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Cold Dynamics in Cellular Automata: a Tutorial

Guillaume Theyssier∗

December 1, 2021

Abstract

This tutorial is about cellular automata that exhibit ’cold dynamics’.
By this we mean zero entropy, stabilization of all orbits, trivial asymp-
totic dynamics, etc. These are purely transient irreversible dynamics, but
they capture many examples from the literature. A rich zoo of proper-
ties is presented and discussed: nilpotency and asymptotic, generic or
mu- variants, unique ergodicity, convergence, bounded-changeness, freez-
ingness. They all correspond to the ’cold dynamics’ paradigm in some
way, and we study their links and differences by various examples and
results from the literature. Besides dynamical considerations, we also fo-
cus on computational aspects: we show how such ’cold cellular automata’
can still compute under their dynamical constraint, and what are their
computational limitation.

1 Introduction

This tutorial is about cellular automata (CA for short), a well-known class of
discrete dynamical systems, useful for modeling natural phenomena, and also
a model of computation. Informally, a CA is a lattice of finite-state cells that
evolve according to a uniform local rule. CA have been extensively studied as
chaotic dynamical systems [31], as models of physical phenomena with positive
entropy [12, 51], as a model of reversible computing [37, 19] or as groups when
considering only reversible CA [7, 43].

None of these kinds of CA are considered here. On the contrary, we are
interested in examples with zero entropy, that have a strong convergence prop-
erty, whose asymptotic dynamics is essentially trivial, and that are strongly
irreversible. These examples are essentially transient dynamically, they erase
information from the initial configuration, and display a strong effect of the
’arrow of time’.

We will refer to this class as cold dynamics, without trying to precisely define
it for now. It turns out that literature on CA abounds in results and examples
that fit into this class. The purpose of this tutorial it to present many of them
and, as much as possible, sketch a coherent global picture around CA cold
dynamics.

∗I2M, Université Aix-MArseille, CNRS
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Figure 1: Evolution starting from the same initial configuration for the two
examples of cold dynamics presented in this section. Positions belonging to sets
Di are represented in black.

Two examples. Let us consider the discrete plane Z2 and say that two ele-
ments are neighbors if one is at distance 1 to the north, east, south or west of
the other. Now consider any initial set D0 ⊆ Z2 and define Di+1 for any i ∈ N
as the union of Di and all elements of Z2 that have exactly one neighbor in Di.
This actually defines a CA with a cold dynamics. Indeed, the sets Di are only
increasing and therefore each position of Z2 can only have two destiny: either
it will never belong to any Di, or it will appear in some Di and then stay in all
subsequent ones. This first example was introduced in [47] and is actually one
of the very first CA ever defined.

As our second example, consider again any initial set D0 ⊆ Z2 and define
Di+1 as set of positions from Z2 such that, among itself and its 4 neighbors,
a majority of positions is in Di (i.e. at least 3). In this second example, the
destiny of a position is less clear as the local majority could change several
times. It turns out that if we consider one step every two, this example also
has a strong convergence property (we will establish this for a large class of
examples in Theorem 10). Note that majority dynamics like this one might well
be the single most studied class of CA.

An example of evolution of both CA is show in Figure 1. One could start to
analyze these specific examples in depth, but we will rather try to understand
what are the properties that make them special, and work on entire classes of
examples.

Main questions around cold dynamics. This tutorial is organized into five
parts: we will first precise our formal settings in Section 2 (using the language
of orbits, topology and probability measures) and introduce in Section 3 the
pivotal notion for cold dynamics: convergence. Then, we will address three
general questions as starting points to present many results and examples:

1. What kind of behaviors can be obtained if we push the convergence property
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to an extreme and ask that the system collapse all initial configurations
into a single one? What if we only specify that the asymptotic dynam-
ics be trivial (a singleton) and how does it depend on the language used
(configurations versus probability measures)?

We will tackle these questions in Section 4 by studying the classical notion
of nilpotency and its variants.

2. How to establish that a given CA is convergent?

In Section 5, we will both present proof techniques and introduce useful
sub-classes of convergent CA (bounded-change and freezing CA) that put
stronger constraints on the dynamics but already capture many natural
examples, like the two presented above.

3. How the ability of general CA to make arbitrary computations survive
under the constraint of convergence, bounded-change or freezingness?

In Section 6, we will see that even under the strongest constraints, com-
putational universality is preserved, but the effectiveness of this compu-
tational power greatly varies with the constraint considered.

A tutorial. This tutorial is an invitation to discover what we believe are nice
examples, concepts and proof technics. It is not a survey, and we try to find
a good compromise between accessibility and generality. We do include some
proofs (or sketch of) as they give much insight in the topic. However, many
results are stated without proof. This is mostly due to space constraint and not
an indication that the result is less important: the reader is warmly invited to
consult the corresponding references.

2 Definitions and Notations

In this section we present standard definitions about CA and establish a precise
formal framework as well as some notations. The reader unfamiliar with these
definitions or expecting a more detailed presentation is invited to consult [10,
39, 35, 31, 50]. Most of the results presented in this tutorial do not require in
depth knowledge of the notions defined below.

A dynamical system is a pair (X,F ) where X is a compact metric space and
F : X → X a continuous map. We will consider only two kind of dynamical
systems in this tutorial: deterministic CA acting on configurations, and deter-
ministic CA acting on probability measures. A CA is defined by some uniform
spatial structure of cells, an alphabet and a local evolution rule.

Spatial structure of cells. A natural and fairly general settings for the spa-
tial cell structure is to consider a finitely generated group G (without mentioning
it each time, all groups G below will be finitely generated). We will use addi-
tive notation for groups and denote by 0G the identity of G. For z ∈ G, we
denote by ‖z‖G the length n of the smallest sequence of generators (gi)1≤i≤n
such that g1 + · · ·+ gn = z, and we let ‖0G‖G = 0. We denote by Bn the set of
elements z ∈ G such that ‖z‖G ≤ n. Most of the time we will consider G = Zd
and discuss about cases d = 1 or d ≥ 2 (called 1D CA, 2D CA, etc). We will
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only scratch the surface of the deep and largely open question of how CA theory
depends on G. We will sometimes use the notion of amenability which is an
emblematic example of this dependence through the so-called ’Garden of Eden’
theorem (see [10]). A finitely additive probability measure on G is a map µ from
subsets of G to [0, 1] such that µ(G) = 1 and µ(A ∪B) = µ(A) + µ(B) when-
ever A ∩B = ∅. A finitely additive probability measure µ is said left-invariant if
µ(A) = µ(g +A) for any g ∈ G and any A ⊆ G. Then we say that G is amenable
if admits a left-invariant finitely additive probability measure. Groups Zd are
amenable and we will sometimes consider free groups with 2 or more generators
as an example of non-amenable group.

Space of configuration and its topology. Given a finite alphabet Q and
a group G, a configuration is a map c : G→ Q. In order to remove some paren-
thesis in expressions, we will often denote c(z) by cz. For any q ∈ Q, we denote
by q the uniform configuration c : z 7→ q. The set of configurations QG can be
endowed with the prodiscrete topology (product of the discrete topology on Q)
to form a compact space by Tychonoff theorem. Given a finite set D ⊆ G and
a partial configuration u : D → Q we denote by [u] the cylinder set of configu-
rations that coincide with u on domain D:

[u] = {c ∈ QG : c|D = u}.

By a slight abuse of notation, we denote by [q] for q ∈ Q the cylinder set [u] of
domain {0G} where u = 0G 7→ q. Cylinder sets are clopen sets and form a base
of the prodiscrete topology. This topology is also metrizable as follows. For any
pair of configuration x, y ∈ QG define their distance by

d(x, y) =

{
0 if x = y,

2−n where n = max{i : x|Bi
= y|Bi

}.

G naturally acts on QG by translation as follows: for any z ∈ G we define the
shift map σz : QG → QG by

σz(c)z′ = cz+z′ .

Shift maps are continuous and one-to-one. For c ∈ QG, we denote by OG (c) its
orbit under translations, that is: OG (c) = {σz(c) : z ∈ G}. A natural kind of
subset of configurations are closed translation invariant subsets of QG. Such a
subset X is called a subshift and it is characterized by its forbidden language,
i.e. the set of cylinder set it avoids: {[u] : [u] ∩X = ∅} (see [35]).

Evolution rule. A CA on QG is defined by a local evolution rule λ : QN → Q
where N is a finite subset of G called neighborhood, and whose associated global
evolution rule F : QG → QG is defined as follows:

F (c)z = λ
(
σz(c)|N

)
for all z ∈ G. We say that F has radius r if N ⊆ Br (note that the same
map F could be defined by different local maps λ with different neighbor-
hoods N , but finding the minimal such N and hence the minimal radius is
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usually not important in the sequel). Any CA map F is continuous and com-
mutes with translations: σz ◦ F = F ◦ σz. Then

(
QG, F ) is a dynamical system.

Conversely, by Curtis-Hedlund-Lyndon theorem [27, 10], any dynamical system(
QG, φ) where φ commutes with translations is actually a CA. Given a CA
F : QG → QG, we are naturally interested in orbits, i.e. sequences of the form
c, F (c), . . . , F t(c), . . . for some configuration c. A partial information on orbits
called canonical trace will play an important role: it is the sequence T Fc : N→ Q
defined as c0G , F (c)0G , . . . , F

t(c)0G , . . . for a given c ∈ QG. The map c 7→ T Fc is
a factor map from QG → QN. It is generally neither surjective, nor injective.

Space of probability measures and action of a CA on it. The set of
Borel probability measures on QG will be denoted by M

(
QG). A measure

µ ∈M
(
QG) is a countably additive function from Borel sets to [0, 1] such that

µ(QG) = 1. The support of a measure is the smallest closed set X such that
µ(X) = 1. We say that a measure is full-support if its support is QG. Concretely,
a measure is characterized by its value on cylinders (by the Carathéodory-
Fréchet extension theorem since cylinders form a semi-ring that generates the
σ-algebra of Borel sets). It is also convenient to define a measure this way. For
instance, a natural and important class of measures are the Bernoulli measures
which are product measures defined by coefficients βq for each q ∈ Q such that∑
q∈Q βq = 1 as follows: for any cylinder [u] with u : D → Q,

µ([u]) =
∏
z∈D

βuz
.

The uniform Bernoulli measure is the one where all coefficients βq are equal to
1/#Q where notation #X represents the cardinal of set X. A Bernoulli measure
is full-support if and only if βq > 0 for all q ∈ Q. A fundamental property of
Bernoulli measure is that they are translation-ergodic, meaning that for any
Borel set X which is invariant under translation, µ(X) is either 1 or 0 [50]. The
somewhat opposite example of measures are dirac measures. The dirac measure
associated to configuration c ∈ QG, denoted δc, is defined by

δc(A) =

{
1 if c ∈ A,
0 if c 6∈ A

for any Borel set A.
The setM

(
QG) is naturally endowed with the weak-* topology which is the

coarsest topology such that the map µ 7→ µ([u]) is continuous for each cylinder
set [u]. This topology is compact and metrizable by the distance

d(µ, ν) =
∑
n∈N

2−n max
{∣∣µ([u])− ν([u])

∣∣ : D ⊆ Bn, u : D → Q
}
.

In this topology, a sequence of measures (µn)n converges to µ if and only if, for
each cylinder set [u], µn([u]) converges to µ([u]).

Any CA F : QG → QG acts naturally on the set of measures M
(
QG) as

follows: F (µ) = µ ◦ F−1 or, said differently, F (µ) is the measure such that for
each Borel set one has

F (µ)(X) = µ
(
F−1(X)

)
.
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This way
(
M
(
QG) , F ) is also a dynamical system. Note that for any c ∈ QG one

has F (δc) = δF (c) because F (c) ∈ A ⇐⇒ c ∈ F−1(A). Hence the dynamical

system
(
QG, F

)
actually embeds into the dynamical system

(
M
(
QG) , F ).

Decision problems and undecidability. To conclude this definition sec-
tion, let us briefly clarify the settings behind the decision problems that we will
consider. Our problems deal with CA and/or configurations as input. A CA
is always given by its finite description (alphabet and local evolution rule). A
configuration in input will be given as a map c : G→ Q, which is actually a
map from A∗ to Q where A is a fixed set of generators of G. Depending on
the context (computable, finite, periodic configuration) there are various way to
represent this map as an input. In the general case, it will be a Turing machine
that computes the map.

Our undecidability results will sometimes refer to the arithmetical hierarchy,
we refer to [40] for an in depth presentation.

3 Convergent CA and their basic properties

The central definition considered in this tutorial is convergence.

Definition 1. A dynamical system (X,T ) is convergent if for any x ∈ X the
orbit of x under T converges towards some limit denoted Tω(x):

∀x ∈ X : lim
n→∞

Tn(x) = Tω(x).

The convergence of a CA (QG, F ) is equivalent to the property that for any
c ∈ QG, T Fc is eventually constant. When it is the case, we denote by ζF (c, z)
the freezing time of cell z in the orbit of c, i.e. the first time after which cell z
becomes constant in this orbit:

ζF (c, z) = min
{
t : ∀t′ ≥ t, F t

′+1(c)z = F t
′
(c)z

}
.

We will see various examples of convergent CA in the next sections, but let’s
start by one of the simplest to fix ideas.

Example 1. Let Q = {0, 1} and define the CA F on QG by

F (x)z = max
a∈A

xz+a

where A is a fixed finite neighborhood containing the identity of G. Clearly, F
can only turn 0s into 1s in any configuration, so it is a convergent CA. It turns
out that this simple dynamical systems actually give much information on the
group G and its generating sets (see [16]).

A first observation is that convergence property on configurations extends
to the action on measures.

Lemma 1. A CA (QG, F ) is convergent if and only if (M
(
QG) , F ) is conver-

gent.
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Proof. Suppose first that (M
(
QG) , F ) is convergent and consider any c ∈ QG.

Since F t(δc) = δF t(c) and since
(
F t(δc)

)
t

converges to some measure Fω(δc) by
hypothesis, we have that for any q ∈ Q, δF t(c)([q]) must converge to Fω(δc)([q]).
But δF t(c)([q]) is either 1 if T Fc (t) = q or 0 otherwise. This shows that T Fc is
eventually constant.

Suppose now for the other direction that (QG, F ) is convergent. Consider any
measure µ and any pattern u ∈ QD with D ⊆ Bn for some n ∈ N. We want to
show that

(
F t(µ)([u])

)
t

converges. Consider the set Xt of initial configurations
whose orbit is frozen for all cells in Bn after at most t steps:

Xt =
{
c ∈ QG : ∀z ∈ Bn, ζF (c, z) ≤ t

}
.

(Xt)t is monotone increasing and
⋃
tXt = QG so the measure of these sets con-

verges to 1. (F−t([u]) ∩Xt) is also monotone increasing (if c ∈ F−t([u]) ∩Xt

then F t
′
(c) ∈ [u] for any t′ ≥ t), so the measure of these sets converges (from

below) to some α. Then, for any ε > 0, there is some t0 ∈ N such that
µ(Xt0) ≥ 1− ε and α− ε ≤ µ(F−t0([u]) ∩Xt0) ≤ α. For any t ≥ t0, we can write
F t(µ)([u]) as:

F t(µ)([u]) = µ
(
F−t([u]) ∩Xt0

)
+ µ

(
F−t([u]) \Xt0

)
.

But it actually holds that F−t([u]) ∩Xt0 = F−t0([u]) ∩Xt0 , so we have shown
|F t(µ)([u])− α| ≤ ε, which concludes convergence of (M

(
QG) , F ) because µ

and u were chosen arbitrarily.

A second observation on convergent CA is that they cannot be too chaotic.
Precisely, a dynamical system (X,T ) is said sensitive to initial conditions if
there is ε such that for all δ and all x ∈ X there is some y ∈ X which is δ-close
to x but whose orbit will be ε-far from that of x at some future step (see [31]
for more details on this notion in the context of CA).

In the following lemma, we use the notation TA(c) for some finite set A ⊆ G
to denote the trace of configuration c on A, i.e. the map t 7→ F t(c)|A.

Lemma 2. No convergent CA is sensitive to initial conditions.

Proof. Suppose by contradiction that F on QG is convergent and sensitive to
initial conditions: there is N ∈ N such that for any c ∈ QG and any p ∈ N there
exists c′ ∈ QG such that c|Bp

= c′|Bp
and F t(c)|BN

6= F t(c′)|BN
for some t ∈ N.

Consider any configuration c0 ∈ QG and p1 ≥ N . By sensitivity there is c′ ∈ QG

and t1 ∈ N such that either TBN
(c0) or TBN

(c′) is non-constant on time interval
[0, t1]. Denote by c1 the one among c0 and c′ that corresponds to the non-
constant trace. Let p2 = p1 +N + r(t1 + 1) where r is the radius of F . Applying
sensitivity again on c1 and p2 we know there exist c′ and t2 such that:

• c1 and c′ are identical on Bp2 ;

• therefore, by choice of p2, TBN
(c1) and TBN

(c′) coincide on interval [0, t1];

• TBN
(c1) and TBN

(c′) differ at time t2.

So one of c1 or c′, denoted c2, is such that TBN
(c2) is not constant on interval

[t1, t2]. Going on with the same reasoning we construct a converging sequence
(cn)n∈N of configurations such that TBN

(cn) is not constant on each interval
[ti, ti+1] for 0 ≤ i < n. Taking c = limn cn we get a trace TBN

(c) which is not
eventually constant contradicting convergence.
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Our last observation on convergent CA is that they are always irreversible
and even non-surjective (except the identity), at least G is amenable. The proof
below essentially relies on Poincaré recurrence theorem.

Lemma 3. Let G be an amenable group. If a convergent CA on QG is surjective,
then it is the identity map.

Proof. Let F be surjective and convergent and let µ denote the uniform product
measure on configurations of F . By [4], µ is preserved under F : µ(X) = µ(F−1(X))
for any Borel set X (see [8] for an overview of properties of surjective CA on
amenable groups). If we suppose that F is not the identity map, then there is a
word u ∈ QBn such that for all x ∈ [u] it holds F (x)0 6= x0. We claim that there
is a configuration x such that F t(x) ∈ [u] for infinitely many t. From this claim
we deduce that F is not convergent because the orbit of x is not convergent,
and the lemma follows. To prove the claim, let us denote Rt = ∪t′≥tF−t

′
([u])

and R = ∩tRt. By definition R is the set of configurations whose orbit visits [u]
infinitely many times and we want to show that R 6= ∅. We actually show that
µ(R) > 0. Since Rt+1 = F−1(Rt) for all t ≥ 0 we have µ(Rt) = µ(R0). More-
over [u] ⊆ R0 so we deduce that µ([u] \Rt) ≤ µ(R0 \Rt) = 0 since Rt ⊆ R0

and µ(Rt) = µ(R0). Finally, by Boole’s inequality we have µ([u] \R) = 0 so
µ(R) > 0 since µ([u]) > 0.

4 Nilpotency and its Variants

This section explores examples where the asymptotic dynamics is reduced to a
singleton. We will consider various properties using either the language of orbits
of configurations or measures, or the language of traces.

4.1 Extreme cases of convergence

Let us start by the strongest forms of nilpotency, which are strengthened forms
of convergence.

Definition 2. Let F be be a CA on QG.

• F is said nilpotent if there is x ∈ QG and t0 ∈ N such that for all y ∈ QG

it holds F t0(y) = x.

• F is said asymptotically nilpotent if there is x ∈ QG such that for all
y ∈ QG it holds F t(y)→t x.

Example 2. A local evolution map which is a constant map yields a nilpotent
CA, but let us give a non-trivial example. Consider the CA F : QZ → QZ of
radius 1 where Q =

{
, ,

}
and defined by all the transitions appearing in

the following space-time diagram (times goes from bottom to top) and such that
any transition not appearing in it produces state :
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We claim that F 19(c)0 = for any configuration c so that F is nilpotent (we
verified this claim by a computer program). However, the diagram above clearly
shows that F 18 is not a constant map. We challenge the reader to find a nilpotent
CA with same alphabet and radius but such that F 19 is not a constant map.

The attracting configuration x in the definitions above must be uniform
because it must attract in particular uniform configurations. Thus, these defi-
nitions can be expressed as properties of traces:

• F is nilpotent if and only if there is t0 and q ∈ Q such that T Fx (t) = q for
all t ≥ t0 and all x ∈ QG.

• F is asymptotically nilpotent if and only if there is q ∈ Q such that all
x ∈ QG there is tx ∈ N such that T Fx (t) = q for all t ≥ tx.

The property of nilpotency is also well-known as a property of the limit set.
The limit set of a CA F is the set ΩF =

⋂
t F

t(QG) (see [13, 29]). Nilpotency
is equivalent to ΩF being a singleton.

Asymptotic nilpotency can be reformulated through the action of the CA
on measures.

Lemma 4. A CA F on QG is asymptotically nilpotent if and only there is q ∈ Q
such that for any µ ∈M

(
QG) it holds F t(µ)→t δq.

Proof. The property on measures implies asymptotic nilpotency by the same
argument as the first part of the proof of Lemma 1 with the additional fact that
Fω(δc) = δq which implies that Fω(c) = q.

Conversely, if we suppose that F is asymptotically nilpotent, we can use the
same reasoning as in part two of the proof of Lemma 1. The additional fact
in this case is that Fω(c) = q for all c ∈ QG so that F−t([u]) ∩Xt = ∅ for all
pattern u except the uniform one: z ∈ Bn 7→ q. We deduce that F t(µ) converges
towards δq.

It turns out that, under some conditions on G, nilpotency and asymptotic
nilpotency are equivalent. One might believe that this can be easily proved by
a standard compacity argument, but it is not the case.

Theorem 1 ([26, 41]). If G = Zd then nilpotency is equivalent to asymptotic
nilpotency.

sketch. Let q be the quiescent state involved in the asymptotic nilpotency prop-
erty. First, we remark that for any ball Bn there is a uniform bound Tn such
that in the orbit of any configuration c there is some time step t ≤ Tn for which

9



c0 c1 c2 c3 · · ·

Figure 2: The infinite nested space-time diagram contradicting asymptotic
nilpotency in Theorem 1. The white part represents state q, the grayed parts
represent states other than q, and each nuance of gray correspond to a particu-
lar configuration ci.

the cells inside Bn are all in state q: ∀z ∈ Bn, F t(c)z = q. Indeed, otherwise we
would obtain by compacity a configuration whose orbit would not converge to
q. Call finite any configuration which is everywhere q except on a finite region,
and call mortal any configuration c such that there is t with F t(c) = q.

Let us first establish the theorem for G = Z as in [26]. There are two key
arguments:

• first, we show nilpotency on finite mortal configurations, i.e. there is
a uniform T such that for all finite mortal c it holds FT (c) = q. This is
proved using the remark above about times Tn: if there is no uniform time
bound on the mortality of finite mortal configuration, then for arbitrary
large Bn and arbitrary large t we can find a finite mortal configuration
c such that c is uniformly q on Bn but F t(c)0 6= q. From there, we can
produce an infinite nested space-time diagram as in Figure 2 by taking
a well-chosen sequence (ci) of such configurations and considering their
superposition c: it is sufficient that the non-q portions of space-time dia-
grams are disjoint enough among the ci (taking into account the radius of
the CA). The orbit of this configuration c gives a contradiction with the
convergence hypothesis.

• second, it can be shown that if the CA is not nilpotent, then we can extract
finite mortal configurations that die arbitrarily late: indeed, by enclosing
a finite configuration alive at time t with blocking words (whose existence
is granted by Lemma 2, see [31]), we obtain a mortal configuration still
alive at time t − b where b is a constant depending only on the choice of
blocking words. This contradicts the previous item, so we deduce that the
CA is nilpotent.

To extend the result to higher dimensions, it is enough to show that all fi-
nite configurations are mortal (this together with asymptotic nilpotency im-
plies nilpotency, by the nested construction argument). To simplify we restrict
to dimension 2 and consider any asymptotically nilpotent CA F . The idea is to
reduce to the one-dimensional case by remarking that if a finite configuration c
is periodized vertically to form a configuration c′, then c′ is mortal because the
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action of F on c′ can be seen as the action of a one-dimensional asymptotically
nilpotent CA on a one-dimensional configuration. The key step of the proof is
then to show that no finite configuration can spread too much in the horizontal
direction. This step is proved by contradiction using again a nested construc-
tion of an infinite space-time diagram, but this time a vertical periodization is
applied at each step to guarantee mortality. Of course, this argument on the
bounded horizontal spreading of finite configuration is also valid vertically, so we
deduce that the orbit of any finite configuration remains inside a finite support
forever. This is enough to conclude mortality since F is supposed asymptotically
nilpotent.

The above result has been greatly generalized by [45] in at least two ways:
the class of dynamical systems considered (for instance, one can consider CA
defined over a subshift rather than the whole space QG) and the class of groups
G considered. To obtain these results, a notion of tiered dynamical systems
was developed which goes way beyond the scope of this tutorial. The authors
also coined the term nil-rigidity and used it with various classes of dynamical
systems. Let us stick to the simplest setting and say that a group G is nilrigid if
any asymptotically nilpotent CA on QG is nilpotent. Despite the many results
obtained about nilrigidity in [45] they left some interesting open questions (see
section 11), some of which where already asked in [42].

Question 1 ([45, 42]). Is there any finitely generated group G which is not
nilrigid? In particular is the free group with 2 or more generators nilrigid?

4.2 Variations with partial convergence and measures

Let us now consider variations of these strong notions of nilpotency. We can
first consider a similar property of orbits but restricted to a subset of initial
configurations.

A configuration x ∈ QG is totally periodic if its orbit by translation OG (x)
is finite. When G = Zd a totally periodic configuration is a configuration with
d non-colinear periods.

Definition 3. F is nilpotent on periodic configurations if there is a configu-
ration c such that

(
F t(x)

)
t

converges to c for any totally periodic configuration
x.

Note again that the attracting configuration c must be uniform in this defi-
nition. An asymptotically nilpotent CA must be nilpotent on periodic configu-
rations, but the converse is far from being true as we will see below.

As a second (seemingly unrelated) variation around nilpotency, we can change
the point of view and switch from configurations to measures. A measure
µ ∈M

(
QG) is invariant for a CA on QG if F (µ) = µ. The following defini-

tion is classical in dynamical system theory [50] and can be defined as a rigidity
property of invariant measures.

Definition 4. F is uniquely ergodic if it posses a unique invariant measure.

The invariant measures of F are exactly the limit points of Cesaro mean
sequences (un)n∈N of the form ([50, Theorem 6.9])

un =
1

n

n−1∑
t=0

F tµ

11



for µ ∈M
(
QG).

Orbit-wise unique ergodicity is equivalent to the convergence of all such Ce-
saro mean sequences to the same limit. Therefore we could also name this prop-
erty ’Cesaro-nilpotency’ to stress the dynamical side of it but it is best known
as unique ergodicity. Note that by Lemma 4, any asymptotically nilpotent CA
is also uniquely ergodic.

Nilpotency over periodic configuration and unique ergodicity are both im-
plied by asymptotic nilpotency. The next lemma shows that the three properties
actually form a hierarchy when G = Zd.

Lemma 5. A uniquely ergodic CA with G = Zd is nilpotent on periodic config-
urations.

Proof. Consider any uniquely ergodic CA F on QG. Suppose first that there
are two disjoint temporal cycles of totally periodic configurations, i.e. two
sequences of totally periodic configurations (c0, . . . , ck−1) and (d0, . . . , dl−1) with
F (ci) = ci+1 mod k and F (dj) = dj+1 mod l for 0 ≤ i < k and 0 ≤ j < l. Then we

can define two measures µc = 1
k

∑k−1
i=0 δci and µd = 1

l

∑l−1
j=0 δdj that are both

invariant under F because (ci) and (dj) are cyclic orbits. Moreover since the
two cycles are disjoint there must exist a cylinder [u] such that ci ∈ [u] for some
i but dj 6∈ [u] whatever j. Thus µc([u]) > 0 and µd([u]) = 0 which proves that
µc and µd are two distinct invariant measures: a contradiction.

We have shown that F has the following synchronization property:

there is a cycle of totally periodic configurations (c0, . . . , ck−1) such that the
orbit of any totally periodic configuration eventually enters this cycle (ci).

We claim that k = 1 which concludes the proof since it means that F is nilpotent
on periodic configurations.

We are actually going to show the stronger claim that no CA F (not nec-
essarily uniquely ergodic) with G = Zd can have the synchronization property
above with k ≥ 2. The argument we give is due to G. Richard (see [17] for more
background on the synchronization problem). First note that if this synchro-
nization property holds for some CA F with G = Zd and d > 1 then it must also
hold for some CA with G = Z. Indeed, considering F on configurations which
are constant in d− 1 directions and periodic in the last one, we actually define a
one-dimensional CA which has the synchronization property as F does. We can
thus suppose without loss of generality that d = 1. Clearly, each configuration ci
in the attracting cycle must be uniform because any uniform configuration has
an orbit eventually entering this cycle. However, if the synchronization property
holds with k ≥ 2 then F has no quiescent state. Now consider f : Qm → Q the
local map of F and let w ∈ QN be a semi-infinite word verifying

wn+m = f(wn, . . . , wn+m−1)

for all n ∈ N. There must exist n1 and n2 with n1 +m < n2 such that

w[n1,n1+m−1] = w[n2,n2+m−1].

Consider the word w = w[n1,n2−1] of length at least m+ 1. By construction and
since F has no quiescent state w contains at least two distinct letters from Q.
Moreover, if c is a periodic Z-configuration of period w then F (c) = σp(c) for

12
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Figure 3: Properties of any space-time diagram of a nilpotent, asymptotically
nilpotent and uniquely ergodic CA respectively. White color represents the
quiescent state, gray color any state and various shades of gray corresponds to
various density of the quiescent state (the lighter, the higher the density). Time
goes from bottom to top.

some p. Therefore the orbit of c is a cycle of non-uniform configurations, which
contradicts the synchronization property.

Interestingly, we can also capture unique ergodicity as a property of traces
of orbits on configurations: it is the property that there is some attracting state
whose frequency goes to 1 when considering larger and larger prefixes of any
trace. To be more precise, for any q ∈ Q and any word w ∈ QN we denote by
dq(w) the (inferior) asymptotic density of occurrences of q in w:

dq(w) = lim inf
n

#{0 ≤ i < n : wi = q}
n

.

We then get this equivalent formulation of unique ergodicity [46, Proposition
3.2].

Lemma 6. A CA F on QG with G = Zd is uniquely ergodic if and only if there
is q ∈ Q such that for any x ∈ QG it holds dq(T Fx ) = 1.

Proof. Suppose first that F is uniquely ergodic, then by Lemma 5 it is nilpotent
on periodic configurations and has a (unique) quiescent state q and its unique
invariant measure is δq. Consider any x ∈ QG and any ε > 0. If there were

infinitely many n ∈ N such that
#{0≤i<n:T F

x (i)6=q}
n > ε, then we could extract a

limit point µ from the sequence
(
1
n

∑n−1
t=0 F

t(δx)
)
n

which would be an invariant
measure [50, Theorem 6.9] such that µ([q]) < 1− ε (recall that F t(δx) = δF t(x))
hence different from δq: a contradiction. We deduce that dq(T Fx ) = 1.

Suppose now that dq(T Fx ) = 1 for all x ∈ QG for some q ∈ Q. Then q must be
a quiescent state and thus the measure δq is invariant and also ergodic. If it were
not the unique invariant measure then there would be another invariant ergodic
measure µ (see [50, Theorem 6.10]), which would necessarily verify µ([q]) < 1
in order to differ from δq (otherwise the Choquet’s decomposition theorem on
invariant measures would be contradicted). Then by the ergodic Theorem (see

13



[50, Lemma 6.13]), we would have some x ∈ QG with

1

n

n−1∑
t=0

f
(
F t(x)

)
→n µ([q])

where f is the characteristic map of [q]. But then dq(T Fx ) < 1 which contradicts
the hypothesis.

Uniquely ergodic CA form a strictly larger class than nilpotent CA. The
example in the following result to show this separation is highly non-trivial and
we will not present it here, but it is quite remarkable that such behaviors are
possible with CA.

Theorem 2 ([46]). There exists a uniquely ergodic CA on Z which is not nilpo-
tent.

Remark 1. The CA from the above theorem cannot be convergent because then
it would be asymptotically nilpotent by Lemma 6 and this would contradict The-
orem 1. From Lemma 1 it is also non-convergent when starting from some
measures. However, there is convergence in Cesaro mean starting from any µ
since otherwise, a Cesaro mean sequence would have several limit points and
hence produce several invariant measure for the CA as already explained above.

Theorem 3. There exists a CA on Z which is nilpotent over periodic configu-
rations but not uniquely ergodic.

Sketch of proof. It can be shown using the classical construction of [30] by taking
a NE-determinsitic aperiodic Wang tileset T and transforming it into a one-
dimensional CA F with alphabet T ∪ {s} where s is a spreading state. s being
a spreading state, F admits δs as invariant measure. Because the tileset has
no valid periodic tiling, F is nilpotent on periodic configurations. On the other
hand, because the tilest admits a valid (aperiodic) tiling, it means that there is
a configuration c whose orbit under F has no occurrence of s. Taking any limit
point of the sequence of Cesaro means

µn =
1

n

n−1∑
t=0

F t(δc)

gives an invariant measure such that µ([s]) = 0 since µn([s]) = 0 for all n ∈ N.
We thus get a second invariant measure for F .

So far we considered properties concerning all initial configurations, or a
meager set of initial configuration. Natural variants of nilpotency have been
considered in the literature to capture the behavior on ’most’ or ’a large set’ of
initial configurations.

Definition 5. Consider a CA F on QG and µ ∈M
(
QG). Then F is:

• generically nilpotent if there is q ∈ Q and a comeager set B ⊆ QG such
that F t(x)→t q for all x ∈ B;

14
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Figure 4: Nilpotency and its variants with (non-)implications between them as
seen so far. Implications with dotted arrows refer to Theorems that require
some hypothesis on either G or µ. Counter-examples (or non-implications) are
represented with a cross on the arrow.

• µ-nilpotent if there is q ∈ Q such that F t(µ)→t δq.

Generic nilpotency and µ-nilpotency both specify a behavior on ’most config-
urations’, where ’most’ is to be understood either topologically or according to
a measure. It turns out that for well-behaved measures the topological version
is stronger.

Theorem 4 ([15]). Let F be a generically nilpotent CA on QG and µ ∈M
(
QG)

a full-support translation-ergodic measure. Then F is µ-nilpotent.

There are ways to characterize the previous variants of nilpotency by defining
variants of limit sets, i.e. sets of (typical) asymptotic configurations [32, 15].
Each time, the nilpotency variant is equivalent to having such asymptotic sets
being singletons (see [?, 6]).

The implication diagram of Figure 4 is not complete, in particular concerning
the link between unique ergodicity and µ-nilpotency.

Question 2. What are the other implications or counter-examples in the di-
agram of Figure 4? In particular, for what measure µ does unique ergodicity
implies µ-nilpotency? Said differently, for what measure µ the convergence in
Cesaro mean implied by unique ergodicity is actually a simple convergence?

4.3 The undecidability garden

We conclude this section by undecidability results related to the notions pre-
sented above. Of course, an undecidability result is a negative result and this
might appear repulsive to some. However, behind almost any undecidability
result there is a positive one: a construction technique (a reduction) providing
examples with rich and complex behaviors. Each of the result below rely on a
non-trivial and nice construction idea that is of independent interest. A pre-
sentation of each technique would take too much place for this tutorial, but we
invite the reader to dig into the corresponding references.

Theorem 5 ([30, 1]). The set of 1D nilpotent CA is Σ0
1-complete.
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Theorem 6 ([46]). The set of 1D uniquely ergodic CA is Π0
2-complete.

Theorem 7 ([?]). The set of 1D generically nilpotent CA is Σ0
2-complete.

Theorem 8 ([6]). Let µ denote the uniform Bernoulli measure. The set of 1D
µ-nilpotent CA is Π0

3-complete.

5 Proving Convergence

5.1 Bounded change CA

Proving convergence of a CA F means proving that there exists a time bound
for each trace T Fc after which the trace is constant. This has been defined
above as the freezing time ζF (c, 0). In general this time bound depends on
the initial configuration (see Example 3), but, even if there is a global bound
that doesn’t depend on initial configuration like in nilpotent CA, it is generally
uncomputable. Instead of bounding directly the time of the last change in
traces, a way to tackle the problem is to bound the number of changes that can
occur in a trace. The following definition is useful [49, 33].

Definition 6. A CA F is k-change for some k ∈ N if for any x ∈ QG, there
are at most k state changes in T Fx , i.e.

#{t ∈ N : T Fx (t+ 1) 6= T Fx (t)} ≤ k.

A CA is bounded-change if it is k-change for some k.

A bounded-change CA is necessarily convergent: a trace which is not ul-
timately constant cannot exist since it would contain infinitely many changes.
However the converse is false as shown by the following example (it is used
extensively as a basic building block in [38]).

Example 3. Let us consider the state set Q = { B , → , ← , < , > , e} where
< and > represent an active head moving left or right respectively, → and
← are states indicating the position of the head (to the right and to the left

respectively), B is a blank state and e is an error state. Let Σ be the set of
configurations whose patterns of length two all appear in the space-time diagram
of Figure 5, i.e. configurations made of zones with a unique active head (possibly
none if the zone is infinite) in a blank background. Define the CA F : QZ → QZ

of radius 2, such that:

• e is a spreading state and any cells turns into state e if there is some
pattern not in L2 in its neighborhood,

• in the Σ-valid zones with a unique head, the only cells that change their
states in one step are the one around the head, and they update in such a
way that the head makes zigzag inside the zone and reduce the size of the
zone by one unit at each bounce on a border. Precisely, all the transitions
appear in the space-time diagram of Figure 5.

First, it is clear that F cannot be k-change whatever the value of k, because in
a Σ-valid finite zone of size n, the orbit of the central cells contains at least n
changes. On the other hand, if we consider any initial configuration c ∈ QZ and
any position z ∈ Z there are only 3 possible cases:
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Figure 5: A convergent but not bounded-change CA (time from bottom to top
in the space-time diagram on the left).

• either c 6∈ Σ and in this case the spreading state e will appear somewhere
and reach position z at some step,

• or c ∈ Σ and z belongs to a finite valid zone, so after some number of
zigzags of the head, the zone will shrink letting z outside in state B ,

• or c ∈ Σ and z belongs to an infinite valid zone, and after at most two
passages of the head (at most one bounce on the boundary if any), the
head will move towards infinity and cell z will remain unchanged forever.

In any case, we have that the trace at z starting from c is eventually constant.
Hence F is convergent.

To use a metaphor inspired from physics, each cell of a bounded-change CA
can be seen as a system that evolves according to information received from
its neighbors, and for which each state change has a fixed energy cost. Then,
in each orbit and at each cell, the instantaneous energy defined as the number
of remaining potential state changes is non-increasing with time, and strictly
decreasing at each state change. The number k in Definition 6 can be interpreted
as the cell-wise capacity, i.e. the maximal energy an individual cell can hold
initially.

As seen in previous section, a nilpotent CA F is such that F t is a constant
map for some t, so it is always bounded-change. Nilpotency for CA with a
spreading state actually Turing reducible to the property of bounded-change as
follows: consider F with a spreading state and add a {0, 1} component to states
that constantly exchanges 0 and 1, except if there is a spreading state in the
neighborhood in which case the additional component turns into 0. This new
CA F ′ is bounded-change if and only if F is nilpotent: first, if F is nilpotent
then F ′ also because the spreading state of F forces 0 everywhere on the sec-
ond component; conversely, if F is not nilpotent then it must possess an orbit
without any occurrence of the spreading state (by compacity), and then the
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Figure 6: An orbit of F 2 where F is some majority CA on Z2 with symmetric
neighborhood S with (0, 0) ∈ S as in the conditions of Theorem 10, so that F 2

is bounded-change and hence convergent.

corresponding orbit in F ′ is constantly changing the state on the second layer.
By undecidability of nilpotency we deduce the following theorem.

Theorem 9. It is undecidable to determine whether a 1D CA is bounded-change
or not.

Despite the general undecidability, this approach turns out to be very fruitful
to analyze some majority CA. A majority cellular automata consist in taking in
each cell the state which has the majority of occurrences among the neighboring
cells. The majority CA with neighborhood V ⊆ G is defined on alphabet
Q = {0, 1} by

F (x)z =

1 if
∑
i∈V

xz+i > #V/2, or
∑
i∈V

xz+i = #V/2 and xz = 1

0 otherwise.

A subset S ⊆ Zd is symmetric if x ∈ S =⇒ −x ∈ S. The following result
concerning majority CA is a specific case of a much more general result from
[20] which deals with infinite graphs with some growth condition. A similar
qualitative behavior for majority evolution rules was established before in the
settings of automata networks (the lattice of cells is finite, the evolution rule is
possibly non-uniform), see [23]. It is based on a decreasing energy function in
both case.

Theorem 10 ([20]). Let F be any majority CA with G = Zd and symmetric
neighborhood S with 0 ∈ S, then F 2 is bounded-change.

Proof. Denote by r the radius of the CA, i.e. the maximum ‖u‖∞ for u ∈ S.
Let us fix any x ∈ QG. The core of the argument is to consider the following
“energy” function for any x ∈ QG and any n, t ∈ N:

Etn =
∑
u∈Bn

∑
v∈Bn

a(u, v)
∣∣F t+1(x)u − F t(x)v

∣∣
18



where a(u, v) = 1 if v ∈ u+ S, and 0 else. Because S is symmetric a(u, v) = a(v, u)
so we can write Et−1n as follows:

Et−1n =
∑
u∈Bn

∑
v∈Bn

a(u, v)
∣∣F t−1(x)u − F t(x)v

∣∣.
For any t > 0, we will first give an upper bound on ∆t

n = Etn − Et−1n which
intuitively means that the energy Etn essentially decreases with time, but only
up to a “controlled perturbation” of the border of the ball Bn. Denoting

Σ+
n,t(u) =

∑
v∈Bn

a(u, v)
∣∣F t+1(x)u − F t(x)v

∣∣, and

Σ−n,t(u) =
∑
v∈Bn

a(u, v)
∣∣F t−1(x)u − F t(x)v

∣∣
we can rewrite ∆t

n as

∆t
n =

∑
0≤i≤n−r

∑
u∈Ci,t

Σ+
n,t − Σ−n,t +

∑
n−r<i≤n

∑
u∈Ci,t

Σ+
n,t − Σ−n,t (1)

where Ci,t denote the cells that have different states between step t+1 and t−1
(i.e. F t+1(x)u 6= F t−1(x)u) and belong to the sphere of radius i (i.e. ‖u‖∞ = i).
This expression for ∆t

n holds because Σ+
n,t(u) = Σ−n,t(u) when F t+1(x)u = F t−1(x)u.

We first claim that Σ+
n,t(u)− Σ−n,t(u) ≤ #S−1

2 for any u ∈ Bn: this holds be-

cause actually Σ+
n,t(u) ≤ #S−1

2 must hold to ensure that a majority of neighbors
of u are in state F t+1(x)u at time t.

We now claim that Σ+
n,t(u)− Σ−n,t(u) ≤ −1 for any u ∈

⋃
0≤i≤n−r

Ci,t. Indeed,

we can split the neighbors of any such u into two sets

S+
u = {v ∈ u+ S : F t(x)v = F t+1(x)u}, and

S−u = {v ∈ u+ S : F t(x)v = F t−1(x)u},

and then S+
u = Σ−n,t(u) because u+ S ⊆ Bn, and similarly S−u = Σ+

n,t(u). By
the majority rule we must have #S+

u > #S−u (recall that S is of odd cardinality
by hypothesis) which proves the claim.

From the two claims we can rewrite Equation (1) above as:

∆t
n ≤ −#

⋃
0≤i≤n−r

Ci,t + #(Bn \Bn−r)
(#S − 1)

2
. (2)

We are now going to deduce a bound on the number of changes in T F 2

x from
the above inequality in two steps: using a pondered sum spatially and then
summing over time. Spatially, the trick is to use a telescoping sum to attenuate
the perturbation of the second term in the upper bound of Equation (2) and put

more weight on the central cell. Choose n = kr, let s = (#S−1)
2 and consider

the sum

TEtn = Etn+
1

s
Etn−r + (1 +

1

s
)
1

s
Etn−2r + (1 +

1

s
)2

1

s
Etn−3r + · · ·+ (1 +

1

s
)k−1

1

s
Et0.
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By Equation (2), and by the identity

1 +
1

s
+ (1 +

1

s
)
1

s
+ · · ·+ (1 +

1

s
)k−1

1

s
= (1 +

1

s
)k

we get

TEtn − TEt−1n ≤ −(1 +
1

s
)kC0,t + s#(Bn \Bn−r).

By summing over time the successive differences we then obtain

TEtn − TE0
n ≤ −(1 +

1

s
)k
∑
i<t

C0,i + (t− 1)s#(Bn \Bn−r)

so ∑
0≤i<t

C0,i ≤
TE0

n

(1 + 1
s )k

+
(t− 1)s#(Bn \Bn−r)

(1 + 1
s )k

.

When n grows, the first term of this upper bound converges to a constant
independent of t and of x (from the definition of TE0

n because E0
n is at most

the square of the size of Bn), and the second term vanishes. This concludes the
proof because it shows that

∑∞
i=0 C0,i is bounded independently of x, and it

counts the number of state changes in the trace T F 2

x and the trace T F 2

F (x).

Let us show two counter-examples to Theorem 10 when hypothesis on either
G or the symmetry of neighborhood are removed:

1. let G be the free group with 2 generators, V the symmetric neighbor-
hood made of all generators and their inverse and element 0G, and denote
by F the associated majority CA. Define the configuration cb for any
b : N→ {0, 1} by

cbg = b(‖g‖G).

Because we are in the free group with 2 generators, if g ∈ Bn \Bn−1 then
g + V contains 3 elements in Bn+1 \Bn and V is of size 5. Therefore
we have F (cb)g = b(‖g‖G + 1), and thus F (cb) = cb

′
with b′(n) = b(n+ 1)

for all n ∈ N. By choosing b such that b(i+ 1) · · · b(i+ 2k) = 0k1k for
arbitrarily large k and for some i, we deduce that there is no p > 0 such
that F p is convergent.

2. going back to G = Z2, let us consider the non-symmetric neighborhood
V = {(0, 0), (0, 1), (1, 0)} and let F be the associated majority CA. Define
the configuration cb for any b : N→ {0, 1} by

cb(x,y) = b(x+ y).

Again, for any (x, y) ∈ Z2 there are two elements z in z + V such that
cbz′ = b(x+ y + 1, so F (cb)(x,y) = b(x+ y + 1). We can conclude as above
that there is no p > 0 such that F p is convergent.
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5.2 Freezing CA

The argument of Theorem 10 to prove the bounded-change property is not
immediate and the property is generally undecidable, even when G = Z (Theo-
rem 9).

In some cases, however, the structure of the local rule of a CA directly
implies the bounded-change property. The so called freezing CA, introduced in
[21], are an example.

Definition 7. A CA F on QG is freezing if there is some partial order (Q,<)
on its state set such that for any c ∈ QG and any z ∈ G it holds:

F (c)z < cz.

Clearly, in a freezing CA the number of changes at any cell in any orbit is
bound by the depth of the partial order, so all freezing CA are bounded-change.
The freezing property can be tested efficiently by looking at the local transition
table. Indeed, given any CA F , we can compute the canonical state change
graph (Q,→) defined by q1 → q2 if some transition changes state q1 into q2.
Then one can check that F is freezing if and only if this graph is acyclic.

Going back to our earlier metaphor, the partial order involved in the freezing
property can be seen as a local non-increasing energy that serves as a certificate
for the bounded change property. Of course, not all bounded-change CA are
freezing: for instance F 2, where F is some CA from the hypothesis of Theo-
rem 10, is a bounded-change CA but it cannot be freezing since F and hence F 2

commute with the transformation that permutes states 0 and 1. Thus, if tran-
sition 0→ 1 exists in the canonical state change graph of F 2, then transition
1→ 0 also exists, which prevent any freezing order to satisfy Definition 7.

There are many example of freezing CA studied in the literature [25, 47, 18,
2, 24, 5].

A freezing CA F for some order < can also be monotone:

x < y ⇒ F (x) < F (y)

where < denotes the cellwise extension of < to configurations. Among these
examples, the classical bootstrap percolation CA [11] has been the starting point
of a rich branch of percolation theory, which can be view as the study of the
qualitative behavior of monotone freezing CA initialized on random Bernoulli
configurations [5, 28, 3]. This CA, denoted FB is the sequel, is defined on

{0, 1}Z2

as follows:

FB(c)z =

{
0 if cz = 0 or #

{
z′ ∈ z +N : cz′ = 0

}
≥ 2,

1 else.

where N = {(1, 0), (0, 1), (−1, 0), (0,−1)}.
FB is not nilpotent on periodic configurations (it admits both 0 and 1 as

fixed points), and a classical results of [48] shows that it is µ-nilpotent for any
full-support Bernoulli measure1. Actually, much more is known on this CA
started from random initial configurations [28].

1[48] don’t use the notion of µ-nilpotence but the property µ({c : Fω(c) = 0}) = 1. It can
be shown that the two are equivalent for freezing CA in general [44, Lemma 3.6].
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Figure 7: Representation of an orbit of FB starting from a random initial con-
figuration and converging to a uniform configuration: the darker the color, the
earlier the freezing time.

Theorem 11. FB is not generically nilpotent, however it is µ-nilpotent for any
Bernoulli measure µ of full support.

Proof. The realm of attraction R0 of 0 for FB is a set of empty interior and hence
cannot be comeagre. Indeed, for any finite subset X ⊆ Z2, a configuration c such
that cz = 1 for any z 6∈ X is not attracted by 0, i.e. Fω(c) 6= 0 (all cells outside
a rectangle containing X are in state 1 and have at most one neighbor in state
0). This means that no cylinder set of domain X is included in R0, whatever
the finite set X, and hence no open set is included in R0. Therefore FB is not
generically nilpotent (of course, the realm of attraction of 1 is a singleton).

Let us now consider a Bernoulli measure µ of full support, and denote by B
the set of configurations converging to 0:

B = {c : FωB(c) = 0}.

As shown by [44, Lemma 3.6], it is enough to prove µ(B) = 1 to show that FB
is µ-nilpotent. B is translation-invariant so by ergodicity of Bernoulli measures
it must have measure 0 or 1. Let’s call rectangle aera any product of intervals
A = I × J ⊆ Z2. The boundary B(A) of A is the set of z 6∈ A that have a
neighbor in A. For a configuration c take a maximal rectangle area A containing
(0, 0) and such that cz = 0 for any z ∈ A. If A 6= Z2, the rule FB is such that
there is a strictly larger rectangle area A′ (A ⊂ A′ and A 6= A′) and a time step
t with F tB(c)z = 0 for all z ∈ A′ unless c is uniformly 1 on the boundary of A,
i.e. unless cz = 1 for all z ∈ B(A). So the only way to stop the growth of a
rectangle of state 0 is to have a rectangular boundary full of 1 around it.

Let Xn be the set configurations that have a rectangular boundary of perime-
ter n full of 1 around the origin (i.e. a boundary of a rectangular area containing
(0, 0)). It holds µ(Xn) ≤ p(n)2−n where p(n) is a polynomial function (because
there are only polynomially many such rectangular boundaries). Since the series
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∑
n p(n)2−n converges, there is some k such that

µ
(⋃
k≤n

Xn) < 1.

We deduce that the following set S has positive measure: configurations that
have a rectangle aera full of 0 of perimeter at least k, and containing the origin,
and no rectangular boundary of 0 around it to prevents its growth. Any c ∈ S
is such that Fω(c) contains an infinite rectangular area containing the origin
and full of 0.

Finally, denote by A the set of configurations with infinitely many occur-
rences of 0 to the north, to the south, to the east and to the west on each row
and each column:

A =
{
c : ∀n ∈ N,∀z ∈ Z2,∃nN > n, nE > n, nS > n, nW > n :

cz+(0,nN ) = cz+(nE ,0) = cz+(0,−nS) = cz+(−nW ,0) = 0
}
.

The set A is actually a countable intersection of sets of measure 1 of the form
{0, 1}Z2 \

⋂
z∈S{c : cz = 1} for S infinite. So µ(A) = 1. Therefore µ(B ∩A) > 0.

To conclude the proof it is sufficient to note that S ∩A ⊆ B: indeed, for
c ∈ S ∩A, take a maximal infinite rectangular area full of 0 and containing
the origin in Fω(c). If this area is not Z2 then it must have some occurrence
of 0 on its boundary because c ∈ A. This contradicts the fact that Fω(c) is a
fixed-point.

Although µ-nilpotency is well understood for monotone freezing CA with 2
states by bootstrap percolation theory [3, 5], it remains hard for freezing CA in
general.

Theorem 12 ([44]). The set of 2D freezing CA with 2 states which are µ-
nilpotent for all full-support Bernoulli measure µ is recursively inseparable from
the set of 2D freezing CA with 2 states which are µ-nilpotent for no full-support
Bernoulli measure µ.

A measure µ is said limit-computable if there is a computable map φ such
that limn→∞ φ(u, n)− µ([u]) = 0 for each cylinder [u]. One can check that if
µ′ = limt F

t(µ) for some CA F and µ a computable measure, then µ′ is limit
computable. There is a remarkable converse to this observation.

Theorem 13 ([14, 36]). Let G = Zd for some d ≥ 1. Let µ be any translation-
invariant and limit-computable measure on some alphabet. Then there exists a
CA F (on a possibly different alphabet) such that µ = limt F

t(µ0) where µ0 is
the uniform Bernoulli measure on the alphabet of F .

Interestingly, the construction in the above theorem relies on CA that are not
convergent, although the particular orbit starting from µ0 (and actually many
other initial measures) is itself convergent. We have no idea about whether it is
possible to realize the same limit measures with convergent CA.

Question 3. What are the limit measures Fω(µ0) where F is convergent (or
bounded change, or freezing) and µ0 is the uniform Bernoulli measure (or some
computable measure)?
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6 Computational Power of Convergent Cellular
Automata

The convergence property dramatically restricts the possible dynamics of CA
as we have seen so far. One can therefore legitimately ask whether the obvious
fact that general CA are computationally universal still holds for convergent,
bounded-change and freezing CA. This section tackles this question and outlines
an answer in three steps: yes, even freezing CA in dimension 1 are computa-
tionally universal, but there is some loss of complexity, and for a convergent CA
F , it is interesting to study the map c 7→ Fω(c) from a computational point of
view.

6.1 Embeddings of computationally universal systems

Let’s start by the obvious observation that the space-time diagrams of any 1D
CA can be grown by a 2D freezing CA.

Example 4. Any 1D CA F with states Q and neighborhood V can be simulated
by a 2D freezing CA F ′ with states Q ∪ {∗} as follow. Let V ′ = {(v,−1) : v ∈ V }.
A cell in a state from Q never changes. A cell in state ∗ looks at cells in its
V ′ neighborhood: if they are all in a state from Q then it updates to the state
given by applying F on them, otherwise it stays in ∗. Starting from a all-∗
configuration except on one horizontal line where it is in a Q-configuration c0,
this 2D freezing CA will compute step by step the space-time diagram of F on
configuration c0.

For 1D freezing CA, the embedding of computationally universal systems is
much more constrained but still possible using Minsky machine [21, 9, 38].

Definition 8. A k-counter Minsky machine is a 4-tuple M = (QM , q0, h, τ)
where q0, h ∈ QM are the initial and halting states and

τ : QM × {0, 1}k → QM × {−1, 0, 1}k

is its transition map, which verifies τ(h, ·) = (h, (0, . . . , 0)). A configuration of
M is an element of QM × Nk. M transforms any configuration c = (q, (χi)1≤i≤k)
in one step into configuration

M(c) = (q′, (max(0, χi + δi))1≤i≤k)

where (q′, (δi)1≤i≤k) = τ(q, (min(1, χi))1≤i≤k). M halts on input (χi)1≤i≤k ∈ Nk
if there is a time t such that M t(q0, (χi)1≤i≤k) ∈ (h,Nk).

Example 5. Any k-counter Minsky machine M can be embedded into a 1D
freezing CA F in the following sense. To simplify the exposition, let’s take
k = 1. A configuration of M at some step of the evolution is a pair (q, n) where
q is a finite state and n ∈ N the current value of the counter. This configuration
will be encoded into the trace of some cell z ∈ Z of F : the state q will appear at
cell z at some time, and after the value n will be encoded by the time interval be-
tween specific state changes occurring at z. Successive configurations of an orbit
of M are then encoded into successive cells of F through the temporal traces. In
order to allow F to correctly produce an orbit where the trace at position z + 1
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q0 q1 q2 h
+1 −1

6= 0 : −1

= 0 : 0

step 0 1 2 3
state q0 q1 q2 h

counter 0 1 0 0

t = 0 t = 1 t = 2 t = 3

q0, 0 b · · ·

#-1 q0 b · · ·

#0 q1,+1 b · · ·

#1 1 q1 b

#1 #-1 q2, -1 b

#1 #0 #-1 q2

#1 #1 #0 h, 0

#1 #1 #1 #-1

Figure 8: On the left, a Minsky machine with 1 counter and a few steps of the
execution starting from counter value 0. On the right the corresponding space-
time diagram of the freezing CA of Example 5 encoding it. Counter value is
encoded as the blue part in each trace: value n is represented by state sequence
1n#−1#0#1. Green cells in the space-time diagram indicate position where all
the required information to compute a Minsky transition is available locally.
Cells containing the result of Minsky transitions are represented in red.

encodes the configuration which is the image by M of the configuration encoded
into the trace at position z, the key point is to shift temporally the time inter-
val containing the encoded configuration from position to position z + 1. This
technical condition allows to implement all the operations on a counter locally
(zero test, increment and decrement). Concretely, if the configuration of M at
time 0 is encoded into the time interval [0,∆0] at cell 0, then the configuration
at step t of machine M is encoded into the time interval [2t, 2t+ ∆t] at cell t.
See Figure 6.1 for an example with details.

From the embedding of Minsky machines as in the above example, one ex-
pects undecidability results to be transferred to 1D freezing CA. There are many
ways to state such results, depending on the additional details implemented. Let
us mention the following one which essentially relies on a Minsky machine em-
bedding but requires a more technical construction than the above example. A
freezing CA is always k-change for k no smaller the the cardinal of its alphabet,
but determining the minimal k for which it is k-change is undecidable.

Theorem 14 ([38]). There exists a constant k such that the following problem
is undecidable: given a freezing 1D CA F , decide whether F is k-change.

6.2 Dimension 1: complexity gap between bounded change
and convergent CA

There is a strong information flow bottleneck in bounded change CA that be-
comes critical in 1D. It is not the case for convergent CA. This can be formulated
using communication complexity or classical computational complexity of the
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prediction problem [38, 21] (see also [22] which generalizes the result to other G):
the prediction problem has communication complexity at most log(n) and is in
class NL for 1D bounded change CA, while it can be Ω(

√
(n)) and P-complete

for 1D convergent CA.
Instead of presenting the above results and their formal setting, we are go-

ing to illustrate this difference between bounded change and convergent CA
through the problem of recognizing palindroms. Before stating the result, let’s
formalize the notion of language recognition by CA under time constraints. Say
a language L ⊆ {0, 1}∗ is recognized by a CA F on QZ in time τ : N→ N if
{0, 1, B,A,R} ⊆ Q (where B is a blank state, A an accepting state and R a re-
jecting state) and for any n ∈ N and any u ∈ {0, 1}n, the orbit of configuration
cu defined by

cu(z) =

{
uz if 0 ≤ z < n,

B else,

is such that:

• there is t ≤ τ(n) such that F t(cu)0 ∈ {A,R},

• for the minimal such time t it holds

F t(cu)0 = A ⇐⇒ u ∈ L.

Finally, PAL is the language of palindromes on alphabet {0, 1}, i.e. words
u such that ui = un−1−i for 0 ≤ i < n = |u|.

Theorem 15. Let G = Z. No bounded change CA can recognize PAL in expo-
nential time, but there exists a convergent CA that recognizes PAL in quadratic
time.

Proof. Suppose by contradiction that a k-change CA F on QZ and of radius r
recognizes PAL in time τ(n) = αn. For n ∈ N and u ∈ {0, 1}n denote by Tu,nz

the prefixes of traces of length τ(n) and of width 2r starting at position z in
the orbit of cu:

Tu,nz : t ∈ {0, . . . , τ(n)} 7→ F t(cu)z, . . . , F
t(cu)z+2r.

By the k-change property, there are at most (|Q| log τ(n))k such prefixes in total
including all choices of u and z. On the other hand, there are exponentially many
words in PAL of each length, so for large enough even n there are u 6= v in PAL
such that

Tu,nn/2 = T v,nn/2 (3)

Then, consider the word w = u0 · · ·un/2−1vn/2 · · · vn−1. By the Equality (3)
above, we have that T Fcu (t) = T Fcw(t) for all 0 ≤ t ≤ τ(n). So in particular F
must accept w in time at most τ(n) because it does for u. However, w is not a
palindrome, which yields the desired contradiction.

It is not difficult to adapt Example 3 to make a convergent CA that rec-
ognizes PAL in quadratic time. Roughly, using extra states, any input word
BuB is turned in one step into a segment of state with two components: the
binary component that keeps the information of u and the zigzag component of
the form B > ← · · · ← B , where the head state > holds an extra bit, initialized
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to u0. Then, with the zigzag movement of the head, this bit held inside the
right-moving head > is compared to the bit in the binary component when
the head bounces on the right border (i.e. u0 is compared to un−1 at the end
of the first zig). If the comparison fails, an error state e appears which is in-
terpreted as a rejecting state. If not, the head turns into < (which does not
hold any additional information) and goes back to the left boundary as in the
rule of Example 3. Once the left boundary is reached again, the head becomes
> and copy the bit from the binary component at this position (i.e. u1 at the

start of the second zig). When the zone is shrunk down to a single position, an
accepting state is generated that spreads to the left to reach the position which
initially was holding value u0 (the accepting state spreads over any other state
except e, which is not present in the orbit of cu if u is in PAL). The additional
mechanism on top of the rule of Example 3 does not compromise the convergent
property: the analysis is the same as in Example 3 with the presence of two
spreading states instead of one (rejecting state e spreading over the accepting
state which spreads over any other state).

6.3 Complexity of limit configurations

Any convergent CA F on QG induces a map Fω : QG → QG. We say that a
configuration c ∈ QG is computable if it is computable as a map. For any t, the
map F t transforms computable configurations into computable configurations,
however there is no reason to expect that the same holds for Fω.

Let us first make the following observation: the computability of the limit
configuration is linked to the computability of freezing times.

Lemma 7. Let F be a convergent CA over QG and c ∈ QG be any computable
configuration. Then the map z 7→ Fω(c)z is Turing reducible to the map z 7→ ζF (c, z).
Moreover, if F is freezing, both maps are Turing-equivalent.

Proof. To compute Fω(c)z from ζF (c, z), it is sufficient to compute F ζF (c,z)(c)z.
Reciprocally, if F is supposed freezing, ζF (c, z) can be computed from Fω(c)z
as it is the first time step t such that F t(c)z = Fω(c)z.

For bounded change 1D CA, it is impossible to produce uncomputable limits
from computable initial configurations. The argument of the following proof is
due to G. Richard.

Theorem 16 ([38]). For any 1D bounded-change F and any computable con-
figuration c, Fω(c) is computable.

sketch. We restrict without loss of generality to F of radius 1 and fix a com-
putable configuration c. If we know the number of state changes in the the orbit
of c at cells z1 and z2, with z1 < z2, then we can compute the value Fω(c)z for
all z ∈ [z1, z2]. Indeed, we can compute F t(c) on cells [z1, z2] for increasing
values of t until the correct number of changes is observed at z1 and z2. From
that time on, the evolution of cells in the segment [z1, z2] is independent of the
context since cells z1 and z2 no longer change and F has radius 1. So we can
compute the evolution until this set of cells reaches a fixed point, which is then
the value they have in Fω(c).

The number of changes at any cell is bounded, and there is a maximal value
L for which there are infinitely many positions z < 0 with exactly L changes.
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Figure 9: Examples of configurations obtained after some time from a finite
seed by randomly chosen 2D freezing CA. All CA have the same neighborhood
and the same number of state, with the same freezing order. All finite seed have
the same size (the non-uniform portion of the configuration is a small centered
square), and all example configurations were obtained after the same number of
steps. The difference in the uniform background comes from the fact that not
all examples have the same quiescent states.

Moreover, there is a limit position zL to the left of which no cell has more
than L changes. The same is true for positions z > 0 giving the corresponding
constants R and zR.

Then the algorithm to compute Fω(c)z given z is the following: compute
larger and larger portions of the space-time diagram around position z until
finding z1 ≤ z ≤ z2:

1. z1 ≤ zL and zR ≤ z2,

2. the state of z1 has changed L times and the state of z2 has changed R
times.

Then it is sufficient to apply the algorithm of the above to compute Fω(c)[z1,z2]
and therefore obtain Fω(c)z.

Interestingly, the above limitation for bounded change CA disappears when
considering convergent CA.

Theorem 17 ([38]). There exists a 1D convergent CA F and a computable
configuration c such that Fω(c) is uncomputable.

In 2D, it is easy to find a freezing CA F and a computable configuration c
such that Fω(c) is uncomputable: let c(i, j) be 1 if i, j ∈ N and Turing machine
i halts in at most j steps on the empty tape, and 0 else. Then, if F is the
freezing CA that spreads state 1 vertically, we get that Fω(c)(i,0) = 1 for i ∈ N
if and only if machine i halts.

A more interesting question is to ask whether Fω(c) can be uncomputable
for some finite or eventually periodic configuration c (i.e. a configuration which
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is totally periodic up to a finite region of Z2). The behavior of freezing CA
from finite configuration is quite rich (see Figure 9) and it is actually possible
to realize uncomputable limits with a freezing 1-change CA and slightly more
with a 2-change CA.

Theorem 18. [34, 38] For a configuration c ∈ QZ2

and q ∈ Q, define the set
of cells of c in state q: χq(c) = {z ∈ Z2 : c(z) = q}. The following holds:

• There exists a 1-change freezing CA F1, a state q of F1, and a finite
configuration c1 such that χq(F

ω
1 (c1)) is not computable.

• For any 1-change freezing CA F , any state q and any finite configuration
c, χq(F

ω(c)) is either recursively enumerable or co-recursively enumerable.

• There exists a 2-change freezing CA F2, a state q of F2, and a finite
configuration c2 such that χq(F

ω
2 (c2)) is neither recursively enumerable,

nor co-recursively enumerable.

Proof. The first item is the main result of [34]. The second item is [38, Propo-
sition 9]. The third item is [38, Corollary 1].

Recall from Lemma 7 that in order to produce an uncomputable limit con-
figuration from a computable one by a freezing CA, the freezing times of cells
must be uncomputable. We stress that for this reason it is not sufficient for a 2D
freezing CA to be ’computationally universal’ in order to produce uncomputable
limit configurations from eventually periodic initial ones. For instance, in the
orbits described in the simple embedding of Example 4, the freezing times are
computable by construction since cells are frozen progressively line by line.

Question 4. Let F be the ’life without death’ CA [25]. Is there a finite or
eventually periodic configuration c such that Fω(c) is uncomputable?
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Theyssier. On the impact of treewidth in the computational complexity of
freezing dynamics. In Liesbeth De Mol, Andreas Weiermann, Florin Manea,
and David Fernández-Duque, editors, Connecting with Computability - 17th
Conference on Computability in Europe, CiE 2021, Virtual Event, Ghent,
July 5-9, 2021, Proceedings, volume 12813 of Lecture Notes in Computer
Science, pages 260–272. Springer, 2021.

[23] E Goles-Chacc, F Fogelman-Soulie, and D Pellegrin. Decreasing energy
functions as a tool for studying threshold networks. Discrete Applied Math-
ematics, 12(3):261–277, 1985.

[24] Janko Gravner and David Griffeath. Cellular automaton growth on z2:
Theorems, examples, and problems. Advances in Applied Mathematics,
21(2):241 – 304, 1998.

[25] D. Griffeath and C. Moore. Life without death is P-complete. Complex
Systems, 10, 1996.

[26] Pierre Guillon and Gaétan Richard. Nilpotency and limit sets of cellular au-
tomata. In Edward Ochmanski and Jerzy Tyszkiewicz, editors, Mathemati-
cal Foundations of Computer Science 2008, 33rd International Symposium,
MFCS 2008, Torun, Poland, August 25-29, 2008, Proceedings, volume 5162
of Lecture Notes in Computer Science, pages 375–386. Springer, 2008.

[27] G. A. Hedlund. Endomorphisms and Automorphisms of the Shift Dynam-
ical Systems. Mathematical Systems Theory, 3(4):320–375, 1969.

[28] Alexander E. Holroyd. Sharp metastability threshold for two-dimensional
bootstrap percolation. Probability Theory and Related Fields, 125(2):195–
224, 2003.

[29] Lyman P. Hurd. Formal language characterizations of cellular automaton
limit sets. Complex Systems, 1:69–80, 1987.

[30] J. Kari. The Nilpotency Problem of One-dimensional Cellular Automata.
SIAM Journal on Computing, 21:571–586, 1992.
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