therefore, they are167

already on their optimal paths under both UE and SO perspectives, and will not be chosen as users to be re-routed in168

this work. The definitions of PMC and diffPMC in Equation (4) to Equation (7) confirm that. In fact, if a user has169

the same path in both UE and SO simulation, its diffPMC is zero. Since we aim to re-route the users who have the170

largest value of diffPMC, these users with zero diffPMC would not be chosen. The value of diffPMC is the target171

value y that we aim to train in Section 2.5. Before presenting the learning process, we introduce detailed definitions172

and formulations of the network-related trajectory features that are used in this work in the following Section 2.3.173

2.3. Network-related trajectory features174

Network-related trajectory features are obtained by aggregating features of links and/or nodes. Here we use a175

modeled network to define different network-related trajectory features. A road network is modeled as a directed176

graph G = (N ,A), composed with K nodes and J links. N = {n1, n2, . . . , ni, . . . , nK} is the set of nodes and A =177

{a1, . . . , a j, . . . , aJ} is the set of links. A trajectory Li with length Li is composed by a set of links (a j) and nodes (nk):178

Li = {{ai,1, . . . , ai, j, . . . , ai,Ji }, {ni,1, . . . , ni,k, . . . , ni,Ki }}, (8)

where Ji and Ki denote the number of links and the number of nodes on Li, ai, j ∈ A, ni,k ∈ N . Therefore, network-179

related trajectory features ofLi result from aggregating network features of (ai, j) and/or (ni,k). There are two categories180

of network features to be aggregated: (i) graph-theory based and (ii) traffic-state based. We select the features based181

on a literature review, and keep those which can be calculate in real-time with limited information (such as monitoring,182

network traffic light system, and current travel time).183

2.3.1. Graph-theory based features: aggregation of centrality metrics184

The aggregate metrics of critical nodes on a trajectory can be considered as one of its network-related trajectory185

features. In graph theory, there are several metrics to define whether a node is critical to the whole network. For186

example, the betweenness centrality (BC) of a node n corresponds to the ratio of shortest paths crossing n over all187

possible shortest paths for all origin-destination pairs of the network (Freeman, 1977; Girvan and Newman, 2002).188

The BC of node n is calculated by Equation (9).189

BC(n) =
∑
i, j

σi j(n)
σi j

, (9)

where σi j(n) denotes the number of shortest paths from any node ni to any node n j crossing node n, and σi j denotes190

the total number of shortest paths from ni to n j. In the case study in this work, the shortest paths for calculating BC191
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are measured by distance based on the topological parameters of the network, without taking into account the dynamic192

traffic condition. Therefore, for trajectory Li, the mean node BC of Li is defined as follows:193

BCi =
1
Ki

∑
ni, j

BC(ni, j). (10)

where Ki denotes the number of nodes on Li. In addition to the mean value, we can also compute other statistical194

metrics of node BCs on Li, such as the median value of all node BCs, denoted as B̂Ci.195

There may be some critical nodes on a trajectory that are the main contributions to the congestion. Therefore,196

we also consider the Gini coefficient of node BCs as a network-related trajectory feature to be analyzed. The Gini197

coefficient (G) is a measure of inequality, defined as the mean of absolute differences between all pairs of variables198

for a particular measure. The minimum value is 0 when all the measurements are equal. The theoretical maximum is199

1 for an infinitely large set of observations where all the measurements but one have a value of 0, which is ultimate200

inequality. G is calculated by equation (11).201

G =

∑n
i=1
∑n

j=1 |xi − x j|

2n2 x̄
, (11)

where x denotes an observed value, n denotes the number of values observed, and x̄ denotes the mean value of all x.202

In this work, for a given trajectory, the Gini coefficient of node BC can be considered as a measure of the existence of203

nodes with a large BC value on a trajectory. The Gini coefficient of node BC on a trajectory Li can be calculated by:204

GBC
i =

∑Ki
j=1
∑Ki

h=1 |BCi, j − BCi,h|

2K2
i BCi

, (12)

where Ki denotes the number of nodes (intersections) on Li. BCi, j and BCi,h denote the BC of the jth and hth node on205

Li. BCi denotes the mean value of all node BCs on a trajectory Li206

2.3.2. Graph-theory based features: mean distance between traffic lights207

In urban areas, the distribution of traffic lights on the network can affect the route choices of users, and contribute208

to the system’s congestion. Here we present a dimensionless feature that can interpret the distribution of traffic lights209

on a path. For each trajectory Li, we compute the mean distance between two consecutive intersections with traffic210

lights (denoted as µli ). Then we normalize it by dividing the length of Li:211

µli =
µli

Li
. (13)

In the two subsections above (Section 2.3.1 and Section 2.3.2), we present several important network-related212

trajectory features that depend only on the topological characteristics of the network. In the next subsection, we213

introduce several features that take the dynamic traffic states into account.214

2.3.3. Traffic-state features: mean MFD trajectory capacity215

An indicator of trajectory capacity is calculated by aggregating simple traffic-state features (e.g., fundamental216

diagram) and traffic light data of links on the trajectory. Let Q denote saturation capacity during the green time. For217

links with traffic lights, the outflow capacity of a link is calculated as tg
tg+tr

Q, where tg and tr represent the green time218

and red time of the traffic light cycle. With known link lengths and a given traffic light plan, we can compute the mean219

MFD capacity for trajectory L, based on the conclusion of Laval and Castrillón (2015). A trajectory is considered220

as a one-lane corridor composed of several road segments separated by traffic lights. Let µl and σl denote the mean221

distance between two consecutive traffic lights and the corresponding standard deviation. µg, µr, σg and σr denote the222

mean green time, mean red time, and the corresponding standard deviation of traffic lights onL. Let δ = σ
µ

denotes the223
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coefficient of variance. The mean MFD capacity is then determined by three dimensionless values: (i) mean red time224

over mean green time ratio: ρ =
µr
µg

, (ii) mean block length to mean green time ratio: λ =
µl
µg

, and (iii) the coefficient225

of variance of green light time, red-light time, and block length. It is assumed that the coefficient of variance is the226

same for these three variables, denoted as δ. With these parameters computed for a trajectory, an approximation for227

the mean corridor capacity is given in Laval and Castrillón (2015) and the formulation is presented in Equation (14).228

To make the features dimensionless for the analysis, the traffic flow is represented in the unit of Q, and the density is229

presented in jam density units.230

Cap = min{
1

1 + ρ(0.58δλ + 1.64λ2 − 5.3λ + 4.99)
;

µg

µg + µr
}. (14)

The mean MFD capacity of a trajectory is considered as a network-related feature. All the parameters of Equation (14)231

can be obtained by aggregating a sequence of link lengths between each pair of constructive traffic lights, and the traffic232

cycle data of links on the trajectory.233

Besides the MFD capacity, the percentage of critical links on a path can also indicate whether this trajectory234

contributes to the performance of the whole network. In this work, a link is considered as critical if it has a relatively235

small saturation capacity Q. In this work, we consider ai, j as critical link if Q j ≤ 110 %CapiQ, where Q j =
t j
g

t j
g+t j

r
Q.236

Therefore, the normalized length of critical links on Li reads:237

ηcritical
i =

∑
critical link l

Li
. (15)

ηcritical
i is considered as metrics to quantify trajectory features related to critical links.238

2.3.4. Traffic-state features: dynamic betweenness centrality of links239

Bellocchi et al. (2020) define the concept of reachability of links by taking into account the dynamic traffic-state240

features of the network, i.e., the dynamic link betweenness centrality. When the average speed of each link ai, j is241

known, we can consider the following measure calculated as E(ai, j(t)) =
ei(t)+e j(t)

2 , where242

ei(t) =
1

K − 1

∑
h∈N\i

d f f
kh

τkh(t)
, (16)

where d f f
kh denotes the travel time of the shortest time path in free-flow condition between nodes k and h (for all243

h ∈ N\k). τkh(t) denotes the actual path travel time (PTT) of the shortest-time path at time t, between the same pair244

of Origin-Destination nodes. Note that when we compute ei(t) here, t corresponds to the departure time of user i on245

the network. The PTT of user i is in fact computed by summing up all the departure-time-centered LTTs of links that246

are on the trajectory Li. The LTTs can be obtained by a simple monitoring system without any dynamic prediction.247

K denotes the total number of nodes in the network. E(a(t)) denotes a measure of the accessibility of link a = (i, j)248

and it is evaluated with a number between 0 and 1. The closer the value of E(a(t)) is to 1.0, the less congested link a249

is. Then, for trajectory Li, we can compute the mean and median values of the dynamic link BCs on it: Ei and Êi.250

Similarly, for a given trajectory Li, we can also compute the Gini coefficient of dynamic BCs of all the links on251

Li by the following equation:252

GdynamicBC
i =

∑Ji
j=1
∑Ji

h=1 |Ei, j − Ei,h|

2J2
i Ei

, (17)

where Ji denotes the number of links on Li. Ei, j denotes the dynamic link BC of link a j on Li. Ei denotes the mean253

value of all the dynamic link BCs on the same trajectory Li and it is computed by Ei = 1
Ji

∑Ji
j=1 Ei, j.254

The two trajectory features presented in these two subsections, the mean MFD capacity and the dynamic BC of255

links, take into account the dynamics of the traffic such as the traffic light plan, the monitored LTTs, etc. However,256

they still remain simple to access and easy to calculate in practice.257
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2.4. Feature scaling and normalization258

Since a trajectory has multiple features spanning varying degrees of magnitude, range, and units, we should carry259

out feature scaling before the application of machine learning techniques. According to their definitions, some of the260

trajectory features defined in Section 2.2 and Section 2.3 are already dimensionless: the median of node BC on Li261

(B̂Ci), the Gini coefficient GBC
i and GdynamicBC

i , the MFD capacity (Capi), the normalized length of critical links on a262

trajectory (ηcritical
i ), and the normalized average distance between two consecutive intersections with traffic lights (µli ).263

Regarding the path marginal costs, we normalize the PMC by trajectory free-flow travel time (fftt), as shown in264

Equation (18). The trajectory free-flow travel time is computed by summing link fftt of the links that are passed265

through by the path. The link fftt can be approximated by dividing the distance of a j by the maximum authorized266

speed on a j, which depend only on the intrinsic features of a given network.267

P̂MCi =
PMCi

fftti
. (18)

Now we have clear definitions and formulations of all the trajectory features used in this work. In the next two268

subsections, Section 2.5 and Section 2.6, we present detailed formulations of the machine learning methods used in269

this work, following the two-step methodological framework introduced in Section 2.1 and Figure 1. In fact, apart270

from the features presented in Section 2.3, there are various kinds of other trajectory features such as path travel time,271

path travel distance, degree of nodes, degree of links, etc. According to some previous descriptive analysis and results272

presented in Chen and Leclercq (2019b), the betweenness centralities and mean MFD capacities are two potential273

features that can define SO paths. That is the reason why we mainly focus on the trajectory features presented in274

Section 2.3 in this work.275

2.5. First phase: selection of targeted users276

In this subsection, we present the methods for selecting targeted users based on the users’ trajectory features, i.e.,277

the left branch of 1st- step shown in Figure 1. The main framework is consistent with the three parts introduced in278

Figure 1: data set preparation, model training, and evaluation.279

First, we prepare the data set. For all the M users on the network, we compute their network-related features in280

the reference UE simulation and save them invector x ∈ RP, where P denotes the number of trajectory features to be281

analyzed. We also compute diffPMC of each user, according to Equation (4) to Equation (7), and we save it in y ∈ R.282

Then, we carry out supervised learning with these M training points, in order to obtain f : x → y, where y is283

the target scalar to be approximated based on x. Therefore, for any user i with P trajectory features under the UE284

condition, we can approximate its potential PMC decrease, i.e., diffPMC, by y ≈ y′ = f (xi). The value of y′ defines285

whether a user should be targeted to change trajectory. In this work, we mainly rely on linear regression (LR) and286

polynomial regression (PR) to train f (Seal, 1967; Cameron and Trivedi, 2005). The aim of the LR is to find a column287

vector w = (w1,w2, . . . ,wp)T so that y = ε + xT · w = ε +
∑P

j=0 w j × x j. wi denotes the weight associated to each288

factor in x. ε ∼ N(0, σ2) is the Gaussian error term. Based on M samples, we obtain the matrix expression of the289

LR: y = X · w + ε, with ε ∈ RM as the vector of estimation error. Then we rely on the M sample set to estimate w by290

minimizing ε = ‖y − X · w‖2 based on the least-squares estimation (Equation (19) and (20)).291

w = arg min
w

M∑
i=1

‖yi − xi · w‖2 = arg min
w

M∑
i=1

‖yi −

P∑
j=0

w j × xi
j‖

2 (19)

w = (XT X)−1XT y. (20)

Moreover, there are often nonlinear relationships between the feature vector and the target. The polynomial regression292

(PR) model is also frequently used to address nonlinear relationships. The PR model is a polynomial transformation293

based on the LR model. For a model with only one variable, the kth order polynomial model is given by y = w0 +294

w1x + w2x2 + . . . + wk xk + ε. Here, the dimension of the feature vector is more than one and we should also take into295
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account the interaction terms between different features. For example, a polynomial regression model of the 2nd order296

with two variables reads: y = w0 + w1x1 + w2x2 + w11x2
1 + w22x2

2 + w12x1x2 + ε. In this work, the dimension of the297

feature vector is P = 7. We save all the trajectory features of M users in the matrix of attributes X = [xi, . . . , xP], and298

we save all the diffPMC of these M users in y ∈ RM . Then, we train the LR and PR models based on the data set299

composed with X and y. The detailed implementation and the numerical results are presented in Section 3.2.300

Lastly, we evaluate the efficiency of our learning method with the steps shown in part-III of Figure 1. We re-301

run the DTA simulation by selecting a certain percentage of users according to their y′, i.e., predicted diffPMC, and302

we move them to their SO paths simulated by the SO-ref scenario. Therefore, we evaluate whether rerouting these303

selected users can lead to significant network performance improvement or not, by comparing (i) the TTT obtained in304

this evaluation DTA scenario and (ii) the TTTs obtained in UE-ref and SO-ref simulations.305

2.6. Second phase: re-routing strategy based on combining network-related features306

Up to now, to evaluate the efficiency of the selection step, we have assumed that the optimal route guidance307

strategy for all the selected users is to assign them to their SO paths. Here, we relax this assumption. For a selected308

user, among all the paths in the feasible space, we aim to find the best path for bringing the system’s performance309

closer to the system optimum, without knowing the SO solutions computed via cumbersome DTA simulations. To this310

end, we rely on supervised classification based on the network-related features of trajectories under the UE condition.311

By assuming that SO paths are the optimal paths for reaching the system optimum, we aim to classify whether a path312

is the SO solution or not based on network-related trajectory features. This step corresponds to the right branch of the313

2nd − step shown in Figure 1. We still need the results from the SO-ref simulation in order to prepare the data set and314

train our classification model. However, once the model is built and validated, we can label whether a path is an SO315

path or not, based only on the trajectory features.316

2.6.1. Data preparation317

We first prepare the data set by computing the features of trajectories obtained in the UE-ref and SO-ref simula-318

tions. More specifically, we assume that a user i entering the network has si,d available paths, computed from both319

the UE-ref and SO-ref simulations, between its OD pair with d as the destination, d ∈ RD where D denotes the total320

number of OD pairs in the network. Each of these paths has its own vector of features under: xsi,d , which are composed321

of values of network-related features presented in Section 2.3 under the UE condition. For all these paths, we label322

them by two trajectory categories: (i) C1 if the trajectory is the SO solution and (ii) C0 otherwise. We save the labels323

of all the paths in the target vector y. In addition, we compute the trajectory features for all the si,d paths, and we save324

the features of all the paths in the matrix of attributes X = {xsi,d }i∈RM ,d∈RD .325

2.6.2. Model training326

Using the prepared data set, we now train a model g : X → y = (C0 or C1), in order to predict whether a path is an327

SO path or not, based on the feature table X.328

In this work, we rely on the Bayes Theorem (Wu et al., 2008; Pearl, 2014; Taheri et al., 2014) to solve the329

classification problem. Classification learning is the process of predicting a discrete class label C = {C1, . . . ,Cm} for a330

test attribute X = {X1, . . . , Xn} (Wu et al., 2008; Pearl, 2014; Taheri et al., 2014). Here, learning algorithms are given331

the task of training a classifier that assigns a class label to a sample based on the attribute. In this work, we assume332

that there are only two classes: (i) C0 contains the path that is not an SO path and (ii) C1 contains the path is labeled333

as an SO path. Then we assign a trajectory L to C0 or C1, based on its feature vector x = (x1, . . . , xP)T .334

One effective classifier is the Bayes Classifier. It is constructed based on Bayes’ theorem and the probability that335

a given sample belongs to a particular class. Let H be a hypothesis, such that the trajectory L belongs to class C.336

Our objective is to determine the probability that the hypothesis H = Prob(H|x) holds, given that we already know x.337

According to Bayes’ theorem, Prob(H|x) can be expressed as:338

Prob(H|x) =
Prob(x|H)Prob(H)

Prob(x)
, (21)
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where Prob(x|H) denotes the posterior probability of x conditioned on H. Prob(H) and Prob(x) denote the prior339

probability of H and x, respectively. When there are only two classes, a sample with attribute x is labeled as the class340

C = C0 if and only if the following condition is met.341

gB(x) =
Prob(C = C0|x)
Prob(C = C1|x)

≥ 1, (22)

where gB(x) is called the Bayesian classifier.342

The probabilities in Equation (21) can be estimated by the data set used for the learning process. However, the343

estimation of Prob(x|C) is non-trivial and learning an optimal Bayesian network is an NP-hard problem (Chickering,344

1996; Chickering et al., 2004; Taheri et al., 2014). To simplify the problem, we assume that all the attributes are345

independent given the hypothesis, which leads to346

Prob(x|H) = Prob(x1, . . . , xP|H) ≈
P∏

j=1

Prob(x j|H), j ∈ {1, 2, . . . , P}, (23)

where P denotes the dimension of x, i.e., the number of features to be analyzed for the trajectories in this work. Then347

the classifier in Equation (22) reads:348

gNB(x) ≈
Prob(C = C0)
Prob(C = C1)

P∏
j=1

Prob(x j|C = C0)
Prob(x j|C = C1)

. (24)

gNB(x) is called Naive Bayes (NB) classifier. The assumption that all the attributes are independent given that H is349

called conditional independence. The NB classifier is one of the most efficient and effective learning algorithms for350

discrete classification problems (Kotsiantis et al., 2007; Wu et al., 2008).351

We use the data from UE and SO reference simulations to train the NB classifier in this work. All the paths used352

are identified in both simulations for each OD pair. These paths are added to the set of alternative paths. Then, we353

compute the feature vectors x for all paths. For a trajectory L between a given OD pair, we define the class variable y354

as:355

y =

0 if CL = C0;
1 if CL = C1.

(25)

Therefore, the NB classifier to be trained is defined as follows:356

ŷ = gNB(x) = arg max
y

Prob(y)
P∏

j=1

P(x j|y). (26)

Prob(y) can be estimated by the relative frequency of y = 1 and y = 0 in Y. For P(x j|y), we apply the Gaussian Naive357

Bayes algorithm to solve the classification problem, where the posterior probability of features Prob(x j|C) is assumed358

to be Gaussian:359

P(x j|y) =
1√

2πσ2
y

exp(−
(x j − µy)2

2σ2
y

), (27)
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where σy and µy are estimated by the data set. By substituting Equation (27) in Equation (26), the Gaussian NB360

classifier reads:361

ŷ = gNB(x) = arg max
y

Prob(y)
P∏

j=1

1√
2πσ2

y

exp(−
(x j − µy)2

2σ2
y

). (28)

The detailed implementation of training an NB classifier based on the data set in this work and the case study362

results are presented in Section 3.4.2.363

2.6.3. Method evaluation364

Lastly, we evaluate the performance of the combination of the two-step methods: the user selection and re-routing365

method. We first select α∗ % from all the M users as targets, according to their predicted diffPMC with the help of366

the f trained in the Section 2.5. We assume that the OD pairs and departure time of these users are known, and then367

we compute the trajectory features under the UE condition for all the alternative paths of the targeted users in order368

to obtain the table of feature attributes: Xtarget. Therefore, we can predict the labels of all the alternative paths for369

the targeted users, via Y ′ ≈ g(Xtarget). Finally, we re-run a UE simulation with the same demand profile and network,370

after pre-defining the paths of selected users as the paths labeled by Y ′ = C1. By comparing the TTT of (i) the whole371

system in this test scenario with (ii) the TTT obtained in UE-ref and SO-ref simulations, we evaluate the efficiency of372

the two-step methods proposed.373

3. Numerical experiment and results374

In the previous section, the general methodological framework is presented as well as the detailed formulations375

of the LR, PR and NB models. Note that, in the methods proposed, we fix the fraction of selected users in priority376

to assure a fair comparison of TTT reduction and evaluate the efficiency of the method. In practice, we can also377

select users and define alternative paths according to a certain threshold of the computed diffPMC instead of fixing378

a certain number of targeted users. In addition, the proposed methodology can be easily implemented, and we are379

free to choose DTA models and/or simulators. As long as we are able to obtain full information on network-related380

trajectory features, we can apply the methods proposed to any other DTA simulators/platforms. In this work, we apply381

this framework to a numerical case study with the microscopic simulator Symuvia. In this section, we present the case382

study scenarios and results.383

In this study, we run two reference simulations via Symuvia based on the UE and SO conditions on the same384

road network and with a given demand profile. The calculation process for the UE and SO solutions are detailed in385

(Ameli et al., 2020a,b). We can compute their PMCs and network-related trajectory features listed in Section 2.2 and386

Section 2.3. The data set of the trajectory features will then be used in the supervised learning process. Recall that387

we use only link features under the UE condition when computing the traffic-state related features of both the UE388

trajectories and SO trajectories. More precisely, we use link travel time, link marginal cost, and link average speed389

under the UE condition to compute PTT, PMC, diffPMC, and dynamic BC of links. Therefore, the trajectory feature390

differences for a pair of trajectories result only from whether the trajectory is chosen under a UE or under an SO391

perspective. This helps us to unravel the characteristics of the SO structure under UE-based traffic conditions.392

3.1. Case study description393

In this study, we consider the road network of the 6th district of Lyon (Lyon6), France. The area of Lyon6 is394

presented in Figure 2(a). Figure 2(b) shows the link-level representation of the main road network. There are a total395

of 786 links, 457 nodes, and 710 OD pairs in the network. Figure 2(c) presents the time-dependent traffic demand396

in the network. There are a total 13475 users (M = 13475) traveling on the network during a simulation period of 4397

hours (from 7:00 to 11:00 a.m.). Figure 2(c) shows that the peak hour is from 8:00 to 9:30 am.398

Figure 2(d) presents the macroscopic fundamental diagram (MFD) of the whole Lyon6 network in the UE and SO399

simulations. It represents the spatial average of network traffic conditions (total travel distance vs. total experienced400

travel time) through time. The MFD confirms that the traffic conditions in SO are better than in UE, as the total travel401

time is shorter in SO than in UE for a given total travel distance.402
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(a) Area of the 6th district of Lyon, France, c© Google Maps 2021
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(b) The modeled network of Lyon6 (excluding the park).

(c) Traffic demand (d) MFDs in UE and SO reference simulations

Figure 2: Lyon6 network: test case characteristics in UE-ref and SO-ref simulations with Symuvia

3.2. Results from reference scenarios403

Figure 3(a) presents the distribution of PTT on the network of both the reference UE simulation (UE-ref) and the404

SO simulation (SO-ref). We can see that the PTT decreases from UE-ref to SO-ref, and the network is less congested405

in the SO than in the UE-ref simulation. Figure 3(b) shows the distribution of PMC. We also find the PMCs of the406

SO trajectories are smaller than the UE trajectories. This observation is consistent with the assumption of the SO407

condition where users choose paths with the minimum PMC between its OD pair.408

We assume that the TTT of the whole system reaches its minimum under the SO condition. Therefore, the TTT409

reduction from UE-ref to SO-ref denotes the improvement of the optimal performance that can be achieved when all410

users choose their paths under the SO perspective. The reference simulations show that from the UE to SO, the TTT of411

all users falls by 6.56 · 105 seconds, representing 9.44 % of the TTT in the UE-ref simulation, as presented in Table 2.412

This reduction of TTT from UE-ref to SO-ref is then considered as the reference TTT reduction when evaluating the413

efficiency of targeting and re-routing strategies. More precisely, we use two criteria to evaluate the improvement of414

network performance: (i) the relative TTT reduction with respect to the UE-ref simulation (Equation (29)) and (ii) the415

relative TTT reduction with respect to the optimal TTT reduction from the reference scenarios (Equation (30)).416

∆TTTrelative = 100 % ×
(TTTUE-ref − TTTtest scenario)

TTTUE-ref
. (29)
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(a) The distribution of PTT. (b) The distribution of PMC

Figure 3: The distributions of path travel time (PTT) and path marginal cost (PMC)

∆TTTrelative w.r.t ref reduction = 100 % ×
(TTTUE-ref − TTTtest scenario)

TTTUE-ref − TTTSO-ref
. (30)

Before the application of the supervised learning methods mentioned in Section 2 to our case study, we first deter-417

mine the optimal fraction of users to be targeted, i.e., α∗ %, based on a sensitivity analysis presented in Section 3.2.418

Thereafter, when evaluating the proposed learning methods, we take α∗ % directly as the fraction of user selection.419

The sensitivity analysis and results are presented in the following Section 3.2. Moreover, the reference test case pre-420

sented in Section 3.2 can serve as the criterion for the method evaluation. The results from this reference case will421

confirm the fact that we can achieve a significant TTT reduction by selecting a small share of the users who have422

the largest diffPMC values and moving them to their SO paths. Therefore, when we evaluate the proposed learning423

models, we compare the TTT reduction of the test cases with the TTT reduction obtained in the reference cases.424

Then, after presenting the reference test cases, we apply the two-step learning framework to our case study in425

Section 3.2 and Section 3.4.2. To prepare the data set, we compute trajectory features for all the users and prepare the426

data set, including: (i) the training feature vectors composed of network-related trajectory features, (ii) the diffPMC427

for all users as the target vector, and (iii) the labels of simulated paths as the target vector. To select the users, we use428

the data set to train the LR and PR regression models. For re-routing, we train the NB classifier to predict whether a429

given path is an SO path or not. Lastly, for the evaluation phase of both learning processes, we run DTA simulations430

with the selected users moving onto their simulation/predicted SO paths in order to evaluate the TTT reduction of the431

whole network.432

433

3.3. The reference case: selection of targeted users according to actual path marginal cost434

In this subsection, we aim to determine the optimal percentage α∗ of users to be selected. With the α∗ determined,435

we then re-run a test scenario by selecting α∗ % users with the largest values of diffPMC, and move them to the SO436

paths obtained in the SO-ref simulation. Then the TTT reduction of this test scenario in comparison to the TTT in the437

UE-ref simulation is the criterion of the potential TTT reduction that can be achieved by rerouting α∗ % users.438

The main steps for the sensitivity analysis to determine α∗ are the following. First, we compute the diffPMC for all439

the M users based on the simulation results obtained in UE-ref and SO-ref, according to Equation (4) to Equation (7).440

Then we rank all users according to their values of diffPMC, and select α % of them with the largest values of441

diffPMC as targeted users. Afterwards, we give these selected users predefined paths obtained in SO-ref and re-run a442

DTA simulation where other users still travel under the UE condition. Finally, we evaluate the TTT reduction of the443

system in the test scenario in comparison to UE-ref simulation.444
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Table 2: Simulation results of the UE-reference and SO- reference scenarios of the Lyon6 network. The bold numbers represent the results by
re-routing an optimal fraction of users to SO paths.

UE SO Results after rerouting different fraction of selected users (α %) with large diffPMC value

Different scenarios Ref Ref 1 % 2 % 3 % 4 % 5 % 10 % 15 % 20 % 25 % 30 to 70 %

TTT (106 s) 6.94 6.29 6.93 6.73 6.72 6.62 6.68 6.66 6.47 6.42 6.52 6.39

∆TTT (105 s) − 6.56 0.18 2.17 2.21 3.30 2.73 2.87 4.81 5.28 4.31 5.58

∆TTT per user (s) − 48.7 1.3 16.1 16.4 24.5 20.3 21.3 35.7 39.2 32.0 41.4

∆TTTrel (%) − 9.44 0.26 3.13 3.18 4.74 3.93 4.14 6.92 7.60 6.20 8.02

∆TTTrel. to ref (%) − 100 2.76 33.14 33.69 50.24 41.62 43.81 73.33 80.56 65.71 85.01

(TTT is the total travel time. ∆TTT is the difference of TTT between the UE-ref simulation and the SO-ref simulation. ∆TTT/user denotes the TTT reduction per user.
The relative TTT reduction (∆TTTrel) is computed by Equation (29). The relative TTT with respect to the reference (∆TTTrel. to ref) is computed by Equation (30).)

To analyze the sensitivity of system performance improvement to the fraction of selected users, we select α ∈445

{1, 2, 3, 4, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70} and run the corresponding test scenarios mentioned in the above446

paragraph. Then we compute the relative TTT reductions according to the criteria mentioned in Section 3.2, in order447

to find the optimal fraction α∗ %. The results of these simulation scenarios are presented in Table 2. The results show448

that we can achieve a significant improvement in network performance by moving only a small share of the users to449

the paths considered to be optimal for the whole system, i.e., the paths assigned under the SO principle. Table 2 shows450

that re-routing 20 % the users to their SO-trajectories can lead to more than 80 % reduction in TTT concerning the451

reference case. In average, the travel time saving is 39 s per user. In other words, if we can efficiently target the 1/5 of452

the users that have the highest values of diffPMC, we can achieve more than 3/4 of the TTT reduction of the reference453

case, where all the users travel on SO trajectories instead of traveling under the UE principle.454

We also carry out benchmark (BM) scenarios by randomly selecting α % of the users, with α ∈455

{1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70}. For each fraction α %, we take 8 random samples of the users456

independently, and give them predefined paths as SO trajectories. Then we run DTA simulations under the UE con-457

dition to evaluate the TTT reduction in comparison to the UE-ref simulation. The results in Table 2 and the results458

of the BM scenarios are plotted in Figure 4. The results of the BM scenarios show that randomly moving a fraction459

of the users to their SO paths cannot ensure a reduction of system TTT until we choose a sufficient number of users460

(30 %). In addition, the random selection is not efficient at all. In fact, by randomly selecting 70 % of the users and461

re-routing them to SO paths, we can achieve on average less than 5 % of relative TTT reduction with respect to the462

TTT in the UE-ref simulation. However, by selecting only 20 % of the users who have the largest potential decrease463

of PMC, i.e., diffPMC, we can already obtain more than 7.5 % of TTT reduction from the UE-ref simulation.464

Figure 4 shows that the diffPMC is a good criterion for selecting targeted users. By selecting users according to465

their PMCs reduction value from UE-ref to SO-ref and moving them onto SO paths, the system TTT reduction is466

significantly higher than in the cases where the users are selected randomly.467

Based on these subsection results, we consider that α∗ = 20 is the reference fraction for selecting targeted users.468

There are a total 13475 users in the network. The reference number of users that we select is then denoted as Mtarget =469

2696. In addition, the TTT reduction obtained after moving 20 % of the users to their SO path, 7.60 %, is considered470

as a criterion of potential TTT reduction when evaluating the efficiency of our learning methods for user selection471

(Section 3.2) and user re-routing (Section 3.4.2).472

473

3.4. First step results: selection of targeted users by predicting diffPMC based on other trajectory features474

The results in the reference case in Section 3.2 show that we can obtain more than 7.6 % of TTT reduction w.r.t475

UE case, by only selecting 20 % of users who have the largest values of diffPMC. Their diffPMC are computed based476

actual UE and SO paths obtained in the reference scenarios. However, we aim to re-route users without knowing477

their SO paths ahead, and the actual diffPMCs are not accessible. TIn this subsection, we aim to approximate users’478

diffPMC based on network-related trajectory features via a supervised learning process, and then show that we can479

also reduce the system TTT significantly, by re-routing 20 % of the users who have the largest values of learned480

diffPMC. More precisely, we aim to select Mtarget users according to the diffPMC learned by a regression model, and481
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Figure 4: Relative TTT reduction with respect to TTT in UE-ref after selecting different fractions of users and re-routing them to SO paths.
The reference relative TTT reduction from the UE-ref to the SO-ref simulation is 9.44 %. The black-line boxplots represent the statistics of TTT
reduction after randomly moving users to their SO trajectories: (i) the orange lines represent median values, (ii) the boxes represent the interquartile
ranges, and (iii) the upper and lower whiskers represent the 95th and 5th percentile.

move them on paths obtained from the SO-ref simulation in order to achieve a reduction of system TTT as close to that482

obtained in Section 3.2 as possible. This step corresponds to the 1st step of our methodological framework, presented483

as the left branch of the method flow chart (Figure 1) in Section 2.484

3.4.1. Data preparation485

First, we prepare the data set for training the regression model. Note that we still use the results from the UE-ref486

and SO-ref simulations as the data set. Among the 13,475 users on the network, we select M = 13127 users’ trajectory487

feature data as the sample set. The eliminated users have not finished their trips in our simulation horizon. Each user488

i has a pair of trajectories, LUE
i and LSO

i obtained from the two simulations, respectively. We compute the normalized489

PMC reduction of i by yi = diffPMCi = P̂MC
UE
i − P̂MC

SO
i (ref. Equation (4) to Equation (7)). Then we save the490

computed diffPMCs in the target vectors to be approximated denoted by y ∈ RM . For the same users, we also compute491

other dimensionless trajectory features based on the results of the UE-ref simulation: B̂Ci, GBC
i , Êi, GdynamicBC

i , Capi,492

ηi, µli . The values of these features define the feature vectors for user i, xi = (x1, . . . , xP)T where P = 7. Then we493

define an M × P data matrix X = [xi . . . xM]T , where M = 13127, which is the number of the sample size. Therefore,494

the objective is to use the known data set X and y in order to train a model:495

f : Rp → R
x→ y = f (x).

3.4.2. Training and evaluation of the regression model496

Here, we train two regression models (LR and PR), flin and fpoly, based on the simulated data set y and X. Then497

we compute the approximate y′lin = flin(X) and y′poly = fpoly(X). Therefore, we can sort the users by y′ and select 20 %498

of the users with the biggest predicted differential of PMC. Afterward, we give these users SO-ref trajectories and499

re-run the DTA simulation, in order to evaluate the TTT reduction of the system.500
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Table 3: Scores of the LR and PR models for predicting the PMC reduction from UE to SO, based on all the seven network-related features. The
correlation and RMSE are computed between (i) y (the actual PMC reduction obtained in UE-ref and SO-ref scenarios) and (ii) y’ (the learned
PMC reduction with trajectory features as attributes).

Polynomial Ref selection

Linear d = 3 d = 4 d = 5 d = 6 20 % bigDiffPMC

Correlation 0.1489 0.4022 0.4812 0.5516 0.5701 -

RMSE 0.1775 0.1522 0.1395 0.1263 0.1226 -

∆TTT rel w.r.t UE-ref (in %) -8.6 4.13 2.38 5.55 6.50 7.60

∆TTT rel w.r.t SO-ref reduction (in %) - 91.40 43.79 25.24 58.84 68.42 80.56

(The relative TTT reduction is computed by Equation (29). The relative TTT with respect to reference is computed by Equation (30). The column titled by 20 %
bigDiffPMC" in the table presents the case where we select 20 % of the users with the largest value of diffPMC selected and move to their SO paths. )

Table 3 presents the results of this learning phase. The correlation and the root-mean-square error (RMSE) are501

computed between (i) the actual differential of PMC from UE-ref to SO-ref, and (ii) the predicted differential of502

PMC learned from X, based on the LR model and the PR model with different degrees. The results show that the503

6th order PR model is able to efficiently predict the PMC reduction. By selecting 20 % of users with a large value of504

predicted diffPMC, we can achieve a 6.5 % reduction of TTT in comparison to the UE-ref simulation. According to505

Equation (30), this TTT reduction obtained in the test case reaches 68% of the reference reduction, which is the case506

where all the users travel under the SO condition.507

508

3.5. Second step results: re-routing strategies by predicting SO paths based on trajectory features509

The results from Section 3.2 are obtained after re-routing the selected users to their exact SO paths resulting from510

the SO-ref simulation. The purpose of this section is to predict whether a path is an SO path or not, based on the511

known network-related trajectory features. The problem can be easily transformed into a classification task: to predict512

whether a path belongs to the class of SO paths or not, for all the possible paths between a given OD pair. The513

implementation and results presented in this subsection correspond to the 2nd step of our methodological framework,514

presented as the right branch of the method flow chart (Figure 1) in Section 2.515

3.5.1. Data preparation516

Here we prepare the target vectors y and matrix of attributes X, following the steps presented in Section 2.6.1.517

Let Mall denote the feasible paths for all users between all OD pairs. The matrix of the target vectors for training the518

NB model is composed of the actual classes of the paths: Yall = [y1, . . . , yi, . . . , yMall ] where yi = 0 if C(Li) = C0519

and yi = 1 if C(Li) = C1. We also compute the network-related features of all these paths and construct the attribute520

matrix Xall = [x1, . . . , xi, . . . , xMall ], where xi ∈ R5 which means that we consider only five features as attributes, since521

we have 2 pairs of correlated feature. In fact, in order to satisfy the conditional independence assumption of NB522

classifier, we first carried out a correlation analysis with X. The correlations in Figure 5 show that there are two pairs523

of trajectory features that are not independent: (i) B̂C and GBC (Figure 5(a)), (ii) Êi and GdynamicBC (Figure 5(b)). If524

the correlation between two features is estimated as high, then this couple of features are dependent on each other525

and cannot both be taken into account when constructing the matrix of attributes in the NB training process. For526

example, Figure 5(a) shows that B̂C and GBC are highly correlated. Figure 5(b) shows that Êi and GdynamicBC are527

highly correlated. Therefore, we do not take the two Gini coefficients into account when constructing the attribute528

vector for training gNB in this work.529

In our case study, there are a total of Mall = 107385 possible paths for all the users of all OD pairs in the Lyon6530

network. To ensure that we have sufficient data to train gNB(x), we exclude the paths between OD pairs where fewer531

than 30 vehicles are traveling between them. The final number of remaining paths used in the learning process is532

Mdataset = 45848. Then, we separate the data set into two parts: the training set and testing set. Each of them consists of533

50 % of the trajectories randomly selected among all the Mdataset paths. The corresponding class variables and feature534

vectors of these trajectories are denoted by Ytrain = [y1, . . . , yMtrain ], Xtrain = [x1, . . . , xMtrain ], Ytest = [y1, . . . , yMtest ], and535

Xtest = [x1, . . . , xMtest ].536
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(a) (b)

Figure 5: (a): The estimated correlation between the median node BC (B̂C) and the Gini coefficient of BC (GBC); (b): The estimated correlation
between median dynamic link BC (Êi) and the Gini coefficient of dynamic link BC (GBC). (If the correlation between two features is estimated as
high, then this couple of features are dependent on each other, and cannot both be taken into account when constructing the matrix of attributes in
the NB training process.)

Table 4: Correction of class prediction by using the trained gNB.

Ŷtest v.s. Ytest Ŷall v.s. Yall

Number of samples 22924 107385

% of correctly predicted classes 88.13 % 87.42 %

3.5.2. Training and evaluation of the Naive Bayes classifier537

Here we use Ytrain estimate Prob(y), σy and µy in Equation (28). With a known Xtrain, we can train gNB(x). Note538

that we assume that the distribution of Y is the same for all the paths, so that Prob(y), σy and µy remain the same for539

Ytest and Yall. We can therefore estimate Ŷtest ≈ gNB(Xtest) and Ŷall ≈ gNB(Xall). Then we compare the predicted class540

variables and the data set in order to evaluate the performance of the classifier. Table 4 presents the correction rate of541

the well-predicted class variables of Ytest and Yall. If a simulated UE path is correctly labeled as C0 or a simulated SO542

path is correctly labeled as C1 by the trained NB classifier, then the conclusion about the prediction for this path is543

correct. The percentage of correctly predicted classes in Table 4 is computed by dividing the number of paths whose544

classes are correctly predicted by the total number of paths of the data set.545

546

3.6. Results of combining two-step learning processes: selection and re-routing547

Recall that in the reference case presented in Section 3.2, the TTT of the system is reduced 7.6 % after re-routing548

20 % of the users with the largest value of diffPMC to their exact SO paths. In this subsection, we investigate whether549

system performance can still be significantly improved after selecting a small part of the users according to their550

estimated diffPMC, and rerouting them to their predicted SO paths. More precisely, we evaluate the efficiency of the551

two− step learning methodology in terms of TTT reduction in comparison to the UE-ref scenario, as shown in part-III552

of Figure 1 in Section 2.1. We select 20 % of the users according to the diffPMC predicted by the PR model fpoly(·)553

in Section 3.2. Instead of moving them into simulated SO paths, as presented in Section 3.2, we now reroute them on554

paths that are predicted to be SO paths according the NB classifier gNB(·) result in Section 3.5.2. Then we evaluate555

the TTT of this test scenario and compare it to the TTT in the UE-ref simulation.556

First, for a selected user entering the network at time t, we identify their OD pair. Second, we search all the557

possible paths between this OD pair and compute the feature vector x for each alternative path. Then, we rely on558

19



Table 5: Rerouting strategies for targeted users

No. Case Action

1 None of the alternative paths is labeld as SO path Do not move the user

2 One and only one path is predicted as SO path Move the user onto this path

3 More than one alternative paths Randomly select one path from the predicted SO paths,

are labeld as SO paths and move the user on it

gNB(x) to predict whether a path is an SO-path or not. Since there may be more than one feasible path for a user, there559

are three cases for the rerouting strategy, shown in Table 5.560

Among all the 2696 selected users, 641 users have at least one predicted SO path among their alternative paths561

of the same OD pair. These 641 users are finally targeted and moved to the predicted SO paths. There are some562

users whose trajectories are not changed according to the NB classifier. This may be due to two reasons: (i) the563

predicted SO paths are the same as the UE paths, and (ii) all the candidate paths of these users are predicted as564

non-SO paths. Therefore, we pre-define the paths for these 641 users and run DTA simulations while the other users565

continue traveling under the UE condition. Besides, in order to take into account the eventual estimation error caused566

by the random selection of predicted SO paths in the case of the 3rd situation mentioned in Table 5, we carry out 12567

independent DTA simulations. In each of these simulations, we randomly select only one predicted SO path for the568

selected users who have at least two predicted SO paths.569

The final simulation results are presented in Figure 6. The results show that by selecting 20 % of the users with570

the largest predicted diffPMC, and moving them onto the predicted SO paths, we can achieve on average 5.9 % of571

total travel time in comparison to the reference UE simulation. This performance is significantly better than the BM572

scenarios, where we randomly select 20 % of the users and move them on their SO paths obtained from SO-ref. We573

also observe a small variation of TTT reduction in the 12 independent simulation scenarios. This infers that there574

might be more than one alternative path that has close characteristics compared to the SO paths.575

Figure 6: The relative TTT reduction with respect to UE-ref simulation for different test scenarios.
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Furthermore, the final number of targeted users is 641, representing less than 5 % of the total users in the network.576

Nevertheless, by moving them onto the predicted SO paths, we achieve on average a TTT reduction of more than577

62 % in comparison to the reference case, where all the users choose their paths under the SO condition. In addition,578

among all the users, there are about 68 % of them have decreased their individual travel time in the re-routing scenario,579

with respect to the UE-ref scenario. The average travel time saving is about 146 s. For the rest 32 % of users who580

have increased their travel time after rerouting, the average increased travel time per user is about 200 s.0RC→LL:581

For the users that have been re-routed, there are 3.6 % of them who have increased their individual travel time after582

being re-routed, but the average increased travel time is 40 s. This is an acceptable increase of individual travel time583

and therefore there would be no difficulties for user compliance if we aim to apply the method into practical cases.584

Moreover, the results show that thanks to the trained PR and NB models, we are able to select and re-route a small585

share of network users to make a significant improvement to the performance of the whole network based only on586

their network-related trajectories.587

4. Conclusions and discussions588

This work investigates network-related trajectory features to unravel the trips that contribute most to the system’s589

under-performance. When such trips are identified, feature analysis also permits identifying the best alternatives in590

terms of routes to bring the system to its optimum.591

Four features: node BC, dynamic link BC, the mean MFD capacity, and the mean distance between traffic lights,592

are identified as the key network-related features. The combination of these features defines the potential trips that593

contribute most to the system’s under-performance. With these features as attributes, we build two learning models594

in order to (i) select the targeted trips that are critical for the system under-performance and (ii) re-route the users595

onto alternative paths in order to improve the whole system performance. We carry out a case study based on two596

reference DTA simulations for a middle-size network, from the perspectives of UE and SO. The microscopic traffic597

simulator (Symuvia) is used to obtain user trajectories and their corresponding network-related features. Note that the598

methodology proposed can be adapted to other DTA models and/or simulators because it uses the simulation results599

independently. In other words, as long as we are able to get full information on network-related trajectory features,600

we can apply the methods proposed to any other DTA simulators/platforms.601

The application of our methodology to the real test case (Lyon6 network) shows that by selecting only 20 % of the602

trips and moving them onto predicted optimal paths; we can achieve an improvement of more than 62 % in network603

performance in comparison to the case in which all the users move from UE to SO paths. These results show that we604

can achieve a significant improvement in network performance by targeting a small share of users and moving them605

to predicted alternative paths, based only on their trajectory features and/or regular travel time information under the606

UE condition thanks to the learning models we propose.607

This work opens various perspectives. The analyzed feature attributes can be obtained based on intrinsic features608

of the network (such as graphical characteristics, the spatial distribution of traffic lights), and/or a simple traffic609

monitoring system. Therefore, it would be possible to apply the proposed methodological framework to real-life610

practice if we have GPS trajectory data and network characteristics. Then we could re-route a small share of network611

users in the real-world via a centralized route planning system by providing users route guidance to reduce traffic612

congestion throughout the whole network. In particular, this real-world application would be promising if connected613

autonomous vehicles (CAVs) represent a large share of network users in the future since it would be easier and more614

efficient to re-route CAVs, which are already monitored by a centralized system.615

In addition, we can consider more than one criterion to evaluate the improvement of system performance. In this616

work, we only consider minimizing the system’s total travel time. In future works, we could also consider adding617

environmental criteria, such as minimizing the total air pollutant emissions of the whole system. Moreover, we can618

still improve the performance of model training, concerning the learning model of the user selection step, the 6th order619

of the polynomial regression model might be heavy if we deal with a data set with high-dimensional data. Other620

supervised learning models can also be investigated, such as Neural Network or Gaussian process regression with621

different kernels. For the classifier training, one direction can be to investigate better classification models to unravel622

SO path characteristics in order to avoid the cases (i) where there are than 1 predicted alternative paths or (ii) there is623

no predicted path at all, for a selected user. One possibility is to use an imbalance classification process because we624

have an imbalanced data set of feasible paths, where there are much more non-SO paths than SO paths.625
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