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The Mirage of Universality in Cellular Automata

Guillaume Theyssier

Abstract This note is a survey of examples and results about cellular automata with
the purpose of recalling that there is no ’universal’ way of being computationally
universal. In particular, we show how some cellular automata can embed efficient
but bounded computation, while others can embed unbounded computations but not
efficiently. We also study two variants of Boolean circuit embedding, transient versus
repeatable simulations, and underline their differences. Finally we show how strong
forms of universality can be hidden inside some seemingly simple cellular automata
according to some classical dynamical parameters.

1 Eric, the collector

The present note responds to an invitation to contribute to a book at the occasion of
Eric Goles 70th birthday. Before diving into the scientific content, I should say a few
words about Eric and the motivation behind this note.

Anyone knowing Eric certainly had the pleasure to listen to some of his colorful
anecdotes (I certainly did). He owns a large collection, large enough to adapt to a
wide variety of listeners and circumstances. The collection is in fact twice as large,
because each anecdote, usually told to an international audience, is doubled with
a more confidential Chilean version full of slang words. Eric’s pleasure of telling
stories is obvious, he has generously shared his collection, but nobody has listened
to the same sequence of anecdotes and we all end up with a different global picture,
much like the adventurous readers of the antinovel of Cortázar.

The collection of models and systems studied by Eric in its numerous scientific
publications is equally striking. It abounds in small examples that are carefully
analyzed and shown to capture important phenomena. It connects different points
of view and different communities of researchers. It seems to never end up in the
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2 Guillaume Theyssier

exact same theoretical framework and invites us to think about details that make a
difference. In short, there is an anti-Bourbakist quality to it.

At the heart of this scientific collection (at least from what I can tell from my
collaboration with Eric), there is the question of the computational universality of
small dynamical systems, and how it manifests itself in the complexity of various
associated decision problems. Computational universality of dynamical systems is
a topic that might seem boring to the classical computer scientist (after all Turing
showed the existence of a universal machine in the 1930s) and not serious for
the dynamical systems community (this is not real maths1). Part of the problem
is that this kind of research is endangered by what I would call the mirage of

universality: the illusion that there must be universal consequences to the fact of
being “computationally universal” independently of the precise definition used, and
that such a statement, even given without technical details, gives information by
itself. Pursuing this mirage, one is tempted to put forward vague theorem statements
and hide the concrete mathematical result in the proofs (or sketch of). To make
an analogy, no paper in computational complexity would use theorem statements
like “Problem X is hard” and then, hidden in the proof details, unveil the definition
of “hard”. On the contrary, computational complexity theory has been extremely
fruitful by putting forward a vast “zoo” of precisely defined complexity classes,
often with a corresponding notion of reduction.

Of course, there is a lot to say and a lot has already been said about the math-
ematical formalization of computational universality in dynamical systems, but my
intention here is clearly not to start a comprehensive survey on the topic [7, 21].
Instead, I would like to invite the reader to a quick tour of examples and properties
that break this mirage of universality. Most of them were encountered or established
during my collaboration with Eric, and I hope this note can give a clue about the
richness of Eric’s scientific collection.

Content of the note: To simplify exposition, I chose to restrict to (classical)
cellular automata and tackle three main topics in three separate sections. Each topic
shows examples of “computationally universal” cellular automata that, in some sense,
do not behave as expected, or pair of examples that behave differently with respect
to some parameter:

• efficient versus unbounded computations: how some cellular automata are able
to embed one type of computations but not the other;

• transient versus repeatable circuit simulations: about the existence of (at least) two
fundamentally different ways to simulate Boolean circuits in cellular automata,
and their consequences;

• hidden universality: how cellular automata might seem ’simple’ according to
some parameter despite being actually universal.

Before starting, some standard definition are given below to set up our framework.

1 It should be noted however that a growing trend in symbolic dynamics has shown the importance
of computability considerations. Some of these results were even published in real math journals...
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2 Standard definitions and notations

For any finite set& (the alphabet) and positive integer 3 (the dimension), we consider
the space of configurations &Z

3

, i.e. the set of maps giving a state from & to each
position in the lattice Z3 . The state of configuration 2 ∈ &Z

3

at position I ∈ Z3 will
be denoted either 2(I) or 2I .

For = ∈ N, let B(=) be the set of positions of Z3 of maximum norm at most =:

B(=) = {I ∈ Z3 : ‖I‖∞ ≤ =}.

Then for any D ∈ &B(=) , we define the cylinder set [D] centered on cell 0 by:

[D] = {2 ∈ &Z
3

: ∀I ∈ B(=), 2I = DI}.

These cylinder sets can be chosen as a base of open sets of the space&Z
3

endowing
it with a compact topology [17]. Equivalently, the same topology can be defined by
the Cantor distance:

X(2, 2′) = 2−min{ ‖I ‖∞:2I≠2′I } .

A cellular automaton of dimension 3 and state set & is a map � acting continu-
ously on configurations and translation invariant way. Equivalently (Curtis-Lyndon-
Heldund theorem [14]), it can be defined locally by a neighborhood+ (a finite subset
of Z3) and a local transition map 5 : &+ → & as follows:

∀I ∈ Z3, � (2)I = 5
(

2
�

�

I++

)

where 2
�

�

I++
denotes the map I′ ∈ + ↦→ 2I+I′ .

The radius of � is the smallest integer A such that + ⊆ B(A) where + is some
neighborhood for which there is a local map 5+ : &+ → & defining � as above. �
induces an action on finite patterns as follows. For any = ∈ N and any D ∈ &B(=+A ) ,
� (D) is the finite pattern E ∈ &B(=) obtained by application of 5 on D at each position
from B(=), i.e. such that

∀2 ∈ [D], � (2) ∈ [E] .

We are now going to define a notion of universality for cellular automata. We
choose this one for two reasons: first it is one of the strongest form of universality
and will serve us as a benchmark in the following, and second, it is intrinsic to the
model of cellular automata and make no reference to other models of computation
(for more details, see [22, 6, 5]).

This notion, called intrinsic universality, is based on a notion of (intrinsic) simu-
lation that is defined through two ingredients [5, 6].

The first ingredient is a notion of cell-wise simulation that works by restriction to
a sub alphabet and then projection onto the target alphabet. To be more precise let �
and� be cellular automata of dimension 3. We denote by � ⊳ � the fact that � is ob-
tained from� by cell-wise restriction and projection, formally:∃c : & ⊆ &� → &�

surjective such that for all 2 ∈ &Z
3



4 Guillaume Theyssier

c ◦� (2) = � ◦ c(2)

where c : &Z
3

→ &Z
3

�
is the cell-wise application of c. In the language of dynamical

systems, (�,&Z
3

�
) is a factor of (�,&Z

3

) which is a sub-system of (�,&Z
3

�
).

Now we add the second ingredient, rescaling, that allows to turn a cell-wise
simulation into a simulation that works by blocks: blocks of cell of the first CA
are simulated by blocks of cell of the second CA. Given a rectangular shape
m = (<1, . . . , <3) and some alphabet & we define the bloc recoding map �m from

&Z
3

to
(

&<1<2 · · ·<3
)Z

3

by:

�m (G) (I1, . . . , I3) =
(

G(<1I1, . . . , <3I3), . . . ,

G(<1I1 + <1 − 1, <2I2, . . . , <3I3),

G(<1I1, <2I2 + 1, <3I3, . . . , <3I3), . . .

G(<1I1 + <1 − 1, . . . , <3I3 + <3 − 1)
)

It is a bijection that recodes any configurations by blocks of shape m. Now if C is a
positive integer and z ∈ Z3, we define the rescaling of � of parameters m and C as
the CA �<m,C> = �m ◦ �

C ◦ �−1
m .

We finally say that � simulates �, denoted � ≤ �, if there are parameters m,C,m′

and C′ such that �<m,C> ⊳ �<m′,C′>. We also say that � strongly simulates � if there
are parameters m and C such that � ⊳ �<m,C>. Then, a CA� is intrinsically universal

if for any CA � we have � ≤ �. It can be shown that an intrinsically universal CA
can in fact strongly simulate any CA [6].

Finally, we assume the reader is familiar with basic notions and results of com-
putability and complexity theory. We will use the following standard classes of
decision problems:

• P is the set of problems which can be solve be a deterministic Turing machine in
polynomial time;

• NLOGSPACE is the set of problems which can be solve be a non-deterministic
Turing machine in logarithmic space;

• Σ0
1 is the set of recursively enumerable problems (which contains the halting

problem).

Without explicit mention and when speaking about P-completeness we consider
LOGSPACE reductions. When speaking aboutΣ0

1-completeness we usually consider
many-one reductions.

3 Efficient vs. unbounded computations

It is well-known that, besides the reference model of Turing machines, there are
other ones that fundamentally differ because they either only allow efficient but
bounded computation (like Boolean circuits) or unbounded but slow computations
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(like Minsky machines) [19]. We would like to illustrate this aspect in the framework
of cellular automata in a precise manner. To simplify, we restrict to dimension 1
in this section. We first define two classical problems associated to any CA which
will serve as canonical indicators for both aspects mentioned above: efficiency and
unboundedness of computations.

The first one is about short-term predictability within a bounded time range and
provides a fine-grained complexity measurement within class P.

Definition 1 Let � be any CA of radius A and alphabet &. The prediction problem
PRED� is defined as follows:

• input: C > 0 and D ∈ &B(AC)

• output: �C (D) ∈ &.

The second one asks for a prediction about an unbounded future and provides a
coarse-grained complexity measure allowed to cross the decidable barrier. It could
be refined in many ways as in the definition of universality for dynamical symbolic
systems from [7]. We prefer to keep it simple for the clarity of exposition. We say a
configuration 2 ∈ &Z is eventually bi-periodic if it is eventually periodic to the left
and eventually periodic to the right, said differently if it is of the form ∞D! · D · D

∞
'

where D!, D and D' are finite words.

Definition 2 Let � be any CA of radius A and dimension 1. The reachability problem
UBPRED� is defined as follows:

• input: an eventually bi-periodic configuration 2 = ∞D! · D · D
∞
'

and a state @.
• output: decide whether there is C ∈ N such that �C (2)0 = @.

One of the well-know results of computational universality in cellular automata
is about elementary rule 110 given by the local rule X : {0, 1}3 → {0, 1} with

X(G, H, I) = (1 − GHI) ·max(H, I).

It is interesting to note that the first proof of computational universality of this
cellular automaton due to M. Cook [3] was enough to prove undecidability of
UBPREDX but did not give information about problem PREDX . It is only later, by
a strong improvement in one step the the reduction, that PREDX was proven to be
P-complete [20]. The purpose of this section is precisely to make clear that there is
generally no implication in either direction between the P-hardness of PRED and
the undecidability of UBPRED.

Definition 3 A CA � is a freezing CA if, for some (partial) order ≤ on states, the
state of any cell can only decrease, i.e.

� (2)I ≤ 2I

for any configuration 2 and any cell I.
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The definition above was introduced in [9] in studied more in depth in [23]. Similar
cellular automata corresponding to bounded changes or bounded communications
were also considered in the literature with the point of view language recognizers
[24, 18, 2]. Under the hypothesis that NLOGSPACE ≠ P, the following results show
examples of cellular automata that can embed arbitrary unbounded computation, but
not in an efficient way.

Theorem 1 (Section 4.3 of [23]) For any freezing CA � of dimension 1, the problem

PRED� is in NLOGSPACE. There exists a 1D freezing CA � such that UBPRED�

is Σ0
1-complete.

We are now going to build an example with the opposite computation embedding
properties: as hard as it can be in the short term (it can embed efficiently bounded
computations), but decidable in the long term (it can not embed unbounded com-
putations). It is inspired from [23, Example 7] and consists in a simulation of some
P-complete cellular automaton inside finite zones, with some head controlling the
simulation and forced to move back and forth inside the zone and shrink it by one cell
at each bounce on a boundary. The simulation is such that one step of the simulated
cellular automaton is done at each pass so that there is only a quadratic slowdown
(see Figure 1).

<
<

>

<

<

>

<

>

<

>

<

>

<

>

>

<

>

>

Fig. 1 The shrinking zone trick behind the construction of Z� (time goes from bottom to top).

Let � be any 1D CA on alphabet & with radius 1 and local map X : &3 → &.
We defineZ� on alphabet ' = {1, 1+, 4} ∪&

′ with&′ = & ×& × {←,→, ;, A} and
radius 1 as follows:

• 4, the error state, is a spreading state: any cell with 4 in its neighborhood turns
into state 4; a configuration 2 is valid if 4 never appears in its orbit;

• 1, the blank state, never changes except in presence of the error state; 1+ becomes
1 except in presence of the error state; a maximal connect component of cells in
state &′ is a working zone;

• in a working zone, patterns of the form (G, H, A) (G′, H′, ;), or (G′, H′, ;) (G, H, A), or
(G, H, I) (G′, H′, I′)with {I, I′} ⊆ {←,→}, or (G, H, A) (G′, H′, I) or (G, H, I) (G′, H′, ;)
with I ∈ {←,→}, are forbidden and generate an 4 state when detected; therefore
in a valid configuration and in each working zone there is at most one occurrence
of a state of the form (G, H, {←,→}) called the head;



The Mirage of Universality in Cellular Automata 7

• a cell without forbidden pattern (from previous item) and without head in its
neighborhood doesn’t change its state;

• the movements and actions of the heads are as follows:

– inside a working zone, the head in state ← moves left, the head in state →
moves right; the local map X is only applied the head moves left to right;
precisely we have the following transitions:

(G, H, ;), (G′, H′,←), (G′′, H′′, A) ↦→ (G′, H′, A)

(G, H, ;), (G′, H′, ;), (G′′, H′′,←) ↦→ (G′, H′,←)

(G, H, ;), (G′, H′,→), (G′′, H′′, A) ↦→ (G′, H′, ;)

(G, H,→), (G′, H′, A), (G′′, H′′, A) ↦→ (X(H, G′, G′′), G′,→)

– when a boundary of the working zone is reached, the head bounces, changes
of direction and the working zone get shrinked by one cell; precisely we have
the following transitions:

1, (G, H, ;), (G′, H′,←) ↦→ (G, H,←)

1, (G, H,←), (G′, H′, A) ↦→ (G, H,→)

1, (G, H,→), (G′, H′, A) ↦→ (H, G, ;)

1, (G, H, ;), (G′, H′,→) ↦→ 1+

(G, H,→), (G′, H′, A), 1 ↦→ (G′, H′,→)

(G, H, ;), (G′, H′,→), 1 ↦→ (G′, H′,←)

(G, H, ;), (G′, H′,←), 1 ↦→ (G′, H′, A)

(G, H,←), (G′, H′, A), 1 ↦→ 1+

(note the swap between G and H in the third transition above to initialize the

sequential application of X)

– finally the head disappears in a working zone of size 1, precisely:

1′, (G, H, I), 1′′ ↦→ (G, H, A)

for any {1′, 1′′} ⊆ {1, 1+}.

Theorem 2 For any �, the problem UBPREDZ�
is decidable in polynomial time.

If � is chosen so that PRED� is P-complete, then PREDZ�
is P-complete.

Proof For the first part of the Theorem, let us consider an eventually bi-periodic
configuration 2 = ∞D! · D · D

∞
'

. There are four cases:

• 2 is not a valid configuration, which means that it contains a working zone
with a forbidden pattern. Since the forbidden pattern are locally detectable, such
a forbidden pattern must be detected inside the finite word D!D!D!DDAD'D'
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(considering the worst case where D! or D' is of size 1). Therefore, in time C

which is linear in the sizes of D!, D and D' we haveZC
�
(2)0 = 4;

• 2 is a valid configuration and position 0 belong to a finite working zone in 2.
Since the left and right boundary of this zone must belong either to D, or D! or
D', the zone is of linear size and it gets completely shrinked in quadratic time,
meaning that the state of position 0 will no longer change after a quadratic time;

• 2 is a valid configuration and position 0 belongs to an infinite zone in 2. In this
case, the position of the head must belong to either D, D! or D' and the same
for the eventual (unique) boundary of the zone. Therefore, after a linear time in
the worst case, cell 0 will never change again (for instance, the head comes from
the right, bounces to the left boundary, crosses once more position 0, but never
comes back again);

• 2 is a valid configuration but position 0 does not belong to some working zone,
then for any C ≥ 1 we haveZC

�
(2)0 = 1.

We deduce that that after a quadratic time the state of cell 0 does not change any
more, so it is sufficient to simulateZ� on 2 for this number of states to solve problem
UBPREDZ�

.
For the second part of the Theorem, see [23, Lemma 1 and Proposition 5]. �

4 Transient vs. repeatable circuit simulation

In this section we focus on dimension 2 and simulation of Boolean circuit and logical
gates by cellular automata. Showing how a cellular automaton can embed Boolean
circuits is one of the common methods used to claim its Turing universality (see for
instance [8, 1, 21]).

We are now going to describe two modes of simulation of a set of logical gates by a
cellular automaton, which were formalized in [11]. The basic simulation mechanism
behind both simulation modes uses square blocks concatenated in a grid-like fashion.
Each such square block represents a part of a concrete Boolean circuit (either a node
or wire). The definition doesn’t require any specific way of representing information
inside the blocks, just that the family of blocks use coherent representation of in-
formation so that the Boolean logic works when assembling them. More concretely,
they communicate information with their four neighbors (north, east, south, west) in
such a way that each one implements a Boolean function with at most 2 inputs and
at most 2 outputs.

In the sequel all considered blocks will compute one of the following maps (we
represent them using type {0, 1}4 → {0, 1}4 in order to make explicit the position
of inputs and outputs among the neighbors in the order north, east, south, west):
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AND(G, ∗, ∗, H) =
(

0,min(G, H), 0, 0
)

OR(G, ∗, ∗, H) =
(

0,max(G, H), 0, 0
)

CROSS(G, ∗, ∗, H) =
(

0, H, G, 0
)

NOP(∗, ∗, ∗, ∗) =
(

0, 0, 0, 0
)

FORK(∗, ∗, ∗, G) =
(

0, G, G, 0
)

WIRE8,>

(

2 ∈ {0, 1}4
)

= : ∈ {0, . . . , 3} ↦→

{

2(8) if : = >

0 else

for any 8 ≠ > ∈ {0, . . . , 3}. Note that any function 5 above is such that

5 (0, 0, 0, 0) = (0, 0, 0, 0).

We denote by �<6( 5 ) the set of 4-uple that can be obtained as an image of 5 . The
WIRE8,> functions are just all the possible ways to read a bit on one side and transmit
it to another side. Together with the NOP and FORK function they represent the basic
planar wiring toolkit denoted , in the sequel. The NOP gate is special in that one
considers it has 4 inputs and 4 outputs.

The two circuit simulation modes share the same block representation of circuit
and information, but they differ in their requirement about the dynamical evolution
of blocks. In the first mode, called transient mode, the gates can be used only once
and nothing is granted concerning their evolution afterwards. The second mode,
called repeatable mode, asks for each gate to go back to some acceptable state each
time they are used so that they can be used again. Both modes require the simulation
to work in constant time.

LetG ⊆ {AND,OR,CROSS} be a set of gates. Let � be a CA with states set& and
# > 0 be an integer. Consider a set + ⊆ &#×# of patterns, the valid blocks, each of
which as a type 5D where 5 ∈ G ∪, and D ∈ �<6( 5 ) and such that, for any 5D , there
is some block of+ of type 5D . If a block � ∈ + has type 5(0,1,2,3) for some 5 , we say
it has north value 0, east value 1, south value 2 and west value 3. Finally let Δ > 0 be
some constant. A configuration is valid if it is a concatenation of valid blocks where
output sides of a block must face input sides of its corresponding neighbors. Given
a block � ∈ + of type 5D in a valid configuration, we say that it makes the correct

transition if it becomes a block of type 5E after Δ steps where E = 5 (=, 4, B, F) is
the output of 5 on the input read from surrounding blocks, precisely: the block at the
north of � has south value =, the block at the east of � has west value 4, etc.

Transient simulation. We say that� simulates the set of gatesG in transient mode

with delay Δ and valid blocks + if for any valid configuration 2, the configuration
�Δ (2) is valid and for any 5 ∈ G ∪, , any block of type 5(0,0,0,0) in 2 makes the
correct transition.

Repeatable simulation. The simulation is repeatable if any block in any valid
configuration makes the correct transition.
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Before stating some theorems, let us define a decision problem associated to any
2D cellular automaton that will serve as a benchmark to separate the two kinds of
circuit simulation above.

Definition 4 Let � be any 2D CA of radius A and alphabet&, and q a non-decreasing
function such that 1 ≤ q(=) ≤ 2$ (=) The prediction problem CYCLEq

�
is defined as

follows:

• input: a periodic configuration 2 of period = × =

• output: is the length of the temporal cycle reached from 2 strictly greater than
q(=)?

The first mode of simulation (the repeatable mode) is the strongest one, and is
actually equivalent to intrinsic universality even if we use only monotone gates. In
this case, although the definition does not explicitly provide crossing gates, it is
always possible to realize a dynamical crossing and build arbitrary reusable bloc
elements leading to intrinsic universality.

Theorem 3 ([11]) A 2D CA � is intrinsically universal if and only if it can simu-

late a AND,OR circuitry in a repeatable way. In this case PRED� is %-complete,

UBPRED� is Σ0
1-complete and CYCLEq

�
is PSPACE-complete for some q.

To illustrate the difference between the two modes we shall use the symmetric
signed majority cellular automaton: it is essentially a majority rule where the state
of each neighboring cell can be inverted or not before evaluating majority, this being
done according to a local invariant sign vector and in a symmetric way: if cell I in-
verts the value of its neighbor I′, then I′ will also invert the value of I. We use the von
Neumann neighborhood+ = {(0, 0), (0, 1), (1, 0), (0,−1), (−1, 0)}. The symmetric
signed majority cellular automaton �1 is defined over state set& = {−1, 1}6. To sim-
plify notation, we will see each state @ ∈ & as a pair (� (@), ((@))where � (@) ∈ {0, 1}
represent the inner state and ((@) ∈ {−1, 1}+ is a sign vector associating a sign to
each neighbor of the von Neumann neighborhood. For any configuration 2 ∈ &Z

2
,

any cell I and any cell I′ ∈ I ++ we define the symmetric weight FII′ ∈ {−1, 1} as
FII′ = (((2I) (I

′ − I)) (((2I′) (I − I
′)). We note that FII′ = FI′I , hence the name

symmetric. �1 is then defined as follows.

�1 (2)I = (U, ((2I))

where

U =

{

1 if
∑

I′∈I++ FII′ � (2I′) > 0,

−1 otherwise.

The following theorem shows that transient simulations are strictly weaker than
repeatable simulations, �1 being an example capable of the former, but not the latter.

Theorem 4 ([11]) If a 2D CA � can simulate a {AND,OR,CROSS} circuitry in

transient mode, then its associated problem PRED� is %-complete. �1 defined above

can simulate a {AND,OR,CROSS} circuitry in transient mode. However, �1 is not

intrinsically universal and such that the problem CYCLEq

�1
is in P if q ≡ 1 and

trivial else.
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5 Hidden universality

When proving that some cellular automaton is computationally universal, it can be
acceptable to avoid a precise definition of universality if the construction makes
it clear enough. However, a precise definition seems necessary when ones want to
show that some cellular automaton is not universal. To avoid formalism, one could be
tempted to use a shorter path: prove that, according to some well-chosen parameter,
the considered cellular automaton is too simple to be universal. The intuition is
that a universal cellular automaton should have roughly the highest complexity for
the parameter. This approach can be made precise and yield some proof tools of
non-universality in some contexts [12]. The purpose of this section is to recall that
things can get counter-intuitive and such a parameter must be chosen carefully.

5.1 Hidden Minsky machines simulation

The limit set of a cellular automaton � is the nonempty closed subset

Ω� =

⋂

C ∈N

�C (-).

It represents the set of configurations that may appear arbitrarily far in the evolution
and the restriction of � to Ω� is often considered as the asymptotic dynamics of
�. The limit language is the set of finite patterns that occur in some configuration
of Ω� . It is not difficult to see that the limit language is always co-recursively
enumerable. However, there are known examples of non-recursive ones [15]. The
attentive reader of [4] has probably spotted the affirmation that universal cellular
automata have a non-recursive limit set. Depending on the definition of universality,
this affirmation can be false. The following theorem shows that arbitrary Minsky
machine simulations can be realize while maintaining a simple limit set (see [10] for
the precise definition of simulation).

Theorem 5 ([10])

For any Minsky machine " there exists a CA of dimension 1 that simulates "

but whose limit language is regular.

5.2 Hidden intrinsic universality

Following Theorem 5, one can go one step further and hide intrinsic universality
behind a simple limit set (at the price of a complexity increase from regular to
NLOGSPACE). The main trick of the next theorem is inspired from [16]: adding to
a given cellular automaton � on alphabet&, a firing squad component (see Figure 2)
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that is able to fill-in the limit set restricted to the & component, and therefore make
it simple independently of �.
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Fig. 2 J. Kari’s firing squad trick: a synchronous apparition of W can be triggered arbitrarily far in
time, thus allowing to complete the limit set on some component of states to the full-shift.

Theorem 6 ([13]) There exists an intrinsically universal CA whose limit language

is NLOGSPACE.

Given = ∈ N, the column factor of width = of �, Σ= (�), is the set of columns that
can appear in space-time diagrams of �:

Σ= (�) =
{

(DC )C ∈N : DC ∈ &
=, DC = �C (2) [1,=] , 2 ∈ &

Z
3 }

.

To Σ= (�) we associate its language of finite patterns !(Σ= (�)) defined as the set of
words DC · · · DC+: for some (DC )C ∈N ∈ Σ= (�) and C, : ∈ N.

The approachof [7] to define universality for general dynamical systems translates
into the following in our settings. To � we associate the model checking problem:

• input: = and a regular language != over alphabet &=,
• question: decide whether != intersects !(Σ= (�)).

� is BDK-universal if its associated model checking problem is r.e.-complete.
Like for limit sets, column factors can be filled up and thus simplified by increasing
the alphabet starting from an arbitrarily complex cellular automaton.

Theorem 7 ([13]) There exists an intrinsically universal CA � such that !(Σ= (�))

are regular languages computable from =. In particular, such� is not BDK-universal.
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