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Abstract.
A brain–computer interface aims to derive commands from the user’s brain

activity in order to relay them to an external device. To do so, it can either detect
a spontaneous change in the mental state, in the so-called “active” BCIs, or a
transient or sustained change in the brain response to an external stimulation, in
“reactive” BCIs. In the latter, external stimuli are perceived by the user through
a sensory channel, usually sight or hearing. When the stimulation is sustained
and periodical, the brain response reaches an oscillatory steady-state that can be
detected rather easily.

We focus our attention on EEG-based BCIs in which a periodical signal, either
mechanical or electrical, stimulates the user skin. This type of stimulus elicits a
steady-state response of the somatosensory system that can be detected in the
recorded EEG. The oscillatory and phase-locked voltage component characterising
this response is called a steady-state somatosensory-evoked potential (SSSEP).

It has been shown that the amplitude of the SSSEP is modulated by specific
mental tasks, for instance when the user focuses their attention or not to
the somatosensory stimulation, allowing the translation of this variation into
a command. Actually, SSSEP-based BCIs may benefit from straightforward
analysis techniques of EEG signals, like reactive BCIs, while allowing self-paced
interaction, like active BCIs.

In this paper, we present a survey of scientific literature related to EEG-based
BCI exploiting SSSEP. Firstly, we endeavour to describe the main characteristics
of SSSEPs and the calibration techniques that allow the tuning of stimulation in
order to maximise their amplitude. Secondly, we present the signal processing
and data classification algorithms implemented by authors in order to elaborate
commands in their SSSEP-based BCIs, as well as the classification performance
that they evaluated on user experiments.
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1. Introduction

In EEG-based brain-computer interfaces (BCI) studies,
many different paradigms have been proposed, exploit-
ing various markers of mental activity. These markers
detect either a volitional modulation of the ongoing
brain activity or a specific event elicited by an exter-
nal stimulus. In EEG signals, the specific brain ac-
tivity elicited by a stimulation is detected as a small
voltage variation immediately following it, called an
event-related potential or evoked potential.

The most known evoked potentials used in BCIs
are P300 and steady-state visually-evoked potentials
(SSVEP). SSVEPs are quite easy to use as they allow
the control of an application by detecting oscillations
in EEG signals recorded over the occipital cortex,
while the user is looking at visual stimuli flashing
at different frequencies. In the same way, periodical
beeping sounds, periodical mechanical stimulation of
the skin, or electrical stimulation of skin nerves at
a constant frequency, elicit steady-state oscillating
brain responses, measured respectively by steady-state
auditory-evoked potentials (SSAEP) and steady-state
somatosensory-evoked potentials (SSSEP).

When the external mechanical or electrical
stimulation is applied to the skin, it activates the
somatosensory system. In this case, the evoked
potential is referred to as a somatosensory-evoked
potential (SEP). The stimulation can be either
transient or sustained and periodic. After a transient
stimulation, specific subcomponents – deflection or
inflexion – can be observed in the electrical signal
before the brain returns to an “idle” state. Thus,
SEP signal analysis is usually performed in the
time domain [14]. With a sustained and periodic
stimulation, when the time interval between two
successive stimuli is too small, the somatosensory
system cannot come back to an idle state in between
them [28]. Thus, the SEP signal analysis is preferably
performed in the frequency domain [15]. More
precisely, an increase of power can usually be measured
in the SEP signal at the frequency of stimulation
or its harmonics. SEPs evoked by a sustained and
periodic stimulation are referred to as steady-state
somatosensory-evoked potentials (SSSEP). In the rest
of the article, a mechanical stimulation of the skin or
an electrical stimulation of skin nerves, delivered at a
constant frequency, will be referred to as a periodical
somatosensory stimulus.

Since the mid-1960s, SEPs have been used as
a monitoring tool during neurosurgical procedures or
spinal surgery [45]. For example, by stimulating the
posterior tibial nerve and by monitoring the SEPs
in the somatosensory cortex during spinal surgery,
early surgery-related damages to the motor capacity
of the patient can be detected [30]. SSSEP have also
been used in different clinical applications, for instance
to measure the tactile acuity of amputees [41] or as
a marker for monitoring cortical processes resulting
from a nociceptive and non-nociceptive somatosensory
input [11].

Figure 1 shows an histogram of publications
per year reflecting the dynamics of SSSEP-oriented
research (from the PubMed database, see section 2).
After a narrow and centred peak in the number of
publications in 2013, the research activity decreases
year by year. Despite this apparent lack of interest
from the BCI community, we consider that this field
is still relevant to study. Indeed, a SSSEP-based BCI
exploits a communication channel that is barely used
by motor-impaired people. Therefore, we consider
that from the user’s point of view, even a small
benefit provided by a SSSEP-based BCI using a lost
interaction modality is welcome, since the system does
not monopolize their sight or hearing.

Additionally, eye fatigue often occurs during the
use of SSVEP-based BCI systems and major SSAEP-
based BCI systems suffer from low accuracy [34].
Interesting ideas lead to actionable BCIs for certain
types of users, for whom audio and visual stimulations
cannot be used. For instance, Giabbiconi et al
measured, in 2004, that the amplitudes of elicited
SSSEPs were modulated by the spatial attention of
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Figure 1. Histogram of the number of publications per year
from the PubMed database with the keywords “steady-state
somatosensory” in “all fields” the 24th of August 2021.
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the subject [15]. It appears that by focusing their
attention on the stimulation, the subject could increase
the amplitude of SSSEPs.

Extensive literature reviews on non-stationary
evoked-potentials, either visually, auditory or soma-
tosensory-evoked, have already been published, for
instance [4]. Moreover, a recent literature review on
haptics and/or tactile BCIs has also been recently
published [13]. Therefore, we limited the scope of
our review to research studies in which periodical
somatosensory stimuli are used to elicit SSSEP
measured by EEG. In section 2 we present how we
identified, screened and included articles according to
the PRISMA (preferred reporting items for systematic
reviews and meta-analyses) methodology [23]. We
compare our set of studies to the different references
from identified state-of-the-arts while presenting our
inclusion and exclusion criteria.

In section 3, we define some specific characteristics
of SSSEPs useful for BCI. In order to use SSSEP
variations as robust markers in a BCI, one or several
optimal stimulation frequencies must be determined.
Thus, the notions of frequency of stimulation (FOS)
and resonance-like frequencies are presented, as well
as techniques for determining user-specific frequencies.
First synoptical tables (tables 1a and 1b) presents
how the selected studies performed a determination of
user-specific frequencies, as well as their main results:
stimulation location, type of vibration, used FOS or
range of FOS, etc.

Section 4 presents the algorithms and perfor-
mances of SSSEP-based BCIs from the literature. A
second pair of tables (tables 2a and 2b) presents the
algorithms and the obtained performances. Finally, be-
fore the conclusion, we summarize the main results of
this SSSEP-based BCI literature review.

2. Methodology

In August 2021, we started to review the literature
on SSSEPs and SSSEP-based BCIs in accordance to
the PRISMA methodology. Figure 2 presents our
article selection flowchart. More details about the
identification, screening and inclusion stages follow.

2.1. Identification stage

A search on the PubMed database was performed on
the 24th of August 2021 with the keywords “steady-
state somatosensory” in “all fields”. This search
brought to light 242 items.

Inputs from three state-of-the-art articles were
also considered. The first one, chronologically,
elaborates on BCIs leveraging the sense of touch [12].
Its scope is broader than ours, since it also includes
BCI studies that use a mechanical stimulation of the

skin to provide a feedback to the user, or to elicit P300
transient SEPs. The second state-of-the-art article is
clearly focused on SSSEP and SSSEP-based BCIs [3].
It appeared relevant to include both articles in the
present literature review for two reasons:

• Even though the second state-of-the-art article
can be considered conceptually included in the
perimeter of the first one, it remains interesting
because it analyses an additional two-year of
insights on this scientific domain.

• Only one article reference is presented in both
state-of-the-art articles, among the 35 presented
in [12] and the 37 presented in [3].

A recent survey on the use of haptic feedback for
BCI [13] was also analysed, since a short section is
dedicated to SSSEP-based BCIs.

2.2. Screening stage

We considered only articles fully written in English,
in which measurements were realised using EEG, and
presenting either a study of human specific SSSEP
characteristics or an SSSEP-based BCI.

The abstracts of the first 124 items, ordered by
“best match”, were thoroughly analysed. The analysis
showed that 2 items were not research articles, 45
items were not related to SSSEP, 28 used different
measurements than EEG, and 8 did not provide
insights on an SSSEP-based BCI or a determination of
user-specific frequencies. The 38 remaining items were
read entirely to assess their eligibility. This second
analysis showed that 26 items could not be included
since they were describing neither a determination of
user-specific frequencies nor an SSSEP-based BCI.

2.3. Inclusion stage

12 articles were included as a result of the screening
stage. 5 additional articles, identified during previous
searches or corresponding to bibliographical entries of
the 12 selected articles, were also included. Finally,
7 additional articles referenced in the state-of-the-art
articles were included, ending up with a total of 24
articles studied in our review.

17 articles describe a stimulation, recording and
processing procedure that allows the estimation of
user-specific characteristics of SSSEPs. These studies
are presented and analysed in section 3. Section 4 is
devoted to the presentation of 17 articles that describe
an SSSEP-based BCI. 10 studies, that deal with both
topics, are presented in the two sections from different
points of view.
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Figure 2. PRISMA-based article inclusion: identification, screening and inclusion stages.

3. Effects of stimulus characteristics on the
evoked potential

3.1. Methods to elicit an SSSEP

Historically, in most studies aiming to study SEPs,
the latter were elicited by electrical stimulation of
peripheral nerves [28, 40, 29]. For instance, a correctly
adjusted current flowing between two electrodes placed
over the median nerve near the wrist can elicit an
SEP. Indeed, the intensity of current pulses is increased
until they produce tiny twitches of the thenar muscle,
located on the hand palm at the base of the thumb,
and simultaneously elicit SEPs [28].

Beside electrophysiological studies, this method
of stimulation offers great tools to clinicians for
monitoring patient state, for example during delicate
spinal chord surgery [30]. However, electrical
stimulation of peripheral nerves is reported as
unpleasant and elicits SEPs with low amplitude [29,
40]. Therefore, efforts have been made to switch to
mechanical stimulation, especially in the context of
brain-computer interfacing where the system must be
as comfortable to use as possible during long periods.

The nature of the mechanical stimulation is the
first aspect to consider when designing an SSSEP-
based BCI. In order to elicit an SSSEP, the mechanical
stimulation must be sustained and periodical, and
several techniques can be used to that end. The first
one consists in producing short mechanical pulses, for
instance with a moving pin, like the ones used in dot
matrix printer heads, in contact with the skin [24]. The
shape of this type of stimulation pattern is considered
to be identical to the shape of the electrical signal
driving the pin, usually a low frequency square wave
with a duty cycle of 50%. However, in order to elicit
SSSEPs with higher amplitudes, Pacinian corpuscles

can be stimulated more efficiently. Pacinian corpuscles
are one of the four types of mechanoreceptors of the
human skin. Their maximum sensitivity is for a
mechanical vibration with a frequency between 200 and
250 Hz [38]. This frequency is way too high to elicit an
SSSEP that can be measured on the cortex. Therefore,
the mechanical stimulation is actually delivered at
a carrier frequency around 250 Hz, but with an
amplitude modulated at a much lower frequency [43, 7].
In this case, SSSEPs are elicited at the frequency of
the modulation, not of the carrier. This technique is
referred to as vibro-tactile stimulation. The amplitude
can be modulated either by a square or a sinusoidal
function.

In this article, we use the terms short mechanical
pulses and vibro-tactile stimulation, both introduced
by Müller-Putz et al in 2001 [24]. It is noteworthy
to mention that electrical stimulation patterns can
also be amplitude-modulated. In this case, similarly
to vibro-tactile stimulation, the stimulation current is
a high-frequency carrier current whose amplitude is
modulated by a low-frequency sinusoidal signal [29].

3.2. SEP and SSSEP characteristics

The frequency of stimulation (FOS) is the fre-
quency of the sustained and periodical somatosensory
stimulation eliciting the SSSEP. More precisely, it is
either the frequency of short electrical or mechanical
pulses or the frequency modulating a carrier stimula-
tion. In the frequency domain, the SSSEP is charac-
terized by a high value, at the FOS, of the power or
amplitude of the measured electrical activity.

The resonance-like frequency is a term
introduced by Müller-Putz et al in 2001 [24]. It is
defined as the particular FOS that elicits an SSSEP
with the highest amplitude or signal-to-noise ratio,
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assuming that the stimulation amplitude remains
constant. When the SSSEP amplitude vs. frequency
curve shows several local maxima, the resonance-like
frequency is not unique. When this curve does not
show a sharp maximum, the resonance-like frequency
is sometimes defined as a frequency band [24]. Usually,
in an SSSEP-based BCI, at least two FOS are required,
one of them being the resonance-like frequency. Other
FOS are selected at other local maxima of the
amplitude vs. frequency curve if they exist, provided
that they are different enough from the resonance-
like frequency. To achieve this, keeping a minimum
difference of 4 Hz [6, 33] or 5 Hz [26, 1] between each
FOS is a common practice.

When talking about latency several aspects
must be taken into consideration. Strictly speaking,
when considering the whole causal chain, i.e. from
stimulation to human to measurement, the latency is
the time between the stimulus onset (the cause) and
the SEP appearance in the processed electrical signal
(the effect). Hence, the latency encompasses several
delays:

• the transport time that is required to transfer the
stimulation-related information from the skin to
the brain.

• the cortical processing time that encompasses all
the delays introduced by following neural path-
ways within the cortex before SEP appearance.

• the hardware delay, that can be caused by
several factors, such as transfer delays in pipeline
processing stages after signal sampling, or drifts
resulting from lost or artificially inserted digital
signal samples in asynchronous communication
channels.

• the delays that can be introduced by signal
processing techniques, such as narrow bandwidth
signal filtering.

These components of the latency cannot be
measured separately in practice. For example, the
transport time and the cortical processing time are
hardly differentiable. A hardware delay, from the
computer to the stimulation device, has been measured
in a study conducted by Pokorny et al in 2014 [32].
They concluded that this delay, a few hundreds of
microseconds, can be neglected compared to other
delays. Finally, delays caused by signal filtering have
been known for a long time. The interested reader can
refer to an article of De Cheveigné et al in which the
authors extensively discuss the implication of filters,
either hardware and software, and also suggest delay
compensation techniques [9].

In this article, we use the term total latency
to denote the sum of all delays. In contrast, we
use the term apparent latency, defined by Regan

in [36, 37], to characterize only the physiological part
of the total latency. For Regan, the apparent latency
is the first derivative of the SSSEP phase with respect
to the stimulus frequency, i.e. the slope of an SSSEP
frequency vs. phase plot. One must keep in mind
that even the apparent latency cannot be interpreted
rigorously from a neurological point of view. Indeed, a
long apparent latency can be caused either by a long
transport time followed by a short cortical processing
time or by the opposite.

From the human-computer interaction (HCI)
point of view, minimizing the total latency or at
least keeping it constantly below a threshold is of
major importance. Indeed, in the context of real-time
interaction, the total latency can also be defined as the
minimum time it takes for the BCI to detect a user’s
intention after the stimulation onset.

The phase difference is simply the time
difference between similar zero crossings (i.e. with the
same slope sign) of the SEP on the one hand and of the
stimulation signal on the other hand, times the FOS
and a constant to get an angle-like quantity. It should
not be confused with the phase shift, as defined by
Regan in [37], that is the sum of the phase difference
and of the apparent latency, also expressed as an angle.

A schematic definition of apparent latency and
phase difference characterizing the onset of a theoreti-
cal SSSEP is presented in figure 3.

The time-to-stationarity can be defined as the
duration of the transient response to the periodical
somatosensory stimulus, that starts with transient
somatosensory-evoked potentials before reaching a
steady-state response at the frequency of stimulation.
It is assumed that the stimulation remains constant as
well as the subject’s mental activity, for instance that
there is no attention focusing or stimulation triggered
mental action. Brickwedde et al measured a time-to-
stationarity of 500 ms for a SSSEP evoked by a 20 Hz
vibration [8]. Figure 4 shows the stabilisation of an
SEP into an SSSEP measured by Brickwedde et al [8].

3.3. Determination of user-specific frequencies

When the skin is stimulated by a periodical somatosen-
sory stimulus, the elicited SSSEP is characterized by
measuring the electrical brain activity at the FOS.
Many studies have shown that the amplitude and
signal-to-noise ratio of the SSSEP are highly depen-
dent on the FOS [5, 33]. Thus, for each subject and
each stimulation position, a specific screening proce-
dure is often performed to estimate the amplitude or
signal-to-noise ratio of the SSSEP with respect to the
FOS. We refer to this procedure as the tuning curves
estimation.

During each trial of the tuning curves estimation
procedure, a mechanical stimulation is applied on
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Figure 3. Temporal characteristics of an theoretical
SEP reaching its steady-state. (a) The “stimulus” plot is
the representation of the periodical somatosensory stimulus
amplitude vs. time, considered here as a windowed sine function.
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Figure 4. Temporal characteristics of an SEP reaching its
steady-state. (a) Grand average over 14 subjects and 40 min
of 20 Hz stimulus train on the right index finger for 2 s, with a
5 s inter-trial interval. (b) Zoom on the first half second of the
grand average, clear component of the SEP are annotated. (c)
Zoom on an SSSEP-established period, 4 periods of the 20 Hz-
SSSEP are well visible over 0.2 s of signal. All data is presented
from CP1 and as mean ± SEM. Figure reproduced with the
appreciated authorisation of the authors from [8].

a given part of the body, with a given FOS, and
sometimes for a given duration or shape of amplitude
modulation [33]. The tested frequencies, as well
as other tested parameters, are usually randomized
during the successive trials. Each FOS or stimulation
parameter is tested several times, to average the
results and increase the measurement precision. This
procedure yields one or several tuning curves, that
characterize the relationship between the frequency,
duration and shape of the stimulation, and the
amplitude, power, or signal-to-noise ratio of the
SSSEP.

The following two tables summarize the litera-
ture describing these procedures. Table 1a presents
the methodology of each study regarding the determi-
nation of user-specific frequencies. Table 1b presents
the results of studies introduced in table 1a. The first
3 columns, present in the two tables, are used as an
index: name of the first author, paper reference and
stimulation location. The five following columns in ta-
ble 1a present the methodology, in order: hardware
vibrator (Vibrator), surface of the contact area of the
vibrator head with the skin (Size), stimulation type
and carrier frequency (Stimulation), range and num-
ber of tested FOS (FOS or FOS range), and the num-
ber of subjects (Subj.) involved in the experiment.
The three last columns of table 1b present the main
results. The column RLF reports the resonance-like
frequency. The next column TC mention if the tuning
curves from the determination of user-specific frequen-
cies were reported in their completeness in the study
and the last column provides supplementary informa-
tion when needed.

3.4. Determination of user-specific frequencies in the
literature: main results and comments

In the seminal article published in 1992, Snyder
introduces the main physiological characteristics of
SSSEPs such as apparent latency, dependence of
amplitude to FOS, and spatial location of the stimulus-
induced neuronal activity [40]. An EEG setup with 16
channels was used in his experiment, with electrodes
over the scalp at locations following the international
10-20 system. The subjects rested their hand (left or
right) on top of a rigid plastic spherical shell, with a
diameter of 8 centimetres, acting as the vibrator head.
Vibro-tactile stimulation, with a carrier frequency of
128 Hz, was used in this experiment. At the maximum
amplitude, the vibration head provided a thrust of
about 10 Newtons, producing for some subjects a
feeling of “rising hand”. Different FOS were tested
by Snyder:

• 2 and 3 Hz FOS on 4 subjects;

• 5, 7, 11, 17, 26, 40 Hz on 17 subjects;
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First author Ref.
Stimulation

Location
Vibrator

Size

(cm2)
Stimulation

FOS or FOS range

(# of FOS)
Subj.

Snyder [40] SS 100.5*
Vibration

(128 Hz)

2 & 3,

5 to 40 (6),

25 & 27

4

17

13

Tobimatsu [43] SS 127*
Vibration

(128 Hz)
5 to 30 (9) 10

Tobimatsu [44] SS 127*
Vibration

(128 Hz)
17 to 30 (6) 8

Müller-Putz [26] NP 0.03 Pulses 17 to 35 (10) 5

Wang [46] KoP N/A N/A 5 to 29 (25) 5?

Breitwieser [7] C2 0.45
Vibration

(200 Hz)
13 to 35 (12) 14

Ahn [2] LRA? 0.28 N/A 21 to 25 (5) 8

Ahn [1] LRA? 0.79 N/A 21 to 25 (5) 16

Breitwieser [5] C2 0.45
Vibration

(200 Hz)
17 to 35 (10) 9

Pokorny [32] C2 0.45
Vibration

(200 Hz)
14 to 32 (7) 1

Müller-Putz [24] NP 0.03 Pulses 17 to 31 (8) 10

Breitwieser [6] C2 0.45
Vibration

(237 Hz)
17 to 35 (10) 13

Pokorny [33] C2 0.45
Vibration

(237 Hz)
17 to 35 (10) 14

Kim [19] ERM 0.79 Pulses?† 13 to 35 (12) 4?

Kim [20] ERM 0.79 Pulses?† 13 to 35 (12) 5?

Kim [21] ERM 0.79 Pulses?† 13 to 35 (12) 12

Kee [17] ERM 0.79 Pulses?† 13 to 33 (11) 5

Table 1a. User-specific frequencies identifications: Methodology. Legend and Acronyms: Vibration: vibro-tactile
stimulation (carrier frequency at X Hz); Pulses: short mechanical pulses; FOS: frequency of stimulation; Subj.: number of subjects;
SS: spherical shell; NP: dot matrix needle printer; KoP: Knock-out Pin; C2: C-2 tactor; LRA: Linear Resonant Actuator; ERM:
Eccentric Rotating Mass; N/A: not available; *: skin contact assumed to be perfect; †: N/A but likely as in [24], i.e. short mechanical
pulses; ?: unclear or ambiguous.

• and 25 and 27 Hz on 13 subjects.

Firstly, Snyder reports that the SSSEP appeared
in the hemisphere contralateral to the stimulated hand
on parts of the primary and secondary somatosensory
cortex, and on the primary motor cortex. The same
locations, when reported, were determined in almost
all studies listed in tables 1a and 1b. Besides, Snyders’
results show that FOS at 26 Hz and 40 Hz seem to
produce SSSEPs with higher signal-to-noise ratios than
other FOS. Among those two FOS, the author observed
that the amplitude of SSSEP at 26 Hz was greater.

An approximation of the apparent latency, using
an estimation of the EEG background noise from the
averaged evoked responses, was also calculated. This
was performed on a combination of 19 datasets: 13
subjects each-one producing 2 datasets, one per hand,
7 datasets were rejected. The estimated distribution
of the apparent latency, over the FOS at 25, 26 and

27 Hz, has a mean of 58.6 ms and a standard deviation
of 14.6 ms.

Regarding the resonance-like frequency, in the
articles listed in table 1b, two trends can be observed.
Tuning curves, i.e. amplitude of SSSEP vs. FOS, show
either a rather flat maximum centred at 27 Hz [24,
33, 6] or more pronounced local maxima centred on
lower frequencies such as 17 Hz or 21 Hz [46, 21]. The
first trend confirms the results from [40] whereas the
other trend confirms the results from [43, 44]. Other
determination of user-specific frequencies did not yield
tuning curves similar to either trend, such as the one
in the article of Breitwieser et al in 2011, that yielded
tuning curves with a rather flat maximum centred on
a FOS varying from 21 to 35 Hz [7].

In the articles presented in tables 1a and 1b,
studies also seem to show that FOS below 20 Hz rarely
produce SSSEPs with high amplitudes or signal-to-
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First author Ref.
Stimulation

Location
RLF (body part) TC Observations

Snyder [40] 26 & 40 Yes
40 Hz SSSEP have small amplitude but similar
signal-to-noise ratio than 26 Hz-SSSEP. Both hands
were stimulated at 25 & 27 Hz.

Tobimatsu [43] 21 Yes

Tobimatsu [44] 21 Yes

Identified RLF for 6 out of 8 subjects. Low-to-none
impact of the frequency on the sole-elicited SSSEP.
Amplitude of sole-elicited SSSEP are roughly twice
lower than hand-elicited SSSEP.

Müller-Putz [26] 25 to 31 No

Wang [46] N/A Yes
Tuning curve presented for 1 subject out of 5
subjects, grand average not available.

Breitwieser [7] 21 & 23 No Identified RLF for 7 out of 14 subjects.

Ahn [2] N/A No

Ahn [1] 22 & 23 No Identified RLF for 10 out of 14 subjects.

Breitwieser [5] N/A Yes

The TC for each subject highlight how important the
inter-subject variability is. Each subject performed
two sessions within several weeks (Mean: 28 day, Std:
17.5): the TC between sessions are very similar.

Pokorny [32] 20 Yes Irrespective of the wrist.

Müller-Putz [24] 27 (Left index) Yes
Low-to-none influence of the frequency on the SSSEP
for right index.

Breitwieser [6] 23 to 27 No
Identified RLF for 9/13 subjects (right index) and
8/13 subjects (left index).

Pokorny [33] 27 Yes Irrespective of the index fingertip.

Kim [19]
17 to 23 (index)

27 to 31 (toe)
No Irrespective of the index.

Kim [20]
13 to 25 (index)

29 (toe)
No Irrespective of the index.

Kim [21]
17 (index)

27 (toe)
No Irrespective of the index.

Kee [17] 13 to 29 No Irrespective of the toe. Broad distribution of RLF.

Table 1b. User-specific frequencies identifications: Results. Legend and Acronyms: RLF: resonance-like frequency; TC:
tuning curve; N/A: not available.

noise ratios. However, this might be caused by an
averaging effect, since in rare subjects, it is useful to
test nevertheless these low FOS in the determination
of user-specific frequencies procedure, as shown in one
article of Breitwieser et al [5]. In their study, they
determined the user-specific FOS for all fingertips of
the right hand for nine subjects. They used a vibro-
tactile stimulation with a carrier frequency at 200 Hz.
Each subject performed two sessions within weeks
(mean 28 days, standard deviation 17.5 days). Six
subjects out of nine had one resonance-like frequency
below 20 Hz during one session, for at least one finger.
Besides, the results remained rather stable between

the two sessions; an ANOVA for repeated measure
substantiates this observation. Thus, it seems relevant
to assess low frequencies of stimulation as well for
determining user-specific frequencies.

Finally, it is noteworthy that in the works of
Kim et al , several subjects had already tested a
BCI before taking up the main experiment [19, 20,
21]. Therefore, across these papers, the resonance-like
frequency can be biased if the same subject performed
a similar screening procedure in several successive
experiments. Indeed, we know from the work of
Breitwieser et al that the resonance-like frequency
tends to be stable through time [5]. Their work



EEG-based BCI exploiting SSSEP: A Literature Review 9

confirms stability for weeks, but for longer periods this
property remains unknown.

It should also be noted that, to the best of our
knowledge, the influence of the stimulation location
on the total latency has not been reported in the
literature.

3.4.1. Force and pressure of stimulation. The
threshold of human skin sensitivity to mechanical
stimulation has been quite studied and known for
decades [47]. However, the influence of the intensity of
the stimulation on the amplitude of the SSSEP remains
unclear. The work of Tobimatsu et al in 1999 provides
some insights on this question [43]. However, more
recent studies in table 1a and 1b tend to ignore it.

Tobimatsu et al investigated the impact of the
stimulation force, measured in Newtons (N), on the
amplitude of the SSSEP. They tested different forces,
from 0.001 to 0.1 N, for the same FOS at 21 Hz. In
the frequency domain, they observed that the mean
amplitude of the SSSEP component at the FOS linearly
increases with the logarithm of the force up to a
plateau, reached at 0.05 N. This trend seems to hold
also for the SSSEP amplitude measured at the second
harmonic of the FOS, i.e. frequency equal to twice the
FOS, even though much smaller.

However, for further investigation, the chosen
stimulation intensity metric, i.e. the force, can be
discussed. Indeed, the force controls directly the
acceleration of the stimulation pin or head, but it does
not take into account the contact surface between this
device and the skin. For future studies investigating
this influence, we think that it is advisable to use the
force as metric, in order to have a comparison point
with previous studies, but also the pressure exerted
on the skin. This would help taking into account the
specificity of the stimulation pin or head, which is
important as demonstrated by the variety of devices
described by the columns “Vibrator” and “Size” of
table 1a. The lack of specificity of the force metric,
in fact, may explain a part of the variability observed
in the trends mentioned above.

3.4.2. Harmonics of the frequency of stimulation.
Few studies assess the presence of harmonics of
the FOS in the frequency analysis of SSSEPs. In
1996, Noss et al elicited SSSEPs with an amplitude
modulated electrical stimulation at 200 Hz [29]. The
modulation signal was a pure sine function, i.e. with
no harmonic content at multiples of the fundamental
frequency. However, peaks higher than the baseline
were detected in the power spectrum of the SSSEP
at frequencies corresponding to harmonics of the
FOS. This, according to the authors, reveals a
pronounced non-linearity of the transfer function of the

somatosensory system.
In 1999, Tobimatsu et al also performed an

harmonic analysis of SSSEPs, but for a mechanical
vibro-tactile stimulation [43]. The carrier frequency
at 128 Hz was modulated by a sinusoidal signal at
frequencies ranging from 5 to 30 Hz. They also report
that a peak at twice the FOS can be detected in the
power spectrum of the SSSEP, although smaller than
the peak at the FOS. What is interesting though,
is that the height of the peak at twice the FOS
monotonically decreases as the FOS increases.

In fact, a similar phenomenon had already been
mentioned by Snyder in 1992. We recall that in his
experiments a vibro-tactile stimulation with a carrier
at 128 Hz modulated by a sinusoidal FOS was used.
Snyder observed that in the power spectrum of SSSEPs
elicited by a FOS greater that 11 Hz, the maximum
power was localized at the FOS and almost no power
increase was detected around its harmonics. On the
other hand, in SSSEPs elicited by a FOS lower than
7 Hz, the power increase at twice the FOS was almost
as important as at the FOS itself.

It is noteworthy to mention that in the case of
vibro-tactile stimulation, if the study of harmonics is
considered, the modulation signal should be sinusoidal.
Indeed, a modulation signal with a square shape
inherently contains the FOS as well as its odd
harmonics, but not the even ones. Thus, the second
harmonic of the FOS is not present in the vibro-tactile
stimulation and therefore cannot produce a response
of the somatosensory perception chain. For instance,
Breitwieser et al highlighted that no power increase
could be found at the second harmonic of a FOS equal
to 23 Hz, when using a square modulation signal of a
200 Hz carrier frequency [7].

To summarise, in this section we reviewed research
studies in which user-specific frequencies of stimulation
are determined. We presented SEP and SSSEP
characteristics, and then discussed techniques that
aim to determine resonance-like frequencies. SSSEP’s
amplitude vs. FOS response curve is strongly user-
dependant, sometimes flat, sometimes showing one or
several sharp maxima. Therefore, precisely identifying
user-specific FOS seems essential before implementing
an SSSEP-based BCI [5]. Additionally, we observed
that the SSSEP’s amplitude is positively correlated to
the force and pressure of mechanical stimulation, up
to a plateau of 0.05 N after which the amplitude of
the SSSEP remains stable [43]. We also realised that
the influence of the stimulation location on the SSSEP
latency and spatial location has been scarcely studied.
Further work in this direction seems desirable to gain
a better understanding of SSSEPs.
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4. SSSEP-based BCI: algorithms and
performances

In this section, we focus our review on SSSEP-based
BCIs, describing their algorithms and performances,
their similarities or at the opposite their originality
compared to other approaches. We firstly discuss the
main way to turn an SSSEP into a command usable in a
BCI. Secondly, we present and comment on a synthetic
table that summarises the methodologies, algorithms
and performances of SSSEP-based BCIs. We finally
present the most common algorithm described in the
literature and compare it to less standard techniques
found during our analysis of the state-of-the-art.

4.1. Turning SSSEP into a usable BCI command

In order to turn the SSSEP, or more precisely one of
its characteristics, into a BCI command, it is necessary
to specify which mental actions may influence it. In
2004, Giabbiconi et al observed that selective spatial
attention towards the hand undergoing a sustained
mechanical stimulation modulates the amplitude of
the SSSEP elicited by the latter [15]. The authors
stimulated the fingertips of the left and right index
at 20 and 26 Hz respectively. Subjects were instructed
“to attend to the flutter vibration at one finger while
ignoring the other”. An increase of the amplitude of
the corresponding SSSEP results from this selective
spatial attention, although the effect is highly subject
dependent. This high between-subject variability
motivated the author to use the standard error (SE),
which is estimated by dividing the standard deviation
by the square root of the number of samples. The
authors reported an average increase of 30.6% (SE =
11.2) of the amplitude of the SSSEP elicited in the
right hemisphere when the attention was focused on
the left index fingertips. Whereas when the attention
was focused on the right index fingertips, the average
augmentation of amplitude of the SSSEP elicited in the
left hemisphere was 27.7% (SE = 11.0). The authors
observed that the greatest SSSEP amplitude was
measured at frontal electrode locations, contralateral
to the stimulated index finger. The first article
reporting on an SSSEP-based BCI, in 2006, used this
attention focusing mental task [26].

4.2. Synthesis of SSSEP-based BCIs: introduction

We present and synthesize in tables 2a and 2b
the articles describing SSSEP-based BCIs obtained
through our literature review. Table 2a presents
the methodologies in the experiments, while table 2b
presents their main results. The two tables share the
first 3 columns, used as an index: name of the first
author, paper reference and stimulation location.

In table 2a, four columns present the methodology
of each study: was a frequencies screening procedure
involved? What task was performed by the subjects?
How many subjects were tested? Which algorithms
were used? We call “frequencies screening procedure”
a user-specific procedure aiming to determine the
resonance-like frequency, or at least the most efficient
FOS, that will be later used in the BCI.

During the literature review, differences in the
presentation of the task to the subject have been
observed. We categorize the instruction provided to
the subject into two categories: selective sensation (SS,
stimulation-driven task) or attention focusing (AF,
attention orientation-driven task). The instruction
given in a SS task is correlated to the sensation
produced by the stimulation. For example, the
subject can be instructed to “select sensation on the
indicated side of their hands as if stimulation on the
attended side was stronger than on the unattended
side” [48]. Whereas the instruction given in an AF
task is focused on the shift of attention expected from
the subject. The provided instruction can be: “focus
attention on the finger stimulation indicated by the bar
(cue)” [26]. We differentiate the instructions provided
to the subject based on that difference between SS and
AF tasks. Sometimes a small question mark (?) is
inserted in table 2a, see column Task, when the authors
did not provide enough information to differentiate
the instruction type. In addition, some authors
implemented a secondary task to help the subject
concentrate on the main task. For example, in [26], the
authors added a random transient amplitude twitch on
the stimulation during some trials, that the subject had
to detect and report to the experimenter.

We also sub-categorize the algorithm using three
columns. Each column presents the answer to one
of three different questions: how was the frequency
information of the SSSEP used? How was the
spatial information used? And how were the features
extracted? Due to the limited amount of data collected
during experiments, most of the studies used linear
discriminant analysis (LDA) for classification. When
the dimension of the extracted feature vector was
relatively large, sometimes the “regularized” or “with
shrinkage” version of LDA was used. This specific
aspect will not be discussed here.

In table 2b, the main results of each study
are presented. The classification accuracy (simply
called “accuracy” thereafter) is reported, as well as
its standard deviation when available. The 95%
confidence limits of chance results for the considered
classification problem is indicated in the column
“chance level” when available [25]. Then a column
indicates the type of classification problem, i.e. the
number of classes that the algorithm was trained to
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First author Ref.
Stimulation

Location
Screen. Task Subj.

Algorithm

Freq. Spat. Feat.

Breitwieser [7] Yes AF 14 LAS CSBM (1) Amp.

Ahn [2] Yes MI | AF? 8 wBP CSP N/A

Nam [27] No1 SS? 4

wBP + FFT

wBP + FFT

(w+n)BP + FFT

None

CSP

CSP

SPow.

SPow.

SPow.

Ahn [1] Yes
MI & SS

MI | SS
16 wBP CSP Pow.?

Severens [39] No2 AF? 12 FFT None SPow.

Müller-Putz [26] Yes AF 5 LAS CSBM (2) Log. Amp.

Choi [10] No3 AF 5 wBP + FFT CSBM (2) Rel. SPow.

Breitwieser [6] Yes AF 13 nBP + LAS CSBM (13) Log. Amp.

Pokorny [33] Yes AF 15 (w+n)BP + LAS CSBM (13) Log. Amp.

Zhou [49] No4 MI 13 wBP + FFT CSP SPow.

Yao [48] No5 MI | SS 11 wBP CSP LV

Tao [42] No4 MI 12

wBP + FFT

wBP + FFT

wBP + FFT

CS (1)

CS (1)

CS (1)

SPow.

ISPC

SPow. cc ISPC

Kim [18] No6 SS 3
None

FFT

CSP

CS (3), CSP

LV

SPow. cc LV

Kim [19] Yes SS 4 wBP + FFT CS (3), CSP SPow. cc LV

Kim [20] Yes SS 5 wBP + FFT CS (3), CSP SPow. cc LV

Kim [21] Yes MI | SS 12

wBP + FFT

wBP

wBP + FFT

CS (3)

CSP

CS (3), CSP

SPow.

LV

SPow. cc LV

Kee [17] Yes AF 5
wBD + None

wBD + PSD

CSP

None

LV

Pow.

Notes on screeningless SSSEP-based BCI, x Material (size), Stimulation Shape:
1 LRA?(0.79 cm2), Pulses 3 LRA (2.5 cm2), Vibration (200 Hz)

5 C10-100 LRA (0.79 cm2), Vibration (175 Hz)

2 Braille Stimulator, Pulses 4 Electrical stimulation, Pulses
6 ERM, N/A

Table 2a. EEG-based BCI exploiting SSSEP: Methods and Algorithms. All reported works use mechanical stimulation of
the skin unless mentioned differently as an observation in table 2b. Legend and Acronyms: BM: bipolar montage; CS (x): channel
selection x being the number of kept bipolar channel (if BM) monopolar channel otherwise; cc: concatenate; SPow.: power of selected
frequencies (FOS) computed with FFT; Pow.: power computed with FFT; LAS: lock-in amplifier system; Amp.: amplitude output
of a LAS; LV: log-variance of spatially filtered data from a CSP; ISPC: inter-stimulus phase coherence; nBP: narrow band-pass filter
around stimulation frequencies (± 1 Hz); wBP: wide band-pass filters whose range can vary from 16-25 Hz [1] to 8-30 Hz [2]; N/A:
not available; *: irrespective of the paradigms or the algorithms; ?: unclear or ambiguous.

differentiate. Finally, a last column presents the main
achievement of the study or provides supplementary
information when needed.

4.3. Signal processing and feature extraction

In this section, we succinctly present the main
techniques used in the reviewed articles in order to
process the EEG signals and extract significant SSSEP
features for further classification. Three categories of
data processing will be considered: estimation of the
frequency information contained in EEG signals, use or

non-use of spatial information, type and characteristics
of classification features.

4.3.1. Frequency information is retrieved from EEG
signals with mostly three different approaches: Fourier
transform, band-pass filtering or lock-in amplification.

The Fourier transform is the best known method
for recovering the frequency information contained in
a signal, through projections onto a base of sinusoidal
components. Fourier-like transforms implemented in
systems requiring real-time processing are usually
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First author Ref.
Stimulation

Location

Accuracy

(SSSEP)

Chance L.

(p = 5%)
Problem Observations

Breitwieser [7] 58.6% ± 2.0 61% 2-class

Ahn [2] 69% ± 11 N/A 2-class
ERD from MI tasks reached an
average accuracy of 71% ± 10.

Nam [27]

70.0

57.1

75.4

N/A 2-class
Left thumb (22 Hz), right thumb
(27 Hz)

Ahn [1] ≈ 60% 60% 2-class

Severens [39] 68% 63.34% 2-class

Müller-Putz [26]
min: 66.9%

max: 83.9%
N/A 2-class

Accuracy rather stable across days
(up to 5 days of experiments)

Choi [10] 65% N/A 2-class Different patterns of stimulation

Breitwieser [6] 42.1% ± 7.9 39.8% 3-class Offline mean accuracy: 48.2% ± 7.1

Pokorny [33] 48.6% ± 6.2
40.8%

(p = 1%)
3-class

9 subjects above chance level, average
classification computed with them.

Zhou [49] 74.5% ± 5.8† N/A 2-class
Classification of right hand MI vs.
idle based on the SSSEP’s amplitude.
Uses electrical stimulations.

Yao [48] 72% ± 15* N/A 2-class Left wrist (23 Hz), right wrist (27 Hz)

Tao [42]

75.4% ± 10.2

75.7% ± 13.9

79.8% ± 11.5

N/A 2-class
Uses electrical stimulations and Inter-
Stimulus Phase Coherence (ISPC).

Kim [18]
76%

80.93%
N/A 3-class

Kim [19] N/A N/A 3-class

Wheelchair-driving experiment.
Identical rhythm of commands be-
tween conditions: one every 5 s.
Goal reached in average in 35 s ± 2.1
(joystick) and 101 s ± 27.6 (SSSEP).

Kim [20] N/A N/A 3-class Similar to [19].

Kim [21]

55% ± 6.8†

73% ± 11.8†

76% ± 12.8†
N/A 3-class

Kee [17] 72%* N/A 2-class

Table 2b. EEG-based BCI exploiting SSSEP: Performances. All of the reported works uses mechanical stimulation of the
skin unless mentioned differently as an observation. Legend and Acronyms: N/A: not available; *: irrespective of the paradigms or
the algorithms; †: extracted from a figure.

either the fast-Fourier transform (FFT) [21] or the
power spectral density (PSD) estimation [17].

Unlike the other reviewed articles, Kee et al used
the power information at all available frequencies in
the FFT [17]. The most common approach though
is to consider only some frequencies, e.g. the FOS
and some of its harmonics [39]. The amplitudes
or squared amplitudes of the sinusoidal components
are then computed and provided as features to the

classifier.
Another approach to the estimation of frequency

information is narrow band-pass filtering. A narrow
band-pass filter can be the first stage to recover the
amplitude of a given frequency component of the EEG
signal. In order to estimate the power of a signal inside
a frequency band, it is common to square the band-pass
filtered signal and average the result over time [22].
The authors of [6, 33] followed a slightly different
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Figure 5. Grand average of SSSEP amplitudes, calculated
across subjects and attention-related experimental condition
(one-hand attended, one-hand ignored and both-hand attended).
Figure reproduced with the appreciated authorisation of the
authors from [31].

approach, combining a narrow band-pass filter with a
lock-in amplifier, technique that will be presented in
the next paragraph.

A lock-in amplifier or lock-in amplifier system
(LAS) computes an estimate of the amplitude and
phase of a specific sinusoidal component of a noisy
signal. This method is fairly similar to a very
narrow and tunable band-pass filter and can be
considered as such [26]. In the literature, the amplitude
estimation from the LAS is also averaged over a sliding
time window of fixed length [26]. Commonly, the
logarithm of the averaged amplitude is computed, for
conditioning purposes and to obtain a distribution
that approximates to normal [26]. Finally, either
the averaged amplitude or its logarithm is fed into
the classifier as a signal feature. This technique has
long been known and frequently used when a single
sinusoidal component is targeted in the EEG. Indeed,
in a 1966 SSVEP study, Regan et al used the source
of stimulation itself, modulated light, with an EEG to
implement a physical LAS [35].

4.3.2. The spatial location of an SSSEP is well known
and stable across subjects. Snyder showed that SSSEP
can be principally recorded over the somatosensory
cortex located in the post-central gyrus [40]. Moreover,
the spatial location can be refined by building on the
sensory homunculus that projects each part of the
body onto a precise location of the sensory cortex.
Therefore, a straightforward method to take advantage
of this precise location is to process only the EEG
signal recorded by a specific well-placed electrode.
For example, the topomaps of figure 5 illustrate the
positions of two concurrent SSSEP on the cortex.

For instance, to detect the SSSEP elicited by a
mechanical stimulation of the right hand, one can
process the signal recorded at location C3 of the 10-
20 international system of electrode placement. The

spatial selection of signals of interest, in addition to
the use of several FOS, allows SSSEP-based BCIs
to provide independent and sometimes simultaneous
control channels. This method is commonly used in
the literature, we reported it as channel selection (CS)
in table 2a.

In order to reduce the noise, some authors use
a bipolar montage (BM) [26, 10, 33, 6]. The noise,
or more generally a widespread and non task-related
cortical activity, is removed by subtracting the signals
recorded by two neighbour electrodes located next to
the region of interest. For example, in an SSSEP-based
BCI, the signal corresponding to a noiseless virtual
electrode over C3 is commonly obtained by subtracting
the centro-parietal signal recorded at CP3 from the
fronto-central signal recorded at FC3. It is worth
noting also that the variance of the signal provided by
the virtual electrode is lower than the sum of variances
of both initial electrodes. More precisely, the variance
of the BM signal is the sum of variances of the initial
signals minus twice their covariance, the latter being
usually high since the electrodes are close to each other.
Electrodes with a lower variance are assumed to have
a better signal-to-noise ratio. This property actually
derives from the principle of “blocking” well known in
statistics.

We also noticed that the common spatial pattern
(CSP) filtering method was regularly used. CSP is
the gold standard spatial filtering technique in motor-
imagery-based BCIs (MI) [22]. This algorithm was
indeed part of the methodology in all studies that
compare SSSEP-based BCIs to MI-based BCI [1, 48,
21]. The CSP algorithm determines spatial filters, i.e.
weights of a linear combination of EEG signals, that
maximize the variance of the resulting signal for one
class while minimizing it for the other classes. Here,
one class corresponds to the set of signals containing
SSSEPs elicited by a specific stimulation, and the other
class to the set of all other signals available in the
recorded dataset. Typically, most of the studies use 3
pairs of spatial filters computed by the CSP algorithm,
i.e. 3 filters that maximize the variance of one class and
3 that maximize the variance of the other class. The
logarithms of variance of the CSP filtered EEG signals
provide the feature vector fed into the classifier, with
dimension 6 in the previous example.

4.4. Synthesis of SSSEP-based BCIs: main results

In all the studies of tables 2a and 2b except
one, different limbs were selected for receiving each
periodical somatosensory stimulus when more than one
was considered. However, in [7], Breitwieser et al
implemented a BCI using two fingers of the same hand.
The reported average discrimination accuracy between
both fingers, across all subjects, was 58.6%±2.0. This
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result is below chance level (61%) considering the
number of trials and a confidence limit at 95% [25].
However, the attention focusing effect, for one finger vs.
resting state, both during stimulation, was successfully
highlighted. The accuracy related to AF was similar
for both fingers, i.e. thumb or middle finger, at about
66.5%±5.4.

Usually, only one of the two stimulation tech-
niques, i.e. short mechanical pulses or vibro-tactile
stimulation, is used in the presented studies. In [10],
Choi et al tested different techniques of stimulation.
The accuracy reported in table 2b for this article is
the one for the control condition used in their ex-
periment, i.e. for a standard vibro-tactile stimula-
tion. Other compared techniques were variations of
this vibro-tactile stimulation, with a carrier frequency
at 200 Hz amplitude-modulated by non-periodic or pe-
riodic signals. One of the tested models was named
“random pulses”, in which, during the standard vibro-
tactile stimulation, transient random decreases of stim-
ulation amplitude were inserted. Another tested model
was named “tic-tic-toc”, in which during the standard
vibro-tactile stimulation, a rhythmic train of transient
decreases of stimulation amplitude was added. Two
out of three pulses were regular pulses (tic) and the
other one was much stronger (toc). Once the “toc”
was added, the pattern restarted from the first “tic”,
during the whole stimulation. This stimulation tech-
nique yields a significant improvement of the accuracy
(p<0.0001, post-hoc Tukey tests) compared to the oth-
ers. The size effect was not reported, but we may de-
duce from the experiment description that the median
accuracy of the tic-tic-toc pattern was around 75%,
while the median accuracies of standard vibro-tactile
and random pulses were respectively 65% and 70%.

Most of the authors assessed the accuracy of
their SSSEP-based BCI in highly controlled conditions.
Usually, subjects were seated in front of a screen
and performed the same task repetitively. Kim et
al followed a different approach [19, 20, 21]. Their
evaluation framework consisted in driving a wheelchair
along a predefined course while avoiding obstacles.
The rate of wheelchair commands, one every five
seconds, was the same for the tested SSSEP-based
BCI and the control condition, i.e. a joystick. Three
mechanical stimuli were simultaneously provided to the
subjects at their right and left index fingertip and at
the big toe of the right foot. The subject emitted
a command by “concentrating his attention on the
vibration stimulus”, task referred to as SS in table 2a.
The ending point of the predefined path followed by the
wheelchair was roughly 10 m apart from the starting
point. Similar performances were obtained within
the three studies, the ending point being reached on
average twice faster with a joystick than with the BCI.

In tables 2a and 2b, most of the studies involved
mechanical stimulation of fingers or, to a lesser extent,
wrists. Foot-elicited SSSEPs have been scarcely
studied, but we have found an example in the work
of Kee et al [17]. The authors asked the subjects
to “attend their corresponding feet” when a cue was
provided, task referred to as AF in table 1a. This AF
task allowed the subjects to discriminate between both
feet with an average accuracy of 72.6%.

4.4.1. Performance stability of SSSEP-based BCIs.
We already indicated in section 3 that user-specific
SSSEP characteristics seem to remain stable within a
few weeks in between experiments [5]. Here, we aim
to provide information about the stability over time of
accuracy in SSSEP-based BCIs.

We found only one study that evaluates specifi-
cally the accuracy of an SSSEP-based BCI over several
days. In 2006, Müller-Putz et al reported an accuracy
ranging from 66.9 to 83.9% across subjects on day one
of the experiment [26]. Among the five subjects, three
performed 4 successive sessions (one per day), and one
performed 5 sessions. For each subject, online and of-
fline accuracies were found rather stable from one ses-
sion to another, except for subject 5 who performed
4 sessions and for whom an increase was observed in
online as well as offline accuracies. For this subject,
online accuracy increased from 63.8% (day 2) to 71.7%
(day 4) whereas offline accuracy increased from 64.4%
(day 1) to 75.0% (day 4).

4.4.2. Frequency-based detection versus spatial-
based detection is, in the reviewed literature, the
mainstream comparison between two algorithms that
has been reported.

Kee et al compared the accuracy obtained when
using different features, extracted by a CSP or a
PSD, in a 2-class classification problem [17]. First
of all, in both methods, each EEG signal was filtered
by a fourth order Butterworth wide band-pass filter
between 0.5 and 40 Hz. This band-pass was introduced
to capture specifically the alpha and beta frequency
bands. After a frequencies screening procedure aiming
to assess the resonance-like frequency for each of
their subjects, the authors used subject-specific FOS.
The results from the frequencies screening procedure
shows a broad distribution of resonance-like frequency,
across subjects, the resonance-like frequency set was
composed of the following FOS: 13, 23, 25, and 29.
A PSD estimation computed on EEG epochs, lasting
250 milliseconds and sampled at 125 Hz, yielded a
feature vector grouping the powers at 10 frequencies
between 4 and 40 Hz.

Thus, although they determined the resonance-
like frequency for each subject, the authors did not
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use it for tuning the parameters of signal processing.
Consequently, because of the lack of selectivity, one
can wonder if the proposed technique does not detect
in fact a fluctuation within the alpha or beta band
resulting from the AF task, instead of a specific
variation of the SSSEP amplitude induced by AF.
For their second method, the authors used the log
variance of EEG signals filtered with 3 CSP pairs as
classification features. They report similar accuracies
for both algorithms, respectively 72.6% for PSD and
72.2% for CSP.

In 2014, Kim et al compared the accuracies of an
SSSEP-based BCI for different extracted features [18].
The first tested feature vector groups the log variances
of 6 CSP filtered signals. The second tested feature
vector gathers CSP-based log variances and several
power measurements at specific frequencies determined
by a FFT. The power estimation was at least
determined at the FOS, but the procedure as well as
the parameters of the FFT (window size, sampling
frequency) were not reported. Surprisingly, the authors
did not compute the FFT on spatially filtered signals,
but on raw EEG signals. Performance evaluation was
not performed either for feature vectors containing
only the powers estimated by FFT. The CSP-based
method yields an average accuracy of 76%, whereas the
CSP+FFT-based method yields an average accuracy of
80.93%. The experiment was performed on only three
subjects, which impairs the statistical significance of
results.

In 2018, Kim et al performed an equivalent study,
this time on a total of twelve subjects [21]. The
accuracy obtained with feature vectors containing only
the powers estimated by a FFT was also computed.
The CSP and FFT-based methods yield average
accuracies of 73%±11.8 and 55%±6.8 respectively. The
joint feature vector, including both CSP and FFT
attributes, yields an average accuracy of 76%±12.8.

It is noteworthy that, to a lesser extend, one
publication also uses phrase information [42]. The
Inter-Stimulus Phase Coherence is computed using the
Hilbert transform and the analytic signal form of the
EEG. This signal processing technique increases the
accuracy of the proposed system from 75.4% to 79.8%.

4.4.3. Comparison and combination of SSSEP-based
BCIs with MI-based BCIs. In tables 2a and 2b,
several studies compared the accuracies of an SSSEP-
based BCI and a MI-based BCI, such as [2, 48, 1, 21].

In 2014, Yao et al conducted a 4-class experiment
(left/right MI and left/right SS). The authors retained
6 combinations of conditions for a 2-class classification
task by extracting two different groups of data, for
example, right-SS vs. left-MI [48]. Four out of the 6
combinations were referred to as hybrid, such as in the

previously provided example, when the two considered
groups did not correspond to the same modality. The
accuracy reported in table 2b is for the non-hybrid
combination with only SS. This combination yield an
accuracy of 72.6%±14.8, which is comparable to the
accuracies of other studies.

For most subjects, using hybrid modalities had
a limited impact on the accuracy. However, for two
subjects, using hybrid modalities yielded an accuracy
increase from 55-60% and 70% to above 90%. It is
noticeable that the authors used fixed 23 Hz (left wrist)
and 27 Hz (right wrist) FOS and a fixed wide band-pass
filter between 8 and 26 Hz, that does not include the
right FOS. Feature extraction was performed using 3
pairs of spatial filters computed with a CSP, the log
variance of the filtered signals was used. Therefore,
we can wonder if this analysis framework does not
take mostly into account the spatial information of the
left wrist-elicited SSSEP mixed with the influence of
attention focusing. Among all combinations, the left
SS vs. right MI produces the best performance with an
average accuracy of 83.1%±10.4.

In 2014, Ahn et al also compared and combined
MI and SSSEP-based BCI paradigms [1]. The authors
assessed the accuracies for different conditions: MI
alone, SS alone, and both mental tasks at the same
time. The subject received the same mechanical
stimulation during these three conditions. A fourth
condition was tested, in which the subject performed a
SS task followed by a MI task, but without stimulation.
The three conditions with stimulation lead to similar
accuracies around 60% while MI without stimulation
reached 70%. Actually, this methodology was very
similar to the one of Yao et al [48], except that the
band-pass filter was different for each condition. The
wide band-pass filter was between 16 to 25 Hz for
the SS condition and 8 to 15 Hz for the MI without
stimulation condition. Every resonance-like frequency
identified during the frequencies screening procedure
lies within 16-25 Hz. For each condition, feature
extraction was performed using CSP spatial filters, 5
pairs of filters. The vector formed from the power of
the filtered signals was fed into the classifier.

In 2018, Kim et al also compared both
paradigms [21]. They evaluated an SSSEP-based BCI
as well as a MI-based BCI for a wheelchair-driving task.
The authors reported that the MI-based BCI was less
efficient than the SSSEP-based BCI, with an average
path following duration of 173 ± 95 seconds for MI
compared to 102 ± 26 seconds for SSSEP. One can no-
tice that with the MI-based BCI, four subjects could
not finish the path following task in less than 5 min-
utes and that in this case a 300 seconds duration of
the task was considered for calculating average perfor-
mance. When these subjects are removed from the list
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to estimate the average task duration, the latter drops
down to 110 ± 26 seconds, which is equivalent to the
average duration of the SSSEP-based BCI task.

4.4.4. Comparison of SSSEP-based BCI with
a somatosensory-evoked P300-based BCI was very
rarely performed in the literature. We report only one
study that performed this comparison.

In 2013, Severens et al compared their SSSEP-
based BCI with a P300-based BCI in which the P300
was elicited by a transient mechanical stimulation [39].
The SSSEP was elicited by short mechanical pulses,
with a 50% duty-cycle control signal. The authors
reported that the P300 alone outperformed the SSSEP-
based BCI, with an average accuracy of 74% and
60% respectively, after only 2 seconds of recording.
With 16 seconds of recording, the respective accuracies
increased to 93% and 68%. The SSSEP-based BCI
reached this level of accuracy after 4 seconds, and
remains stable after that, whereas the P300-based
BCI accuracy kept increasing with recording duration.
Additionally, the accuracy of the combination of
both stimulation, i.e. transient twitches and sustained
pulsation, does not significantly differ from the one of
P300 alone.

However, the differences of performance can be
put in perspective from a different point of view.
Firstly, the features chosen for SSSEP classification are
unusual, since they correspond to the power estimates
of EEG signals at the two FOS, 18 and 21 Hz,
at two of its harmonics as well as at half of the
FOS. EEG was recorded with 64 electrodes, among
which the authors performed an outlier detection
for each subject, resulting in removing an average
of 6.9 electrodes (std 3.8). Anyway, this yields a
very large feature vector, with 8 signal powers (at
9, 10.5, 18, 21, 36, 42, 54, and 63 Hz) for each
retained electrode. As seen in section 3.4.2, other
studies tend to demonstrate that powers at harmonics
contain little information, especially those produced
by FOS higher than 11 Hz. Moreover, when the
stimulation results from short mechanical pulses, i.e.
from a square signal, there is no information at the
second harmonic of the FOS. Therefore, since no prior
feature selection is performed before classification, its
accuracy can be seriously impacted. This effect may
have been counterbalanced by the use of a regularized
classification algorithm, but this has not been reported
or discussed by the authors.

To summarise, in this section we presented
a review of studies describing an EEG-based BCI
exploiting SSSEP. We firstly presented the main signal
processing and feature extraction techniques reported
in the literature. In most studies, features are
extracted by a FFT analysis, or by an equivalent

technique. Lock-in amplifier systems are also regularly
used. Spatial filtering techniques, such as common
spatial pattern or channel selection with bipolar
montage, can improve SSSEP analysis.

The second part of our review was focused on
analysing the performances of the EEG-based BCI
exploiting SSSEP. Reported average accuracies, for
systems exploiting the stimulation of two distinct
upper limbs, varies from 60% to 79.8%, for a 2-
class problem. 3-class problems are rarely tackled,
and BCI performance shows higher variability, with
an accuracy from 42.1% to 80.93%. One study uses
SSSEP to reduce the number of false triggering in
MI-based BCI [49]. Comparison of SSSEP-based BCI
with paradigms other than motor imagery have been
scarcely performed, which reinforces our idea that the
field should be further explored.

5. Conclusion

In this review, we presented and analysed 24 articles
that deal either with the estimation of user specific
characteristics of SSSEPs or with the description of an
SSSEP-based BCI.

Most studies describing the precise relationship
between SSSEP characteristics and stimulation param-
eters, show that they are highly subject dependant.
Due to this strong variability, the frequencies screening
procedure, i.e. the determination of user-specific FOS,
appears as a mandatory stage in any SSSEP-based BCI
in order to improve its performance. For instance, the
study of Pokorny et al shows that a shift of the FOS by
5 Hz from the resonance-like frequency elicits SSSEPs
with an amplitude roughly twice weaker [33]. However,
although they are of major interest, the results of the
determination of user-specific FOS or the procedure it-
self are rarely reported in their entirety as can be seen
in table 2b.

We also presented 17 studies that describe an
SSSEP-based BCI and assess its performance. The
reported average accuracy for a 2-class classification
problem varies between 60% to 72%, and between
42.1% to 76% for a 3-class classification problem.
However, in most of the studies reporting high average
accuracies, experiments were performed with a small
number of subjects, which lowers their statistical
significance.

Some of the presented studies compare their
results to other BCI paradigms. They provide very
interesting insights, but again due to the small number
of subjects involved in the experiments, no definite
conclusion can be drawn. Paradigm comparison was
mostly performed between MI and SSSEP. SSSEP has
the advantage of being easier to detect in the EEG,
thanks to the use of exogenous stimuli, than MI-related
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cortical activities. False command triggering, caused
by the detection of irrelevant mental activity during
MI, can also be mitigated by the use of SSSEP [49].

As we stated in the introduction, SSSEP-based
BCI uses a modality that is underused or unusable
by a person with a motor disability. Hence, SSSEP-
based BCIs, that do not monopolize the user’s sight
or hearing for stimulation or feedback, should be
developed and tested for motor-disabled users. All
the experiments reported in the reviewed articles were
performed on healthy people. However, it has been
shown that people who suffer from amyotrophic lateral
sclerosis of from other neuromuscular pathologies
such as spinal muscular atrophy retain a functional
somatosensory system [14, 16]. It offers the hope that
future developments of SSSEP-based BCIs will provide
these patients with an easy to use interface that does
not solicit their visual or auditory system.

After this review, we can also conclude that
studies show that SSSEPs characteristics highly
depend on the stimulation procedure or device. The
use of a standard and validated stimulation unit,
conforming with safety standards for medical electrical
equipment such as EN 60601-1:2006 [32], might reduce
this variability and allow an easier comparison of
results from different studies.

Finally, we also lack answers to many questions
about SSSEP that initially look rather basic, such as:
What is the influence of the stimulation position on the
characteristics of the SSSEP, like amplitude or total
latency? How long does it take for a SEP to reach its
steady-state? Is there a relationship between physical
traits of a person and resonance-like frequencies? This
research field should be investigated further to gain an
in-depth understanding of SSSEPs and pave the way
to efficient SSSEP-based BCIs.
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